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Introduction

Background of the Thesis

Hopf Algebroids
The main objects of study in this thesis are generalised symmetries and their associated (co)homologies
within the realm of noncommutative geometry. Some parts of the background picture for the notion of
generalised symmetries in noncommutative geometry are summarised in the following table (see further
down for a similar table for the respective (co)homology theories).

Differential Algebraic Noncommutative
Geometry Geometry Geometry

Spaces Manifolds Commutative Algebras Noncommutative Algebras
(, . . . , Schemes) (, . . . , Spectral Triples)

Symmetries Lie Groups Algebraic Groups, Hopf Algebras
Group Schemes

Generalised Lie Groupoids Groupoid Schemes
Symmetries and Pseudogroups ?

We now explain some of the entries of this table.

Noncommutative Geometry
The main idea of noncommutative is to study ‘spaces’ by means of their algebras of (continuous, smooth,
etc.) functions. The novelty stems from the fact that these algebras are allowed to be noncommutative. In
a certain sense, noncommutativity may be seen as a manifestation of the singular behaviour of the spaces
involved. For instance, in many examples such as quotients by group actions or leaf spaces of foliations,
the naive spaces may be highly pathological. Indeed, the noncommutative approach to such spaces starts
by associating a noncommutative algebra to them, as the ‘algebra of functions on the noncommutative space’.

Hopf Algebras
The concept of symmetry in noncommutative geometry, i.e. the noncommutative analogue of Lie groups from
classical differential geometry, is given by the notion of Hopf algebras. More precisely, noncommutative
symmetries are encoded in the action or coaction of some Hopf algebra on some algebra or coalgebra.

Roughly speaking, when passing from a Lie group G to its algebra of (say) continuous functions CG, the
group multiplication transforms into a map CG → C(G × G) or, using the appropriate tensor product, into
a comultiplication ∆ : CG → CG ⊗ CG. Moreover, the inversion in G gives an involution S : CG → CG.
The algebra CG together with the comultiplication ∆ and the involution (antipode) S is the basic example of
a Hopf algebra. Enveloping algebras of Lie algebras provide another (dual) basic example. Deforming a Lie
group inside the larger world of noncommutative geometry refers to deforming the Hopf algebras associated
to it. Hence typical examples of Hopf algebras arise as algebras of coordinates of a quantum group or, on
some dual space, as the convolution algebra or the enveloping algebra of a quantum group.

It is important to note that the notion of Hopf algebra is self-dual: roughly speaking, under suitable
circumstances the dual of a Hopf algebra is automatically a Hopf algebra again. From this point of view, the
classical examples of enveloping algebras and function algebras are dual to each other.

Hopf algebras can be deployed to give a description of internal quantum symmetries of certain models in
(low-dimensional) quantum field theory. More applications of Hopf algebras comprise e.g. the construction
of invariants in topology and knot theory [OKoLeRoTu, Tu], and appear in connection with solutions
of the quantum Yang-Baxter equation [Str]. As another example, (faithfully flat) Galois extensions by
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2 INTRODUCTION

Hopf algebras may be considered as the right generalisation of principal bundles towards the realm of
noncommutative geometry [HPu, Kas4].

Generalised (Noncommutative) Symmetries
In classical differential geometry, generalised symmetries are encoded in the notions of Lie groupoids and
pseudogroups—a fact that already emerges in the work of Lie [Lie] and Cartan [Car1, Car2]. Lie groupoids
are a joint generalisation of manifolds and Lie groups and provide a symmetry concept that has found many
applications, e.g. in the theory of foliations or for describing internal ‘classical’ symmetries (cf. e.g. [Mac,
MoeMrč1, L2]. It is very natural to ask what the generalised symmetries in noncommutative geometry are
(corresponding to the question mark in the table above). In other words, one is interested in the correct notion
of:

Noncommutative Groupoids⇔ Quantum Groupoids⇔ Hopf Algebroids. (A)

An infinitesimal consideration of Lie groupoids leads to Lie algebroids (or, in an algebraic context, to Lie-
Rinehart algebras). Hence, one could extend the picture by asking for the correct notion of

Noncommutative Lie Algebroids/Lie-Rinehart Algebras⇔ Hopf Algebroids. (A′)

The clear need for the generalisation of Hopf algebras was presumably stated for the first time in [Sw2] in
the context of classification problems of algebras. A more recent motivation for such an extension of Hopf
algebra concepts came from research on the index theory of transverse elliptic operators in [CoMos5], gen-
eralising the local approach in [CoMos2] towards non-flat transversals, globally described by an ‘extended
Hopf algebra’ HFM associated to the frame bundle of a manifold (cf. also [CoMos6]).

Other examples that require extension of the Hopf algebraic framework are certain invariants [NiTuVai]
in topology, or in Poisson geometry, where solutions of the dynamical Yang-Baxter equation that correspond
to dynamical quantum groups elude a description by Hopf algebras, cf. [EtNi, NiVai, Lu, X3, DonMu, Kar].
In low-dimensional quantum field theories non-integral values of the quantum dimensions cannot be seen as
a Hopf algebra symmetry [BSz1], emphasising the need for a noncommutative generalisation thereof.

Quantum Groupoids
In many of these approaches, problems have been handled by allowing for a not necessarily commutative ring
A replacing the commutative ground ring k of a Hopf algebra. Considering a Hopf algebra as a k-bialgebra
with an antipode, a Hopf algebroid should involve the notions of a generalised bialgebra over A as well as an
analogue of an antipode. Such a generalised bialgebra is commonly referred to as bialgebroid: it generalises
a k-bialgebra towards an object (to which we will refer as the total ring) that is both a coalgebra and an
algebra in (different) bimodule categories, determined by the ring A, to which we will refer as the base ring
from now on. With the help of a new definition of tensor products over noncommutative rings (the so-called
×A-products), bialgebroids were (presumably for the first time) introduced under the name ×A-bialgebras
in [Tak]. Ordinary k-bialgebras can be recovered if one uses the ground ring k as base ring. Bialgebroids
(under this name) were introduced in [Lu] (apparently independently of the work in [Tak]), and, motivated
by problems in Poisson geometry, as bialgebroids with anchor in [X1, X3]. These notions were shown to be
equivalent to that of a ×A-bialgebra in [BrzMi].

Viewing bialgebroids as noncommutative analogues of groupoids, parallel to the relationship of bialge-
bras to groups as mentioned above, one also may justify the name quantum groupoid for (certain) bialge-
broids. A precursor in this direction is [Mal1] for commutative base rings, and [Mal2] for an extension to
the general, noncommutative case. From this viewpoint of quantum groupoids, one can also deduce what
should be the basic ingredients of a bialgebroid. Recall first that a groupoid consists of a set of (invertible)
arrows, a set of objects, two maps called source and target mapping arrows into objects, as well as a partially
defined multiplication in the space of arrows, an inclusion of objects as zero arrows, and all these maps are
subject to certain conditions which we conceal for the moment. A bialgebroid may then be considered to
be a noncommutative analogue of the function algebra on a groupoid. More precisely, the total ring would
play the rôle of the function algebra of the ‘quantum space’ of morphisms, whereas the base ring should be
considered to be the function algebra on the ‘quantum space’ of objects. Since each arrow is provided with a
source and a target, it is natural to assume corresponding source and target maps (in the opposite direction) to
be part of the structure. The fact that composition of arrows in a groupoid is only partially defined is reflected
in a bialgebroid by defining a comultiplication that takes values in a subspace of some tensor product of the
total ring with itself, and only in this subspace a well-defined ring structure is given.
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However, the precise definition of bialgebroids is quite technical, but evidence that it is the ‘right’ one is
given in [Schau1]. Recall that a k-algebra U is a k-bialgebra if and only if the category of left U -modules is a
monoidal category such that the underlying (forgetful) functor to k-modules is monoidal: this means that the
k-tensor product of two U -modules is again a U -module. This is a fundamental feature for Tannaka duality
or reconstruction theory for quantum groups which make explicit use of their monoidal module categories
[JoStr]. In an analogous fashion, a bialgebroid U over some base ring A is characterised by the fact that the
category of its modules is again monoidal, with the (crucial) difference that only the forgetful functor from
U -modules to (A,A)-bimodules (rather than k-modules) is monoidal. Hence the tensor product over A of
two U -modules is a U -module again.

Concepts of Hopf Algebroids
The next step in defining a Hopf algebroid consists in equipping a bialgebroid with some sort of antipode. In
the preceding consideration of quantum groupoids, this would simply correspond to the inversion of arrows
of a groupoid. The main difficulty here derives from the fact that the tensor category of (A,A)-bimodules is
not symmetric, which impedes a straightforward generalisation of antipodes for Hopf algebras.

Motivated by topics in algebraic topology, Hopf algebroids were originally introduced as cogroupoid
objects in the category of commutative algebras (see e.g. [Mor, Ra, Hov]), while they also arose in algebraic
geometry in connection with stacks [FCha].

The underlying bialgebroids of the Hopf algebroids defined in [Ra] are special cases of the construction in
[Tak] since the underlying algebra structure on both the total and base ring is commutative. Nevertheless, this
is more general than a Hopf algebra since it is already equipped with characteristic features with respect to
bimodule categories as mentioned above. In [Mrč1, Mrč2], non-commutative Hopf algebroids (but still over
a commutative base ring) have been used for the study of principal fibre bundles with groupoid symmetry.
The first general definition of a Hopf algebroid, in which both the total and base rings are not necessarily
commutative, is presumably given in [Lu], although some auxiliary assumptions had to be made that in
a sense lack a geometric or intuitive interpretation. More precisely, a section of a certain projection map is
needed, so as to be able to impose axioms one would expect from a natural generalisation of the Hopf algebra
axioms. Motivated by problems in cyclic cohomology (see below), the notion of para-Hopf algebroid was
introduced in [KhR3]. Here, a para-antipode is introduced that avoids the section mentioned above, but as a
price to be paid needs axioms that do not look like a conceptually straightforward generalisation of the Hopf
algebra axioms anymore.

