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Abstract. In this paper we study various notions of hyperbolicity for varieties ad-
mitting complex polarized variation of Hodge structures (C-PVHS for short). In the
�rst part we prove that if a quasi-projective manifold * admits a C-PVHS whose pe-
riod map is quasi-�nite, then * is algebraically hyperbolic in the sense of Demailly,
and that the generalized big Picard theorem holds for * : any holomorphic map from
the punctured unit disk to* extends to a holomorphic map of the unit disk Δ into any
projective compacti�cation of * . This result generalizes a recent work by Bakker-
Brunebarbe-Tsimerman. In the second part, we prove the strong hyperbolicity for va-
rieties admitting C-PVHS, which is analogous to previous works by Nadel, Rousseau,
Brunebarbe and Cadorel on arithmetic locally symmetric varieties. In the last part,
we show how the techniques developed in this paper yield some new perspectives for
hyperbolicity of arithmetic locally symmetric varieties.
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0. Introduction

0.1. Background. The classical big Picard theorem says that any holomorphic map
from the punctured disk Δ∗ into P1 which omits three points can be extended to a
holomorphic map Δ → P1, where Δ denotes the unit disk. Therefore, we introduce a
new notation of hyperbolicity which generalizes the big Picard theorem.

De�nition 0.1 (Picard hyperbolicity). Let* be a Zariski open set of a compact Kähler
manifold . . * is called Picard hyperbolic if any holomorphic map 5 : Δ∗ → * extends
to a holomorphic map 5̄ : Δ→ . .

Picard hyperbolic varieties �rst attracted the author’s interests because of the recent
interesting work [JK18b] by Javanpeykar-Kucharczyk on the algebraicity of analytic
maps. In [JK18b, De�nition 1.1], they introduce a new notion of hyperbolicity: a quasi-
projective variety* is Borel hyperbolic if any holomorphic map from a quasi-projective
variety to* is necessarily algebraic. In [JK18b, Corollary 3.11] they prove that a Picard
hyperbolic variety is Borel hyperbolic. We refer the readers to [JK18b, §1] for their
motivation on the Borel hyperbolicity. Picard hyperbolic varieties fascinate us further
when we realize in Proposition 3.4 that a more general extension theorem is also valid
for them: any holomorphic map from Δ? × (Δ∗)@ to the manifold * in De�nition 0.1
extends to a meromorphic map from Δ?+@ to . .

By A. Borel [Bor72] and Kobayashi-Ochiai [KO71], it has long been known to us that
the quotients of bounded symmetric domains by torsion free arithmetic lattice are hy-
perbolically embedded into their Baily-Borel compacti�cation, and thus they are Picard
hyperbolic (see [Kob98, Theorem 6.1.3]). A transcendental analogue of bounded sym-
metric domains is the rich theory of period domain, which was �rst introduced by Grif-
�ths [Gri68a] and was later systematically studied by him in the seminal work [Gri68b,
Gri70a, Gri70b]. Gri�ths further conjectured that the image of a ‘period map’ is alge-
braic and that the period map is algebraic. In [JK18b, §1.1] Javanpeykar-Kucharczyk
formulated an inspiring variant of Gri�ths’ conjecture as follows.

Conjecture 0.2 (Gri�ths, Javanpeykar-Kucharczyk). An algebraic variety * which
admits a quasi-�nite period map* → D�Γ is Borel hyperbolic.

Unlike Hermitian symmetric spaces, except the classical cases (abelian varieties, and
K3 type), the quotient of period domain D�Γ in Conjecture 0.2 is never an algebraic
variety, and the global monodromy groups Γ is not arithmetic in general. However, it
is still expected and conjectured by Gri�ths that there is a ‘partial compacti�cation’
for D�Γ analogous to the Baily-Borel-Satake compacti�cation in the sense of [Gri70b,
Conjecture 9.2] or [GGLR17, Conjecture 1.2.2]. For a period map ? : * → D�Γ, in
[GGLR17] Green-Gri�ths-Lazza-Robles constructed Hodge theoretic completion for
the image ? (* ) when dim? (* ) = 1, 2.

In a recent remarkable work [BBT18], Bakker-Brunebarbe-Tsimerman proved (among
others) that a variety (or more generally Deligne-Mumford stacks) admitting a quasi-
�nite Ran,exp-period map is Borel hyperbolic. Since they applied the tools from o-
minimal structures, they have to assume that the monodromy group of variation of
Hodge structures they studied are arithmetic. In this paper, we extend their theorem
to the Picard hyperbolicity, and we also remove their arithmeticity condition for mon-
odromy groups.

0.2. Big Picard theorem and algebraic hyperbolicity. The �rst result is the fol-
lowing.
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Theorem A. Let . be a complex projective manifold and let � be a simple normal cross-
ing divisor on . . Assume that there is a complex polarized variation of Hodge structures
(C-PVHS for short) over* := . − � with discrete monodromy group and local unipotent
monodromies around � whose period map is quasi-�nite ( i.e. every �ber is a �nite set).
Then * is both algebraically hyperbolic, and Picard hyperbolic. In particular, * is Borel
hyperbolic.

We refer the reader to § 1.1 for complex polarized variation of Hodge structures
(C-PVHS for short), and to De�nition 3.1 for the de�nition of algebraic hyperbolic-
ity. Let us mention that this result yields a new proof for Borel’s extension theorem
(see Theorem 5.2), since there is a canonical C-PVHS on the quotient of bounded sym-
metric domain by torsion free arithmetic lattice whose period map is immersive (see
Theorem 5.1). As a consequence of Theorem A, we obtain the following result for va-
rieties admitting an integral variation of Hodge structures, which in particular proves
Conjecture 0.2.

Theorem B. Let * be a quasi-projective manifold and let (+ ,∇, � •, &) be an integral
polarized variation of Hodge structures over* , whose period map is quasi-�nite. Then*
is both algebraically hyperbolic and Picard hyperbolic. In particular,* is Borel hyperbolic.

Let us mention that when the monodromy group of polarized variation of Hodge
structures (+ ,∇, � •, &) in Theorem B is assumed to be arithmetic, Borel hyperbolicity
of the quasi-projective manifold * in Theorem B has been proven in [BBT18, Corol-
lary 7.1], and algebraic hyperbolicity of * is implicitly shown by Javanpeykar-Litt
in [JL19, Theorem 4.2] if local monodromies (+ ,∇, � •, &) at in�nity are unipotent
(see Remark 3.3). Our proofs of Theorems A and B are based on complex analytic
and Hodge theoretic methods, and it does not use the delicate o-minimal geometry
in [PS08, PS09, BKT18, BBT18].

We can even generalize Theorems A and B to higher dimensional domain spaces.

Corollary C (=Theorems A and B+Proposition 3.4). Let* be the quasi-projective man-
ifold in Theorem A or Theorem B, and let . be a smooth projective compacti�cation of
* . Then any holomorphic map 5 : Δ? × (Δ∗)@ → * extends to a meromorphic map
5 : Δ?+@ d . . In particular, if, is a Zariski open set of a compact complex manifold - ,
then any holomorphic map 6 :, → * extends to a meromorphic map 6 : - d . .

0.3. Lang conjecture and strong hyperbolicity. Let us introduce several de�ni-
tions of hyperbolicity. We refer the readers to the recent survey by Javenpeykar [Jav20b,
§8] for more details and the relations among them.

De�nition 0.3 (Notions of hyperbolicity). Let- be a complex projective manifold and
let / ( - be a closed subset of - .

(1) The variety - is called Kobayashi hyperbolic modulo / if the Kobayashi pseudo-
distance 3- (G,~) > 0 for distinct points G,~ ∈ - not both contained in / . If / can
be chosen to be a proper Zariski closed subset, then we say - is pseudo Kobayashi
hyperbolic.

(2) The variety- is called Picard hyperbolic modulo / if any holomorphic map W : Δ∗ →
- not contained in / extends across the origin. If / can be chosen to be a proper
Zariski closed subset, then we say - is pseudo Picard hyperbolic.

(3) The variety - is called Brody hyperbolic modulo / if any entire curve W : C → - is
contained in / .

It is easy to show that if - is pseudo Kobayashi hyperbolic or pseudo Picard hyper-
bolic modulo a proper closed subvariety / , then - is Brody hyperbolic moduli / .
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A tantalizing conjecture by Lang [Lan91, Chapter VIII. Conjecture 1.4] predicts the
connection between positivity in algebraic geometry and hyperbolicity as follows.

Conjecture 0.4 (Lang). A projective manifold is of general type if and only if it is pseudo
Kobayashi hyperbolic.

In a similar vein, it is quite natural to propose the following conjecture, as suggested
in [Jav20b, Remark 8.10].

Conjecture 0.5. A projective manifold is of general type if and only if it is pseudo Picard
hyperbolic.

In the second part of the paper we prove strong hyperbolicity (notion �rst introduced
in [Bru16]) for varieties admitting C-PVHS, motivated by previous works of [Nad89,
Rou16, Bru16, Cad16, Cad18] for arithmetic locally symmetric varieties.

Theorem D. Let . be a complex projective manifold and let � =
∑2
8=1�8 be a simple

normal crossing divisor on. . Assume that there is aC-PVHS (+ ,∇, � •, &) over* := .−�
whose period map is generically immersive. Assume moreover that the local monodromies
of (+ ,∇, � •, &) around � is unipotent, and that (+ ,∇, � •, &) has injective local mon-
odromy representation around � (see De�nition 4.2). Then there is a �nite étale cover
*̃ → * and a projective compacti�cation - of *̃ so that

(i) the variety - is of general type;
(ii) the variety - is pseudo Kobayashi hyperbolic;
(iii) the variety - is pseudo Picard hyperbolic.

Based on Theorem D, one can prove a more re�ned result, which is also conjectured
by Javanpeykar [Jav20a].

Corollary E. Let (., �) be a log pair. Assume that there is a C-PVHS (+ ,∇, � •, &)
over * := . − � with discrete monodromy group whose period map is quasi-�nite. As-
sume moreover that the local monodromies of (+ ,∇, � •, &) around � is unipotent, and
that (+ ,∇, � •, &) has injective local monodromy representation around � (see De�ni-
tion 4.2). Then there is a �nite étale cover *̃ → * and a projective compacti�cation - of
*̃ so that

(i) any Zariski closed subvariety of - is of general type if it is not contained in �̃ :=
- − *̃ .

(ii) The variety - is Picard hyperbolic modulo �̃ ;
(iii) the variety - is Brody hyperbolic modulo �̃ .

Theorem D and Corollary E provide a new class of examples verifying Conjec-
tures 0.4 and 0.5. Moreover, we can apply Theorem D to prove a strong hyperbolicity
for arithmetic locally symmetric varieties.

Theorem F (=Theorem 5.4). Let * := D�Γ be the quotient of be a bounded symmetric
domain D by a torsion free arithmetic lattice Γ ∈ Aut(D). Then there is a �nite étale
cover *̃ → * and a projective compacti�cation - of *̃ so that - is Picard hyperbolic
modulo - − *̃ .

Let us stress here that, previously, Rousseau [Rou16] proved that the variety - in
Theorem F is Kobayashi hyperbolic modulo - − *̃ , and Brunebarbe [Bru16] proved
that any Zariski closed subvariety not contained in - − *̃ is of general type.

0.4. Main strategy.
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0.4.1. Why not Hodge metric? Let. be a projective manifold and let� be a simple nor-
mal crossing divisor on . . Assume that there is a C-PVHS (+ ,∇, � •, &) on* = . −� .
Then there is a natural holomorphic map, so-called period map, ? : * → D�Γ where
D is the period domain associated to (+ ,∇, � •, &) (see [CMSP17] or [KKM11, §4.3]
for the de�nition) and Γ is the monodromy group. The period domain D admits a
canonical (Γ-invariant) hermitian metric ℎD , and by Gri�ths-Schmid [GS69] its holo-
morphic sectional curvatures along horizontal directions are bounded from above by
a negative constant. One can thus easily show the Kobayashi hyperbolicity of * if ?
is immersive everywhere. Indeed, since ? is tangent to the horizontal subbundle of)D
by the Gri�ths transversality, one can pull back the metric ℎD to * by ? and by the
curvature decreasing property, the holomorphic sectional curvature of the hermitian
(moreover Kähler) metric ℎ* := ?∗ℎD on * is also bounded from above by a negative
constant. This Kähler metricℎ* is quite useful in proving that the log cotangent bundle
Ω. (log�) is big and that (., �) is of log general type in the work [Zuo00,Bru18,BC17].
However, such metric ℎ* is not su�cient to prove the Picard hyperbolicity of* since
ℎ* might degenerate in a bad way near the boundary � and thus its curvature behav-
ior near � is unclear to us. To the best of our knowledge, it should be quite di�cult
to prove that * is Picard hyperbolic or algebraically hyperbolic without knowing the
precise information of ℎ* near � .

