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Transcendental Morse inequality

and generalized Okounkov bodies

Ya Deng

Abstract

The main goal of this article is to construct “arithmetic Okounkov bodies” for an
arbitrary pseudo-effective (1,1)-class α on a Kähler manifold. First, we prove the differ-
entiability of volumes of big classes for Kähler manifolds on which modified nef cones
and nef cones coincide. As a consequence, we prove Demailly’s transcendental Morse
inequality for these particular Kähler manifolds. In the second part, we construct the
generalized Okounkov body for any big (1,1)-class, and prove that it coincides with the
Okounkov body when the big class is rational. Next, we give a complete characteri-
zation of generalized Okounkov bodies on surfaces, and relate the standard Euclidean
volume of the body to the volume of the corresponding big class as defined by Bouck-
som; this solves a problem raised by Lazarsfeld and Mustaţă in the case of surfaces.
Finally, we study the behavior of the generalized Okounkov bodies on the boundary of
the big cones.

1. Introduction

In [Oko96] Okounkov introduced a natural procedure to associate a convex body ∆(D) in Rn with
any ample divisor D on an n-dimensional projective variety. Relying on the work of Okounkov,
Lazarsfeld and Mustaţă [LM09] and Kaveh and Khovanskii [KK12a, KK12b] have systematically
studied Okounkov’s construction, and associated with any big divisor and any fixed flag of
subvarieties a convex body which is now called the Okounkov body.

We briefly recall the construction of the Okounkov body. We start with a complex projective
variety X of dimension n. Fix a flag

Y• : X = Y0 ⊃ Y1 ⊃ Y2 ⊃ · · · ⊃ Yn−1 ⊃ Yn = {p} ,

where Yi is a smooth irreducible subvariety of codimension i in X. For a given big divisor D, one
defines a valuation-like function

µ = µY•,D :
(
H0(X,OX(D))− {0}

)
→ Zn

as follows. First, set µ1 = µ1(s) = ordY1(s). Dividing s by a local equation of Y1, we obtain
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a section

s̃1 ∈ H0
(
X,OX(D − µ1Y1)

)
that does not vanish identically along Y1. We restrict s̃1 on Y1 to get a non-zero section

s1 ∈ H0
(
Y1,OY1(D − µ1Y1)

)
;

then we write µ2(s) = ordY2(s1) and continue in this fashion to define the remaining inte-
gers µi(s). The image of the function µ in Zn is denoted by µ(D). With this in hand, we define
the Okounkov body of D with respect to the fixed flag Y• to be

∆(D) = ∆Y•(D) = closed convex hull

( ⋃
m>1

1

m
· µ(mD)

)
⊆ Rn .

According to the open question raised in the final part of [LM09], it is quite natural to wonder
whether one can construct “arithmetic Okounkov bodies” for an arbitrary pseudo-effective (1,1)-
class α on a Kähler manifold and realize the volumes of these classes by convex bodies as well. In
our paper, using positive currents in a natural way, we give a construction of a convex body ∆(α)
associated with such a class α, and show that this newly defined convex body coincides with the
Okounkov body when α ∈ NSR(X).

Theorem 1.1. Let X be a smooth projective variety of dimension n, let L be a big line bundle
on X, and let Y• be a fixed admissible flag. Then we have

∆(c1(L)) = ∆(L) =

∞⋃
m=1

1

m
ν(mL) .

Moreover, in the definition of the Okounkov body ∆(L), it suffices to take the closure of the set
of normalized valuation vectors instead of the closure of the convex hull.

By Theorem 1.1, we know that our definition of the Okounkov body for any pseudo-effective
class could be treated as a generalization of the original Okounkov body. A very interesting
problem is to find out exactly which points in the Okounkov body ∆(L) are given by valuations of
sections. This is expressed by saying that a rational point of ∆(L) is “valuative”. By Theorem 1.1,
we can give some partial answers to this question, which have been given in [KL14] in the case
of surfaces.

Corollary 1.2. Let X be a projective variety of dimension n, and let Y• be an admissible flag.
If L is a big line bundle, then any rational point in int(∆(L)) is a valuative point.

It is quite natural to wonder whether our newly defined convex body for big classes be-
haves similarly to the original Okounkov body. In the situation of complex surfaces, we give an
affirmative answer to the question raised in [LM09], as follows.

Theorem 1.3. Let X be a compact Kähler surface, and let α ∈ H1,1(X,R) be a big class. If C
is an irreducible divisor of X, there are piecewise linear continuous functions

f, g : [a, s] 7→ R+

with f convex, g concave, and f 6 g, such that ∆(α) ⊂ R2 is the region bounded by the graphs
of f and g:

∆(α) =
{

(t, y) ∈ R2 | a 6 t 6 s, and f(t) 6 y 6 g(t)
}
.
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Generalized Okounkov bodies

Here ∆(α) is the generalized Okounkov body with respect to the fixed flag

X ⊇ C ⊇ {x} ,

and s = sup{t > 0 |α − tC is big}. If C is nef, then a = 0 and f(t) is increasing; otherwise,
a = sup{t > 0 |C ⊆ EnK(α − tC)}, where EnK :=

⋂
T E+(T ) for T ranging over the Kähler

currents in α, which is the non-Kähler locus. Moreover, ∆(α) is a finite polygon whose number
of vertices is bounded by 2ρ(X) + 2, where ρ(X) is the Picard number of X, and

volX(α) = 2 volR2(∆(α)) .

In [LM09], it was asked whether the Okounkov body of a divisor on a complex surface could
be an infinite polygon. In [KLM12], it was shown that the Okounkov body is always a finite
polygon. Here we give an explicit description for the “finiteness” of the polygons appearing as
generalized Okounkov bodies of big classes and conclude that the finiteness also holds for the
original Okounkov bodies by Theorem 1.1.

As one might suspect from the construction of Okounkov bodies, the Euclidean volume
of ∆(D) has a strong connection with the growth of the groups H0(X,OX(mD)). In [LM09], the
following precise relations were shown:

n! · volRn(∆(D)) = volX(D) := lim
k→∞

n!

kn
h0(X,OX(kD)) . (1.1)

The proof of (1.1) relies on properties of sub-semigroups of Nn+1 constructed from the graded
linear series {H0(X,OX(mD))}m>0. However, when α is a big class which does not belong
to NSR(X), there are no such algebraic objects which correspond to volX(α), and we only have
the following analytic definition due to Boucksom ([Bou02]):

volX(α) := sup
T

∫
X
Tnac ,

where T ranges over all positive (1,1)-currents. Therefore, it is quite natural to propose the
following conjecture.

Conjecture 1.4. Let X be a compact Kähler manifold of dimension n. For any big class
α ∈ H1,1(X,R), we have

volRn(∆(α)) =
1

n!
· volX(α) .

In Theorem 1.3, we prove this conjecture in dimension 2. Our method is to relate the Euclidean
volume of the slice of the generalized Okounkov body to the differential of the volume of the big
class. We prove the following differentiability formula for volumes of big classses.

Theorem 1.5. Let X be a compact Kähler surface, and let α be a big class. If β is a nef class
or β = {C}, where C is an irreducible curve, we have

d

dt

∣∣∣∣
t=0

volX(α+ tβ) = 2Z(α) · β ,

where Z(α) is the divisorial Zariski decomposition of α defined in Section 2.6.

A direct corollary of this formula is the transcendental Morse inequality.

Theorem 1.6. Let X be a compact Kähler surface. If α and β are nef classes satisfying the
inequality α2 − 2α · β > 0, then α− β is big and volX(α− β) > α2 − 2α · β.
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In higher dimension, we also have a differentiability formula for big classes on some special
Kähler manifolds.

Theorem 1.7. Let X be a compact Kähler manifold of dimension n on which the modified nef
cone MN coincides with the nef cone N . If α ∈ H1,1(X,R) is a big class and β ∈ H1,1(X,R) is
a nef class, then

volX(α+ β) = volX(α) + n

∫ 1

0
Z(α+ tβ)n−1 · β dt .

As a consequence, volX(α+ tβ) is C1 for t ∈ R+, and we have

d

dt

∣∣∣∣
t=t0

volX(α+ tβ) = nZ(α+ t0β)n−1 · β

for t0 > 0.

Finally, we study the generalized Okounkov bodies for pseudo-effective classes in Kähler
surfaces. We summarize our results as follows.

Theorem 1.8. Let X be a Kähler surface, and let α be any pseudo-effective but not big class.

(i) If the numerical dimension n(α) is 0, then for any irreducible curve C which is not contained
in the negative part N(α), we have the generalized Okounkov body

∆(C,x)(α) = 0× νx(N(α)|C) ,

where νx(N(α)|C) = ν(N(α)|C , x) is the Lelong number of N(α) at x.

(ii) If n(α) = 1, then for any irreducible curve C satisfying Z(α) · C > 0, we have

∆(C,x)(α) = 0×
[
νx(N(α)|C), νx(N(α)|C) + Z(α) · C

]
.

In particular, the numerical dimension determines the dimension of the generalized Okounkov
body.