An alternative definition of Hopf algebroids from [B1, BSz2] steers clear of these problems by defining,
roughly speaking, two distinct bialgebroid structures, assumed to exist on a given algebra: one considers left
and right bialgebroids as introduced in [KSz] over an algebra A and its opposite, and an antipode is then
understood as a map intertwining them. In particular, this way one is able to circumvent another crucial
problem when defining antipodes: in Hopf algebra theory, such a map is an anti-coalgebra morphism, a
feature which is a priori not well-defined for bialgebroids. In the approach of [B1, BSz2] the antipode is still
an anti-coalgebra morphism, but for different coalgebras, passing from the underlying left bialgebroid to the
underlying right one. Not all information (left bialgebroid, right algebroid, antipode) is actually needed, but
this way the axioms look most natural and symmetric. For example, one could equally well express (up to
automorphisms) the right bialgebroid in terms of the left one and the antipode (provided it is invertible), but
this does not quite reduce the amount of complexity. It is this definition which we consider the best suited for
our purposes, and whenever no contrary mention is made, the term Hopf algebroid refers to this definition
throughout the subsequent chapters. For example, we will see that étale groupoids and Lie-Rinehart algebras,
and in particular their corresponding homology and cohomology operators, naturally ask for the existence
of two bialgebroid structures of different kind. We also mention here that already [Mrč1, Mrč2] is tacitly
dealing with both left and right bialgebroid structures for convolution algebras over étale groupoids, without,
however, regarding these as being part of one global structure.

Furthermore, notice that for simplicity all ‘competing’ approaches [Lu, KhR3, BSz2] assume the antipode
to be bijective (although this assumption was recently dropped in [B3], a slight reformulation of the definition
in [B1, BSz2]). This is a class large enough for most interesting examples (if the antipode exists at all), such
as quantum groups and certain quantum groupoids.

However, one should be aware of the fact that, in contrast to Hopf algebras, the notion of Hopf algebroid
is not self-dual: the construction of a Hopf algebroid structure on (a suitable definition of) a dual of a Hopf
algebroid is in general quite intricate [BSz2, KSz], and this also causes difficulties in the corresponding cyclic
theory (see below).

Let us finally mention that a weaker approach of generalising Hopf algebras towards possibly noncom-
mutative base algebras is given by the so-called ×A-Hopf algebras from [Schau2]. We shall mostly refer to
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them as left Hopf algebroids, inasmuch as the Hopf algebroids from [B1, BSz2] are special cases of them.
We are going to explain this later in more detail.

Cyclic Theory of Hopf Algebras and Hopf Algebroids
Let us now depict the situation for the associated cohomologies:

Cohomology in + Differential Noncommutative
for

+

Geometry Geometry
Spaces De Rham Cohomology Cyclic Cohomology

Symmetries Lie Algebra Cohomology Hopf-Cyclic Cohomologies
Generalised Symmetries Lie Algebroid Cohomology ?

A similar table can be formulated for the respective homology theories. Some of the entries of this table will
be explained now.

Cyclic (Co)Homology
Among the first basic constructions in noncommutative geometry was the cyclic (co)homology of algebras,
which may be seen as the correct noncommutative analogue of de Rham (co)homology. The building pieces
for cyclic homology theories can be axiomatised so as to produce the more general notion of cyclic objects.
There are two main avenues to cyclic cohomology: Connes [Co3] developed a cohomological theory in
order to interpret index theorems of noncommutative Banach algebras, via a generalisation of the Chern
character. The homological approach, introduced by Tsygan [Ts1] and Loday and Quillen [LoQ], shows that
cyclic homology can be considered a Lie analogue of algebraic K-theory.

Hopf-Cyclic Cohomology for Hopf Algebras
Cyclic cohomology for Hopf algebras, or Hopf-cyclic cohomology, is the noncommutative analogue of Lie
algebra homology (which is recovered in the case of universal enveloping algebras of Lie algebras). This was
launched in the work of Connes and Moscovici [CoMos2] on the transversal index theorem for foliations and
defined in general in [Cr3] (cf. also [CoMos3, CoMos4]).

In the transversal index theorem of Connes and Moscovici, the characteristic classes involved are a priori
cyclic cocycles on the algebra A modeling the (singular) leaf space of the foliation. Computing these cocy-
cles turned out to be tremendously complicated, even in the 1-dimensional case. The key remark for under-
standing these cyclic cocycles is that they are quite special: their expression involves only some ‘transversal
differential operators’ originating from the transversal geometry, and an ‘integration map’, determined by a
trace on the algebra A. This translates into two conceptual pieces:

(i ) The operators involved may be organised in a Hopf algebra H acting on the algebra A of functions
on the leaf space (analogous to the description of universal enveloping algebras of Lie algebras as
differential operators on the Lie group).

(ii ) By means of the action of H on A and the trace, the cyclic theory of the algebra A is reflected into a
new cyclic theory, which is associated to H (making use of the entire Hopf algebra structure).

With these conceptual pieces in mind, the special nature of the cyclic cocycles takes the following precise
form: they arise from the cyclic cohomology of the Hopf algebra, via a canonical map (the characteristic
map) associated to the action and the trace. In contrast to the cyclic cohomology of the algebra (which is
pretty wild), the cyclic cohomology of H is much easier to compute as Gel’fand-Fuchs cohomology.

Moreover, it is shown in [CoMos3, CoMos4, Cr3] that the cyclic theory makes sense for any Hopf
algebra equipped with a so-called modular pair in involution (or twisted antipode). It is useful to keep in
mind (as made clear in [Cr3]) that the resulting theory primarily makes use of the coalgebra structure of H
and of certain coinvariants.

Dual Hopf-Cyclic Homology for Hopf Algebras
While the notion of Hopf algebra is self-dual, Hopf-cyclic cohomology is not. For instance, while it gives
interesting results for universal enveloping algebras of Lie algebras (recovering Lie algebra homology), it
tends to be quite trivial for algebras of functions or group algebras (or whenever a Haar measure exists). The
dual Hopf-cyclic homology appears as a companion to Hopf-cyclic cohomology that is better behaved for
e.g. function algebras. In what sense these are dual to each other is best explained using the so-called cyclic
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duality [Co2], see also below. While the Hopf-cyclic cohomology depends primarily on the coproduct,
the unit and coinvariants, the dual theory makes use of the product, the counit and certain invariants
[Cr2, KhR2, KhR4, Tai]. It also shows that the passage from cyclic homology of algebras to the dual
Hopf-cyclic cohomology has some similarities to the interpretation of Lie algebra cohomology (for a Lie
algebra of a Lie group) as invariant de Rham cohomology of its Lie group manifold structure [CheE]. The
need for such a dual theory is furthermore evident if one studies e.g. coactions of Hopf algebras (rather than
the actions mentioned in the example of the transverse Hopf algebra above).

In general, Hopf-cyclic cohomology (and likewise dual Hopf-cyclic homology) cannot be seen as the cyclic
cohomology of some coalgebra, but only makes sense as the cohomology of some specific cocyclic modules
(which was known to describe the same theory right from the beginning [Co2], see e.g. [Lo1] for a full
account). This observation will carry over to the cyclic theory of Hopf algebroids, see below.

The Action and Coaction Picture
As already mentioned, both theories of Hopf algebra cohomology and homology are ‘parametrised’
by a Hopf algebra character (to define coinvariants) and a grouplike element (to define invariants). In
particular, this allows for cyclic cohomology (or dual homology) with coefficients, which is not possible
for the ‘standard’ cosimplicial modules associated to coassociative coalgebras. General type (co)cyclic
modules for Hopf-cyclic (co)homology with values in certain suitable modules were introduced in
[HKhRSo2, HKhRSo1]. The need for this came from quantum groups and invariants of K-theory. Here,
so-called stable anti-Yetter-Drinfel’d modules arise as generalisations of modular pairs in involution (more
precisely, a modular pair in involution is equivalent to such a module structure on the ground ring k), and
a generalisation of the characteristic map as a ‘transfer’ map allows to generally define para-(co)cyclic
structures on (co)algebras on which a Hopf algebra acts or coacts, cf. [HKhRSo2, HKhRSo1, KhR2, Kay1]
and also [JŞ] for a dual approach. Even more, a universal form suited to describe all examples of cyclic
(co)homology arising from Hopf algebras (up to cyclic duality) was given in [Kay2], based on a construction
of para-(co)cyclic objects in symmetric monoidal categories in terms of (co)monoids.

The Cyclic Theory for Hopf Algebroids
The generalisation of Hopf-cyclic cohomology to noncommutative base rings A, i.e. to Hopf algebroids,
has been less explored. For instance, the general machinery from [Kay2] does not apply to this context
(because the relevant category of modules is not symmetric, and in general is not even braided). Cyclic
cohomology of Hopf algebroids appeared for the first time in the context of the transversal ‘extended’ Hopf
algebra HFM mentioned above [CoMos5], i.e. in the case of a particular example rather than as a general
theory. In this context, certain bialgebroids (in fact, left Hopf algebroids) carrying a cocyclic structure arise
naturally. Extending this situation to general Hopf algebroids is not a totally straightforward issue. First of
all, one encounters the problem what a Hopf algebroid is. For example, the notion of Hopf algebroid in [Lu]
is apparently not well-suited to the problem. This led in [KhR3] to the definition of para-Hopf algebroids,
in which the antipode of [Lu] is replaced by a para-antipode. Its axioms are principally designed for the
cocyclic structure to be easily defined by just adapting the Hopf algebra case. However, the para-antipode
axioms remain—as we think—too complicated to comprehend their intrinsic structure and purpose, beyond
defining (co)cyclic structures; in particular, guessing an antipode (and hence the cyclic operator) in concrete
examples remains intricate.

A general theory in [BŞ] that deals with cyclic (co)homology of bialgebroids (and ×A-Hopf algebras)
appeared while this thesis was written. There, a cyclic theory (in terms of so-called (co)monads) is developed
that works in an arbitrary category and hence embraces the construction in [Kay2] for symmetric monoidal
categories (in case the (co)monads in question are induced by (co)monoids). This approach is certainly
related to our own method, but the precise relation is not completely clear to us.

Principal Results of this Thesis
The main objective of this thesis is to clarify the notion and concepts of generalised symmetries in noncom-
mutative geometry and their associated (co)homologies—that is, the question marks in the previous tables.