0.4.2. A Finsler metric on the compacti�cation. The recent work [DLSZ19] on the Pi-
card hyperbolicity of moduli of polarized manifolds by Lu, Sun, Zuo and the author
motivated us to prove Theorem A. An important tool (amongs others) in this work, is a
particular Higgs bundle constructed by Viehweg-Zuo [VZ02,VZ03] (later developed by
Popa el al. [PS17,PTW19] using mixed Hodge modules), which contains a globally pos-
itive line bundle over the compacti�cation . rather than * . This positive line bundle
originates from Kawamata’s deep work [Kaw85] on the Iitaka conjecture: for an alge-
braic �ber space 5 : - → . between projective manifolds whose geometric generic
�ber admits a good minimal model, det 5∗(< -/. ) is big for < � 0 if 5 has maxi-
mal variation. In an ingenious way, Viehweg-Zuo [VZ02, VZ03] applied Viehweg’s
�ber product and cyclic cover tricks to transfer Kawamata’s positivity det 5∗(< -/. )
to their Higgs bundles.

We �rst note that in the case that there is a C-PVHS (+ ,∇, � •, &) over . −� where
(., �) is a log pair, one also has a strictly positive line bundle on * if the period map
is generically immersive, which was constructed by Gri�ths in [Gri70a] half century
ago! Based on the work [CKS86,Kas85] on the asymptotic estimate for Hodge metrics
at in�nity, Bakker-Brunebarbe-Tsimerman [BBT18] showed that this Gri�ths line bun-
dle extends to a big line bundle !Gri over . if the monodromies of (+ ,∇, � •, &) around
� are unipotent (see Lemma 1.4). As we will see later, the Gri�ths line bundle plays
a similar role as the Kawamata positivity described above. Indeed, based on the above
C-PVHS (+ ,∇, � •, &) we construct a Higgs bundle (�, \ ) = (⊕?+@=<�?,@, ⊕?+@=<\?,@) on
the log pair (., �) so that the Gri�ths line bundle!Gri is contained in some higher stage
�?0,@0 of �. This Higgs bundle shares some similarities with the Viehweg-Zuo Higgs
bundle in [VZ02, VZ03] (see Remark 1.7). Inspired by our previous work [Den18] on
the proof of Viehweg-Zuo’s conjecture on Brody hyperbolicity of moduli of polarized
manifolds, in Theorem 1.9 we show that (�, \ ) still enjoys a ‘partially’ in�nitesimal
Torelli property. This enables us construct a negatively curved, and generically posi-
tively de�nite Finsler metric on* , in a similar vein as [Den18].

Theorem 0.6 (=Theorem 1.6+Theorem 2.6). Let . be a projective manifold and let �
be a simple normal crossing divisor on . . Assume that there is a C-PVHS over . − �
with local unipotent monodromies around � , whose period map is generically immersive.
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Then there are a Finsler metric ℎ (see De�nition 2.1) on ). (− log�) which is positively
de�nite on a dense Zariski open set * ◦ of . − � , and a smooth Kähler form l on . such
that for any holomorphic map W : � → * from an open set � ⊂ C to* , one has

√
−1mm log |W ′(C) |2

ℎ
≥ W∗l.(0.4.1)

Let us mention that, though we only construct (possibly degenerate) Finsler met-
ric over ). (− log�), it follows from (0.4.1) that we know exactly the behavior of its
curvature near the boundary � since l is a smooth Kähler form over . . The proof
of Theorem A is then based on Theorem 0.6 and the following criteria for big Picard
theorem established in [DLSZ19] whose proof is Nevanlinna theoretic.

Theorem 0.7 ( [DLSZ19, Theorem A]). Let . be a projective manifold and let � be a
simple normal crossing divisor on . . Let 5 : Δ∗ → . −� be a holomorphic map. Assume
that there is a (possibly degenerate) Finsler metric ℎ of). (− log�) such that |5 ′(C) |2

ℎ
. 0,

and
1
c

√
−1mm log |5 ′(C) |2

ℎ
≥ 5 ∗l(0.4.2)

for some smooth Kähler metricl on . . Then 5 extends to a holomorphic map 5 : Δ→ . .

Let us also mention that the Finsler metric constructed in Theorem 0.6 is also cru-
cially used in the proof of Theorem D.

Acknowledgments. I would like to thank Professors Junyan Cao, Jean-Pierre De-
mailly, Philippe Eyssidieux, Ariyan Javanpeykar, Bruno Klingler, Steven Lu, Mihai
Păun, Erwan Rousseau, Emmanuel Ullmo and Kang Zuo, and Jiaming Chen for discus-
sions. I specially thank Professor Ariyan Javanpeykar for his interests, various com-
ments and suggestions on this paper; in particular, § 4 was kindly suggested by him
during his visit à l’IHÉS. This work is supported by ‘le Fonds Chern de l’IHÉS’.

Notations and Conventions

• A log pair (., �) consists of a smooth projective manifold and a simple normal cross-
ing divisor � , and such log pair (., �) is called a log-compacti�cation of the quasi-
projective manifold . − � .
• A log morphism 5 : (-, �) → (., �) between log pairs is a morphism 5 : - → .

with � ⊂ 5 −1(�).
• For line bundles !1 and !2 on a projective manifold, we write !1 ≥ !2 if !1 ⊗ !−1

2 is
e�ective.
• For a big line bundle ! on a projective manifold, B+(!) denotes its augmented base
locus (see [Laz04, De�nition 10.3.2]).
• C-PVHS stands for complex polarized variation of Hodge structures.
• An arithmetic locally symmetric variety is the quotientD�Γ of a bounded symmetric

domain D by a torsion-free arithmetic lattice Γ ∈ Aut(D).

1. Construction of special Higgs bundles

1.1. Preliminary on C-PVHS.

De�nition 1.1. A Higgs bundle on a log pair (., �) is a pair (�, \ ) consisting of a
holomorphic vector bundle � on . and an O. -linear map

\ : � → � ⊗ Ω. (log�)
so that \ ∧ \ = 0. Such \ is called Higgs �eld.
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Following Simpson [Sim88], a complex polarized variation of Hodge structures of
weight< over* = . − � is a �∞-vector bundle + = ⊕?+@=<+ ?,@ and a �at connection
∇ satisfying Gri�ths’ transversality condition.

∇ : + ?,@ → �0,1(+ ?+1,@−1) ⊕ �1(+ ?,@) ⊕ �1,0(+ ?−1,@+1)(1.1.1)
and such that a polarization exists; this is a sesquilinear form& (•, •) over+ , hermitian
symmetric or antisymmetric as < is even or odd, invariant under ∇, such that the
Hodge decomposition + = ⊕?+@=<+ ?,@ is orthogonal and such that

ℎ := (
√
−1)?−@& (•, •) > 0

on + ?,@ .
Let us decompose ∇ into operators of (1, 0) and (0, 1)

∇ = ∇′ + ∇′′

and thus ∇′′ induces a complex structure on + . We de�ne a �ltration
�?+ := + ?,@ ⊕ + ?+1,@−1 ⊕ · · · ⊕ +<,0

and by (1.1.1) �?+ is invariant under ∇′′. Hence �?+ can be equipped with the complex
structure inherited from (+ ,∇′′), and the �ltration

� • : + = � 0+ ⊃ � 1+ ⊃ · · · ⊃ �<+ ⊃ �<+1+ = {0}
is called the Hodge �ltration. Such data (+ ,∇, � •, &) is called a complex polarized vari-
ation of Hodge structures (C-PVHS for short) on* .

Note that the �at connection ∇ in (1.1.1) induces an O* -linear map
[?,@ : �?+ /�?+1+ → (�?−1+ /�?+ ) ⊗ Ω* .

Let us denote by � := ⊕? (�?+ /�?+1+ ) and [ = ⊕?[?,@ . Then (�, [) is a Higgs bundle
on* .

We say the C-PVHS (+ ,∇, � •, &) on* has unipotent monodromies around � if local
monodromies around � of the local system on* induced by the �at bundle (+ ,∇) are
all unipotent.

For two C-PVHS (+1,∇1, �
•+1, &1) and (+2,∇2, �

•+2, &2) of weight <1 and <2 over
. − � , one can de�ne their tensor product, which is still C-PVHS with weight <1 +
<2. Moreover, if they both have unipotent monodromies around � , so is their tensor
product.

Remark 1.2. It is well-known that C-PVHS are quite close to real variation of Hodge
structures (R-PVHS for short, see [CKS86] for a previse de�nition). Indeed, one can
obtain a R-PVHS by adding the C-PVHS with its conjugate. In particular, the estimate
of Hodge metric at in�nity of a R-PVHS in [CKS86] also holds true for C-PVHS.

For a C-PVHS (+ ,∇, � •, &) de�ned over * = . − � with unipotent monodromies
around � , there is a canonical way to extend it to a Higgs bundle over the log pair
(., �). By Deligne, + has a locally free extension + to . such that ∇ extends to a
logarithmic connection

∇ : + → + ⊗ Ω. (log�)
with nilpotent residues. For each ? we set

�
?
+ := ]∗�?+ ∩+

where ] : * ↩→ . is the inclusive map. By Schmid’s nilpotent orbit theorem [Sch73],
both �?+ and the graded term �

?,@
= �

?
+ /�?+1+ are locally free, and ∇ induces an

O. -linear map
[?,@ : �?,@ → �

?−1,@+1 ⊗ Ω. (log�).
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Hence the pair

(�, [) := (⊕?+@=<�
?,@
, ⊕?+@=<[?,@)(1.1.2)

is a Higgs bundle on the log pair (., �), which extends (�, [) de�ned over* .

De�nition 1.3. We say that Higgs bundle (�, [) over (., �) in (1.1.2) is canonically
induced by the C-PVHS (+ ,∇, � •, &).

1.2. Gri�ths line bundle. For the C-PVHS (+ ,∇, � •, &) de�ned over * as above,
in [Gri70a], Gri�ths constructed a line bundle !Gri on* , which he called the canonical
bundle of (+ ,∇, � •, &). When the local monodromies of (+ ,∇, � •, &) around � are
unipotent and the period map of (+ ,∇, � •, &) is generically immersive, it seems well-
known to the experts (see e.g. [Zuo00, p. 280] or [BBT18, Lemma 6.4]) that the Gri�ths
bundle extends to a big and nef line bundle on . .

Lemma 1.4. Let (., �) be a log pair. Let (+ ,∇, � •, &) be a C-PVHS of weight < over
. −� with unipotent monodromies around� , whose period map is generically immersive.
Then the Gri�ths line bundle

!Gri := (det �<,0)⊗< ⊗ (det �<−1,1)⊗(<−1) ⊗ · · · ⊗ det � 1,<−1

is a big and nef line bundle on . . Here (⊕?+@=<�
?,@
, ⊕?+@=<[?,@) is the Higgs bundle on

(., �) canonically induced by (+ ,∇, � •, &) de�ned in De�nition 1.3.

We need a re�ned result of Lemma 1.4, which shall be used in the proof of Theo-
rem D.

Lemma 1.5. Let (., �) be a log pair. Let (+ ,∇, � •, &) be a C-PVHS over . − � with
discrete monodromy group and local unipotent monodromies around � , whose period
map is quasi-�nite. Then the Gri�ths line bundle ! is a big and nef line bundle on . ,
which is ample over . − � ; namely its augmented base locus B+(!) ⊂ � .