2. Technical preliminaries

2.1 Siu decomposition

Let T be a closed positive current of bidegree (p, p) on a complex manifold X. We denote
by ν(T, x) its Lelong number at a point x ∈ X. For any c > 0, the Lelong upperlevel sets are
defined by

Ec(T ) := {x ∈ X, ν(T, x) > c} .
In [Siu74], Siu proved that Ec(T ) is an analytic subset ofX, of codimension at least p. Moreover, T
can be written as a convergent series of closed positive currents

T =

+∞∑
k=1

ν(T,Zk)[Zk] +R ,

where [Zk] is a current of integration over an irreducible analytic set of dimension p, and R is
a residual current with the property that dimEc(R) < p for every c > 0. This decomposition
is locally and globally unique: the sets Zk are precisely the p-dimensional components occurring
in the upperlevel sets Ec(T ), and ν(T,Zk) := inf{ν(T, x) |x ∈ Zk} is the generic Lelong number
of T along Zk.
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2.2 Currents with analytic singularities

A closed positive (1,1)-current T on a compact complex manifold X is said to have analytic
(respectively, algebraic) singularities along a subscheme V (I) defined by an ideal I if there
exists some c ∈ R>0 (respectively, c ∈ Q>0) such that, locally, we have

T =
c

2
ddc log

(
|f1|2 + · · ·+ |fk|2

)
+ ddcv ,

where f1, . . . , fk are local generators of I and v ∈ L∞loc. In the algebraic case, we have the
additional condition that X and V (I) be algebraic. Moreover, if v is smooth, T will be said to
have mild analytic singularities. In these situations, we call the sum

∑
ν(T,D)D which appears

in the Siu decomposition of T the divisorial part of T . Using the Lelong–Poincaré formula, it
is straightforward to check that the divisorial part

∑
ν(T,D)D of a closed (1,1)-current T with

analytic singularities along the subscheme V (I) is just the divisorial part of V (I), times the
constant c > 0 appearing in the definition of analytic singularities. The residual part R has
analytic singularities in codimension at least 2. If we set E+(T ) := {x ∈ X | ν(T, x) > 0}, then
E+(T ) is exactly the support of V (I). Moreover, if V 6⊆ E+(T ) for some smooth variety V , then
T |V := c

2dd
c log

(
|f1|2 + · · · + |fk|2

)
|V + ddcv|V is well defined, for |f1|2 + · · · + |fk|2 and v are

not identically equal to −∞ on V . It is easy to check that this definition does not depend on the
choice of the local potential of T .

Definition 2.1. If α ∈ H1,1

∂∂
(X,R) is a big class, we define its non-Kähler locus as EnK :=⋂

T E+(T ) for T ranging over the Kähler currents in α.

We will often use the following theorem due to Collins and Tosatti.

Theorem 2.2 ([CT15]). Let X be a compact Kähler manifold of dimension n. Given a nef and
big class α, we define a subset of X which measures its non-Kählerianity, namely the null locus

Null(α) :=
⋃

∫
V αdimV =0

V ,

where the union is taken over all positive-dimensional irreducible analytic subvarieties of X.
Then we have

Null(α) = EnK(α) .

2.3 Regularization of currents

We will need Demailly’s regularization theorem [Dem92] for closed (1,1)-currents, which enables
us to approximate a given current by currents with analytic singularities, with a loss of positivity
that is arbitrarily small. In particular, we could approximate a Kähler current T inside its
cohomology class by Kähler currents Tk with algebraic singularities, with a good control of the
singularities. A big class therefore contains plenty of Kähler currents with analytic singularities.

Theorem 2.3. Let T be a closed almost positive (1,1)-current on a compact complex manifold X,
and fix a Hermitian form ω. Suppose T > γ for some real (1,1)-form γ on X. Then there exists a
sequence Tk of currents with algebraic singularities in the cohomology class {T} which converges
weakly to T , such that Tk > γ − εkω for some sequence εk > 0 decreasing to 0, and ν(Tk, x)
increases to ν(T, x) uniformly with respect to x ∈ X.
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2.4 Currents with minimal singularities

Let T1 = θ1 + ddcϕ1 and T2 = θ2 + ddcϕ2 be two closed almost positive (1,1)-currents on X,
where the θi are smooth forms and the ϕi are almost pluri-subharmonic functions. We say that
T1 is less singular than T2 (and write T1 � T2) if we have ϕ2 6 ϕ1 + C for some constant C.

Let α be a class in H1,1

∂∂
(X,R), and let γ be a smooth real (1,1)-form. We denote by α[γ]

the set of closed almost positive (1,1)-currents T ∈ α with T > γ. Since the set of potentials
of such currents is stable under taking a supremum, we conclude by standard pluripotential
theory that there exists a closed almost positive (1,1)-current Tmin,γ ∈ α[γ] which has minimal
singularities in α[γ]. The current Tmin,γ is well defined modulo ddcL∞. For each ε > 0, denote
by Tmin,ε = Tmin,ε(α) a current with minimal singularities in α[−ω], where ω is some reference

Hermitian form. The minimal multiplicity at x ∈ X of the pseudo-effective class α ∈ H1,1

∂∂
(X,R)

is defined as

ν(α, x) := sup
ε>0

ν(Tmin,ε, x) .

For a prime divisor D, we define the generic minimal multiplicity of α along D as

ν(α,D) := inf
{
ν(α, x) |x ∈ D)

}
.

We then have ν(α,D) = supε>0 ν(Tmin,ε, D).

2.5 Lebesgue decomposition

A current T can be locally seen as a form with distribution coefficients. When T is positive, the
distributions are positive measures which admit a Lebesgue decomposition into an absolutely
continuous part (with respect to the Lebesgue measure on X) and a singular part. Therefore we
obtain the decomposition T = Tac + Tsing, with Tac and Tsing globally determined thanks to the
uniqueness of the Lebesgue decomposition.

Now, we assume that T is a (1,1)-current. The absolutely continuous part Tac is considered
as a (1,1)-form with L1

loc coefficients, and, more generally, we have Tac > γ whenever T > γ for
some real smooth real form γ. Thus, we can define the product T kac of k copies of Tac almost
everywhere. This yields a positive Borel (k, k)-form.

2.6 Modified nef cone and divisorial Zariski decomposition

In this subsection, we collect some definitions and properties of the modified nef cone and divi-
sorial Zariski decomposition. See [Bou04] for more details.

Definition 2.4. Let X be compact complex manifold, and let ω be some reference Hermitian
form. Let α be a class in H1,1

∂∂
(X,R).

(i) The class α is said to be a modified Kähler class if and only if it contains a Kähler current T
with ν(T,D) = 0 for all prime divisors D in X.

(ii) The class α is said to be a modified nef class if and only if, for every ε > 0, there exists a
closed (1,1)-current Tε with Tε > −εω and ν(Tε, D) = 0 for every prime D.

Remark 2.5. The modified nef coneMN is a closed convex cone which contains the nef cone N .
When X is a Kähler manifold, MN is just the interior of the modified Kähler cone MK.

Remark 2.6. For a complex surface, the Kähler (respectively, nef) cone and the modified Kähler
(respectively, modified nef) cone coincide. Indeed, analytic singularities in codimension 2 of a
Kähler current T are just isolated points. Therefore, the class {T} is a Kähler class.
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Definition 2.7. The negative part of a pseudo-effective class α ∈ H1,1

∂∂
(X,R) is defined as

N(α) :=
∑
ν(α,D)D. The Zariski projection of α is Z(α) := α − {N(α)}. We call the decom-

position α = Z(α) + {N(α)} the divisorial Zariski decomposition of α.

Remark 2.8. We claim that the volume of Z(α) is equal to the volume of α. Indeed, if T is
a positive current in α, then we have T > N(α) since T ∈ α[−εω] for each ε > 0, and we
conclude that T 7→ T −N(α) is a bijection between the positive currents in α and those in Z(α).
Furthermore, we notice that (T −N(α))ac = Tac, and thus by the definition of the volume of the
pseudo-effective classes we conclude that volX(α) = volX(Z(α)).

Definition 2.9. (i) A family D1, . . . , Dq of prime divisors is said to be an exceptional family if
and only if the convex cone generated by the cohomology classes of the Di meets the modified
nef cone at 0 only.

(ii) An effective R-divisor E is said to be exceptional if and only if its prime components
constitute an exceptional family.

We have the following properties of exceptional divisors.

Theorem 2.10. (i) An effective R-divisor E is exceptional if and only if Z(E) = 0.

(ii) If E is an exceptional effective R-divisor, we have E = N({E}).
(iii) If D1, . . . , Dq is an exceptional family of primes, then the classes {D1}, . . . , {Dq} are linearly
independent in NSR(X) ⊂ H1,1(X,R). In particular, the lengths of the exceptional families of
primes are uniformly bounded by the Picard number ρ(X).

(iv) Let X be a surface. A family D1, . . . , Dr of prime divisors is exceptional if and only if its
intersection matrix (Di ·Dj) is negative definite.