As for the notion of a Hopf algebroid itself, i.e. the question mark in the first table, we do not claim that
we have developed this notion ourselves. Instead, we present our own point of view on the theory and in
particular which of the ‘competing’ notions [B1, BSz2, KhR3, Lu, Schau2] appears to be best suited for our
purposes (i.e. the question mark in the second table), with some contributions along the way.
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New Examples of Hopf Algebroids
We reveal that the universal enveloping algebra of a Lie-Rinehart algebra (of a Lie algebroid) is always a
left Hopf algebroid (×A-Hopf algebra) in a canonical way (Subsection 4.2.1). However, despite of what
was originally believed, these enveloping algebras may fail to be Hopf algebroids—an aspect we completely
clarify. In particular, we show that the right connections from [Hue2] are precisely the extra datum needed:
we prove that a well-defined Hopf algebroid structure is only given in case of existence of such a connection,
provided it is flat (Theorem 4.2.4, Proposition 4.2.9, Proposition 4.2.11). The next example deals with
jet spaces associated to Lie-Rinehart algebras, which may be seen as a construction ‘dual’ to the previous
example. This time, the Hopf algebroid structure only depends on the aforementioned canonical left Hopf
algebroid structure on the universal enveloping algebra and hence always exists (Theorem 4.3.1), in contrast
to the previous example.

Another class of natural examples for Hopf algebroids is given by convolution algebras over étale
groupoids. As already mentioned, the existence of two (opposite) bialgebroid structures was already ob-
served in [Mrč2], and we only need to connect these to give a Hopf algebroid in the sense of [B1, BSz2]
(Proposition 4.4.1).

Further examples of Hopf algebroids and bialgebroids we give include function algebras over étale
groupoids (Proposition 4.5.6) and (generalised) Connes-Moscovici algebras (or rather bialgebroids), i.e.
the space of transverse differential operators on arbitrary étale groupoids, see below for further statements.
These should be seen as a step towards the construction of Hopf algebroids associated to (Lie) pseudogroups.
Because of these examples—together with the (co)homology computations, see below—we feel sufficiently
encouraged to consider Hopf algebroids (in the sense of [B1, BSz2]) as the right noncommutative analogue
of both Lie groupoids and Lie algebroids/Lie-Rinehart algebras, respectively (see the analogies (A) and (A’)
above).

Left Hopf Algebroids versus Hopf Algebroids
As a spin-off of the examples mentioned above, we give a first counterexample (see §4.2.13) that not each
×A-Hopf algebra originates in a Hopf algebroid, answering a question in [B3]. This motivates us to refer to
×A-Hopf algebras as left Hopf algebroids (which also solves a problem of pronunciation).

Bicrossed Products; Connes-Moscovici Algebras
As already outlined above, we use the bialgebroid examples arising from function algebras, Lie-Rinehart
algebras and Connes-Moscovici algebras to describe the general ‘background’ procedure of the constructions
in [CoMos5, CoMos6, MosR]. To this end, we introduce the concept of matched pairs of bialgebroids
and develop the construction of a bicrossed product bialgebroid (Theorem 3.3.5), as a generalisation of
similar considerations for bialgebras in [Maj]. This is a construction that establishes a (left or right)
bialgebroid structure on a certain tensor product of (left or right) bialgebroids over commutative bases.
The Connes-Moscovici algebras can then be shown to arise in such a way (Theorem 4.7.1, Proposition 4.7.3).

Duality and (Co)Modules
Another construction of how to produce new bialgebroids out of known ones is the construction of left
and right (Hom-)duals for left bialgebroids from [KSz]. We add to this theory a theorem that proves a
categorical equivalence between left bialgebroid comodules and modules over its duals (Theorem 3.1.11
and Proposition 3.1.9). Also, we prove an equivalence between grouplike elements of a left bialgebroid and
generalised right characters, i.e. maps that behave like a right counit on the duals (Proposition 3.1.14). This
generalises a similar statement for bialgebras and their duals (see e.g. [Sw1]).

Hopf-Cyclic Cohomology for Hopf Algebroids
Central to this thesis is our argument that Hopf-cyclic cohomology is naturally defined when using the Hopf
algebroids from [B1, BSz2]. We are going to explain how Hopf-cyclic cohomology fits into the monoidal
category of (Hopf algebroid) modules and show that it descends (more precisely: projects) in a canonical
way from the cyclic cohomology of coalgebras, or rather corings, under the minimal condition S2 = id for
the antipode (Proposition 5.2.1, Theorem 5.2.5). This is a generalisation of the consideration of coinvariants
for Hopf algebras in [Cr3].

Furthermore, we are able to introduce coefficients at the Hochschild level into the theory, and give an
interpretation of the Hopf-Hochschild cohomology groups as a derived functor (Theorem 5.3.3). The main
ingredient here is an appropriate resolution in the category of left bialgebroid comodules, the so-called cobar
complex. We can show that the cobar complex in case of a commutative Hopf algebroid can be additionally
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equipped with a cocyclic structure (Proposition 5.4.2). As a consequence, we can express the cyclic
cohomology of commutative Hopf algebroid by their Hochschild cohomology groups (Theorem 5.4.4).
These statements generalise considerations in [KhR1] from Hopf algebras to Hopf algebroids.

Dual Hopf-Cyclic Homology for Hopf Algebroids
Besides cyclic cohomology of Hopf algebroids, we will also develop a dual cyclic homology theory for Hopf
algebroids, by applying cyclic duality to the underlying cocyclic object (Theorem 6.1.1). This generalises
the corresponding theory for Hopf algebras (see above), and produces—analogously as for Hopf algebras—
interesting results even if the pertinent cyclic cohomology is trivial. This homology theory is related to
a certain category of comodules over the Hopf algebroid: the main difficulty is here that the underlying
(A,A)-bimodule category fails to be symmetric and on top of that differs from the one for cyclic cohomology.
More precisely, the tensor product used for defining cochains in cohomology originates from the monoidal
category of modules for the underlying left bialgebroid, whereas the tensor chains in homology make use of
the monoidal structure of right bialgebroid comodules. We came to the conclusion that we need to generalise
the Hopf-Galois map (see [Schau2]) and its inverse to ‘higher degrees’ (Lemma 6.1.2), to obtain the necessary
tool to translate the two structures into each other such that cyclic duality can be applied. We remark here
that this complex of problems does not appear for the symmetric category of k-modules in the Hopf algebra
case.

However, since the notion of Hopf algebroid is not self-dual (see above), a statement—dual to the co-
homology case—that dual Hopf-cyclic homology is obtained from the cyclic homology of algebras in a
canonical way (by restriction on invariants) does not seem to hold in general (see Subsection 6.1.1, although
we give such a construction in special cases, see Section 6.5 and Subsection 6.6.1).

Also in this dual theory, we are able to introduce coefficients at the Hochschild level, and give an
interpretation of the Hopf-Hochschild homology groups as derived functors (Theorem 6.2.3), using a
generalised bar complex. We can then analogously prove that the bar complex in case of a cocommmutative
Hopf algebroid can be equipped with a cyclic structure (Proposition 6.3.1), and show in Theorem 6.3.3
that the dual cyclic homology of cocommutative Hopf algebroids can be expressed by Hopf-Hochschild
homology groups, generalising again the corresponding statement in [KhR1] for Hopf algebras.

Hopf-Cyclic (Co)Homology Computations
We calculate Hopf-cyclic cohomology and dual Hopf-cyclic homology in concrete examples of Hopf al-
gebroids, such as the universal enveloping algebra of a Lie-Rinehart algebra, jet spaces and convolution
algebras over étale groupoids. The results of these computations establish a connection between Hopf-
cyclic theory and Lie-Rinehart (co)homology and groupoid homology, respectively (Theorems 5.5.7, 5.6.2,
5.7.1, 6.4.1, 6.5.1, 6.6.4). This motivates to consider Hopf-cyclic (co)homology as the ‘correct’ noncommu-
tative analogue of both Lie-Rinehart (co)homology and groupoid homology.

On top of that, we are able to construct a special method to obtain dual Hopf-cyclic homology for
convolution algebras over étale groupoids, which shows how the theory fits into the monoidal category of
(left and right bialgebroid) comodules. The dual Hopf-cyclic homology is then obtained by restricting the
(generalised) algebra cyclic module structure to invariants (Proposition 6.6.8, Theorem 6.6.10), which is
a procedure dual to the considerations of coinvariants in Sections 5.1 and 5.2, working (at least) in this
particular example.

Multiplicative Structures and Duality in (Co)Homology Theories
Finally, we prove a theorem that suggests that left Hopf algebroids are a key concept for multiplicative struc-
tures (such as cup, cap and Yoneda products) and certain duality isomorphisms in algebraic (co)homology
theories (Theorem 7.1.1). In particular, results on Hochschild (co)homology [VdB] and Lie-Rinehart
(co)homology [Hue3] are included this way.

Outline of the Thesis
Chapter One
In chapter one, we introduce preliminary concepts used throughout the thesis. We give a presentation of
basic concepts in cyclic (co)homology in Section 1.1. We then discuss in Section 1.2 the fundamental notion
of A-rings and A-corings for an arbitrary k-algebra A, which are the generalisations of k-algebras and
k-coalgebras in bimodule categories, and explain how these generalised (co)algebras give rise to (co)cyclic
modules. In Section 1.3, we proceed to define Hopf algebras and their cyclic cohomology, which are some
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of the concepts that will be generalised in the following chapters. Finally, in Sections 1.4 and 1.5 we
introduce Lie-Rinehart algebras and groupoids, as a generalisation for Lie algebras and groups. These will
give fundamental examples in the theory of Hopf algebroids.