Proof. By Lemma 1.4 we know that ! is big and nef. By a theorem of Nakamaye [Laz04,
Theorem 10.3.5], we know that the null locus Null(!) = B+(!). Recall that the null
locus is de�ned by

Null(!) :=
⋃

/(. ; !dim/ ·/=0

/

where the union is taken over all irreducible positive dimensional closed subvarieties
/ of . . It then su�ces to prove that !dim /̃ · /̃ > 0 for any irreducible closed subvariety
/̃ not contained in � . We take a desingularization a : / → /̃ so that �/ := a−1(�) is
simple normal crossing. Then a : (/, �/ ) → (., �) is a log morphism, and one has a
natural morphism a∗Ω. (log�) → Ω/ (log�/ ).

Let (⊕?+@=<�
?,@
, ⊕?+@=<[?,@) be the Higgs bundle on (., �) canonically induced by

(+ ,∇, � •, &) de�ned in De�nition 1.3. Set �?,@ := a∗�
?,@ , and de�ne \?,@ to be the

composition map

a∗�
?,@ → a∗�

?−1,@+1 ⊗ a∗Ω. (log�) → a∗�
?−1,@+1 ⊗ Ω/ (log�/ ).

Then (⊕?+@=<�?,@, ⊕?+@=<\?,@) is a Higgs bundle on (/, �/ ) canonically induced by the
C-PVHS `∗(+ ,∇, � •, &), where ` : / − �/ → . − � is the restriction of a to / − �/ .
Note that `∗(+ ,∇, � •, &) also has local unipotent monodromies around �/ . Since ` is
generically immersive, the period map of `∗(+ ,∇, � •, &) is also generically immersive.
By Lemma 1.4, the Gri�ths line bundle of (⊕?+@=<�?,@, ⊕?+@=<\?,@) is also big and nef.
Namely,

!′ := (det�<,0)⊗< ⊗ (det�<−1,1)⊗(<−1) ⊗ · · · ⊗ det�1,<−1
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is a big and nef line bundle. Note that ! := (det �<,0)⊗< ⊗ (det �<−1,1)⊗(<−1) ⊗ · · · ⊗
det � 1,<−1. Hence a∗! = !′ is big and nef. Hence

!dim/̃ · /̃ = (a∗!)dim/ > 0.
It follows that B+(!) ⊂ � . The lemma is proved. �

1.3. SpecialHiggs bundles induced byC-PVHS. Let (., �) be a log pair. Let (+ ,∇, � •, &)
be a C-PVHS of weight< over . − � with unipotent monodromies around � , whose
period map is generically immersive. Let (�, [) be the Higgs bundle over the log pair
(., �) canonically induced by (+ ,∇, � •, &) de�ned in De�nition 1.3. Let us denote by
A? := rank �?,@ , and A :=<A< + (< − 1)A<−1 + · · · + A1.

We de�ne a new Higgs bundle (�, \ ) on (., �) by setting (�, \ ) := (�, [̄)⊗A . Precisely,
� := � ⊗A , and

\ := [̄ ⊗ 1 ⊗ · · · ⊗ 1︸       ︷︷       ︸
(A−1)−tuple

+1 ⊗ [̄ ⊗ 1 ⊗ · · · ⊗ 1︸       ︷︷       ︸
(A−2)−tuple

+ · · · + 1 ⊗ · · · ⊗ 1︸       ︷︷       ︸
(A−1)−tuple

⊗[̄ .

We have the (Hodge) decomposition

� = ⊕%+&=A<�%,&

with
�%,& := ⊕?1+···+?A=% ;@1+···+@A=&�

?1,@1 ⊗ · · · ⊗ �?A ,@A(1.3.1)
Hence

\ : �%,& → �%−1,&+1 ⊗ Ω. (log�).
One can easily show that (�, \ ) is canonically induced by the C-PVHS (+ ,∇, � •, &)⊗A
in the sense of De�nition 1.3. Note that the tensor product (+ ,∇, � •, &)⊗A has weight
< · A , and also has unipotent monodromies around � .

Note that det �?,@ = ∧A?�?,@ ⊂ (�?,@)⊗A? ⊂ � ⊗A? . Hence

!Gri := (det �<,0)⊗<⊗(det �<−1,1)⊗(<−1)⊗· · ·⊗det � 1,<−1 ⊂ (�<,0)⊗<A<⊗· · ·⊗(� 1,<−1)⊗A1 ⊂ �
Moreover, by (1.3.1), one has

!Gri ⊂ �%0,&0

with %0 = A<<
2 + A<−1(< − 1)2 + · · · + A1, and %0 +&0 = A<.

In summary, we construct a special Higgs bundle on the log pair (., �) as follows.

Theorem 1.6. Let (., �) be a log pair. Let (+ ,∇, � •, &) be a C-PVHS over . − � with
unipotent monodromies around� , whose period map is generically immersive. Then there
is a Higgs bundle (�, \ ) = (⊕?+@=ℓ�?,@, ⊕?+@=ℓ\?,@) on the log pair (., �) satisfying the
following conditions.

(i) The Higgs �eld \ satis�es

\ : �?,@ → �?−1,@+1 ⊗ Ω. (log�)
(ii) (�, \ ) is canonically induced (in the sense of De�nition 1.3) by some C-PVHS over

. − � of weight ℓ with unipotent monodromies around � .
(iii) There is a big and nef line bundle ! over . such that ! ⊂ �?0,@0 for some ?0 + @0 =

ℓ . �

Remark 1.7. The interested readers can compare the Higgs bundle in Theorem 1.6 with
the Viehweg-Zuo Higgs bundle in [VZ02,VZ03] (see also [PTW19]). Loosely speaking,
a Viehweg-Zuo Higgs bundle for a log pair (., �) is a Higgs bundle (� = ⊕?+@=<�?,@, \ )
over (., � + () induced by some (geometric) Z-PVHS de�ned over a Zariski open set
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of . − (� ∪(), where ( is another divisor on . so that � +( is simple normal crossing.
The extra data is that there is a sub-Higgs sheaf (� = ⊕?+@=<�?,@, [) ⊂ (�, \ ) such that
the �rst stage �=,0 is a big line bundle, and

[ : �?,@ → �?−1,@+1 ⊗ Ω. (log�).
As we explained in § 0.4.2, the positivity �=,0 comes in a sophisticated way from the
Kawamata’s big line bundle det 5∗(< -/. ) where 5 : - → . is some algebraic �ber
space between projective manifolds. For our Higgs bundle (� = ⊕?+@=<�?,@, \ ) over the
log pair (., �) in Theorem 1.6, the global positivity is the Gri�ths line bundle which
is contained in some intermediate stage �?0,@0 of (� = ⊕?+@=<�?,@, \ ).

1.4. Iterating Higgs �elds. Let (� = ⊕?+@=ℓ�?,@, \ ) be a Higgs bundle on a log pair
(., �) satisfying the three conditions in Theorem 1.6. We apply ideas by Viehweg-
Zuo [VZ02, VZ03] to iterate Higgs �elds.

Since \ : �?,@ → �?−1,@+1 ⊗ Ω. (log�), one can iterate \ by :-times to obtain

�?0,@0 → �?0−1,@0+1 ⊗ Ω. (log�) → · · · → �?0−:,@0+: ⊗ ⊗:Ω. (log�)
Since \ ∧ \ = 0, the above morphism factors through

�?0,@0 → �?0−:,@0+: ⊗ Sym:Ω. (log�)(1.4.1)

Since ! is a subsheaf of �?0,@0 , it induces

! → �?0−:,@0+: ⊗ Sym:Ω. (log�)
which is equivalent to a morphism

g: : Sym:). (− log�) → !−1 ⊗ �?0−:,@0+:(1.4.2)

The readers might be worried that all g: might be trivial so that the above construction
will be meaningless. In the next subsection, we will show that this indeed cannot
happen.

1.5. An in�nitesimal Torelli-type theorem. We �rst follow ideas in [VZ03, §7] to
give some “proper” metric on the special Higgs bundle (�, \ ) constructed in Theo-
rem 1.6. A more general result for Z-PVHS with quasi-unipotent monodromies are
obtained by Popa-Taji-Wu [PTW19].

Let (� = ⊕?+@=ℓ�?,@, \ ) be a Higgs bundle on a log pair (., �) satisfying the three
conditions in Theorem 1.6. Write the simple normal crossing divisor � = �1 + · · · +
�: . Let 5�8 ∈ � 0 (.,O. (�8)) be the canonical section de�ning �8 . We �x a smooth
hermitian metrics 6�8 on O. (�8). After rescaling 6�8 , we assume that |5�8 |6�8 < 1 for
8 = 1, . . . , : . Set

A� :=
:∏
8=1
(− log |5�8 |26�8 ).

Let 6 be a singular hermitian metric with analytic singularities of the big and nef line
bundle ! such that 6 is smooth on . \B+(!) where B+(!) is the augmented base locus
of !, and the curvature current

√
−1Θ6 (!) > l for some smooth Kähler form l on . .

For U ∈ N, de�ne
ℎ! := 6 · (A�)U

The following proposition is a variant of [VZ03, §7] (see also [PTW19, §3] for a more
general statement).

Proposition 1.8. When U � 0, after rescaling 5�8 , there exists a continuous, positively
de�nite hermitian form lU on ). (− log�) such that
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(i) the curvature form
√
−1Θℎ! (!)�*0 > A

−2
� · lU�*0,

√
−1Θℎ! (!) ≥ l

where l is a smooth Kähler metric on . , and*0 := . \
(
� ∪ B+(!)

)
.

(ii) The singular hermitian metric ℎ := ℎ−1
!
⊗ ℎhod on !−1 ⊗ � is locally bounded on . ,

and smooth outside � ∪ B+(!), where ℎhod is the Hodge metric for the Higgs bundle
(�, \ ) |* . Moreover, ℎ vanishes on � ∪ B+(!).

(iii) The singular hermitian metric A 2
�
ℎ on !−1 ⊗ � is also locally bounded on . and van-

ishes on � . �

Let us explain the idea of the proof for Proposition 1.8. Proposition 1.8.(i) follows
from an easy computation. Recall that local monodromies around� of the local system
induced byC-PVHS (�, \ ) |* are assumed to be unipotent. By the deep work by Cattani-
Kaplan-Schmid [CKS86] (see also [VZ03, Claim 7.8]) on the estimate of Hodge metrics,
we know that the Hodge norms for local sections of � have at most logarithmic growth
near � , which can be controlled by A−U

�
if U � 0.

Now let us prove the following result which is a variant of [Den18, Theorem D].
It in particular answers the question in last subsection, and this result is crucial in
constructing negatively curved Finsler metric over ). (− log�) in Theorem 0.6.

Theorem 1.9 (In�nitesimal Torelli-type property). The morphism g1 : ). (− log�) →
!−1 ⊗ �?0−1,@0+1 de�ned in (1.4.2) is always generically injective.

The proof is almost the same at that of [Den18, Theorem D]. We provide it here for
completeness sake.