In this paper, we need the following properties of the modified nef cone MN and of the
divisorial Zariski decomposition, due to Boucksom [Bou04]. We state these properties without
proofs.

Theorem 2.11. Let α ∈ H1,1(X,R) be a pseudo-effective class.

(i) The Zariski projection Z(α) is a modified nef class.

(ii) We have Z(α) = α if and only if α is modified nef.

(iii) The class Z(α) is big if and only if α is.

Remark 2.12. Let X be a complex Kähler surface. For a big class α ∈ H1,1(X,R), the class Z(α)
is a big and modified nef class. By Remark 2.5, any modified nef class is nef; it follows that Z(α)
is big and nef.

Theorem 2.13. (i) The map α 7→ N(α) is convex and homogeneous on the pseudo-effective
class cone E . It is continuous on the interior of E .

(ii) The Zariski projection Z : E → MN is concave and homogeneous. It is continuous on the
interior of E .

Theorem 2.14. Let p be a big and modified nef class. Then the primes D1, . . . , Dq contained
in the non-Kähler locus EnK(p) form an exceptional family A, and the fiber of Z over p is the
simplicial cone Z−1(p) = p+ V+(A), where V+(A) :=

∑
D∈AR+{D}.
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Theorem 2.15. Let X be a compact surface. If α ∈ H1,1(X,R) is a pseudo-effective class, its
divisorial Zariski decomposition α = Z(α)+{N(α)} is the unique orthogonal decomposition of α
with respect to the non-degenerate quadratic form q(α) :=

∫
α2 into the sum of a modified nef

class and the class of an exceptional effective R-divisor.

Remark 2.16. Let X be a surface; if α is the class of an effective Q-divisor D on a projective
surface, then the divisorial Zariski decomposition of α is just the original Zariski decomposition
of D.

3. Transcendental Morse inequality

3.1 Proof of the transcendental Morse inequality for complex surfaces

The main goal of this section is to prove the differentiability of the volume function and the
transcendental Morse inequality for complex surfaces. In fact, in the next subsection we will
give a more general method to prove the transcendental Morse inequality for Kähler mani-
folds on which modified nef cones MN coincide with the nef cones N ; this includes Kähler
surfaces. However, since the methods and results here are very special in studying generalized
Okounkov bodies, we will treat complex surface and higher-dimensional Kähler manifolds sepa-
rately. Throughout this subsection, if not mentioned otherwise, X will stand for a complex Kähler
surface. We denote by q(α) :=

∫
α2 the quadratic form on H1,1(X,R). By the Hodge index the-

orem, (H1,1(X,R), q) has signature (1, h1,1(X)− 1). The open cone {α ∈ H1,1(X,R) | q(α) > 0}
thus has two connected components which are convex cones; we denote by P the component
containing the Kähler cone K.

Lemma 3.1. Let X be a compact Kähler manifold of dimension n. If α ∈ H1,1(X,R) is a big
class and β ∈ H1,1(X,R) is a nef class, then N(α+ tβ) 6 N(α) as effective R-divisors for t > 0.
Furthermore, when t is small enough, the prime components of N(α + tβ) will be the same as
those of N(α).

Proof. Since β is nef, by Theorem 2.13, we have

N(α+ tβ) 6 N(α) + tN(β) = N(α) .

Since the map α 7→ N(α) is convex on the pseudo-effective class cone E , it is continuous on the
interior of E , and thus the theorem follows.

Theorem 3.2. If α ∈ H1,1(X,R) is a big class and β ∈ H1,1(X,R) is a nef class, then

d

dt

∣∣∣∣
t=0

volX(α+ tβ) = 2Z(α) · β . (3.1)

Proof. By Lemma 3.1, there exists an ε > 0 such that when 0 6 t < ε, we can write N(α+ tβ) =∑r
i=1 ai(t)Ni, where 0 < ai(t) 6 ai(0) =: ai and each ai(t) is a continuous and decreasing func-

tion with respect to t. According to the orthogonal property of divisorial Zariski decomposition
(Theorem 2.15), we have Z(α + tβ) · N(α + tβ) = 0 for t > 0. Since Z(α + tβ) is modified nef
and thus nef (by Remark 2.6), we have Z(α + tβ) · Ni > 0 for every i. When 0 6 t < ε, we
have ai(t) > 0 for i = 1, . . . , r; therefore, Z(α + tβ) is orthogonal to each {Ni} with respect
to q. We denote by V ⊂ H1,1(X,R) the finite vector space spanned by {N1}, . . . , {Nr}, by V ⊥

the orthogonal space of V with respect to q. Thus α + tβ = Z(α + tβ) +
∑r

i=1 ai(t){Ni} is the
decomposition in the direct sum V ⊥⊕V . We decompose β = β⊥+β0 in the direct sum V ⊥⊕V ;
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we have

Z(α+ tβ) = Z(α) + tβ⊥ ,
r∑
i=1

ai(t){Ni} =
r∑
i=1

ai{Ni}+ tβ0 .

Since volX(α+ tβ) = volX(Z(α+ tβ)) = Z(α+ tβ)2 (by Remark 2.8), it is easy to deduce that

d

dt

∣∣∣∣
t=0

volX(α+ tβ) = 2Z(α) · β⊥ = 2Z(α) · β .

The last equality follows from the inclusions β0 ∈ V and Z(α) ∈ V ⊥. We have proved the first
half of Theorem 1.5.

To prove the transcendental Morse inequality for complex surfaces, we will need a criterion
for the bigness of a class.

Theorem 3.3. Let α and β be two nef classes such that α2 − 2α · β > 0; then α − β is a big
class.

Proof. Recall that P is the connected component of the open cone {α ∈ H1,1(X,R) | q(α) > 0}
containing the Kähler cone K; then P ⊂ E0. As a consequence of the Nakai–Moishezon criterion
for surfaces [Lam99], we know that if γ is a real (1,1)-class with γ2 > 0, then γ or −γ is big.
Since α and β are both nef, we have (α − tβ)2 > 0 for 0 6 t 6 1. This means that α − tβ is
contained in some component of the open cone {α ∈ H1,1(X,R) | q(α) > 0}. But since α is big,
α− tβ is contained in P ⊂ B, and a fortiori α− β is.

Now, we are ready to prove the transcendental Morse inequality for complex surfaces.

Proof of Theorem 1.6. By Theorem 3.3, when α2−2α ·β > 0, the cohomology class α−β is big.
By the differentiability formula (3.1), we have

volX(α− β) = α2 − 2

∫ 1

0
Z(α− tβ) · β dt .

Since the Zariski projection Z : E → MN is concave and homogeneous by Theorem 2.13, we
have

α = Z(α) > Z(α− tβ) + Z(tβ) > Z(α− tβ) .

Since β is nef, we have

α · β > Z(α− tβ) · β ,
and thus

volX(α− β) > α2 − 2α · β .

In the last part of this subsection, we prove the second half of Theorem 1.5.

Theorem 3.4. Let α ∈ H1,1(X,R) be a big class, and let C be an irreducible divisor; then

d

dt

∣∣∣∣
t=0

volX(α+ tC) = 2Z(α) · C . (3.2)
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Proof. It suffices to prove the theorem for C not nef. Thus we have C2 < 0. Write N(α) =∑r
i=1 aiNi, where each Ni is prime divisor. If C ⊆ EnK(Z(α)), we deduce that Z(α) · C = 0 by

Theorem 2.2, and {C,N1, . . . , Nr} forms an exceptional family by Theorem 2.14. Thus we have

Z(α+ tC) = Z(α) and N(α+ tC) = N(α) + tC

for t > 0. The theorem is thus proved in this case.

From now on we assume C 6⊆ EnK(Z(α)); thus we have Z(α) · C > 0 and C 6⊆ Supp(N(α)).
We define b1...

br

 = −S−1 ·

C ·N1
...

C ·Nr

 ,

where S = (sij) denotes the intersection matrix of {N1, . . . , Nr}. By Theorem 2.15 we know that S
is negative definite, satisfying sij > 0 for all i 6= j. We claim that Z(α) + t

(
{C}+

∑r
i=1 bi{Ni}

)
is big and nef if 0 6 t < −(Z(α) · C)/C2. We need the following lemma from [BKS04] to prove
our claim.

Lemma 3.5. Let A be a negative-definite r × r-matrix over the reals such that aij > 0 for all
i 6= j. Then all entries of the inverse matrix A−1 are at most 0.

By Lemma 3.5, we know that all entries of S−1 are at most 0; thus bj > 0 for all 1 6 j 6 r
and we get the bigness of Z(α) + t

(
{C}+

∑r
i=1 bi{Ni}

)
. By the construction of bj , we have(

Z(α) + t

(
{C}+

r∑
i=1

bi{Ni}
))
·Nj = 0

for 1 6 j 6 r and (
Z(α) + t

(
{C}+

r∑
i=1

bi{Ni}
))
· C > 0

for 0 6 t < −(Z(α) · C)/C2. Thus we have the nefness and our claim follows. Since the divisorial
Zariski decomposition is orthogonal and unique (see Theorem 2.15), we conclude that

N(α+ t{C}) =

r∑
i=1

(ai − tbi)Ni ,

Z(α+ t{C}) = Z(α) + t{C}+

r∑
i=1

tbi{Ni}

for t small enough. Since volX(α+ tC) = Z(α+ t{C})2, we have thus also obtained formula (3.2)
in this case.