Chapter Two
Chapter two contains the notion of a Hopf algebroid as introduced in [B1, BSz2]. First, we will consider
left bialgebroids in Section 2.1, and also the corresponding monoidal categories of bialgebroid modules and
bialgebroids comodules in Section 2.3. We proceed in Section 2.4 with discussing how these comodules
give rise to derived functors, which will be important for the computations of cyclic (co)homology of
chapters five and six. Section 2.2 deals with a weaker version of Hopf algebroids, the so-called left Hopf
algebroids (×A-Hopf algebras) from [Schau2]. These turn out to be a key concept for our considerations in
chapter seven, and are also important for the construction of antipodes on jet spaces in chapter four. In the
framework of right bialgebroids in Section 2.5, we also introduce in §2.5.1 the notion of (right) connections,
as a generalisation to the Lie-Rinehart connections in [Hue2, Hue3], which will appear in examples in
chapters three and four. Then, Hopf algebroids are discussed in the final Section 2.6, and we conclude the
chapter by some comments on alternative notions of Hopf algebroids.

Chapter Three
In chapter three, we give several constructions of how to produce new bialgebroids out of known ones.
Section 3.1 discusses the duals for left bialgebroids [KSz], and we prove categorical equivalences between
modules and comodules and study the interplay between grouplike elements and (generalised) characters.

Section 3.2 gives a construction how to push forward bialgebroids in case a certain algebra morphism
is given. We use the resulting construction to ‘localise’ certain Hopf algebroids, so as to give an associated
Hopf algebra. The chapter continues with our construction of bicrossed product bialgebroids for matched
pairs of bialgebroids in Section 3.3. The basic ingredients here are the generalised notions of module rings
and comodule corings, as generalised notions of the action and coaction picture for bialgebras, i.e. module
algebras and comodule coalgebras.

Chapter Four
Chapter four deals with examples of Hopf algebroids. We first indicate in Section 4.1 how enveloping
algebras and Hopf algebras (with possibly twisted antipode) fit into the picture. We then devote our attention
in Section 4.2 to construct the canonical left Hopf algebroid structure for the universal enveloping algebra
V L of a Lie-Rinehart algebra (A,L), and to the relation of (certain) left bialgebroids to their primitive
elements. To obtain an antipode on V L, we need to recall Lie-Rinehart connections [Hue2, Hue3], and
can then describe the full Hopf algebroid structure on V L. In Section 4.3 we construct the Hopf algebroid
structure on a certain dual of V L, the so-called jet spaces. Sections 4.4 and 4.5 indicate how étale groupoids
give rise to Hopf algebroid structures in two different ways, where the one in Section 4.5 serves as a basic
ingredient in Connes-Moscovici algebras (or rather bialgebroids), which we describe in Section 4.6. This
very general construction is shown to be essentially a bicrossed product bialgebroid in Section 4.7.

Chapter Five
In chapter five we discuss Hopf-cyclic cohomology for Hopf algebroids. A fundamental step here is to
define coinvariants in Section 5.1, which lead to necessary and sufficient conditions for a well-defined
cocyclic module structure to exist on any Hopf algebroid, as we explain in Section 5.2. Also, we introduce
coefficients into the Hochschild theory and then construct Hopf-Hochschild cohomology as a derived
functor in Section 5.3. The following Section 5.4 specialises to the case of Hopf-cyclic cohomology for
commutative Hopf algebroids. In the following three Example Sections 5.5–5.7, we discuss and compute
Hopf-cyclic cohomology for Lie-Rinehart algebras, jet spaces, and convolution algebras.

Chapter Six
Chapter six deals with the dual Hopf-cyclic homology. In Section 6.1, we discuss and construct the corre-
sponding chain complex as the cyclic dual of the cochain complex of chapter five, whereas in Subsection
6.1.1 we discuss a few problems attached to invariants. Parallel to chapter five, we introduce coefficients
at the Hochschild level and consequently give an interpretation of dual Hopf-Hochschild homology as a de-
rived functor in Section 6.2, whereas in Section 6.3 we discuss and compute dual Hopf-cyclic homology for
cocommutative Hopf algebroids. Again, in the Example Section 6.4, we compute and discuss in detail the
cases of Lie-Rinehart algebras, jet spaces and convolution algebras.

Parts of chapters five and six are versions of parts of our joint work with Hessel Posthuma [KowPo].
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Chapter Seven
Finally, chapter seven is a version of our joint work with Ulrich Krähmer [KowKr]. It is mainly devoted
to the proof of the central Theorem 7.1.1. Section 7.2 is concerned with the construction of cup and cap
products, and with a certain functor that combines left and right modules over left Hopf algebroids. Section
7.3 explains the duality and concludes the proof of Theorem 7.1.1.

Appendix
In the Appendix we gather some standard algebraic facts used throughout the text, basically to fix some of
our notation and terminology.

Some conventions
Throughout this work, ‘ring’ means ‘unital associative ring’, and we fix a commutative ground ring k. All
other algebras, coalgebras, modules and comodules will have the underlying structure of an object of the
symmetric monoidal category k-Mod of left k-modules. In general, for any ring U the spaces U -Mod and
Uop-Mod (or Mod-U ) denote the category of left U -modules and right U -modules, respectively, in the
standard sense. Also, we fix a (not necessarily commutative) k-algebra A, i.e. a ring with a ring homomor-
phism η : k → Z(A) into its centre. We denote by Aop the opposite and by Ae := A⊗k Aop the enveloping
algebra of A. Thus left Ae-modules are (A,A)-bimodules with symmetric action of k. For U, V any rings,
we will write a (U, V )-bimodule M as UMV if need be. To indicate with respect to which structure a Hom-
functor is defined, we shall write Hom(U,−)(M,N) for Hom(UM, UN ) and analogously Hom(−,V )(M,N)
for Hom(MV , NV ); also Hom(U,V )(M,N) for bimodules appears, and the same kind of notation applies for
the sake of uniformity when both M , N or only one of them carries a one-sided module structure only.





Chapter 1

Preliminaries

1.1 Cyclic Theory
One of the basic constructions in noncommutative geometry is the cyclic (co)homology of algebras, which
arises as the correct de Rham (co)homology in the noncommutative context. Cyclic homology theories can
be axiomatised, giving rise to the more general notion of cyclic objects. In this chapter we recall some of
the basic concepts and definitions regarding cyclic objects and their associated cyclic homologies. The main
references for much of the material presented here are [FeTs, LoQ, Co3, Lo1, W]. We start by discussing
simplicial objects, a notion which comes from algebraic topology and which determines the ‘underlying’
structure of a cyclic object.

1.1.1 The Simplicial Category Let [k] be the ordered set of k+1 points {0 < 1 < . . . < k}. A map is called
nondecreasing if f(i) ≥ f(j) whenever i > j. The simplicial category ∆ has as objects the sets [k] for k ≥ 0
and as morphisms the nondecreasing maps. Of particular interest are the face morphisms δi : [k − 1]→ [k],
the injection which misses i, and the degeneracy morphism σj : [k+ 1]→ [k], the surjection that sends both
j and j + 1 to j. We denote the set of morphisms between [k] and [m] by hom∆([k], [m]). In particular, one
can show [Lo1, Thm. B.2] that any morphism φ : [n] → [m] can be uniquely written as a composition of
faces and degeneracies, i.e.,

φ = δi1 . . . δirσj1 . . . σjs ,

such that i1 ≤ ir and j1 < . . . js withm = n−s+r, and φ = id if the index set is empty. As a corollary one
obtains a presentation of ∆ with generators δi, σj for 0 ≤ i, j ≤ n (one for each n) subject to the relations

δj δi = δi δj−1 if i < j,
σj σi = σi σj+1 if i ≤ j,

σj δi =

 δi σj−1

id[n]

δi−1 σj

if i < j,
if i = j, i = j + 1,
if i > j + 1.

(1.1.1)

The opposite category of ∆ is denoted by ∆op. Observe that the isomorphisms in ∆ are identities on [k]
since the identity is the only nondecreasing map that is bijective.

1.1.2 (Co)Simplicial Objects Let M be an arbitrary category. A simplicial object (X•, d•, s•) in M is a
functor X• : ∆op →M . Write Xn := X([n]) and di = δ∗i , sj = σ∗j for the images of the morphisms δi and
σj under the functor X . By means of the presentation of ∆ mentioned above, a simplicial object is therefore
given by a set of objects {Xn}n≥0 in M as well as by two collections of morphisms di : Xn → Xn−1 for
0 ≤ i ≤ n and sj : Xn → Xn+1 for 0 ≤ j ≤ n for all n ≥ 0, satisfying

di dj = dj−1 di if i < j,
si sj = sj+1 si if i ≤ j,

di sj =

 sj−1 di
id
sj di−1

if i < j,
if i = j, i = j + 1,
if i > j + 1.

(1.1.2)

A cosimplicial object (Y •, δ•, σ•) in M is a functor Y • : ∆→M ; this time write Y n := Y ([n]) for the
images of the objects in the simplicial category under the functor Y and δi := δi, σj := σj for the images

11
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of the morphisms δi, σj . They fulfill relations identical to those in (1.1.1). A presimplicial or semisimplicial
object is similarly as above, if one ignores the degeneracies.

The main example for M we will use is the category of modules (over some ring given by the context);
correspondingly, we speak of simplicial modules. Define a morphism f : X → X ′ of simplicial modules
to be a family of linear maps fn : Xn → X ′n of modules commuting with both faces fn−1di = difn and
degeneracies fn+1si = disn for all i and n.

1.1.3 The Cyclic Category Next, we recall the definition of Connes’ cyclic category Λ from [Co2] and of
its generalisations ∆Cr from [FeTs], defined for all integers 1 ≤ r ≤ ∞; when r = 1, one has ∆C1 =
Λ. Although these cyclic categories can be realised explicitly, for our purposes it suffices to recall their
descriptions in terms of generators and relations. Roughly speaking, ∆Cr is a combination of the simplicial
category ∆ and the cyclic groups. More precisely, ∆Cr has the same objects as ∆, but the morphisms are
generated by the morphisms δi, σj of ∆ and new morphisms τn : [n] → [n], the cyclic operators, one for
each integer n ≥ 0. These operators serve to express elements in the automorphism groups Aut∆Cr ([n]) '
Z/(n + 1)rZ for the case r < ∞, and Aut∆C∞([n]) ' Z in case of r = ∞. The relations they satisfy are
the simplicial relations (1.1.1) together with new relations involving the cyclic operator:

τnδi =

{
δi−1τn−1 if 1 ≤ i ≤ n
δn if i = 0,

τnσi =

{
σi−1τn+1 if 1 ≤ i ≤ n
σnτ

2
n+1 if i = 0.