Proof of Theorem 1.9. By Theorem 1.6.(iii), the inclusion ! ⊂ �?0,@0 induces a global
section B ∈ � 0(., !−1 ⊗ �?0,@0), which is generically non-vanishing over* = . −� . Set

*1 := {~ ∈ . − (� ∪ B+(!)) | B (~) ≠ 0}(1.5.1)

which is a non-empty Zariski open set of * . Since the Hodge metric ℎhod is a direct
sum of metrics ℎ? on �?,@ , the metric ℎ for !−1 ⊗ � is a direct sum of metrics ℎ−1

!
· ℎ?

on !−1 ⊗ �?,@ , which is smooth over*0 := . − (� ∪ B+(!)). Let us denote �′ to be the
(1, 0)-part of its Chern connection over *1, and Θ to be its curvature form. Then by
the Gri�ths curvature formula of Hodge bundles (see [CMSP17, p. 363]), over *0 we
have

Θ = −Θ!,ℎ! ⊗ 1 + 1 ⊗ Θℎ?0
(�?0,@0)

= −Θ!,ℎ! ⊗ 1 − 1 ⊗ (\ ∗?0,@0 ∧ \?0,@0) − 1 ⊗ (\?0+1,@0−1 ∧ \ ∗?0+1,@0−1)
= −Θ!,ℎ! ⊗ 1 − \̃ ∗?0,@0 ∧ \̃?0,@0 − \̃?0+1,@0−1 ∧ \̃ ∗?0+1,@0−1(1.5.2)

where we set
\?,@ = \ |�?,@ : �?,@ → �?−1,@+1 ⊗ Ω. (log�)

and
\̃?,@ = 1 ⊗ \?,@ : !−1 ⊗ �?,@ → !−1 ⊗ �?−1,@+1 ⊗ Ω. (log�)

and de�ne \̃ ∗?,@ to be the adjoint of \̃?,@ with respect to the metric ℎ−1
!
· ℎ. Hence over

*1 one has

−
√
−1mm log |B |2

ℎ
=

{√
−1Θ(B), B

}
ℎ

|B |2
ℎ

+
√
−1{�′B, B}ℎ ∧ {B, �′B}ℎ

|B |4
ℎ

−
√
−1{�′B, �′B}ℎ
|B |2
ℎ

6

{√
−1Θ(B), B

}
ℎ

|B |2
ℎ

(1.5.3)
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thanks to Cauchy-Schwarz inequality
√
−1|B |2

ℎ
· {�′B, �′B}ℎ >

√
−1{�′B, B}ℎ ∧ {B, �′B}ℎ .

Putting (1.5.2) to (1.5.3), over*1 one has

√
−1Θ!,ℎ! −

√
−1mm log |B |2

ℎ
6 −

{√
−1\̃ ∗?0,@0 ∧ \̃?0,@0 (B), B

}
ℎ

|B |2
ℎ

−
{√
−1\̃?0+1,@0−1 ∧ \̃ ∗?0+1,@0−1(B), B

}
ℎ

|B |2
ℎ

=

√
−1

{
\̃?0,@0 (B), \̃?0,@0 (B)

}
ℎ

|B |2
ℎ

+
{
\̃ ∗?0+1,@0−1(B), \̃ ∗?0+1,@0−1(B)

}
ℎ

|B |2
ℎ

≤
√
−1

{
\̃?0,@0 (B), \̃?0,@0 (B)

}
ℎ

|B |2
ℎ

(1.5.4)

where \̃?0,@0 (B) ∈ � 0 (., !−1 ⊗ �?0−1,@0+1 ⊗ Ω. (log�)
)
. By Proposition 1.8.(ii), one has

|B |2
ℎ
(~) = 0 for any ~ ∈ � ∪ B+(!). Therefore, there exists ~0 ∈ *0 so that |B |2

ℎ
(~0) >

|B |2
ℎ
(~) for any ~ ∈ *0. Hence |B |2

ℎ
(~0) > 0, and by (1.5.1), ~0 ∈ *1. Since |B |2

ℎ
is

smooth over *0,
√
−1mm log |B |2

ℎ
is semi-negative at ~0 by the maximal principle. By

Proposition 1.8.(i),
√
−1Θ!,ℎ! is strictly positive at ~0. By (1.5.4) and |B |2

ℎ
(~0) > 0, we

conclude that
√
−1

{
\̃?0,@0 (B), \̃?0,@0 (B)

}
ℎ

is strictly positive at ~0. In particular, for any
non-zero b ∈ ).,~0 , \̃?0,@0 (B) (b) ≠ 0. For

g1 : ). (− log�) → !−1 ⊗ �?0−1,@0+1

in (1.4.2), over* it is de�ned by g1(b) := \̃?0,@0 (B) (b), which is thus injective at ~0 ∈ *1.
Hence g1 is generically injective. The theorem is thus proved. �

2. Construction of negatively curved Finsler metric

We �rst introduce the de�nition of Finsler metric.

De�nition 2.1 (Finsler metric). Let � be a holomorphic vector bundle on a complex
manifold - . A Finsler metric on � is a real non-negative continuous function ℎ : � →
[0, +∞[ such that

ℎ(0E) = |0 |ℎ(E)
for any 0 ∈ C and E ∈ �. The metric ℎ is positively de�nite at a subset* ⊂ - if ℎ(E) > 0
for any nonzero E ∈ �G and any G ∈ * .

We shall mention that our de�nition is a bit di�erent from that in [Kob98, Chap-
ter 2, §3], which requires convexity, and the Finsler metric therein can be upper-semi
continuous.

Let (� = ⊕?+@=ℓ�?,@, \ ) be a Higgs bundle on a log pair (., �) satisfying the three
conditions in Theorem 1.6. We adopt the same notations as those in Theorem 1.6
and § 1.5 throughout this section. Let us denote by = the largest non-negative number
for : so that g: in (1.4.2) is not trivial. By Theorem 1.9, = > 0. Following [Den18, §2.3]
we construct Finsler metrics �1, . . . , �= on ). (− log�) as follows. By (1.4.2), for each
: = 1, . . . , =, there exists

g: : Sym:). (− log�) → !−1 ⊗ �?0−:,@0+: .
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Then it follows from Proposition 1.8.(ii) that the (Finsler) metric ℎ on !−1 ⊗ �?0−:,@0+:

induces a Finsler metric �: on). (− log�) de�ned as follows: for any 4 ∈ ). (− log�)~ ,

�: (4) := ℎ
(
g: (4⊗:)

) 1
:(2.0.1)

Let � ⊂ C be any open set of C. For any holomorphic map W : � → * := . − � , one
has

3W : )� → W∗)* ↩→ W∗). (− log�).(2.0.2)

We denote by mC := m
mC

the canonical vector �elds in � ⊂ C, m̄C := m
mC̄

its conjugate. The
Finsler metric �: induces a continuous Hermitian pseudo-metric on � , de�ned by

W∗� 2
:
=
√
−1�: (C)3C ∧ 3C̄ .(2.0.3)

Hence �: (C) = |g:
(
3W (mC )⊗:

)
|

2
:

ℎ
, where g: is de�ned in (1.4.2).

By Theorem 1.9, there is a Zariski open set * ◦ of * such that * ◦ ∩ B+(!) = ∅, and
g1 is injective at any point of * ◦. We now �x any holomorphic map W : � → * with
W (�)∩* ◦ ≠ ∅. By Proposition 1.8.(ii), the metric ℎ for !−1⊗� is smooth and positively
de�nite over * − B+(!). Hence �1(C) . 0. Let �◦ be an (non-empty) open set of �
whose complement � \�◦ is a discrete set so that
• The image W (�◦) ⊂ * ◦.
• For every : = 1, . . . , =, either �: (C) ≡ 0 on �◦ or �: (C) > 0 for any C ∈ �◦.
• W ′(C) ≠ 0 for any C ∈ �◦, namely W |�◦ : �◦ → * 0 is immersive everywhere.

By the de�nition of �: (C), if �: (C) ≡ 0 for some : > 1, then g: (m⊗:C ) ≡ 0 where g: is
de�ned in (1.4.2). Note that one has g:+1(m⊗(:+1)C ) = \̃

(
g: (m⊗:C )

)
(mC ), where

\̃ = 1!−1 ⊗ \ : !−1 ⊗ � → !−1 ⊗ � ⊗ Ω. (log�)
We thus conclude that �:+1(C) ≡ 0. Hence it exists 1 ≤ < ≤ = so that the set {: |
�: (C) > 0 over �◦} = {1, . . . ,<}, and �ℓ (C) ≡ 0 for all ℓ = < + 1, . . . , =. From now on,
all the computations are made over �◦ if not speci�ed.

Using the same computations in the proof of [Den18, Proposition 2.10], we have
following curvature formula.

Theorem 2.2. For : = 1, . . . ,<, over �◦ one has

m2 log�1

mCmC̄
≥ Θ!,ℎ! (mC , m̄C ) −

�2
2

�1
if : = 1,(2.0.4)

m2 log�:
mCmC̄

≥ 1
:

(
Θ!,ℎ! (mC , m̄C ) +

�:
:

�:−1
:−1

−
�:+1
:+1
�:
:

)
if : > 1.(2.0.5)

Here we make the convention that �<+1 ≡ 0 and 0
0 = 0. We also write mC (resp. m̄C ) for

3W (mC ) (resp. 3W (m̄C )) abusively, where 3W is de�ned in (2.0.2). �

Let us mention that in [Den18, eq. (2.2.11)] we drop the term Θ!,ℎ! (mC , m̄C ) in (2.0.5),
though it can be easily seen from the proof of [Den18, Lemma 2.7].

We will follows ideas in [Den18, §2.3] (inspired by [TY15, BPW17, Sch17]) to intro-
duce a new Finsler metric � on ). (− log�) by taking convex sum in the following
form

� :=

√√
=∑
:=1

:U:�
2
:
.(2.0.6)

where U1, . . . , U= ∈ R+ are some constants which will be �xed later.
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For the above W : � → * with W (�) ∩* ◦ ≠ ∅, we write

W∗� 2 =
√
−1� (C)3C ∧ 3C̄ .

Then

� (C) =
=∑
:=1

:U:�: (C),(2.0.7)

where �: is de�ned in (2.0.3). Recall that for : = 1, . . . ,<, �: (C) > 0 for any C ∈ �◦.
We �rst recall a computational lemma by Schumacher.

Lemma 2.3 ( [Sch17, Lemma 17]). Let U 9 > 0 and � 9 be positive real numbers for
9 = 1, . . . , =. Then

=∑
9=2

(
U 9
�
9+1
9

�
9−1
9−1

− U 9−1
�
9

9

�
9−2
9−1

)
>

1
2

(
−
U3

1

U2
2
�2

1 +
U=−1
=−1

U=−2
=

�2
= +

=−1∑
9=2

(
U
9−1
9−1

U
9−2
9

−
U
9+2
9

U
9+1
9+1

)
�2
9

)
(2.0.8)

�

Now we are ready to compute the curvature of the Finsler metric � based on Theo-
rem 2.2.

Theorem 2.4. Fix a smooth Kähler metric l on . . There exist universal constants 0 <

U1 < . . . < U= and X > 0, such that for any W : � → * = . − � with � an open set of C
and W (�) ∩* ◦ ≠ ∅, one has

√
−1mm log |W ′(C) |2� ≥ XW

∗l(2.0.9)

Proof. By Theorem 1.9 and the assumption that W (�) ∩ * ◦ ≠ ∅, �1(C) . 0. We �rst
recall a result in [Den18, Lemma 2.9], and we write its proof here for it is crucial in
what follows.

Claim 2.5. There is a universal constant 20 > 0 ( i.e. it does not depend on W ) so that
Θ!,ℎ! (mC , m̄C ) ≥ 20�1(C) for all C ∈ � .