3.2 Transcendental Morse inequality for some special Kähler manifolds

One can modify the proof of Theorem 1.6 a little bit, to extend the transcendental Morse in-
equality to Kähler manifolds whose modified nef cone MN coincides with the nef cone N . In
this subsection, we assume X to be a compact Kähler manifold of dimension n which satisfies
this condition.

Lemma 3.6. If α ∈ E◦, then the divisorial Zariski decomposition α = Z(α) +N(α) is such that

Z(α)n−1 ·N(α) = 0 .

186



Generalized Okounkov bodies

Remark 3.7. Lemma 3.6 is very similar to the Corollary 4.5 in [BDPP13]: if α ∈ ENS, then the
divisorial Zariski decomposition α = Z(α) +N(α) is such that 〈Z(α)n−1〉 ·N(α) = 0. However,
the proof of [BDPP13] is based on the orthogonal estimate for the divisorial Zariski decompo-
sition of ENS, which is still a conjecture for α ∈ E . Here we will use Theorem 2.2 to prove this
lemma directly.

Proof of Lemma 3.6. By Theorem 2.11, if α is big, then Z(α) is big and modified nef, thus
nef by the assumption for X. By Theorem 2.14, the primes D1, . . . , Dq contained in the non-
Kähler locus EnK(Z(α)) form an exceptional family, and α = Z(α) +

∑r
i=1 aiDi for ai > 0.

Since Null(Z(α)) = EnK(Z(α)) by Theorem 2.2, we have Z(α)n−1 ·Di = 0 for each i, and thus
Z(α)n−1 ·N(α) = 0. The lemma is proved.

Proof of Theorem 1.7. By Lemma 3.1, there exists an ε > 0 such that the prime components of
N(α+ tβ) will be the same as those of N(α) when 0 6 t 6 ε. Moreover, if we write N(α+ tβ) =∑r

i=1 ai(t)Ni, then each ai(t) is continuous and decreasing, satisfying ai(t) > 0. By Lemma 3.6,
we have

Z(α+ tβ)n−1 ·N(α+ tβ) =
r∑
i=1

ai(t)Z(α+ tβ)n−1 ·Ni = 0 .

Since Z(α + tβ) is modified nef, thus nef, we deduce that Z(α + tβ)n−1 · Ni = 0 for 0 6 t 6 ε
and i = 1, . . . , r.

Since ai(t) is continuous and decreasing, it is almost everywhere differentiable. Thus Z(α +
tβ) = α+tβ−

∑r
i=1 ai(t)Ni is an a.e. differentiable and continuous curve in the finite-dimensional

space H1,1(X,R) parametrized by t. Meanwhile, since α 7→ αn is a polynomial in H1,1(X,R), we
thus deduce that volX(α + tβ) = Z(α + tβ)n is an a.e. differentiable function with respect to t.
Therefore, if volX(α+ tβ) and ai(t) are both differentiable at t = t0, we have

d

dt

∣∣∣∣
t=t0

volX(α+ tβ) = nZ(α+ t0β)n−1 ·
(
β −

r∑
i=1

ai
′(t0)Ni

)
= nZ(α+ t0β)n−1 · β .

Since volX(α+ tβ) is increasing and continuous, it is also a.e. differentiable, and thus we have

volX(α+ sβ) = volX(α) +

∫ s

0

d

dt
volX(α+ tβ)dt

= volX(α) + n

∫ s

0
Z(α+ tβ)n−1 · β dt (3.3)

for 0 6 s 6 ε. Since Z(α + tβ) is continuous (by Theorem 2.13), by (3.3) we deduce that
volX(α+ tβ) is differentiable with respect to t. Its derivative is

d

dt

∣∣∣∣
t=t0

volX(α+ tβ) = nZ(α+ t0β)n−1 · β .

To prove the transcendental Morse inequality, we will need the following bigness criterion
obtained in [Xia13] and [Pop16].

Theorem 3.8. Let X be an n-dimensional compact Kähler manifold. Assume that α and β are
two nef classes on X satisfying αn − nαn−1 · β > 0; then α− β is a big class.

The proof of the next theorem is similar to that of Theorem 1.6 and is therefore omitted.

Theorem 3.9. Let X be a compact Kähler manifold on which the modified nef cone MN and
the nef cone N coincide. If α and β are nef cohomology classes of type (1,1) on X satisfying

187



Y. Deng

the inequality αn − nαn−1 · β > 0, then α − β contains a Kähler current and volX(α − β) >
αn − nαn−1 · β.

Remark 3.10. In [BFJ09], the authors proved the following differentiability theorem:

d

dt

∣∣∣∣
t=t0

volX(L+ tD) = n
〈
Ln−1

〉
·D , (3.4)

where L is a big line bundle on the smooth projective variety X and D is a prime divisor. The
right-hand side of (3.4) involves the positive intersection product 〈Ln−1〉 ∈ Hn−1,n−1

>0 (X,R), first
introduced in the analytic context in [BDPP13]. Theorem 1.7 could be seen as a transcendental
version of (3.4) for some special Kähler manifolds. In the general Kähler situation, we propose
the following conjecture.

Conjecture 3.11. Let X be a Kähler manifold of dimensional n, and let α be a big class. If β
is a pseudo-effective class, then we have

d

dt

∣∣∣∣
t=0

volX(α+ tβ) = n
〈
αn−1

〉
· β .

4. Generalized Okounkov bodies on Kähler manifolds

4.1 Definition and relation with the algebraic case

Throughout this subsection, X will stand for a Kähler manifold of dimension n. Our main goal
in this subsection is to generalize the definition of Okounkov body to any pseudo-effective class
α ∈ H1,1(X,R). First of all, we define a valuation-like function. For any positive current T ∈ α
with analytic singularities, we define the valuation-like function

T 7→ ν(T ) = νY•(T ) = (ν1(T ), . . . , νn(T ))

as follows. First, set

ν1(T ) = sup{λ |T − λ[Y1] > 0} ,
where [Y1] is the current of integration over Y1. By Section 2.1, we know that ν1(T ) is the
coefficient ν(T, Y1) of the positive current [Y1] appearing in the Siu decomposition of T . Since T
has analytic singularities, by the arguments in Section 2.2, the current T1 := (T − ν1[Y1])|Y1 is a
well-defined positive current in the pseudo-effective class (α−ν1{Y1})|Y1 , and it also has analytic
singularities. Then take

ν2(T ) = sup
{
λ |T1 − λ[Y2] > 0

}
and continue in this manner to define the remaining values νi(T ) ∈ R+.

Remark 4.1. If one assumes α ∈ NSZ(X), there exists a holomorphic line bundle L such that
α = c1(L). If D is the divisor of some holomorphic section sD ∈ H0(X,OX(L)), then we have

ν([D]) = µ(sD) ,

where µ is the valuation-like function appearing in the definition of the original Okounkov body.
Roughly speaking, our definition of the valuation-like function has a bigger domain of definition
and thus the image of our valuation-like function contains

⋃∞
m=1

1
mµ(mL).

For any big class α, we define the Q-convex body ∆Q(α) (respectively, R-convex body ∆R(α))
to be the set of valuation vectors ν(T ), where T ranges over all the Kähler (respectively, positive)
currents with algebraic (respectively, analytic) singularities. Then ∆Q(α) ⊆ ∆R(α). It is easy to
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check that this is a convex set in Qn (respectively, Rn). Indeed, for any two positive currents
T0 and T1 with algebraic (respectively, analytic) singularities, we have ν(εT0 + (1 − ε)T1) =
εν(T0) + (1− ε)ν(T1) for 0 6 ε 6 1 rational (respectively, real). Also obvious, is the homogeneous
property of ∆Q(α); that is, for all c ∈ Q+, we have

∆Q(cα) = c∆Q(α) .

Indeed, since we have ν(cT ) = cν(T ) for all c ∈ R+, the claim follows directly.

Example 4.2. Let L be a line bundle of degree c > 0 on a smooth curve C of genus g. Then we
have

∆Q(c1(L)) = Q ∩ [0, c) .

Since NSR(C) = H1,1(C,R), for any ample class α on C, we have

∆Q(α) = Q ∩ [0, α · C) .

Lemma 4.3. Let α be a big class; then the R-convex body ∆R(α) lies in a bounded subset of Rn.

Proof. It suffices to show that there exists a b > 0 large enough that νi(T ) < b for any positive
current T with analytic singularities. We fix a Kähler class ω. First of all, choose b1 > 0 such
that

(α− b1Y1) · ωn−1 < 0 .