τ (n+1)r
n = id.

In case r =∞, the last equation is void.

1.1.4 Cyclic Objects Let M be a category and 1 ≤ r ≤ ∞. An r-cyclic object [FeTs] in M is a functor
X : ∆Cop

r →M , that is, a simplicial object (X•, d•, s•) together with morphisms tn : Xn → Xn which are
the images τ∗n of τn under X subject to

ditn =

{
tn−1di−1 if 1 ≤ i ≤ n
dn if i = 0,

(1.1.3)

sitn =

{
tn+1si−1 if 1 ≤ i ≤ n
t2n+1sn if i = 0,

(1.1.4)

tr(n+1)
n = id. (1.1.5)

Again, in case r = ∞ the last equation (1.1.5) is replaced by the empty relation. The resulting ∞-objects
are also called para-cyclic objects. When r = 1, we recover Connes’ cyclic category ∆C1, also denoted ∆C
or Λ and we speak of cyclic objects. Composition with the obvious functor ∆op → ∆Cop

r reproduces the
underlying simplicial object.

Throughout this thesis, we will be mainly interested in cyclic objects in the category of modules over a
(not necessarily commutative) ring. In this case we speak of cyclic modules (the ring being clear from the
context). A morphism of cyclic modules f : X → X̃ is a morphism of simplicial modules that commutes
with the cyclic structure, i.e., fntn = tnfn for all n. One can also define a cyclic module with signs [Lo1,
Def. 2.5.1], with the same set of axioms but with the factor sign tn = (−1)n appearing in front of tn in
(1.1.3) and (1.1.4).

1.1.5 Examples (i ) The standard example (see e.g. [FeTs, Nis]) is the cyclic module associated to a (uni-
tal, associative) k-algebra U : set U \ := {U⊗kn+1}n≥0 with face, degeneracy and cyclic operators
given by

di(u0 ⊗k · · · ⊗k un) =

{
u0 ⊗k · · · ⊗k uiui+1 ⊗k · · · ⊗k un
unu0 ⊗k u1 ⊗k · · · ⊗k un−1

if 0 ≤ i ≤ n− 1,
if i = n,

si(u0 ⊗k · · · ⊗k un) = u0 ⊗k · · · ⊗k ui ⊗k 1⊗k ui+1 ⊗k · · · ⊗k un if 0 ≤ i ≤ n,
tn(u0 ⊗k · · · ⊗k un) = un ⊗k u0 ⊗k u1 ⊗k · · · ⊗k un−1.

(ii ) Smooth Functions on a Compact Manifold. Variations of the previous example arise when working
in various categories of topological algebras and replacing the tensor product by topological (com-
pleted) versions of the algebraic one. The central example is that of smooth functions on a compact
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manifold M . In this case it is interesting to consider a completed tensor product ⊗̂π (see e.g. [Gro])
such that C∞(M)⊗̂πC∞(M ′) ' C∞((M ×M ′)) for any two compact manifolds M,M ′. For any
compact manifold one therefore has an associated cyclic module C∞(M)

\
:= {C∞(M×(n+1))}n≥0,

i.e. C∞(M×(n+1)) in degree n. Considering that C∞(M) is commutative with the pointwise product,
the above face, degeneracy and cyclic operators become, for any f ∈ C∞(M),

dif(x0, . . . , xn−1) =

{
f(x0, . . . , xi, xi, . . . , xn−1)
f(x0, x1, . . . , xn, x0)

if 0 ≤ i ≤ n− 2,
if i = n− 1,

sif(x0, . . . , xn+1) = f(x0, x1, . . . , x̂i+1, . . . , xn, xn+1) if 0 ≤ i ≤ n,
tnf(x0, . . . , xn) = f(x1, . . . , xn, x0).

As long as they fulfill the mentioned property of C∞(M)
⊗̂n ' C∞(M×n), different tensor prod-

ucts ⊗̂ (e.g. projective or inductive ones [Gro]) also lead to meaningful results in calculating cyclic
homology, as will be seen in a moment in Example 1.1.10(iii). Further possibilities are given by defin-
ing tensor products C∞(M)⊗n := germs∆C

∞(M×n) or C∞(M)⊗n := jets∆C
∞(M×n) where

∆ : M →M×n, x 7→ (x, . . . , x) is the diagonal, confer [Ts2, Te] for details.

(iii ) A generalisation of the first example is associated to an algebra U endowed with an endomorphism
φ ∈ Endk U : the resulting cyclic module U \,φ := {U⊗kn+1}n≥0 has as face, degeneracy and cyclic
operators

di(u0 ⊗k · · · ⊗k un) =

{
u0 ⊗k · · · ⊗k uiui+1 ⊗k · · · ⊗k un
φ(un)u0 ⊗k u1 ⊗k · · · ⊗k un−1

if 0 ≤ i ≤ n− 1,
if i = n,

si(u0 ⊗k · · · ⊗k un) = u0 ⊗k · · · ⊗k ui ⊗k 1⊗k ui+1 ⊗k · · · ⊗k un if 0 ≤ i ≤ n,
tn(u0 ⊗k · · · ⊗k un) = φ(un)⊗k u0 ⊗k u1 ⊗k · · · ⊗k un−1.

Then U \,φ is r-cyclic if the order of φ is less than infinity and cyclic if and only if φ = id. In this case
we recover U \ from (i).

(iv ) In §1.2.4 we will discuss another generalisation of Example (i) (and simultaneously of (iii)) which
arises when the commutative ground ring k is replaced by a not necessarily commutative algebra.

1.1.6 Hochschild and Cyclic Homology for Cyclic Objects Next, we recall the definition of cyclic homolo-
gies associated to cyclic objects in an abelian category. Hence, let M be an abelian category and let X be
an r-cyclic object in M . There are several equivalent ways to define the cyclic homology of X , all with
their own advantages. We dedicate our attention first to Tsygan’s double complex, which is one of the most
complicated methods but has the best conceptual properties. Firstly, consider the operators

b′n : Xn → Xn−1, b
′
n :=

n−1∑
j=0

(−1)jdj ,

bn : Xn → Xn−1, bn := b′n + (−1)ndn.

(1.1.6)

Note that b and b′ differ by the last face operator only. Secondly, set t̃n := (−1)ntn+1 for r 6=∞ and define
the norm operator

N :=

(n+1)r−1∑
j=0

t̃jn.

The cyclic homology groups HC•(X) may be defined [FeTs] as the homology of the associated cyclic
bicomplex CC•,•X (Tsygan’s double complex, see the figure below). It has entries CCp,qX := Xq for
p, q ≥ 0, independently of p. In this complex, the columns are periodic of order 2; for p even, the pth column
is the Hochschild complex (C•X, b) (where CnX = Xn); in case p is odd, the respective column is the
acyclic complex Cacyc

• X := (C•X, b
′) (where CnX = Xn as before). The qth row is the periodic complex

associated to the action of the cyclic group Zq+1 on Xq in which the generator acts by multiplying with t̃q;
thus, the differential Xq → Xq is multiplication by 1− t̃q when p is odd and by N otherwise. Hence, in our
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sign convention, the bicomplex reads

b
��

b
′

��
b

��
b
′

��
X2

b

��

X2

b
′

��

1−too X2

b

��

Noo X2

b
′

��

1−too . . .Noo

CC•,•X : X1

b

��

X1

b
′

��

1+too X1

b

��

Noo X1

b
′

��

1+too . . .Noo

X0 X0
1−too X0

Noo X0
1−too . . . .Noo

Hochschild homology HH•(X) of X is now the homology of the zeroth column and its cyclic homology is
defined as

HC•(X) := H•(TotCC•,•X),

where we recall that the total complex is defined as

(TotCC•,•X)n :=
⊕

p+q=n
CCp,qX.

Standard homological algebra leads to the fact that short exact sequences 0 → X → X ′ → X ′′ → 0
of cyclic objects give rise to short exact sequences of both Hochschild complexes and Tsygan bicomplexes,
which, in turn, give rise to long exact sequences in homology,

. . . −→ HHn(X) −→ HHn(X ′) −→ HHn(X ′′) −→ HHn+1(X) −→ . . .

. . . −→ HCn(X) −→ HCn(X ′) −→ HCn(X ′′) −→ HCn−1(X) −→ . . . .

1.1.7 The SBI-sequence Hochschild and cyclic homology are organised by three basic homomorphisms
I, S,B into a long exact sequence

. . . −→ HCn+1(X)
S−→ HCn−1(X)

B−→ HHn(X)
I−→ HCn(X)

S−→ . . . ,

also called Connes’ exact sequence, which is often (and often implicitly) used for concrete calculations. If X
is a cyclic object in an abelian category, inclusion of the Hochschild complexC•X ↪→ CC•,•X into Tsygan’s
double complex as zeroth column yields a map I : HHn(X)→ HCn(X). Considering only the zeroth and
first column in CC•,•X leads to a double subcomplex denoted CC{2}•,• X; the inclusion C•X ↪→ CC{2}•,• X
induces an isomorphism

HHn(X) ' Hn(Tot (CC{2}•,• X))

since the quotient is the first column that is acyclic. Also, there is an isomorphism

CC•,•X[−2] := CC•,•X/CC
{2}
•,• X ' CC•,•X

of the quotient complex consisting of columns p ≥ 2 with the original double complex itself, but shifted two
columns to the right. The shifting operator S : HCn(X)→ HCn−2(X) is therefore induced by the quotient
map Tot (CC•,•X)→ Tot (CC•,•X[−2]). The resulting short exact sequence

0 −→ CC{2}•,• X
I−→ CC•,•X

S−→ CC•,•X[−2]→ 0

of double complexes yields a boundary mapB : HCn−1(X)→ HHn(X) which fits into Connes’ long exact
sequence above. The SBI-sequence is an efficient tool to compute cyclic homology once the Hochschild
homology is known. In particular, it follows by induction as well as the 5-Lemma that every morphism
of cyclic objects that induces an isomorphism on Hochschild homology induces an isomorphism on cyclic
homology (note that HH0(X) = HC0(X)).