Proof of Claim 2.5. Indeed, by Proposition 1.8.(i), it su�ces to prove that

|mC |2W∗ (A−2
�
·lU )

|g1(3W (mC )) |2ℎ
> 20(2.0.10)

for some 20 > 0, where lU is a positively de�nite Hermitian metric on ). (− log�).
Note that

|mC |2W∗ (A−2
�
·lU )

|g1(3W (mC )) |2ℎ
=

|mC |2W∗ (A−2
�
·lU )

|mC |2W∗g∗1ℎ
=
|mC |2W∗ (lU )
|mC |2W∗g∗1 (A 2

�
·ℎ)
,

where g∗1 (A 2
�
· ℎ) is a Finsler metric (indeed continuous pseudo hermitian metric) on

). (− log�) by Proposition 1.8.(iii). Since . is compact, there exists a constant 20 > 0
such that

lU > 20g
∗
1 (A 2

� · ℎ).
Hence (2.0.10) holds for any W : � → * with W (�) ∩* ◦ ≠ ∅. The claim is proved. �
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By [Sch12, Lemma 8],

√
−1mm̄ log(

=∑
9=1

9U 9� 9 ) >
∑=
9=1 9U 9� 9

√
−1mm̄ log� 9∑=

8=1 9U 9�8
(2.0.11)

Putting (2.0.4) and (2.0.5) to (2.0.11), and making the convention that 0
0 = 0, we obtain

m2 log� (C)
mCmC̄

≥ 1
�

(
− U1�

2
2 +

=∑
:=2

U:
(�:+1:

�:−1
:−1

−
�:+1
:+1

�:−1
:

) )
+

∑=
:=1 U:�:

�
Θ!,ℎ! (mC , m̄C )

=
1
�

( =∑
9=2

(
U 9
�
9+1
9

�
9−1
9−1

− U 9−1
�
9

9

�
9−2
9−1

))
+

∑=
:=1 U:�:

�
Θ!,ℎ! (mC , m̄C )

(2.0.8)
≥ 1

�

(
− 1

2
U3

1

U2
2
�2

1 +
1
2

=−1∑
9=2

(U 9−1
9−1

U
9−2
9

−
U
9+2
9

U
9+1
9+1

)
�2
9 +

1
2
U=−1
=−1

U=−2
=

�2
=

)
+

∑=
:=1 U:�:

�
Θ!,ℎ! (mC , m̄C )

�;08< 2.5
≥ 1

�

(
U1

2
(20 −

U2
1

U2
2
)�2

1 +
1
2

=−1∑
9=2

(U 9−1
9−1

U
9−2
9

−
U
9+2
9

U
9+1
9+1

)
�2
9 +

1
2
U=−1
=−1

U=−2
=

�2
=

)
+ 1
�
( 1
2
U1�1 +

=∑
:=2

U:�:)Θ!,ℎ! (mC , m̄C )

One can take U1 = 1, and choose the further U 9 > U 9−1 inductively so that

20 −
U2

1

U2
2
> 0,

U
9−1
9−1

U
9−2
9

−
U
9+2
9

U
9+1
9+1

> 0 ∀ 9 = 2, . . . , = − 1.(2.0.12)

Hence
m2 log� (C)

mCmC̄
≥ 1
�
( 1
2
U1�1 +

=∑
:=2

U:�:)Θ!,ℎ! (mC , m̄C )
(2.0.7)
≥ 1

=
Θ!,ℎ! (mC , m̄C )

over �◦. By Proposition 1.8.(i), this implies that
√
−1mm log |W ′|2� =

√
−1mm log� (C) ≥ 1

=
W∗
√
−1Θ!,ℎ! ≥ XW∗l(2.0.13)

over �◦ for some positive constant X , which does not depend on W . Since |W ′(C) |2
�

is
continuous and locally bounded from above over � , by the extension theorem of sub-
harmonic function, (2.0.13) holds over the whole � . Since 20 > 0 is a constant which
does not depend on W , so are U1, . . . , U= by (2.0.12). The theorem is thus proved. �

In summary of results in this subsection, we obtain the following theorem.

Theorem 2.6. Let (� = ⊕?+@=ℓ�?,@, \ ) be a Higgs bundle on a log pair (., �) satisfying
the three conditions in Theorem 1.6. Then there are a Finsler metric ℎ on ). (− log�)
which is positively de�nite on a dense Zariski open set * ◦ of * := . − � , and a smooth
Kähler form l on . such that for any holomorphic map W : � → * from any open subset
� of C with W (�) ∩* ◦ ≠ ∅, one has

√
−1mm log |W ′|2

ℎ
≥ W∗l.(2.0.14)

Let * ′ be the open set g1 in (1.4.2) is injective. Then * ◦ = * ′ − B+(!), where ! is the big
line bundle in Theorem 1.6.
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3. Big Picard theorem and Algebraic hyperbolicity

3.1. De�nition of algebraic hyperbolicity. Algebraic hyperbolicity for a compact
complex manifold - was introduced by Demailly in [Dem97, De�nition 2.2], and he
proved in [Dem97, Theorem 2.1] that - is algebraically hyperbolic if it is Kobayashi
hyperbolicity. The notion of algebraic hyperbolicity was generalized to log pairs by
Chen [Che04].

De�nition 3.1 (Algebraic hyperbolicity). Let (-, �) be a log pair. For any reduced
irreducible curve� ⊂ - such that� ⊄ - , we denote by 8- (�, �) the number of distinct
points in the set a−1(�), where a : �̃ → � is the normalization of� . The log pair (-, �)
is algebraically hyperbolic if there is a smooth Kähler metric l on - such that

26(�̃) − 2 + 8 (�, �) ≥ degl� :=
∫
�

l

for all curves � ⊂ - as above.

Note that 26(�̃)−2+8 (�, �) depends only on the complement-−� . Hence the above
notion of hyperbolicity also makes sense for quasi-projective manifolds: we say that a
quasi-projective manifold* is algebraically hyperbolic if it has a log compacti�cation
(-, �) which is algebraically hyperbolic.

However, unlike Demailly’s theorem, it is unclear to us that Kobayashi hyperbolicity
or Picard hyperbolicity of - − � will imply the algebraic hyperbolicity of (-, �). In
[PR07] Pacienza-Rousseau proved that if- −� is hyperbolically embedded into- , the
log pair (-, �) (and thus - − �) is algebraically hyperbolic.

3.2. Proofs of main results. In this subsection, we will combine Theorem 0.7 with
Theorem 0.6 to prove main results in this paper.

Proof of Theorem A. By Theorem 0.6, there exist �nite log pairs {(-8, �8)}8=0,...,# so that
(1) There are morphisms `8 : -8 → . with `−1

8 (�) = �8 , so that each `8 : -8 →
`8 (-8) is a birational morphism, and -0 = . with `0 = 1.

(2) There are smooth Finsler metricsℎ8 for)-8 (− log�8) which is positively de�nite
over a Zariski open set* ◦8 of*8 := -8 − �8 .

(3) `8 |* ◦
8

: * ◦8 → `8 (* ◦8 ) is an isomorphism.
(4) There are smooth Kähler metrics l8 on -8 such that for any curve W : � → *8

with � an open set of C and W (�) ∩* ◦8 ≠ 0, one has
√
−1mm log |W ′|2

ℎ8
≥ W∗l8 .(3.2.1)

(5) For any 8 ∈ {0, . . . , # }, either `8 (*8)−`8 (* ◦8 ) is zero dimensional, or there exists
� ⊂ {0, . . . , # } so that

`8 (*8) − `8 (* ◦8 ) ⊂ ∪ 9∈� ` 9 (- 9 )
Let us explain how to construct these log pairs. By the assumption, there is a C-PVHS
(+ ,∇, � •, &) on . − � with the period map quasi-�nite, which is thus generically im-
mersive. We then apply Theorem 0.6 to construct a Finsler metric on). (− log�) which
is positively de�nite over some Zariski open set* ◦ of* = .−� with the desired curva-
ture property (2.0.14). Set-0 = . , `0 = 1 and* ◦0 = * ◦. Let /1, . . . , /< be all irreducible
varieties of . −* ◦ which are not components of � . Then /1 ∪ . . . ∪ /< ⊃ * \* ◦. For
each 8 , we take a desingularization `8 : -8 → /8 so that�8 := `−1

8 (�) is a simple normal
crossing divisor in -8 . For the C-PVHS `∗8 (+ ,∇, � •, &) on*8 = -8 −�8 by pulling-back
(+ ,∇, � •, &) via `8 , its period map is generically immersive, and it also has unipotent
monodromies around �8 . We then apply Theorem 0.6 to construct the desired Finsler
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metrics in Item 4 for )-8 (− log�8). We iterate this construction, and since each step
the dimension of -8 is strictly decreased, this algorithm stops after �nite steps.
(i) We will �rst prove that* is Picard hyperbolic. Fix any holomorphic map 5 : Δ∗ →
* . If 5 (Δ∗) ∩* ◦0 ≠ ∅, then by Theorem 0.7 and Item 4, we conclude that 5 extends to
a holomorphic map 5 : Δ→ -0 = . .

Assume now 5 (Δ∗) ∩ `0(* ◦0 ) = ∅. By Item 5, there exists �0 ⊂ {0, . . . , # } so that

5 (Δ∗) ⊂ `0(*0) − `0(* ◦0 ) ⊂ ∪ 9∈�0` 9 (- 9 )
Since ` 9 (- 9 ) are all irreducible, there exists : ∈ �0 so that 5 (Δ∗) ⊂ `: (-:). Note that
*: := `−1

:
(* ). Hence 5 (Δ∗) ⊂ `: (*:). If 5 (Δ∗) ∩ `: (* ◦: ) ≠ ∅, by Item 3 5 (Δ∗) is

not contained in the exceptional set of `: . Hence 5 can be lift to 5: : Δ∗ → *: so
that `: ◦ 5: = 5 and 5: (Δ∗) ∩* ◦: ≠ ∅. By Theorem 0.7 and Item 4 again we conclude
that 5: extends to a holomorphic map 5 : : Δ → -: . Hence `: ◦ 5 : extends 5 . If
5 (Δ∗) ∩ `: (* ◦: ) = ∅, we apply Item 5 to iterate the above arguments and after �nite
steps there exists -8 so that 5 (Δ∗) ⊂ `8 (*8) and 5 (Δ∗) ∩ `8 (* ◦8 ) ≠ ∅. By Item 3, 5 can
be lifted to 58 : Δ∗ → *8 so that `8 ◦ 58 = 5 and 58 (Δ∗) ∩* ◦8 ≠ ∅. By Theorem 0.7 and
Item 4 again, 58 extends to the origin, and so is 5 . We prove the Picard hyperbolicity
of* = . − � .
(ii) Let us prove the algebraic hyperbolicity of * . Fix any reduced and irreducible
curve � ⊂ . with � ⊄ � . By the above arguments, there exists 8 ∈ {0, . . . , # } so that
� ⊂ `8 (-8) and � ∩ `8 (* ◦8 ) ≠ ∅. Let �8 ⊂ -8 be the strict transform of � under `8 . By
Item 3 ℎ8 |�8 is not identically equal to zero.

Denote by a8 : �̃8 → �8 ⊂ -8 the normalization of �8 , and set %8 := (`8 ◦ a8)−1(�) =
a−1
8 (�8). One has

3a8 : )�̃8 (− log %8) → a∗8)-8 (− log�8)
which induces a (non-trivial) pseudo hermitian metric ℎ̃8 := a∗8 ℎ8 over)�̃8 (− log %8). By
(3.2.1), the curvature current

√
−1

2c
Θ
ℎ̃−1
8
( �̃8 (log %8)) ≥ a∗8 l8

Hence

26(�̃8) − 2 + 8 (�, �) =
∫
�̃8

√
−1

2c
Θ
ℎ̃−1
8
( �̃8 (log %8)) ≥

∫
�̃8

a∗8 l8

Fix a Kähler metric l. on . . Then there is a constant Y8 > 0 so that l8 ≥ Y8`∗8 l. . We
thus have

26(�̃8) − 2 + 8 (�, �) ≥ Y8
∫
�̃8

(`8 ◦ a8)∗l. = Y8 degl. �,

for `8 ◦ a8 : �̃8 → � is the normalization of � . Set Y := inf8=0,...,# Y8 . Then we conclude
that for any reduced and irreducible curve � ⊂ . with � ⊄ � , one has

26(�̃) − 2 + 8 (�, �) ≥ Y degl. �

where �̃ → � is its normalization. This shows the algebraic hyperbolicity of* .
The proof of the theorem is accomplished. �

To prove Theorem B, we need the following fact on Picard and algebraic hyperbol-
icity.

Lemma 3.2. Let * be a quasi-projective manifold and let ? : *̃ → * be a �nite étale
cover. If *̃ is Picard hyperbolic (resp. algebraically hyperbolic), then * is also Picard
hyperbolic (resp. algebraically hyperbolic).
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Proof. Let us take log-compacti�cations (-, �) and (., �) for *̃ and* respectively, so
that ? extends to a morphism ? : - → . with ?−1(�) = � .
(i) Assume now *̃ is Picard hyperbolic. For any holomorphic map 5 : Δ∗ → * , we
claim that there is a �nite covering

c : Δ∗ → Δ∗

I ↦→ I=

so that there is a holomorphic map 5̃ : Δ∗ → *̃ with

Δ∗ *̃

Δ∗ *

5̃

c ?