This guarantees that ν1(T ) < b1 since α− b1Y1 6∈ E . Next choose b2 large enough that(
(α− aY1)|Y1 − b2Y2

)
· ωn−2 < 0

for all real numbers 0 6 a 6 b1. Then ν2(T ) 6 b2 for any positive current T with analytic
singularities. Continuing in this manner, we construct bi > 0 for i = 1, . . . , n such that νi(T ) 6 bi
for any positive current T with analytic singularities. We take b = max{bi}.

Lemma 4.4. For any big class α, the Q-convex body ∆Q(α) is dense in ∆R(α); in particular, we
have ∆Q(α) = ∆R(α).

Proof. It is easy to verify that if T is a Kähler current with analytic singularities, then for any
ε > 0, there exists a Kähler current Sε with algebraic singularities such that ‖ν(Sε)− ν(T )‖ < ε
with respect to the standard norm in Rn. For the general case, we fix a Kähler current T0 ∈
iΘ(L) with algebraic singularities. Then for any positive current T with analytic singularities,
Tε := (1 − ε)T + εT0 is still a Kähler current. By Lemma 4.3, the norm ‖ν(Tε)− ν(T )‖ =
ε ‖(ν(T0)− ν(T ))‖ will tend to 0 since ν(T ) is uniformly bounded for any positive current T with
analytic singularities. Thus ∆Q(α) is dense in ∆R(α).

Now, we study the relations between ∆Q(c1(L)) and ∆(L) for L a big line bundle on X. We
begin with the following two lemmas.

Lemma 4.5. Let L be a big line bundle on the projective variety X of dimension n, with a singular
Hermitian metric h = e−ϕ satisfying

iΘL,h = ddcϕ > εω

for some ε > 0 and a given Kähler form ω. If the restriction of ϕ on a smooth hypersurface Y
is not identically equal to −∞, then there exists a positive integer m0 which depends only
on Y such that any holomorphic section sm ∈ H0(Y,OY (mL) ⊗ I(mϕ|Y )) can be extended to
Sm ∈ H0(X,OX(mL)⊗ I(mϕ)) for any m > m0.
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We need the following Ohsawa–Takegoshi extension theorem to prove Lemma 4.5.

Theorem 4.6. Let X be a smooth projective variety, and let Y be a smooth divisor defined by
a holomorphic section of the line bundle H with a smooth metric h0 = e−ψ. If L is a holomorphic
line bundle with a singular metric h = e−φ, satisfying the curvature assumptions

ddcφ > 0 and ddcφ > δddcψ

with δ > 0, then for any holomorphic section s ∈ H0(Y,OY (KY + L) ⊗ I(h|Y )), there exists
a global holomorphic section S ∈ H0(X,OX(KX + L+ Y )⊗ I(h)) such that S|Y = s.

Proof of Lemma 4.5. Taking smooth metrics e−ψ and e−η on Y and KX , respectively, we can
choose m0 large enough for the curvature assumptions

ddc(mφ− η − ψ) > 0

and

ddc(mφ− η − ψ) > ddcψ

to hold for any m > m0.

By Theorem 4.6, any holomorphic section s ∈ H0(Y,OY (KY +(mL−KX−Y )|Y )⊗I(hm|Y ))
can be extended to a global holomorphic section S ∈ H0(X,OX(mL)⊗I(hm)) such that S|Y = s.
By the adjunction theorem, we have (KX + Y )|Y = KY ; thus the lemma is proved.

Lemma 4.7. Let L be a big line bundle on the Riemann surface C with a singular Hermitian
metric h = e−ϕ such that ϕ has algebraic singularities and

iΘL,h = ddcϕ > εω

for some ε > 0. Then for a fixed point p, there exists an integer k > 0 such that we have
a holomorphic section sk ∈ H0(C,OC(kL)⊗ I(hk)) satisfying ordp(sk) = kν(iΘL,h, p).

Proof. Since ϕ has algebraic singularities, we have the following Lebesgue decomposition:

iΘL,h = (iΘL,h)ac +

r∑
i=1

cixi ,

where each ci > 0 is rational and x1, . . . , xr are the log poles of iΘL,h (possibly p is among them).
We have ∫

C
i(ΘL,h)ac +

r∑
i=1

ci = deg(L) ;

thus
r∑
i=1

ci < deg(L) .

By the Riemann–Roch theorem, there exists an integer k > 0 such that

(i) kci is an integer,

(ii) there is a holomorphic section sk ∈ H0(C,OC(kL)) such that ordxi(sk) > kci and ordp(sk)
= kν(iΘL,h, p).

Thus sk is locally integrable with respect to the weight e−kϕ. The theorem is proved.
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Theorem 4.8. Let X be a smooth projective manifold of dimension n. For any Kähler current
T ∈ c1(L) with algebraic singularities, there exists a holomorphic section s ∈ H0(X,OX(kL))
such that µ(s) = kν(T ); that is, we have

ν(T ) ∈
∞⋃
m=1

1

m
µ(mL) .

In particular,

∆Q(c1(L)) ⊆
∞⋃
m=1

1

m
µ(mL) ⊆ ∆(L) .

Proof. First, set νi = νi(T ) and define

T0 := T , T1 := (T0 − ν1[Y1])|Y1 , . . . , Tn−1 := (Tn−2 − νn−1[Yn−1])|Yn−1 ;

L0 := L− ν1Y1 , L1 := L0|Y1 − ν2Y2 , . . . , Ln−2 := Ln−3|Yn−2 − νn−1Yn−1 .

Since T0 > εω, we have T1 > εω|Y1 , . . . , Tn−1 > εω|Yn−1 . Since each νi is rational, we can find
an integer m such that each mνi is an integer, so that each mLi is a big line bundle on Yi. If we
can prove

ν(mT ) ∈
∞⋃
k=1

1

k
µ(kmL) ,

then we will have

ν(T ) ∈
∞⋃
m=1

1

m
µ(mL) ,

by the homogeneous property 1
mν(mT ) = ν(T ). Thus we can assume that each νi(T ) is an integer

after we replace L by mL and T by mT .

First, since T0 ∈ c1(L) is a Kähler current with algebraic singularities, there exists a singular
metric h = e−ϕ0 on L whose curvature current is T0 and such that ϕ has algebraic singularities;
on the other hand, there is a canonical metric e−η0 on OY0(Y1) such that ddcη0 = [Y1] in the sense
of currents. Thus by the definition of ν1, we deduce that h0 := e−ϕ0+ν1η0 is a singular metric of
L0 such that −ϕ0 + ν1η0 does not vanish identically on Y1 and h0|Y1 is a singular metric of L0|Y1
with algebraic singularities whose curvature current is T1 > εω|Y1 .

Second, there is a canonical singular metric e−η1 of OY1(Y2) on Y1 with curvature current [Y2].
Thus, the singular metric h1 := h0|Y1 + eν2η1 of the big line bundle L1 gives a curvature current
T1 − ν2[Y2] > εω|Y1 . We continue in this manner to define the remaining singular metrics hi :=
hi−1|Yi + eνi+1ηi of the big line bundle Li on Yi with curvature current Ti− νi+1[Yi+1] > εω|Yi for
i = 0, . . . , n− 1. It is easy to see that hi|Yi+1 is well defined.

By Lemma 4.5, there exists a k0 such that for each k > k0, the following short sequence is
exact for i = 1, . . . , n− 1:

H0
(
Yi−1,OYi−1(kLi−1)⊗ I

(
hki−1

))
−→ H0

(
Yi,OYi(kLi−1)⊗ I

(
hki−1|Yi

))
−→ 0 . (4.1)

Now, we begin our construction. The current Tn−1 is the curvature current of the singu-
lar metric hn−2|Yn−1 of Ln−2|Yn−1 over the Riemann surface Yn−1. By Lemma 4.7, there exist
a k > k0 and a holomorphic section sn−1 ∈ H0(Yn−1,OYn−1(kLn−2) ⊗ I(hkn−2|Yn−1)), such that
ordp(sn−1) = kν(Tn−1, p) = kνn.
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By the exact sequence (4.1), sn−1 can be extend to

s̃n−2 ∈ H0
(
Yn−2,OYn−2(kLn−2)⊗ I

(
hkn−2

))
.

Now, we choose a canonical section tn−2 of H0(Yn−2,OYn−2(Yn−1)) such that the divisor of tn−2
is Yn−1. We define sn−2 := s̃n−2t

⊗νn−1

n−2 . By the construction of hn−2 := hn−3|Yn−2 + eνn−1ηn−2 , we
obtain that

sn−2 ∈ H0
(
Yn−2,OYn−2(kLn−3)⊗ I

(
hkn−3|Yn−2

))
.

We can continue in this manner to construct a section s0 ∈ H0(X,OX(kL)), and by our con-
struction we have

µ(s0) = (kν1, . . . , kνn) = kν(T ) .

This concludes the proof of the theorem.

Proposition 4.9. For any big line bundle L and any admissible flag Y•, one has ∆Q(c1(L)) =
∆(L). In particular,

∆(L) =

∞⋃
m=1

1

m
ν(mL) .

Proof. First, since ∆Q(c1(L)) is a convex set in Qn, its closure in Rn, denoted by ∆Q(c1(L)), is
also a closed convex set. By Proposition 4.8, we have

∆Q(c1(L)) ⊂
∞⋃
m=1

1

m
· ν(mL) ;

thus

∆Q(c1(L)) ⊆ ∆(L) .