1.1.8 Periodic Cyclic Homology We now come to the most important version of cyclic homology, the pe-
riodic one. This the correct noncommutative analogue to the classical de Rham cohomology (see Examples
1.1.10(ii)–(iii) for illustrating results). The rôle of Hochschild and cyclic homology is merely that of inter-
mediate steps towards the final, periodic theory; this philosophy also applies when doing computations.
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As above, let X be an r-cyclic object in an abelian category M , where we assume that r 6= ∞. Due to
its obvious periodicity, Tsygan’s double complex can be extended to the left to form the upper half plane
complex CP•,•X . The periodic cyclic homology, denoted HP•(X), is the homology of the ‘product’ total
complex

HP•(X) = H•(Tot
∏

(CP•,•X)).

Here, by product total complex Tot
∏

we mean the total complex formed by using products (thought of as
‘infinite sums’) rather than sums. Recall [Lo1, 5.1.2] that the homology of the standard ‘sum’ total complex
does not lead to meaningful results (observe that in contrast to CC•,•X there is now an infinite number of
non-zero modules CCp,q with p + q = n). It is visually evident from the periodicity of CP•,•X that each
of the maps S : HPn+2(X) → HPn(X) is an isomorphism; hence its name: the modules HPn(X) are
periodic of order 2.

1.1.9 Mixed Complexes There is another (simpler) double complex computing the cyclic homologies—
Connes’ double complex—which we now recall. This double complex arises as a simplification of Tsygan’s
double complex due to the fact that some of its columns are contractible: exploiting the fact that a cyclic ob-
ject X has degeneracies, one can eliminate the acyclic columns applying the ‘killing contractible complexes
lemma’ [Lo1, Lem. 2.1.6] to obtain a double complex BC•,•X , called Connes’ double complex. To this end,
introduce the ‘extra’ degeneracy

s−1 := tn+1sn : Xn → Xn+1, (1.1.7)

which can be shown to be a chain contraction of Cacyc
• (X) (one may equally consider sn+1 := t−1

n+1s0).
Also, define

B := (1− t̃n)s−1N : Xn −→ Xn+1,

which is commonly called Connes’ coboundary map or Connes’ cyclic operator (notice, however, that it
already appears in the early work of Rinehart [Rin]). One can easily see that B2 = 0, Bb+ bB = 0, besides
b2 = 0 for the Hochschild boundary. Define BC•,•X by BCp,q(X) := Xq−p for 0 ≤ p ≤ q and zero
otherwise, and organise it into the following double complex:

BC•,•X :

X3 X2 X1 X0

X2 X1 X0

X1 X0

X0.

?

b

?

b

?

b

?

b

?

b

?

b

�B

?

b

�B �B

?

b

?

b

�B �B

?

b

�B

Again, one obtains an exact sequence of complexes

0 −→ C•X −→ TotBC•,•X
S−→ TotBC•,•X[2] −→ 0, (1.1.8)

from which one may derive the SBI-sequence again, showing basically that the two operators which we
both denoted by B actually coincide.

The homology of the zeroth column in BC•,•X is still the Hochschild homology HH•(X) =
H•(C•X, b), whereas the morphism of complexes TotCC•,•X ← TotBC•,•X is a quasi-isomorphism.
Hence

HC•(X) = H•(TotCC•,•X)
'←− H•(TotBC•,•X) (1.1.9)

is an isomorphism if X is a cyclic object, so that BC•,•X can be taken to compute cyclic homology. If X
happens to be a cyclic module for some ring k, each column can be replaced by its normalised version. That
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is, put X̄i := Xi/k = Coker (k → Xi) in place of Xi which leads to a new complex denoted B̄C•,•X with
horizontal differential of the form B := s−1N . The main issue here is that one can replace BC•,•X in both
(1.1.8) and (1.1.9) by BC•,•X , hence it computes the same homology.

In a general framework, such an object that is both a chain and a cochain complex is called a mixed
complex [Kas1]: this is a graded object {Xn}n≥0 with two families of operators b : Xn → Xn−1 and
B : Xn → Xn+1 subject to b2 = B2 = Bb + bB = 0. Hence each cyclic object gives rise to a mixed
complex (but not necessarily the other way round). In any case, the isomorphism in (1.1.9) may serve as a
definition of Hochschild and cyclic homologies of a mixed complex.

1.1.10 Examples Here we will give some typical ‘classical’ illustrations which will possibly be helpful later
on.

(i ) The cyclic homology of a k-algebra U (as originally defined in [Co3]) is the cyclic homology of the
cyclic object U \ of Example 1.1.5(i). In particular, HC0(U) = U/[U,U ].

(ii ) The Algebraic HKR-Theorem [HoKoRos, LoQ] If U is a unital commutative algebra over a commuta-
tive ring k containing Q, its U -module of Kähler differentials Ω1

U |k is generated over U by symbols
du, u ∈ U subject to the conditions

d(au) = a du, d(u+ v) = du+ dv, d(uv) = u dv + v du

for all u, v ∈ U , a ∈ k. Denote by Ω•U |k := ∧•UΩ1
U |k the U -exterior algebra of Kähler differentials

where Ω0
U |k := U and write typical elements in ΩnU |k as u0 du1 · · · dun := u0 du1 ∧ · · · ∧ dun. The

de Rham differential d is the family of maps

d : ΩnU |k → Ωn+1
U |k , d(u0 du1 · · · dun) = du0 du1 · · · dun,

for ui ∈ U . It fulfills d2 = 0, so that one may define the de Rham cohomology of U as H•dR(U) :=
H•(ΩU |k).

One now has two natural maps, the antisymmetrisation map and its section, respectively,

πn : HHn(U)→ ΩnU |k, (u0, u1, . . . , un) 7→ u0 du1 · · · dun,

εn : ΩnU |k → HHn(U), u0 du1 · · · dun 7→
∑
σ∈Sn

signσ(u0, uσ−1(1), . . . , uσ−1(n)),

and πn εn = n!id holds. In particular, both maps commute with the map B∗ : HHn(U) →
HHn+1(U) induced by B, that is B∗ εn = εn+1 d and (n + 1)d πn = πn+1B∗; hence B is com-
patible with d. Under the assumption that k contains Q, the map 1

n!πn induces a morphism of mixed
complexes

(C•U, b,B)→ (Ω•U |k, 0, d),

and if U is smooth (confer [Lo1, App. E] for the precise definition), one can prove

1.1.11 Theorem If U is a smooth algebra over k, the antisymmetrisation map ε : Ω•U |k → HH•(U)
is an isomorphism of graded algebras . As a consequence, if k contains Q, one additionally has a
canonical isomorphism

HCn(U) ' ΩnU |k/dΩn−1
U |k ⊕H

n−2
dR (U)⊕Hn−4

dR (U)⊕ . . . ,

the last summand being H0
dR(U) or H1

dR(U) depending on n even or odd, respectively. Finally,

HPn(U) '
∏
m∈Z

Hn+2m
dR (U).

Since HC•(U) is defined even for noncommutative U , one may think of (periodic) cyclic homology
as a generalisation of de Rham cohomology to a noncommutative setting.
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(iii ) Connes’ Theorem [Co3] A differential geometric version of the preceding example is as follows. The
algebraic theoryHC•(U) for a general algebra U is usually hard to calculate; in applications, however,
U is often determined more specifically, for example it is given as a topological locally convex algebra.
In such a situation the algebraic tensor product in Example 1.1.5(i) has to be replaced by one that does
not ignore the topology since already in the case C∞c (M) of compactly supported smooth functions
on a manifold M the algebraic cyclic homology is not known. As already discussed in Example
1.1.5(ii), one has different possibilities for choosing such a tensor product ⊗̂, as long as the property
C∞(M)

⊗̂n ' C∞(M×n) is fulfilled. In either case, for C•(C∞(M)) = C∞(M)
⊗•+1 using any of

the tensor products with the desired property, the map

µ : f0 ⊗ f1 ⊗ · · · ⊗ fn 7→
1

n!
f0df1 · · · dfn

defines a quasi-isomorphism of complexes

(C•(C∞(M)), b) 7→ (Ω•M, 0)

as well as a map of mixed complexes

(C•(C∞(M)), b, B) 7→ (Ω•M, 0, ddR).

Note that the fact that µ is a map of mixed complexes indicates that, up to a factor, B seems to be the
correct replacement of ddR to a noncommutative setting. In particular, if the manifold M is compact
one has the isomorphisms [Co3]

HH•(C∞(M)) ' Ω•M and hence HP•(C∞(M)) ' Heven
dR (M)⊕Hodd

dR (M).

(iv ) Almost Symmetric Algebras Let (U, ·) be a non-negatively filtered algebra over a commutative ring k,
i.e., there is a sequence of k-modules {FiU}i≥0 such that

F0U ⊂ F1U ⊂ F2U ⊂ . . . ,
∪iFiU = U, ∩iFiU = 0, (FiU) · (FjU) ⊂ Fi+jU for i, j ≥ 0.

Now U is called an almost symmetric algebra if its associated graded algebra grU = ⊕igri U , where
gri U = FiU/Fi−1U , is isomorphic to the symmetric algebra SV where V := F1U/F0U ; this requires
in particular F0U = k and grU to be commutative. Moreover, grU becomes a Poisson algebra, that
is, a (possibly unital and commutative) associative algebra together with a Lie bracket that satisfies a
Leibniz derivation rule in each of its arguments. Now consider the canonical map pi : FiU → grU ,
take two elements f ∈ gri U and g ∈ grj U , and choose u ∈ FiU , u′ ∈ FjU such that f = pi(u) and
g = pj(u

′). Since grU is commutative, the commutator [u, u′] = uu′ − u′u lies in Fi+j−1U and one
verifies that {f, g} := pi+j−1([u, u′]) only depends on f, g and indeed defines a Poisson structure on
grU . Finally, the symmetric algebra SV inherits a Poisson structure by pullback and the degree −1
differential

δ(v0 dv1 · · · dvn) :=

n∑
i=1

(−1)i{v0, v1}dv1 · · · d̂vi · · · dvn

+
∑

1≤i<j<n

(−1)i+jv0d{vi, vj}dv1 · · · d̂vi · · · ˆdvj · · · dvn

on Ω•SV |k anti-commutes with the degree +1 de Rham differential d. Hence this construction defines
a mixed complex (Ω•SV |k, δ, d). Then one can prove [Kas2, Lo1]:

1.1.12 Theorem If k contains Q and U is almost symmetric, one obtains isomorphisms

HH•(U)
'−→ H•(Ω

•
SV |k, δ),

HC•(U)
'−→ HC•(Ω

•
SV |k, δ, d),

HP•(U)
'−→ HP•(Ω

•
SV |k, δ, d).
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In particular, one can apply this theorem to the universal enveloping algebra UL of a (free as a k-
module) Lie algebra L, reproducing e.g. the classical result HH•(UL) ' H•(L,UL

ad) of [CarE,
Chapt. XIII, Thm. 7.1], or to a similar construction in the framework of Lie-Rinehart algebras (pro-
vided one is interested in their algebra homology). We will, however, take a different route to the same
result, see Theorem 6.4.1(i).