5

Indeed, �x any based point I0 ∈ Δ∗ with G0 := 5 (I0). Pick any ~0 ∈ ?−1(G0). Then
either 5∗

(
c1(Δ∗, I0)

)
is a �nite group or 5∗

(
c1(Δ∗, I0)

)
∩ ?∗

(
c1(*̃ , ~0)

)
) {0} since

?∗
(
c1(*̃ , ~0)

)
is a subgroup of c1(* , G0) with �nite index. Let W ∈ c1(Δ∗, I0) ' Z

be a generator. Then 5∗(W=) ⊂ ?∗
(
c1(*̃ , ~0)

)
for some = ∈ Z>0. Therefore, (5 ◦

c)∗
(
c1(Δ∗, I0)

)
⊂ ?∗

(
c1(*̃ , ~0)

)
, which implies that the lift 5̃ of 5 ◦ c for the covering

map ? exists.
Since *̃ is Picard hyperbolic, 5̃ extends to a holomorphic map 5̃ : Δ → - . The

composition ? ◦ 5̃ extends 5 ◦ c . Since c extends to a map c : Δ→ Δ, we thus has

lim
I→0

5 (I) = ? ◦ 5̃ (0).

By the Riemann extension theorem, 5 extends to the origin holomorphically.
(ii) Assume that (-, �) is algebraically hyperbolic. Fix smooth Kähler metrics l- and
l. on - and . so that ?∗l. ≤ l- . Then there is a constant Y > 0 such that for any
reduced and irreducible curve � ⊂ - with � ⊄ � , one has

26(�̃) − 2 + 8 (�, �) ≥ Y degl- �

where �̃ → � is its normalization.
Take any reduced and irreducible curve � ⊂ . with � ⊄ �. Then there is a reduced

and irreducible curve �′ of - so that ? (�′) = � . Let a : �̃ → � and a′ : �̃′ → �′

be their normalization respectively, which induces a (possibly rami�ed) covering map
c : �̃′→ �̃ so that

�̃′ �′

�̃ �

a ′

c ? |� ′

a

Set % := a−1(�) and & := (a′)−1(�). Then c◦ : �̃′ − & → �̃ − % is an unrami�ed
covering map. By Riemann–Hurwitz formula one has

26(�̃) − 2 + 8 (�, �) = 1
degc

(
26(�̃′) − 2 + 8 (�′, �)

)
≥ Y

degc
degl- �

′ ≥ Y

degc
deg?∗l. �

′ = Y degl. �

Hence (., �) is also algebraically hyperbolic, and so is* .
The lemma is proved. �
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Note that in [JK18a, Proposition 5.2.(1)], Javanpeykar-Kamenova proved that if- →
. is a �nite étale morphism of projective varieties over an algebraically closed �eld of
characteristic zero, then . is algebraically hyperbolic provided that - is algebraically
hyperbolic.

We now show how to reduce Theorem B to Theorem A by applying Lemma 3.2.

Proof of Theorem B. Let (., �) be a log-compacti�cation of* . Since there is a Z-PVHS
(+ ,∇, � •, &) on* , by a theorem of A. Borel, its local monodromies around � is quasi-
unipotent. By [Bru18, §3.2], there is a �nite étale cover ? : *̃ → * and a log-
compacti�cation (-, �) of *̃ so that ?∗(+ ,∇, � •, &) has unipotent monodromies around
�. Since the period map of (+ ,∇, � •, &) is assumed to be quasi-�nite, so is that of
?∗(+ ,∇, � •, &). By Theorem A, we know that *̃ is both Picard hyperbolic and alge-
braically hyperbolic, and it follows immediately from Lemma 3.2 that the same holds
for* . �

Remark 3.3. Let * be a quasi-projective manifold admitting an integral variation of
Hodge structures (+ ,∇, � •, &) with arithmetic monodromy group whose period map is
quasi-�nite. In [JL19, Theorem 4.2] Javanpeykar-Litt proved that* is weakly bounded
in the sense of Kovács-Lieblich [KL10, De�nition 2.4] (which is weaker than algebraic
hyperbolicity). Though not mentioned explicitly, their proof of [JL19, Theorem 4.2] im-
plicitly shows that such* is also algebraically hyperbolic when local monodromies of
(+ ,∇, � •, &) at in�nity are unipotent. Their proof is di�erent from that of Theorem B,
and it uses the work [BBT18] on the ampleness of Gri�ths line bundle of (+ ,∇, � •, &)
as well as the Arakelov-type inequality for Hodge bundles by Peters [Pet00].

Corollary C immediately follows from the following proposition, which is a con-
sequence of the deep extension theorem of meromorphic maps by Siu [Siu75]. The
meromorphic map in this paper is de�ned in the sense of Remmert, and we refer the
reader to [FG02, p. 243] for the precise de�nition.

Proposition 3.4. Let . ◦ be a Zariski open set of a compact Kähler manifold . . Assume
that . ◦ is Picard hyperbolic. Then any holomorphic map 5 : Δ? × (Δ∗)@ → . ◦ extends to
a meromorphic map 5 : Δ?+@ d . . In particular, any holomorphic map 6 from a Zariski
open set - ◦ of a compact complex manifold - to . ◦ extends to a meromorphic map from
- to . .

Proof. By [Siu75, Theorem 1], any meromorphic map from a Zariski open set / ◦ of a
complex manifold / to a compact Kähler manifold . extends to a meromorphic map
from / to . provided that the codimension of / − / ◦ is at least 2. It then su�ces
to prove the extension theorem for any holomorphic map 5 : ΔA × Δ∗ → . ◦. By
the assumption that . ◦ is Picard hyperbolic, for any I ∈ ΔA , the holomorphic map
5 |{I}×Δ∗ : {I} × Δ∗ → . ◦ can be extended to a holomorphic map from {I} × Δ to
. . It then follows from [Siu75, p.442, (∗)] that 5 extends to a meromorphic map 5 :
ΔA+1 d . . This proves the �rst part of the proposition. To prove the second part, we
�rst apply the Hironaka theorem on resolution of singularities to assume that - − - ◦
is a simple normal crossing divisor on - . Then for any point G ∈ - − - ◦ it has an
open neighborhood ΩG which is isomorphic to Δ?+@ so that - ◦ ' Δ? × (Δ∗)@ under
this isomorphism. The above arguments show that 6 |ΩG∩- ◦ extends to a meromorphic
map from ΩG to . , and thus 6 can be extended to a meromorphic map from - to . .
The proposition is proved. �

By the Chow theorem, this extension theorem in particular gives an alternative
proof of the fact that Picard hyperbolic variety is moreover Borel hyperbolic, proven
in [JK18b, Corollary 3.11].
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We end this section with the following remark.

Remark 3.5. Let (�, \ ) be the Higgs bundle on a log pair (., �) as that in Theorem 2.6.
One can also use the idea by Viehweg-Zuo [VZ02] in constructing their Viehweg-Zuo
sheaf (based on the negativity of kernels of Higgs �elds by Zuo [Zuo00]) to prove
a weaker result than Theorem 2.6: for any holomorphic map W : � → * from any
open subset� of C with W (�) ∩* ◦ ≠ ∅, there exists a Finsler metric ℎ� of). (− log�)
(depending on�) and a Kähler metricl� for. (also depending on�) so that |W ′(C) |2

ℎ
. 0

and
√
−1mm log |W ′|2

ℎ�
≥ W∗l� .

It follows from our proof of Theorem A that one can also combine Theorem 0.7 with
this weaker result to prove Theorem A. The more general result Theorem 0.6 will be
used to prove Theorem D.(ii) in next section.

4. Strong hyperbolicity of varieties admitting C-PVHS

We begin this section with some de�nitions.

De�nition 4.1. Let (., �) be a log pair. Let ~ be any point of � , and let �81, . . . , �8ℓ be
components of � containing ~. An admissible coordinate around ~ is the tuple (U, i):
• U is an open subset of . containing ~.
• i is an isomorphism i : U → Δ3 = {(I1, . . . , I3) | |I8 | < 1} such that i (~) =
(0, . . . , 0), and i (�8 9 ) = {I 9 = 0} for any 9 = 1, . . . , ℓ .

De�nition 4.2. Let (., � =
∑2
8=1�8) be a log pair and let (+ ,∇, � •, &) be a C-PVHS

over* := . −� . LetW8 be the generator of the local monodromy of (+ ,∇, � •, &) around
�8 . We say (+ ,∇, � •, &) has injective local monodromy representation around � if for
any non-empty set {81, . . . , 8:} ⊂ {1, . . . , 2} so that �81 ∩ · · · ∩ �8: ≠ ∅, the subgroup
of the monodromy group generated by {W81, . . . , W8: } is a free abelian group of rank : .

Note that the generator of the local monodromy of (+ ,∇, � •, &) around �8 does not
depend on the choice of admissible coordinate, and thus the subgroup generated by
{W81, . . . , W8: } is always an abelian group (but might not have rank : and might have
torsion). Based on this fact, on can easily obtain the following lemma.

Lemma 4.3. Let (., �) be a log pair and let (+ ,∇, � •, &) be a C-PVHS over* := . −� .
(+ ,∇, � •, &) has injective local monodromy representation around� if and only if for any
point ~ ∈ � , the monodromy representation of the C-PVHS (+ ,∇, � •, &) |U−� is injective,
where (U, i) is an admissible coordinate around ~.

Example 4.4. Let (., �) be a log pair. When� is a smooth divisor, a C-PVHS on. −�
has injective local monodromy representation around � if and only if it has in�nite
local monodromies on each irreducible component of � .

Let us brie�y explain the idea of the proof for Theorem D and some related re-
sults. The starting point is the special Higgs bundle (�, \ ) := (⊕?+@=ℓ�?,@, ⊕?+@=ℓ\?,@)
on (., �) constructed in Theorem 1.6. We divide the proof into four steps.

(1) The �rst step is to construct a generically �nite surjective log morphism ` : (-, �̃) →
(., �) which is étale over* and has su�ciently high rami�cation over � (depend-
ing on the above (�, \ )). To �nd this highly rami�ed morphism `, we apply the
well-known result that monodromy group of a C-PVHS is residually �nite, and use
the Cauchy argument principle to show the high rami�cation around � . Let us
mention that this step is also the crucial ingredient in [Nad89,Rou16,Bru16,Cad18]
for the strong hyperbolicity of hermitian symmetric spaces, whereas they all apply
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Mumford’s work [Mum77] to add level structures to �nd such rami�ed cover for
toroidal compacti�cations of quotient of bounded symmetric domains.

(2) The second step is the pull-back of the above Higgs bundle (�, \ ) to (-, �̃) via `,
which we denote by (�̃, \̃ ) := (⊕?+@=ℓ �̃?,@, ⊕?+@=ℓ\̃?,@). This Higgs bundle (�̃, \̃ ) on
(-, �̃) satis�es the three conditions in Theorem 1.6. Moreover, some stage �̃?0,ℓ−?0

contains a big line bundle !′ which admits enough local positivity on �̃ .
(3) The third step is to prove Theorem D.(i). We start with �̃?0,ℓ−?0 and iterate the Higgs

�eld \̃ , which stops at �nite steps. By the negativity of the kernel of \̃ due to Zuo
[Zuo00], and the strong positivity of !′, we construct an ample sheaf contained in
some symmetric di�erential SymVΩ- (rather than on SymVΩ- (log �̃)!). It follows
from a celebrated theorem of Campana-Păun [CP19] that, - is of general type. Let
us mention that this idea of iterating Higgs �elds to their kernels, originally due to
Viehweg-Zuo [VZ02], has been used by Brunebarbe in [Bru16] in which he proved
similar result for hermitian symmetric space. There are also some similar results for
quotients of bounded domains by Boucksom-Diverio [BD18] and Cadorel-Diverio-
Guenancia [CDG19].

(4) The last step is to prove Theorems D.(ii) and D.(iii). We use the above Higgs bundle
(�̃, \̃ ) and ideas in § 2 to construct a Finsler metric � on )- instead of )- (− log �̃)
due to the enough local positivity of !′ around �̃ . Such a metric � is generically
positive, and has holomorphic sectional curvature bounded from above by a neg-
ative constant by Theorem 2.4. By Ahlfors-Schwarz lemma, we conclude that - is
pseudo Kobayashi hyperbolic; and by Theorem 0.7 the pseudo Picard hyperbolic-
ity of - follows. Let us mention that Rousseau [Rou16] has proved similar result
for hermitian symmetric spaces, which was later re�ned by Cadorel [Cad18]. Their
methods use Bergman metrics for bounded symmetric domains instead of Hodge
theory.
Now we start the detailed proof of Theorem D.