By Remark 4.1, we have
⋃∞
m=1

1
mν(mL) ⊆ ∆R(c1(L)), thus by the definition of the Okounkov

body ∆(L), we deduce that

∆(L) ⊆ ∆R(c1(L)) .

By Lemma 4.4, we have ∆Q(c1(L)) = ∆R(c1(L)); thus the theorem is proved.

Remark 4.10. By Proposition 4.9, in the definition of the Okounkov body ∆(L), it suffices to
close up the set of normalized valuation vectors instead of taking the closure of the convex hull
of this set.

Remark 4.11. It is easy to re-prove that the Okounkov body ∆(L) depends only on the numerical
equivalence class of the big line bundle L. Indeed, if L1 and L2 are numerically equivalent, we
have c1(L1) = c1(L2); thus

∆Q(c1(L1)) = ∆Q(c1(L2)) .

By Proposition 4.9, we have ∆(L1) = ∆(L2).

Now, we are ready to find some valuative points in the Okounkov bodies.

Proof of Corollary 1.2. From [LM09] we know that volRn(∆(L)) = volX(L) > 0 by the bigness
of L. Since we have ∆(L) = ∆Q(c1(L)) by Proposition 4.9, for any p ∈ int(∆(L)) ∩ Qn, there
exists an n-simplex ∆n containing p with all the vertices lying in ∆Q(c1(L)). Since ∆Q(c1(L)) is
a convex set in Qn, we have ∆n ∩Qn ⊆ ∆Q(c1(L)), and thus

∆Q(c1(L)) ⊇ int(∆(L)) ∩Qn .
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From Theorem 4.8 we have ∆Q(c1(L)) ⊆
⋃∞
m=1

1
mµ(mL); thus we get the inclusion

int(∆(L)) ∩Qn ⊆
∞⋃
m=1

1

m
µ(mL) ,

which means that all rational interior points of ∆(L) are valuative.

Pursuing the same philosophy as in Proposition 4.9, it is natural to extend results related
to Okounkov bodies for big line bundles to the more general case of an arbitrary big class
α ∈ H1,1(X,R). We propose the following definition.

Definition 4.12. Let X be a Kähler manifold of dimension n. We define the generalized Okoun-
kov body of a big class α ∈ H1,1(X,R) with respect to the fixed flag Y• by

∆(α) = ∆R(α) = ∆Q(α) .

We have the following properties for generalized Okounkov bodies.

Proposition 4.13. Let α and β be big classes, and let ω be any Kähler class. Then

(i) ∆(α) + ∆(β) ⊆ ∆(α+ β),

(ii) volRn(∆(ω)) > 0.

(iii) ∆(α) =
⋂
ε>0 ∆(α+ εω).

Proof. Part (i) is obvious from the definition of generalized Okounkov body. To prove part (ii),
we use induction on the dimension. The result is obvious if n = 1, assume now that part (ii)
is true for n − 1. We choose t > 0 small enough that ω − tY1 is still a Kähler class. By the
main theorem of [CT14], any Kähler current T ∈ (ω − tY1)|Y1 with analytic singularities can be
extended to a Kähler current T̃ ∈ ω − tY1; thus we have

∆(ω)
⋂
t× Rn−1 = t×∆((ω − tY1)|Y1) ,

where ∆((ω − tY1)|Y1) is the generalized Okounkov body of (ω − tY1)|Y1 with respect to the flag

Y1 ⊃ Y2 ⊃ · · · ⊃ Yn = {p}.

By induction, we have volRn−1(∆((ω − tY1)|Y1)) > 0. Since ∆(ω) contains the origin, we have
volRn(∆(ω)) > 0.

Now we are ready to prove part (iii). By concavity, we have

∆(α+ ε1ω) + ∆((ε2 − ε1)ω) ⊆ ∆(α+ ε2ω)

if 0 6 ε1 < ε2. Since ∆(ω) contains the origin, we have

∆(α) ⊆
⋂
ε>0

∆(α+ εω) and ∆(α+ ε1ω) ⊆ ∆(α+ ε2ω) .

From the concavity property, we conclude that volRn(∆(α + tω)) is a concave function for
t > 0, thus continuous. Then we have

volRn

(⋂
ε>0

∆(α+ εω)

)
= volRn(∆(α)) > 0 .

Since
⋂
ε>0 ∆(α+ εω) and ∆(α) are both closed and convex, we have

∆(α) =
⋂
ε>0

∆(α+ εω) .
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Remark 4.14. We do not know whether volRn(∆(α)) is independent of the choice of the admissible
flag. However, in the next subsection we will prove that in the case of surfaces, we have

volX(α) = 2 volR2(∆((α)) ;

in particular, the Euclidean volume of the generalized Okounkov body is independent of the
choice of the flag. We conjecture that

volRn(∆(α)) =
1

n!
· volX(α) ,

as we proposed in the introduction.

4.2 Generalized Okounkov bodies on complex surfaces

Now, we will focus mainly on generalized Okounkov bodies of compact Kähler surfaces. In this
section, X denotes a compact Kähler surface. We henceforth fix an admissible flag

X ⊇ C ⊇ {x}

on X, where C ⊂ X is an irreducible curve and x ∈ C is a smooth point.

Definition 4.15. For any big class α ∈ H1,1(X,R), we denote the restricted R-convex body
of α along C by ∆R,X|C(α). This is defined to be the set of Lelong numbers ν(T |C , x), where
T ∈ α ranges over all the positive currents with analytic singularities such that C 6⊆ E+(T ). The
restricted Okounkov body of α along C is defined as

∆X |C(α) := ∆R,X|C(α) .

When α = c1(L) for some big line bundle L on X, it is noticeable that ∆X|C(α) = ∆X|C(L),
where ∆X|C(L) is defined in [LM09]. When L is ample, we have ∆X|C(L) = ∆(L|C). Indeed, it
suffices to show that for any section s ∈ H0(C,OC(L)), there exists an integer m such that s⊗m

can be extended to a section Sm ∈ H0(X,OX(mL)). This can be guaranteed by the Kodaira
vanishing theorem. When α is any ample class, there is a similar theorem in [CT14] which shows
that, for any Kähler current T ∈ α|C with mild analytic singularities, T can be extended to a
global Kähler current T̃ ∈ α. However, the proof in [CT14] is rather involved due to their general
statement of the theorem. In the following proposition, we give a simple proof of the extension
for Kähler currents when X is a complex surface. The idea of the proof is borrowed from [CT14].

Proposition 4.16. If α is an ample class, then we have

∆X|C(α) = ∆(α|C) = [0, α · C] .

Proof. From Definition 4.15, we have ∆X|C(α) ⊆ ∆(α|C). It suffices to prove that for any Kähler

current T ∈ α|C with mild analytic singularities, we have a positive current T̃ ∈ α with analytic
singularities such that T̃ |C = T . First, we choose a Kähler form ω ∈ α. By assumption, we can
write T = ω|V + ddcϕ for some quasi-plurisubharmonic function ϕ on C which has mild analytic
singularities. Our goal is to extend ϕ to a function Φ on X such that ω+ddcΦ is a Kähler current
with analytic singularities.

Choose ε > 0 small enough that

T = ω|C + iddcϕ > 3εω

holds as currents on C. We can cover C by finitely many charts {Wj}16j6N satisfying the
following properties:
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(i) On each Wj (j 6 k), there are local coordinates
(
z
(j)
1 , z

(j)
2

)
such that C ∩Wj =

{
z
(j)
2 = 0

}
and

ϕ =
cj
2

log
∣∣z(j)1

∣∣2 + gj
(
z
(j)
1

)
,

where gj
(
z
(j)
1

)
is smooth and bounded on Wj ∩C. We denote the single pole of T in Wj (j 6 k)

by xj .

(ii) On each Wj (j 6 k), the local potential ϕ is smooth and bounded on Wj ∩ C.

(iii) We have xi 6∈Wj for i = 1, . . . , k and j 6= i.

Define a function ϕj on Wj (with analytic singularities) by

ϕj
(
z
(j)
1 , z

(j)
2

)
=

{
ϕ
(
z
(j)
1

)
+A

∣∣z(j)2

∣∣2 if j > k ,
cj
2 log

(∣∣z(j)1

∣∣2 +
∣∣z(j)2

∣∣2)+ gj
(
z
(j)
1

)
+A

∣∣z(j)2

∣∣2 if j 6 k ,

where A > 0 is a constant. If we shrink the charts Wj slightly, still preserving the property that
C ⊆

⋃
Wj , we can choose A sufficiently large that

ω + ddcϕj > 2εω

holds on Wj for all j. We also need to construct slightly smaller open sets W ′j b Uj b Wj such
that

⋃
W ′j is still a covering of C.