1.1.13 Cocyclic Objects As before, let N be an abelian category and pick 1 ≤ r ≤ ∞. An r-cocyclic
object in N is a functor Y : ∆Cr → N , that is, a cosimplicial object (Y •, δ•, σ•) together with a morphism
τn : Y n → Y n, subject to

τnδi =

{
δi−1τi−1

δn

if 1 ≤ i ≤ n,
if i = 0,

τnσi =

{
σi−1τn+1

σnτ
2
n+1

if 1 ≤ i ≤ n,
if i = 0,

τ
r(n+1)
n = id.

(1.1.10)

Again, in case r = ∞ the last equation is replaced by the empty relation. In such a case the resulting ∞-
cocyclic objects are also called para-cocyclic objects; if r = 1, we simply speak of cocyclic objects. As
before, we will be often dealing with the case in which N is the category of modules over a ring, that is,
we will be considering cocyclic modules. On the other hand, natural objects to deal with in this context are
actually comodules with respect to some coalgebra and some ring (hence still some modules over some ring,
see §1.2.2 for more details). In those cases we shall speak of cocyclic comodules.

1.1.14 Example Dually to Example 1.2.4(i), one can assign to each k-coalgebra C and ψ ∈ Endk C a
cocyclic module Cψ\ ; cf. [FeTs]. We do not give the details here, but rather refer to the generalised version
in §1.2.5, where k is replaced by an arbitrary k-algebra.

1.1.15 Hochschild and Cyclic Cohomology for Cocyclic Objects For a cocyclic object Y •, define

β′n : Y n −→ Y n+1, β′n :=

n∑
j=0

(−1)jδj ,

βn : Y n −→ Y n+1, βn := β′n + (−1)n+1δn+1,

(1.1.11)

along with the extra codegeneracy σ−1 := σnτn+1 which serves here as contracting homotopy (one could
also take σn+1 = σ0τ

−1
n+1), and λn := (−1)nτn for r 6=∞. Moreover, set

N :=

(n+1)r−1∑
j=0

λjn, B := Nσ−1(1− λn+1).

Then the resulting mixed complex (Y •, β, B) defines the Hochschild and cyclic cohomologies HH•(Y ) and
HC•(Y ), respectively; again, if r = ∞, set HH•(Y ) = H•(Y, β). As before, one could alternatively
consider a ‘cocyclic’ bicomplex, but we refrain from spelling out the details here. See, however, (5.2.14) for
an example of a reduced (normalised) bicomplex where Y • is in the category of cocyclic modules.

1.1.16 Tor and Ext Interpretation of Cyclic (Co)Homology One can apply methods of homological algebra
in the abelian category of (co)simplicial k-modules. If X is a simplicial and Y is a cosimplicial k-module,
the groups Tor∆

op

n (Y,X) are well-defined and in fact are k-modules. The trivial simplicial or cosimplicial
module k is the functor [n] 7→ k for all n ≥ 0 with (co)faces and (co)degeneracies given by the identity; one
can show that Tor∆

op

n (k,X) ' HHn(X) and Extn∆op(Y, k) ' HHn(Y ), cf. e.g. [Lo1].
The interpretation of cyclic homology and cohomology as Tor and Ext functors, respectively, consists

essentially in replacing the simplicial category ∆ by ∆C. A theorem in [Co2] (see also [Lo1, 6.2.8] for a
proof) establishes canonical isomorphisms

Tor∆
opC

n (k,X) ' HCn(X) Extn∆opC(Y, k) ' HCn(Y )

forX,Y cyclic and cocyclic, respectively. The proof works essentially in an analogous manner as the one for
Hochschild homology and simplicial modules; however, instead of constructing a particular resolution for
the trivial cyclic module k\ as in the case of simplicial modules, one rather constructs a certain biresolution;
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see [Lo1] for details. In case of Example 1.2.4(i), one obtains in a canonical way for a unital associative
k-algebra U

Tor∆
opC

n (k, U \) ' HCn(U), Extn∆opC(U \, k) = HCn(U).

1.1.17 The Cyclic Dual A remarkable property of the cyclic category ∆Cr is the existence of a natural
isomorphism to its opposite category ∆opCr, so to say a self-duality. For the sake of simplicity we give the
explicit construction for r = 1; confer [FeTs] for the more general case. Roughly speaking, the corresponding
duality functor ∆C → ∆opC is the identity on objects, exchanges (co)faces and (co)degeneracies and sends
the (co)cyclic operator to its inverse. More precisely, if X = (X•, d•, s•, t•) is a para-cyclic object with tn
assumed to be invertible for all n ≥ 0, define its cyclic dual X̂ := (X̂•, δ•, σ•, τ•) where X̂n := Xn in
degree n and

δi := si−1 : X̂n → X̂n+1, 1 ≤ i ≤ n,
δ0 := tnsn : X̂n → X̂n+1,

σi := di : X̂n → X̂n−1, 0 ≤ i ≤ n− 1,

τn := t−1
n : X̂n → X̂n.

Also, if Y = (Y •, δ•, σ•, τ•) is a para-cocyclic object with invertible operator τ , its cyclic dual is defined as
Y̌ := (Y̌•, d•, s•, t•), where Y̌n := Y n in degree n and

di := σi−1 : Y̌n → Y̌n−1, 1 ≤ i ≤ n,
d0 := σn−1τn : Y̌n → Y̌n−1,
si := δi : Y̌n → Y̌n+1, 0 ≤ i ≤ n− 1,
tn := τ−1

n : Y̌n → Y̌n.

Note, however, that there are other possible formulae for an isomorphism ∆C → ∆opC since ∆C has
nontrivial automorphisms (see e.g. [Lo1, 6.1.14]). One easily proves [Co2]:

1.1.18 Lemma Let X be a para-cyclic object and Y a para-cocyclic object, as above.

(i ) The quadruple X̂ = (X̂•, δ•, σ•, τ•) is a para-cocyclic object and is cocyclic if X is cyclic.

(ii ) Analogously, the quadruple Y̌ = (Y̌•, d•, s•, t•) carries the structure of a para-cyclic object and is
cyclic if Y carries a cocyclic structure.

The following proposition (see e.g. [KhR4]) reveals that the respective Hochschild (co)homology groups of
the (co)cyclic duals of Examples 1.1.5(i) and 1.1.14 turn out not to cause enormous excitement.

1.1.19 Proposition Let U be a unital algebra and let C be a (counital) coalgebra, both over some field k.

(i ) The Hochschild cohomology of the cocyclic module Û \ is trivial in positive dimensions.

(ii ) In the same fashion, the Hochschild homology groups of the cyclic module Č\ are trivial in positive
dimensions.

PROOF: The proof of both statements relies on giving a contracting homotopy. If φ : U → k is a linear
functional with the property φ(1U ) = 1k, defining

σ : U⊗kn+1 → U⊗kn, u0 ⊗k · · · ⊗k un 7→ φ(u0)u1 ⊗k · · · ⊗k un

and remembering that Ûn := U⊗n+1 in degree n ≥ 0, one can verify that this defines a contracting homotopy
for the Hochschild complex of Û \. Likewise, for an element τ ∈ C with ε(τ) = 1k, for example a grouplike
element, the map

s : C⊗kn+1 → C⊗kn+2, c0 ⊗k · · · ⊗k cn 7→ τ ⊗k c0 ⊗k · · · ⊗k cn

defines a contracting homotopy for the Hochschild complex of Č\. 2

This homological triviality generally fails; confer Chapter 6 for meaningful results for the homology of a
cyclic dual.
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1.2 A-rings and A-corings
This section presents the generalisations from k-algebras and k-coalgebras to algebras and coalgebras over
not necessarily commutative ground rings; we also discuss their associated cyclic objects. The content of this
section will be needed throughout all subsequent chapters.

1.2.1 A-rings AnA-ring (cf. e.g. [BrzWi, B3, Str]) is a monoid in the monoidal category (Ae-Mod,⊗A, A)
of (A,A)-bimodules over a not necessarily commutative k-algebraA. We refer toA as the base ring (or base
algebra) whereas k will still be called the ground ring. Let Ae := A⊗k Aop be the enveloping algebra of A.

An A-ring U is therefore a triple (U,mU , η) where U ∈ Ae-Mod and mU : U ⊗A U → U, u⊗ v 7→ uv
as well as η : A→ U are (A,A)-bimodule maps such that

mU(mU ⊗ idU ) = mU(idU ⊗mU) (associativity),
mU(η ⊗ idU ) = mU(idU ⊗ η) (unitality).

We refer to U as the total ring. Moreover, we will make frequent use of the well-known fact that A-rings U
correspond bijectively to k-algebra homomorphisms

η : A→ U, (1.2.1)

see e.g. [B3] for a proof. With this characterisation, we may express the (A,A)-bimodule structure by
aub := η(a)uη(b) for a, b ∈ A and u ∈ U , hence for a ∈ A, u, v ∈ U one has

a(uv) = (au)v, u(va) = (uv)a, (ua)v = u(av), (1.2.2)

A morphism of A-rings f : U → V is an (A,A)-bimodule morphism satisfying µ(f ⊗ f) = fµ as well as
the property fη = η, which we shall baptise unitality again. Let A-Ring denote the category of A-rings and
(unital) A-ring morphisms. If A = k coincides with the commutative ground ring, k being mapped into the
centre of U by means of η, one recovers the conventional notion of a k-algebra.