Proof of Theorem D. By Theorem 1.6, there is a Higgs bundle (�, \ ) = (⊕?+@=ℓ�?,@, ⊕?+@=ℓ\?,@)
over (., �) satisfying the three conditions therein. In particular, there is a big line bun-
dle ! on . and an inclusion ! ⊂ �?0,ℓ−?0 for some ?0 > 0. Pick< � 0 so that ! − ℓ

<
�

is a big Q-line bundle.

Step 1. Let us denote by d : c1(* ) → �!(A,C) the monodromy representation of
(+ ,∇, � •, &), and denote by Γ := d (c1(* )) its monodromy group, which is a �nitely
generated linear group hence residually �nite. For any irreducible component �8 of � ,
let us denote by W8 ∈ Γ the generator of the local monodromy of (+ ,∇, � •, &) around
�8 . We set

S := {{81, . . . , 8:} ⊂ {1, . . . , 2} | �81 ∩ · · · ∩ �8: ≠ ∅}.
Then for any {81, . . . , 8:} ∈ S, W81, . . . , W8: commute pairwise. Indeed, pick any point
~ ∈ �81 ∩ · · · ∩ �8: − ∪?≠8 9�? , and take an admissible coordinate (U, i) around ~, the
fundamental group c1(U) ' c1((Δ∗): × Δ3−:) ' Z: which is abelian. Let 41, . . . , 4:
be the generators of c1((Δ∗): ×Δ3−:), namely 48 is a clockwise loop around the origin
in the 8-th factor Δ∗. Then W8 := d (48). Clearly, W81, . . . , W8: commute pairwise. By the
assumption that (+ ,∇, � •, &) has injective local monodromy representation around �
and by Lemma 4.3, W81, . . . , W8: generates a free abelian group of rank : .

Let< be the integer chosen at the beginning. It follows from the de�nition of resid-
ually �nite group that there is a normal subgroup Γ̃ of Γ with �nite index so that

W
ℓ1
81
· · ·W ℓ:

8:
∉ Γ̃(4.0.1)
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for each {81, . . . , 8:} ∈ S, and each 0 < |ℓ8 | < <. Then d−1(Γ̃) is a normal subgroup of
c1(* ) with �nite index. Let a : *̃ → * be the �nite étale cover of* whose fundamen-
tal group is d−1(Γ̃). Then the monodromy group of a∗(+ ,∇, � •, &) is Γ̃.

Let us take a smooth projective compacti�cation - of *̃ with �̃ := - − *̃ simple
normal crossing so that a : *̃ → * extends to a log morphism ` : (-, �̃) → (., �).
Write �̃ =

∑=
9=1 �̃ 9 where �̃ 9 ’s are irreducible components of �̃ . Then there is {<8 9 ∈

Z≥0}8=1,...,2; 9=1,...,= so that

`∗(�8) =
=∑
9=1
<8 9 �̃ 9 .

Let us endow S a partial order ≤ so that � ≤ � if and only if � ⊂ � . For any �̃ 9 ,
let {81, . . . , 8:} ∈ S be the largest element so that ` (�̃ 9 ) ⊂ �81 ∩ · · · ∩ �8: . Hence
<8 9 = 0 if and only if 8 ∉ {81, . . . , 8:}. Then there is a point G ∈ �̃ 9 − ∪?≠ 9�̃? so that
~ := ` (G) ∈ �81 ∩ · · · ∩ �8: − ∪?≠8 9�? . Take admissible coordinates (W, q ; I1, . . . , I3)
and (U, i ;F1, . . . ,F3) around G and ~ respectively so that ` (W) ⊂ U. Within these
coordinates, �̃ 9 ∩W = {I1 = 0}, and �8ℓ ∩U = {Fℓ = 0}. Denote by (`1(I), . . . , `3 (I))
the expression of ` within these coordinates. Then

(`1(I), . . . , `3 (I)) = (I
<81, 9
1 a1(I), . . . , I

<8: ,9

1 a: (I), `:+1(I), . . . , `3 (I))
wherea1(I), . . . , a: (I) are holomorphic functions de�ned onW so that neither of them
is identically equal to zero on {I1 = 0}, and <8? , 9 ≥ 1 for ? = 1, . . . , : . We thus can
choose a slice ( := {(I1, . . . , I3) | {|I1 | ≤ Y, I2 = Z2, . . . , I3 = Z3} ⊂ W so that a8 (I) ≠ 0
for any I ∈ ( and any 8 = 1, . . . , : . Let us de�ne a loop 4 (\ ) : [0, 1] → W − �̃ by
4 (\ ) := (Y42c8\ , Z2, . . . , Z3) which is the generator of c1(W− �̃). By Cauchy’s argument
principle, the winding number of `? ◦ 4 (\ ) around 0 is<8? , 9 for ? = 1, . . . , : . Hence by
the following diagram

Γ̃ Γ

c1(W − �̃) c1(U − �)

Z Z:

`∗

'

one has `∗(1) = (<81, 9 , . . . ,<8: , 9 ). In other words, W<81, 9
81
· · ·W<8: ,9

8:
∈ Γ̃. By (4.0.1), there is

some = ∈ {1, . . . , :} so that<8=, 9 ≥ <. Note that

ord�̃ 9 (`
∗�) =

2∑
8=1

<8 9 =

:∑
?=1

<8? , 9 ≥ <8=, 9 ≥ <.

This implies that the divisor `∗� −<�̃ is e�ective.

Step 2. Let us introduce a Higgs bundle (�̃, \̃ ) = (⊕?+@=ℓ �̃?,@, ⊕?+@=ℓ\̃?,@) on (-, �̃) by
pulling-back (�, \ ) via `. More precisely, �̃?,@ := `∗�?,@ and \̃?,@ is de�ned to be the
composition of the following maps

`∗�?,@ → `∗�?−1,@+1 ⊗ `∗Ω. (log�) → `∗�?−1,@+1 ⊗ Ω- (log �̃) .
Note that (�̃, \̃ ) is a Higgs bundle on (-, �̃) canonically induced (in the sense of Def-
inition 1.3) by the C-PVHS a∗(+ ,∇, � •, &) de�ned on *̃ . Since the period map of
a∗(+ ,∇, � •, &) is still generically immersive, and a∗(+ ,∇, � •, &) has local unipotent
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monodromies around �̃ , the Higgs bundle (�̃, \̃ ) veri�es the �rst two conditions in
Theorem 1.6. The pull-back `∗! is still a big line bundle for ` is generically �nite.
Hence (�̃, \̃ ) satis�es the third conditions in Theorem 1.6 for `∗! ⊂ �̃?0,ℓ−?0 .

Step 3. Now we iterate \̃ by :-times as in § 1.4 to obtain a morphism

�̃?0,ℓ−?0 → �̃?0−:,ℓ−?0+: ⊗ Sym:Ω- (log �̃).(4.0.2)

Since `∗! is a subsheaf of �̃?0,ℓ−?0 , it induces a morphism

[: : `∗! → �̃?0−:,ℓ−?0+: ⊗ Sym:Ω- (log �̃).
Write :0 for the largest : so that [: is non-trivial. Then 0 ≤ :0 ≤ ?0 ≤ ℓ . Let us denote
by #? the kernel of \?,ℓ−? . Hence [:0 admits a factorization

[:0 : `∗! → #?0−:0 ⊗ Sym:0Ω- (log �̃) .
This implies that :0 > 0; or else, there is a morphism from the big line bundle `∗!
to #?0 , whose dual # ∗?0 is weakly positive in the sense of Viehweg by [Zuo00]. Write
!̃ := `∗! − ℓ�̃ , which is a big line bundle since `∗� −<�̃ is an e�ective divisor and
! − ℓ

<
� is a big Q-line bundle. Hence [:0 induces

!̃ → #?0−:0 ⊗ Sym:0Ω- (log �̃) ⊗ O- (−ℓ�̃) ⊂ #?0−:0 ⊗ Sym:0Ω- .

In other words, there exists a non-trivial morphism

!̃ ⊗ # ∗
?0−:0

→ Sym:0Ω- .

The torsion free coherent sheaf !̃ ⊗ # ∗
?0−:0

is big in the sense of Viehweg. Hence there
is U > 0 so that

SymU (!̃ ⊗ # ∗
?0−:0
) ⊗ O- (−�)

is generically globally generated for some ample divisor�. Hence there is a non-trivial
morphism

O- (�) → SymU:0Ω- .

By a theorem of Campana-Păun [CP19, Corollary 8.7], - is of log general type.
Step 4. Let us prove that - is pseudo Kobayashi hyperbolic. Note that [: induces a
morphism

g: : Sym:)- (− log �̃) → �̃?0−:,ℓ−?0+: ⊗ `∗!−1

By Theorem 1.9 we know that g1 is injective on a Zariski open set *̃ ′ ⊂ *̃ . Since
!̃ = `∗! − ℓ�̃ , g: induces a morphism

g̃: : Sym:)- → Sym:)- (− log �̃) ⊗ O- (ℓ�̃) → �̃?0−:,ℓ−?0+: ⊗ !̃−1

which coincides with g: over *̃ . Hence g̃1 is also injective over *̃ ′. By Proposi-
tion 1.8.(ii), we can take a singular hermitian metric ℎ!̃ for !̃ so that ℎ := ℎ−1

!̃
⊗ ℎhod on

!̃−1⊗ �̃ is locally bounded on. , and smooth outside �̃∪B+(!̃), whereℎhod is the Hodge
metric for the Higgs bundle (�̃, \̃ ) |*̃ . Moreover, ℎ vanishes on �̃ ∪ B+(!̃). This metric
ℎ on !̃−1 ⊗ �̃ induces a Finsler metric �: on )- de�ned as follows: for any 4 ∈ )-,G ,

�: (4) := ℎ
(
g̃: (4⊗:)

) 1
:

We apply the same method in § 2 to construct a new Finsler metric � on )- by taking
convex sum in the following form

� :=

√√√
:0∑
8=1

U8�
2
8
.
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where U1, . . . , U:0 ∈ R+ are certain constants. This Finsler metric � on )- is positively
de�nite over *̃ ◦ := *̃ ′−B+(!̃) for g̃1 is injective over *̃ ′ and ℎ is smooth on *̃ −B+(!̃).
By Theorem 2.4 one can choose U1, . . . , U:0 ∈ R+ properly so that for any W : � → -

with � an open set of C and W (�) ∩ *̃ ◦ ≠ ∅, one has
√
−1mm log |W ′(C) |2� ≥ W

∗l(4.0.3)

for some �xed smooth Kähler form l on - . Indeed, it follows from the proof of The-
orem 2.4 that there is an open subset�◦ of� whose complement is a discrete set such
that (4.0.3) holds over�◦. By De�nition 2.1, |W ′(C) |2

�
is continuous and locally bounded

from above over � , and by the extension theorem of subharmonic function, (4.0.3)
holds over the whole unit disk � . By Theorem 0.7 and (4.0.3), - is Picard hyperbolic
modulo - − *̃ ◦. Hence Theorem D.(iii) follows.

By De�nition 2.1 again, there is Y > 0 so that l ≥ Y� 2. Hence (4.0.3) implies that

m2 log |W ′(C) |2
�

mCmC̄
≥ Y |W ′(C) |2�

for any W : Δ→ - with W (Δ) ∩*̃ ◦ ≠ ∅. In other words, the holomorphic sectional cur-
vature of � is bounded from above by the negative constant −Y (see [Kob98, Theorem
2.3.5]). By the Ahlfors-Schwarz lemma, we conclude that - is Kobayashi hyperbolic
modulo - − *̃ ◦ (see [Den18, Lemma 2.4]). In particular, - is pseudo Kobayashi hyper-
bolic. We complete the proof of the theorem. �

As a byproduct of the above proof, we obtain the following result.