By construction, ϕj is smooth when j > k, and ϕj is smooth outside the log pole xj when
j 6 k. By property (iii) above, we can glue the functions ϕj together to produce a Kähler current

T̃ = ω|U + ddcϕ̃ > εω

defined in a neighborhood U of C in X, thanks to Richberg’s gluing procedure. Indeed, ϕi is
smooth on Wi∩Wj for any j 6= i, which is a sufficient condition for using the Richberg technique.
From the construction of ϕ̃, we know that ϕ̃|C = ϕ and that ϕ̃ has log poles at every xi and is
continuous outside x1, . . . , xk.

On the other hand, since α is an ample class, there exists a rational number δ > 0 such that
α − δ{C} is still ample; thus we have a Kähler form ω1 ∈ α − δ{C}. We can write ω1 + δ[C] =
ω + ddcφ, where φ is smooth outside C, and for any point x ∈ C, we have

φ =
δ

2
log |z2|2 +O(1) ,

where z2 is the local equation of C.

Since φ is continuous outside C, we can choose a large constant B > 0 such that φ > ϕ̃−B
in a neighborhood of ∂U . Therefore, we define

Φ =

{
max{ϕ̃, φ+B} on U ,

φ+B on X − U ,

which is well defined on the whole of X and satisfies ω + ddcΦ > ε′ω for some ε′ > 0. Since
φ = −∞ on C, while ϕ̃|C = ϕ, it follows that Φ|C = ϕ.

We claim that Φ also has analytic singularities. Around xj , we have

ϕ̃(z1, z2) =
cj
2

log
(
|z1|2 + |z2|2

)
+O(1) ,

φ(z1, z2) =
δ

2
log |z2|2 +O(1) ,
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for some local coordinates (z1, z2) of xj . Thus, locally we have

max{ϕ̃, φ+A} =
1

2
log
(
|z1|2cj + |z2|2cj + |z2|2δ

)
+O(1) .

Since Φ is continuous outside x1, . . . , xk, our claim is proved.

Lemma 4.17. Let α be a big and nef class on X; then for any ε > 0, there exists a Kähler current
Tε ∈ α with analytic singularities such that the Lelong number satisfies ν(Tε, x) < ε for any point
in X. Moreover, Tε also satisfies

E+(T ) = EnK(α) .

Proof. Since α is big, there exists a Kähler current with analytic singularities such that E+(T0) =
EnK(α) and T0 > ω for some Kähler form ω. Since α is also a nef class, for any δ > 0, there
exists a smooth form θδ in α such that θδ > −δω. Thus Tδ := δT0 + (1− δ)θδ > δ2ω is a Kähler
current with analytic singularities satisfying

E+(Tδ) = E+(T0) = EnK(α) and ν(Tδ, x) = δν(T0, x)

for any x ∈ X. Since the Lelong number ν(T0, x) is an upper-continuous function (thus bounded
from above), ν(Tδ, x) converges uniformly to 0 as δ tends to 0. The lemma is proved.

Proposition 4.18. Let α be a big and nef class with C 6⊆ EnK(α). Then we have

∆X|C(α) = ∆(α|C) = [0, α · C] .

Proof. Assume EnK(α) =
⋃r
i=1Ci, where each Ci is an irreducible curve. By Lemma 4.17, for

any ε > 0 there exists a Kähler current Tε ∈ α with analytic singularities such that

E+(Tε) = EnK(α) = Null(α) =
r⋃
i=1

Ci

and ν(Tε, x) < ε for all x ∈ X. Thus, the Siu decomposition

Tε = Rε +

r∑
i=1

ai,εCi

satisfies 0 6 ai,ε < ε, and Rε is a Kähler current whose analytic singularities are isolated points.
By Remark 2.5, the cohomology class {Rε} is a Kähler class and converges to α as ε → 0. In
particular, |{Rε} · C − α · C| < Aε, where A is a constant.

By Proposition 4.16, there exists a Kähler current Sε ∈ {Rε} with analytic singularities such
that C 6⊆ E+(Sε) and −ε < ν(Sε|C , x) − {Rε} · C < 0. Thus T ′ε := Sε +

∑r
i=1 ai,εCi is a Kähler

current in α with analytic singularities, and −(1 + A)ε < ν(T ′ε|C , x) − α · C. Since α is big and
nef, there exists a Kähler current Pε in α with analytic singularities such that ν(Pε|C , x) < ε.
Therefore, by the definition of ∆X|C(α) and the convexity property, we deduce that [0, α · C] ⊆
∆X|C(α). On the other hand, ∆X|C(α) ⊆ ∆(α|C) = [0, α · C] by definition. The proposition is
proved.

Lemma 4.19. Let α be a big class on X with divisorial Zariski decomposition α = Z(α) +N(α).
Assume C 6⊆ EnK(Z(α)), so that C 6⊆ Supp(N(α)) by Theorem 2.14. Moreover, set

f(α) = νx(N(α)|C) , g(α) = νx(N(α)|C) + Z(α) · C ,

where νx(N(α)|C) = ν(N(α)|C , x). Then the restricted Okounkov body of α along C is the
interval

∆X|C(α) = [f(α), g(α)] .
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Proof. First, by Remark 2.8 we conclude that T 7→ T −N(α) is a bijection between the positive
currents in α and those in Z(α); thus we have

EnK(α) = EnK(Z(α))
⋃

supp(N(α))

and

C 6⊆ EnK(Z(α)) ⇐⇒ C 6⊆ EnK(α) . (4.2)

By the assumption of theorem, N(α)|C is a well-defined positive current with analytic singu-
larities on C. By the definition of ∆R,X|C(α), we have

∆R,X|C(α) = ∆R,X|C(Z(α)) + νx(N(α)|C) .

We take the closure of the sets to get

∆X|C(α) = ∆X|C(Z(α)) + νx(N(α)|C) .

Since α is big, Z(α) is big and nef, and by Proposition 4.18 we have

∆X|C(Z(α))=[0, Z(α) · C] .

We have proved the lemma.

Definition 4.20. If α is big and β is pseudo-effective, then the slope of β with respect to α is
defined as

s = s(α, β) = sup{t > 0 |α− tβ is big} .

Remark 4.21. Since the big cone is open, we know that {t > 0 |α > tβ} is an open set in R+.
Thus α− sβ belongs to the boundary of the big cone denoted by ∂E , and volX(α− sβ) = 0.

Proof of Theorem 1.3. For t ∈ [0, s), we put αt = α−t{C}, and let Zt := Z(αt) and Nt := N(αt)
be the positive and negative parts of the divisorial Zariski decomposition of αt, respectively.

(i) First, we assume that C is nef. By Theorem 2.14, the prime divisors in EnK(Z(αt)) form
an exceptional family, thus C 6⊆ EnK(Z(αt)) and C 6⊆ EnK(αt) by (4.2). By Lemma 4.19 we
have ∆X|C(αt) = [νx(Nt|C), Zt · C + νx(Nt|C)].

By the definitions of the R-convex body and restricted R-convex body, we have

∆R(α)
⋂
t× R = t×∆R,X|C(αt) .

Thus

t×∆R,X|C(αt) ⊆ ∆R(α)
⋂
t× R .

However, since both ∆R,X(α) and ∆R,X|C(αt) are closed convex sets in R2 and R, we have

t×∆R,X|C(αt) = ∆R(α)
⋂
t× R ;

therefore

t×∆X|C(αt) = ∆(α)
⋂
t× R . (4.3)

Let

f(t) = νx(Nt|C) , g(t) = Zt · C + νx(Nt|C) ;

then ∆(α)
⋂

[0, s)× R is the region bounded by the graphs of f(t) and g(t).

Now, we prove the piecewise linearity of f(t) and g(t). By Lemma 3.1, we have Nt1 6 Nt2

if 0 6 t1 6 t2 < s; thus f(t) is increasing. Since Nt is an exceptional divisor by Theorem 2.15,
the number of the prime components of Nt is uniformly bounded by the Picard number ρ(X).
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Thus we can write Nt =
∑r

i=1 ai(t)Ni, where ai(t) > 0 is an increasing and continuous function.
Moreover, there exist ti with 0 = t0 < t1 < · · · < tk = s such that the prime components of Nt

are the same when t lies in the interval (ti, ti+1) for i = 0, . . . , k − 1, and the number of prime
components of Nt will increase at every ti for i = 1, . . . , k − 1. We write si = (ti−1 + ti)/2 for
i = 1, . . . , k.

We denote the linear subspace of H1,1(X,R) spanned by the prime components of Nsi by Vi,
and let V ⊥i be the orthogonal space of Vi with respect to q. By the proof of Lemma 3.1, for
t ∈ (ti−1, ti) we have

Zt = Zsi + (si − t){C}⊥i , Nt = Nsi + (si − t)C‖i , (4.4)

where {C}⊥i is the projection of {C} on V ⊥i , and C
‖
i is a linear combination of the prime

components of Nsi satisfying that the cohomology class {C‖i } is equal to the projection of {C}
on Vi. By Theorem 2.14, the cohomology classes of prime components of Nsi are all independent,

thus C
‖
i is uniquely defined. The piecewise linearity of f(t) and g(t) follows directly from (4.4),and

thus f(t) and g(t) can be continuously extended to s. We conclude that ∆(α) is the region
bounded by the graphs of f(t) and g(t) for t ∈ [0, s], and the vertices of ∆(α) are contained in
the set {(ti, f(ti)), (tj , g(tj)) ∈ R2 | i, j = 0, . . . , k}. This means that a vertex of ∆(α) may only
occur for those t ∈ [0, s] where a new curve appears in Nt. Since r 6 ρ(X), the number of vertices
is bounded by 2ρ(X) + 2. The fact that f(t) is convex and g(t) concave is a consequence of the
convexity of ∆(α).

By (4.3), we have

2 volR2(∆(α)) = 2

∫ s

0
volR(∆X|C(αt))dt = 2

∫ s

0
Zt · Cdt

= volX(α)− volX(α− sC)

= volX(α) ,

where the second equality follows by Proposition 4.18, the third one by Theorem 3.2, and the
last one by Remark 4.21. We have proved the theorem under the assumption that C is nef.

(ii) Now, we prove the theorem when C is not nef, that is, C2 < 0. Recall that a := sup{t >
0 |C ⊆ EnK(αt)}. By (4.2), if C ⊆ EnK(αt) for some t ∈ [0, s), we have C ⊆ EnK(Z(αt)). By
the proof in Theorem 3.4, we have

Z(ατ ) · C = 0 , Z(ατ ) = Z(αt)

for 0 6 τ 6 t. Thus we have

{0 6 t < s |C 6⊆ EnK(αt)} = (a, s) ,

and ∆(α) is contained in [a, s]× R. By Theorem 3.4, we also have

2 volR2(∆(α)) = 2

∫ s

a
volR(∆X|C(αt))dt = 2

∫ s

a
Zt · Cdt

= volX(αa)− volX(αs)

= volX(α) .

Since the prime component of Nt1 is contained in that of Nt2 if a < t1 6 t2 < s, using the same
arguments above, we obtain the piecewise linearity of f(t) and g(t), which can also be extended
to s. The theorem is proved completely.
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Remark 4.22. If X is a projective surface, then by the main result in [BKS04], the cone of big
divisors of X admits a locally finite decomposition into locally polyhedral subcones such that
the support of the negative part in the Zariski decomposition is constant on each subcone. It is
noticeable that if we only assume X to be Kähler, this decomposition still holds if we replace the
cone of big divisors by the cone of big classes and use divisorial Zariski decomposition instead.
This property ensures that the generalized Okounkov bodies should also be polygons.

4.3 Generalized Okounkov bodies for pseudo-effective classes

Throughout this subsection, X will stand for a Kähler surface if not explicitly mentioned other-
wise. Our main goal in this subsection is to study the behavior of generalized Okounkov bodies
on the boundary of the big cone.

Definition 4.23. Let X be any Kähler manifold, and let α ∈ H1,1(X,R) be any pseudo-effective
class. We define the generalized Okounkov body ∆(α) with respect to the fixed flag by

∆(α) :=
⋂
ε>0

∆(α+ εω) ,

where ω is any Kähler class.

It is easy to check that our definition does not depend on the choice of ω, and if α is big,
then by Proposition 4.13, the definition is consistent with Definition 4.12. Now, we recall the
definition of numerical dimension for any real (1,1)-class.

Definition 4.24. LetX be a compact Kähler manifold. For a class α ∈ H1,1(X,R), the numerical
dimension n(α) is defined to be −∞ if α is not pseudo-effective and

n(α) = max
{
p ∈ N, 〈αp〉 6= 0

}
if α is pseudo-effective.

The right-hand side of the equation above involves the positive intersection product 〈αp〉 ∈
Hp,p

>0 (X,R) defined in [BDPP13]. When X is a Kähler surface, we simply have

n(α) = max
{
p ∈ N, Z(α)p 6= 0

}
, p ∈ {0, 1, 2} .

If n(α) = 2, then α is big and the situation is studied in the last subsection. Throughout this
subsection, we assume α ∈ ∂E .

Lemma 4.25. Let {N1, . . . , Nr} be an exceptional family of prime divisors, and let ω be any
Kähler class. Then there exist unique positive numbers b1, . . . , br such that ω+

∑r
i=1 biNi is big

and nef satisfying Null
(
ω +

∑r
i=1 biNi

)
=
⋃r
i=1Ni.

Proof. If we set b1...
br

 = −S−1 ·

ω ·N1
...

ω ·Nr

 ,

where S denotes the intersection matrix of {N1, . . . , Nr}, we have
(
ω +

∑r
i=1 biNi

)
·Nj = 0 for

j = 1, . . . , r. By Lemma 3.5, we conclude that all bi are positive and thus ω +
∑r

i=1 biNi is big
and nef.
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Proposition 4.26. Let α be any pseudo-effective class with N(α) =
∑r

i=1 aiNi, and let ω be a
Kähler class. Then for ε > 0 small enough, we have the divisorial Zariski decomposition

Z(α+ εω) = Z(α) + ε

(
ω +

r∑
i=1

biNi

)
, N(α+ εω) =

r∑
i=1

(ai − εbi)Ni ,

where bi is the positive number defined in Lemma 4.25.

Proof. Since Z(α) + ε
(
ω +

∑r
i=1 biNi

)
is nef and orthogonal to all Ni by Lemma 4.25, by Theo-

rem 2.15, if ε satisfies ai − εbi > 0 for all i, the divisorial decomposition in the proposition
holds.

If n(α) = 0, we have Z(α) = 0, and thus α =
∑r

i=1 aiNi is an exceptional effective R-divisor.
We fix a flag

X ⊇ C ⊇ {x} ,
where C 6= Ni for all i. We then have the following result.

Theorem 4.27. For any pseudo-effective class α with numerical dimension n(α) = 0, we have

∆(C,x)(α) = 0× νx(N(α)|C) .

Proof. We assume N(α) =
∑r

i=1 aiNi. Fix a Kähler class ω. By Proposition 4.26, for ε small
enough, we have

Z(α+ εω) = ε

(
ω +

r∑
i=1

biNi

)
, N(α+ εω) =

r∑
i=1

(ai − εbi)Ni , (4.5)

where bi is the positive number defined in Lemma 4.25. Since T 7→ T −N(α+ εω) is a bijection
between the positive currents in α+ εω and those in Z(α+ εω), we have

∆(α+ εω) = ε∆

(
ω +

r∑
i=1

biNi

)
+ ν

( r∑
i=1

(ai − εbi)Ni

)
,

where ν
(∑r

i=1(ai − εbi)Ni

)
= ν(C,x)

(∑r
i=1(ai − εbi)Ni

)
is the valuation-like function defined in

Section 4.1. Thus the diameter of ∆(α+ εω) converges to 0 when ε tends to 0, and we conclude
that ∆(α) is a single point in R2. Since

∆(α+ εω)
⋂

0× R = 0×∆X|C(α+ εω)

= 0× [νx(N(α+ εω)|C), νx(N(α+ εω)|C) + Z(α+ εω) · C] ,

by (4.5) we have

∆(α)
⋂

0× R = 0× νx
( r∑
i=1

aiNi|C
)
,

and we have proved the first part of Theorem 1.8.

If n(α) = 1, then Z(α) is nef but not big. If there exists one irreducible curve C such that
Z(α) · C > 0, we fix the flag

X ⊇ C ⊇ {x} .
We then have the following result.

Theorem 4.28. For any pseudo-effective class α with numerical dimension n(α) = 1, we have

∆(α) = 0× [νx(N(α)|C), νx(N(α)|C) + Z(α) · C] .
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Proof. By the assumption Z(α) · C > 0, we know that C 6⊆ Supp(N(α)). By Proposition 4.26,
when ε small enough, the divisorial Zariski decomposition for α+ εω is

Z(α+ εω) = Z(α) + ε

(
ω +

r∑
i=1

biNi

)
, N(α+ εω) =

r∑
i=1

(ai − εbi)Ni , (4.6)

where bi is the positive number defined in Lemma 4.25. Consequently, we have

∆(α)
⋂

0× R =
⋂
ε>0

∆(α+ εω)
⋂

0× R

=
⋂
ε>0

0× [νx(N(α+ εω)|C), νx(N(α+ εω)|C) + Z(α+ εω) · C]

= 0×

[
νx

( r∑
i=1

aiNi|C
)
, νx

( r∑
i=1

aiNi|C
)

+ Z(α) · C

]
.

Since we have

volR2(∆(α)) = lim
ε→0

volR2(∆(α+ εω)) = lim
ε→0

Z(α+ εω)2 = 0

and ∆(α) is a closed convex set, we conclude that there are no points of ∆(α) which lie outside
0× R as volR(∆(α)

⋂
0× R) = Z(α) · C > 0. This finishes the proof of Theorem 1.8.
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KLM12 A. Küronya, V. Lozovanu, and C. Maclean, Convex bodies appearing as Okounkov bodies of
divisors, Adv. Math. 229 (2012), no. 5, 2622–2639; https://doi.org/10.1016/j.aim.2012.
01.013.
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