Theorem 4.5. Let (., �) be a log pair and let (�, \ ) = (⊕?+@=ℓ�?,@, ⊕?+@=ℓ\?,@) be a
Higgs bundle on (., �) satisfying the following conditions.
(1) The Higgs �eld \ satis�es

\ : �?,@ → �?−1,@+1 ⊗ Ω. (log�)
(2) (�, \ ) is canonically induced (in the sense of De�nition 1.3) by some C-PVHS over

. − � of weight ℓ with unipotent monodromies around � .
(3) There is a big line bundle ! over . such that ! ⊂ �?0,@0 for some ?0 + @0 = ℓ .
(4) The line bundle ! − ?0� is still big.
Then the projective manifold .

(i) is of general type;
(ii) is pseudo Kobayashi hyperbolic;
(iii) is pseudo Brody hyperbolic.

Now we are able to prove Corollary E.

Proof of Corollary E. By Theorem 1.6, there is a Higgs bundle (�, \ ) = (⊕?+@=ℓ�?,@, ⊕?+@=ℓ\?,@)
over (., �) satisfying the three conditions therein. In particular, there is a big and nef
line bundle ! on . and an inclusion ! ⊂ �?0,ℓ−?0 for some ?0 > 0. Moreover, the aug-
mented base locus B+(!) ⊂ � by Lemma 1.5. Pick< � 0 so that !− ℓ

<
� is a bigQ-line

bundle, and B+(! − ℓ
<
�) ⊂ � .

Now we perform the same argument in Step 1 of the proof of Theorem D to construct
a log pair (-, �) and a log morphism ` : (-, �̃) → (., �) which is étale over * .
Moreover, `∗�−<�̃ is e�ective. Hence, one hasB+

(
`∗(!− ℓ

<
�)

)
⊂ �̃ andB+(`∗!) ⊂ �̃ .

We construct a Higgs bundle (�̃, \̃ ) = (⊕?+@=ℓ �̃?,@, ⊕?+@=ℓ\?,@) on (-, �̃) by pulling-
back (�, \ ) via ` as in Step 2 of the proof of Theorem D. It satis�es the three conditions
in Theorem 1.6, and `∗! ⊂ �̃?0,ℓ−?0 for some ?0.
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Let /̃ be any Zariski closed subvariety of - which is not contained in �̃ . Take
a resolution of singularities 6 : / → /̃ so that �/ := a−1(�̃) is simple normal
crossing. Then 6 : (/, �/ ) → (-, �̃) is a log morphism which is generically �-
nite. Following Step 2 of the proof of Theorem D again, we construct a Higgs bundle
(�, [) = (⊕?+@=ℓ�?,@, ⊕?+@=ℓ[?,@) on (/, �/ ) by pulling-back (�̃, \̃ ) via 6, which satis-
�es the �rst two conditions in Theorem 4.5. Moreover, one has 6∗`∗! ⊂ �?0,ℓ−@0 . Note
that 6 |/−�/ : / − �/ → - − �̃ is generically immersive. Recall that B+(`∗!) ⊂ �̃

and B+
(
`∗(! − ℓ

<
�)

)
⊂ �̃ . We conclude that both 6∗`∗! and 6∗`∗(! − ℓ

<
�) are big.

Moreover, one has

6∗`∗! − ℓ�/ ≥ 6∗(`∗! − ℓ�̃) ≥ 6∗`∗(! −
ℓ

<
�).

The Higgs bundle (�, [) on (/, �/ ) thus satis�es the last two conditions in Theo-
rem 4.5. In summary, we construct a Higgs bundle on (/, �/ ) satisfying all the condi-
tions in Theorem 4.5. By Theorem 4.5, / is of general type. We proved Corollary E.(i).

Let us prove Corollary E.(ii). For any W̃ : Δ∗ → - whose image is not contained
in �̃ , let /̃ be its Zariski closure. Take a desingularization a : / → /̃ as above, and
let W : Δ∗ → / be the lift of W . By the above argument and Theorem 4.5, / is pseudo
Picard hyperbolic. Hence W extends to a holomorphic map W : Δ → / . Hence a ◦ W
extends W̃ . We proved Corollary E.(ii). It is an easy to see that Corollary E.(ii) implies
Corollary E.(iii). �

Remark 4.6. Let us mention that a compact complex manifold is Kobayashi hyperbolic
if and only if it is Picard hyperbolic (see [Kob98]). However, we do not know the
relation between pseudo Kobayshi hyperbolicity and pseudo Picard hyperbolicity. We
refer the reader to [Jav20b, §8] for a conjectural picture.

5. Applications to arithmetic locally symmetric varieties

In this section we will give some applications of techniques developed in this paper
to hyperbolicity of arithmetic locally symmetric varieties. A complex manifold * =
D�Γ is called an arithmetic locally symmetric variety if it is the quotient of a bounded
symmetric domainD by a torsion free arithmetic lattice Γ ∈ Aut(D). We know that*
is quasi-projective and admits a toroidal compacti�cation, which is indeed a projective
normal crossing compacti�cation. The purpose of this section is as follows.

(1) We apply techniques in the proof of Theorem A to reprove the Borel extension the-
orem Theorem 5.2.

(2) We apply Theorem D to reprove a strong hyperbolicity result by Rousseau [Rou16]
for arithmetic locally symmetric varieties.

(3) We reprove the algebraic hyperbolicity for arithmetic locally symmetric varieties,
which is a consequence of [Bor72] and [PR07].

(4) We prove the Picard hyperbolicity modulo the boundary for compacti�cations of
arithmetic locally symmetric varieties after passing to a �nite étale cover, in the
same vein as Corollary E.(ii).

This subsection is strongly inspired by [Rou16, Bru16].
By the work of Gross [Gro94], Sheng-Zuo [SZ10], and Friedman-Laza [FL13], we

know that there is a C-PVHS of Calabi-Yau type on any irreducible bounded symmetric
domain. Instead of introducing the precise de�nition of C-PVHS of Calabi-Yau type
and its relation with arithmetic locally symmetric varieties, we will make a summary of
results in these references following [Bru16, §5] which shall be used in this subsection.
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Theorem5.1. Let* be an arithmetic locally symmetric variety. Then there are a toroidal
compacti�cation of . of* , and a Higgs bundle (�, \ ) = (⊕?+@=ℓ�?,@, ⊕?+@=ℓ\?,@) over the
log pair (., � := . −* ) satisfying the following conditions.
(1) The Higgs �eld \ satis�es

\ : �?,@ → �?−1,@+1 ⊗ Ω. (log�)
(2) (�, \ ) is canonically induced by some C-PVHS over . −� of weight ℓ with unipotent

monodromies around � .
(3) �ℓ,0 is a big and nef line bundle on . such that B+(�ℓ,0) ⊂ � .
(4) Themap). (− log�) → Hom(�ℓ,0, �ℓ−1,1) induced by\ℓ,0 : �ℓ,0 → �ℓ−1,1⊗Ω. (log�)

is injective when restricted to* .

Let us �rst apply our techniques to give a new proof for Borel’s extension theorem.

Theorem 5.2 ([Bor72, Theorem A]). Let * be an arithmetic locally symmetric variety
and let. be a toroidal compacti�cation of* . Then any holomorphic map from 5 : (Δ∗)?×
Δ@ → * extends to a meromorphic map 5 : Δ?+@ d . .

Proof. By Theorem 2.6, the Higgs bundle on* in Theorem 5.1 induces a Finsler metric
� over). (− log�), which is positively de�nite over* , and satis�es the curvature esti-
mate (2.0.14). Then by Theorem 0.7,* is Picard hyperbolic. The desired meromorphic
map 5 then follows from Proposition 3.4 immediately. �

We can also give a proof for algebraic hyperbolicity of arithmetic locally symmetric
varieties.

Theorem 5.3. Arithmetic locally symmetric varieties are algebraically hyperbolic.

Proof. Pick a toroidal compacti�cation . of * and set � := . −* . It follows from our
proof of Theorem 5.2 that we can construct a Finsler metric � on)- (− log�) which is
positively de�nite over* , and satis�es the curvature estimate (2.0.14). Using the same
argument in the proof of algebraic hyperbolicity in Theorem A, one can prove that *
is algebraically hyperbolic. The theorem is proved. �

Theorem 5.3 was already known. Indeed, Pacienza-Rousseau [PR07] proved that if
a quasi-projective manifold * is hyperbolically embedded into some projective com-
pacti�cation, then * is algebraically hyperbolic. Arithmetic locally symmetric vari-
eties are hyperbolically embedded into their Baily-Borel compacti�cations by [Bor72].
Theorem 5.3 thus follows from a combination of [PR07, Bor72].

Let us now use previous techniques to prove a new result for hyperbolicity of arith-
metic locally symmetric varieties.

Theorem 5.4. Let * be an arithmetic locally symmetric variety. Then there is a �nite
étale cover *̃ → * and a projective compacti�cation- of *̃ so that- is Picard hyperbolic
modulo - − *̃ .

Recall that Rousseau [Rou16] has proved that the variety- in Theorem 5.4 is Kobayashi
hyperbolic modulo - − *̃ , and Brunebarbe [Bru16] has proved that any Zariski closed
subvariety not contained in- −*̃ is of general type. As we will see below, our methods
can give a new proof of Rousseau’s theorem as a byproduct.

Proof of Theorem 5.4. By Theorem 5.1 there is a Higgs bundle (�, \ ) = (⊕?+@=ℓ�?,@, ⊕?+@=ℓ\?,@)
over the log pair (., �) which satis�es the conditions therein. Take < � 0 so that
B+(�ℓ,0 − ℓ

<
�) ⊂ � . By [Mum77], one can add the level structure so that there is

an étale cover *̃ → * and a log-compacti�cation - of *̃ with �̃ := - − *̃ so that
for the induced log morphism ` : (-, �̃) → (., �), one has `∗� ≥ <�̃ . By pulling
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back (�, \ ) to (-, �̃) as Step 2 in the proof of Theorem D, we construct a Higgs bundle
(�̃, \̃ ) = (⊕?+@=ℓ �̃?,@, ⊕?+@=ℓ\̃?,@) on (-, �̃) which satis�es the four conditions in Theo-
rem 5.1. Moreover, �̃ℓ,0 − ℓ�̃ is big and B+(�̃ℓ,0 − ℓ�̃) ⊂ �̃ . By Step 4 in the proof of
Theorem D, we can construct a Finsler metric on )- which is positively de�nite on *̃
so that for any W : � → - with � an open set of C and W (�) ∩ *̃ ≠ ∅, one has

√
−1mm log |W ′(C) |2� ≥ W

∗l.

By the same argument in Step 4 again, - is both Picard hyperbolic and Kobayashi
hyperbolic modulo �̃ . �

Remark 5.5. Let us mention that one can also give a direct proof of Theorem 5.4 by
combining [Rou16] with Theorem 0.7, as communicated to us by Erwan Rousseau.
Indeed, in [Rou16, Proposition 2.4], Rousseau constructed a singular hermitian metric
ℎ for)- which is positively de�nite over *̃ and vanishes on the boundary � := - − *̃
so that for any W : � → - with � an open set of C and W (�) ∩ *̃ ≠ ∅, one has

√
−1mm log |W ′(C) |2

ℎ
≥ YW∗6

over W−1(*̃ ) for some constant Y > 0. Here 6 is the Bergman metric for )*̃ . Note that
the metric 6−1 for Ω*̃ is ‘good’ in the sense of [Mum77] with respect to the extension
Ω- (log�) of Ω*̃ (see [Mum77, Main Theorem 3.1 & Proposition 3.4.a)]). In other
words, for any local holomorphic section 4 of Ω- (log�), the norm ‖4 ‖2

6−1 has at most
logarithmic growth near the boundary. In particular, one can easily verify that6 ≥ l |*̃
for some smooth Kähler form of - . Hence

√
−1mm log |W ′(C) |2

ℎ
≥ YW∗l

for any W : Δ∗ → - with W (Δ∗) ∩ *̃ ≠ ∅. It follows from Theorem 0.7 that W extends
across the origin.
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