1.2.2 A-corings Dual to the notion of an A-ring is the concept of an A-coring: this is a comonoid in the
monoidal category (Ae-Mod,⊗A, A) of (A,A)-bimodules for a k-algebra A. Explicitly, an A-coring C is
a triple (C,∆, ε), where C is an (A,A)-bimodule (with left and right actions LA and RA) and ∆ : C →
C ⊗A C, ε : C → A are (A,A)-bimodule maps (called coproduct and counit) such that

(∆⊗ idC)∆ = (idC ⊗∆)∆ (coassociativity),
LA(ε⊗C idC)∆ = RA(idC ⊗ ε)∆ = idC (counitality).

The notion of a cocommutative A-coring only makes sense if A is commutative and LA and RA coincide. It
is then defined by the condition σC,C∆ = ∆ where σC,C(c⊗A c′) = c′ ⊗A c is the tensor flip. An A-coring
morphism is an (A,A)-bimodule morphism f : C → D with ∆f = (f ⊗A f)∆ and εf = ε, which we call
counitality again. Denote by A-Coring the category of (counital coassociative) A-corings and (counital)
A-coring morphisms. If A = k coincides with the commutative ground ring, one recovers the conventional
notion of k-coalgebra. See [BrzWi] for more details on A-corings.

1.2.3 Cyclic Tensor Products In order to give a well-defined meaning to the cyclic theories for A-(co)rings,
we first have to discuss the notion of cyclic tensor product of [Q2]. The tensor product M1 ⊗A · · · ⊗A Mn

of a sequence of (A,A)-bimodules Mi, i = 1, . . . , n, is again an (A,A)-bimodule and can be therefore
equipped with the structure of a (say, right) Ae-module by means of

(m1 ⊗A · · · ⊗A mn) · (a⊗k b) := bm1 ⊗A · · · ⊗A mna, ∀ a, b ∈ A.

On the other hand, A itself carries a left Ae-action by (a ⊗k b) · c := acb where a, b, c ∈ A, and one
forms the cyclic tensor product

M1 ⊗A · · · ⊗AMn⊗A := M1 ⊗A · · · ⊗AMn ⊗Ae A.

Analogously to usual tensor products, this k-module is universal for multilinear functions f : M1 ×
· · · × Mn → V into any space V satisfying f(. . . ,mia,mi+1, . . .) = f(. . . ,mi, ami+1, . . .) as well as
f(m1, . . . ,mna) = f(am1, . . . ,mn) for a ∈ A, mi ∈M . In particular, for the lowest degree one has

M ⊗Ae A = M/[A,M ],
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where [A,M ] = {am−ma|a ∈ A, m ∈M}. Of course, one can also considerA⊗AeM1⊗A · · ·⊗AMn, i.e.,
consider the left Ae-action on M1 × · · · ×Mn and the right Ae-action on A: this leads to the same universal
k-module. For notational reasons we always put the abbreviation −⊗A on the right, even if A⊗Ae − stands
on the left. If all Mi = M , i = 1, . . . , n, are identical, its n-fold cyclic tensor product M ⊗A · · · ⊗AM⊗A
carries two natural actions of the cyclic group Z/nZ, the generators of which are either given by

t(m1 ⊗A · · · ⊗A mn⊗A) = mn ⊗A m1 ⊗A · · · ⊗A mn−1⊗A,

or by the operators λ = (−1)n−1t.

1.2.4 A-rings as Cyclic Objects There is a functor \ : A-Ring → M∆Cr from the category of A-rings to
the category of cyclic modules, defined as follows. For an A-ring U , the right Ae-action on the (n + 1)-th
tensor power U⊗An+1 is, as before, given by

(u0 ⊗A · · · ⊗A un) · (a⊗k b) := bu0 ⊗A · · · ⊗A una.

Let
BAn U := U⊗An+1 ⊗Ae A = U⊗An+1 ⊗A .

For φ ∈ End(A,A)(U), we associate in degree n the face, degeneracy and cyclic operators

di(u0 ⊗A · · · ⊗A un⊗A) =

{
u0 ⊗A · · · ⊗A uiui+1 ⊗A · · · ⊗A un⊗A
φ(un)u0 ⊗A u1 ⊗A · · · ⊗A un−1⊗A

if 0 ≤ i ≤ n− 1,
if i = n,

si(u0 ⊗A · · · ⊗A un⊗A) =u0 ⊗A · · · ⊗A ui ⊗A 1U ⊗A ui+1 ⊗A · · · ⊗A if 0 ≤ i ≤ n,
tn(u0 ⊗A · · · ⊗A un⊗A) =φ(un)⊗A u0 ⊗A u1 ⊗A · · · ⊗A un−1⊗A

(1.2.3)

to the space U \,φA := {BAn U}n≥0. Then U \,φA is r-cyclic if the order of φ is less than infinity, and cyclic if
and only if φ = id, in which case we will write U \A. The notion of cyclic tensor products is required here to
make these operators well-defined and allows one to drop the condition that η(A) ⊂ Z(U) lies in the centre
of U . The condition (1.2.2) is required to make the face operators well-defined. A unital A-ring morphism
f : U → V induces a morphism of cyclic modules f \ : U \,φA → V \,f◦φA by f \(u0 ⊗A · · · ⊗A un⊗A) :=
f(u0) ⊗A · · · ⊗A f(an)⊗A. In case that A = k, the commutative ground ring (as a k-module over itself),
the cyclic structure given here specialises to the conventional one for k-algebras from e.g. [FeTs] or [Nis] as
presented in Example 1.1.5(iii).

1.2.5 A-corings as Cocyclic Objects Similarly, there is a functor \ : A-Coring→ N∆Cr from the category
of A-corings to the category of cocyclic modules, defined as follows: Let (C,∆, ε) be an A-coring, and use
Sweedler’s [Sw1] shorthand notation ∆c =: c(1) ⊗A c(2) for the coproduct. Recall that the left Ae-action on
the (n+ 1)-th tensor power C⊗An+1 is given by

(a⊗k b) · (c0 ⊗A · · · ⊗A cn) := ac0 ⊗A · · · ⊗A cnb.

On the other hand, a right Ae-action on Aop is given by a · (b⊗k c) := cab and we consider the cyclic tensor
products

C ⊗A · · · ⊗A C⊗A := Aop ⊗Ae C ⊗A · · · ⊗A C.

For ψ ∈ End(A,A)(C), define the cocyclic module Cψ\ := {BnAC}n≥0 whereBnAC := Aop⊗AeC⊗An+1 =:

C⊗An+1⊗A in degree n with coface, codegeneracies and cocyclic operators

δi(c
0 ⊗A · · · ⊗A cn⊗A) =

{
c0 ⊗A · · · ⊗A ∆ci ⊗A · · · ⊗A cn⊗A
c0(2) ⊗A c

1 ⊗A · · · ⊗A ψ(c0(1))⊗A
if 0 ≤ i ≤ n
if i = n+ 1,

σi(c
0 ⊗A · · · ⊗A cn⊗A) = c0 ⊗A · · · ⊗A ciε(ci+1)⊗A ci+2 ⊗A · · · ⊗A if 0 ≤ i ≤ n− 1,

τn(c0 ⊗A · · · ⊗A cn⊗A) = c1 ⊗A c2 ⊗A · · · ⊗A ψ(c0)⊗A .

(1.2.4)

Again, CA\,ψ is r-cocyclic if the order r of ψ is less than infinity and cocyclic if and only if ψ = id in which
case we will only write CA\ . Similarly as before, a counital coalgebra morphism f : C → D induces a
morphism of cocyclic modules f\ : CA\,ψ → DA

\,f◦ψ by f\(c0⊗A · · ·⊗A cn⊗A) = f(c0)⊗A · · ·⊗A f(cn)⊗A
in degree n. In case A = k coincides with the commutative ground ring (as k-module over itself), the
cocyclic structure given here specialises with the conventional one for k-coalgebras as given e.g. in [FeTs].
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1.3 Hopf Algebras and Their Cyclic Cohomology

Hopf algebras can be seen as a noncommutative analogue of Lie groups. More precisely, symmetries in
noncommutative geometry are determined by the action or coaction of some Hopf algebra on an algebra or
coalgebra.

A large part of this thesis is devoted to generalisations of Hopf algebra theories towards Hopf algebroids
We therefore briefly give an overview on Hopf algebras and their Hopf-cyclic cohomology.

1.3.1 Bialgebras and Hopf Algebras

Let U be a k-module equipped simultaneously with a k-algebra structure (U,mU , η) (cf. §1.2.1) and a k-
coalgebra structure (cf. §1.2.2). Equip U ⊗k U with the induced structure of a tensor product of algebras
(by factorwise multiplication and unit 1U ⊗k 1U ) and also with the induced structure of a tensor product of
coalgebras (with comultiplication (idU⊗kσU,U⊗k idU)(∆⊗∆) and counit ε⊗ε). The proof of the following
classical lemma can be e.g. found in [Kas3, Str]

1.3.1 Lemma The following statements are equivalent

(i ) The maps mU and η are morphisms of k-coalgebras.

(ii ) The maps ∆ and ε are morphisms of k-algebras.

This leads to the following definition.

1.3.2 Definition (i ) A k-bialgebra is a quintuple (U,mU , η,∆, ε), where (U,mU , η) is a k-algebra and
(U,∆, ε) a k-coalgebra verifying the equivalent conditions of the preceding lemma. A morphism of
k-bialgebras is a morphism for both the underlying k-algebra and k-coalgebra.

(ii ) Let (H,mH , η,∆, ε) be a k-bialgebra. An endomorphism S : H → H is called an antipode for H if

mH(S ⊗ idH)∆ = mH(idH ⊗ S)∆ = ηε.

A Hopf algebra is a k-bialgebra with an antipode. A morphism of Hopf algebras is a morphism
between the underlying k-bialgebras commuting with the respective antipodes.

It can be shown that the antipode is unique (if it exists) and is both an anti-algebra morphism and anti-
coalgebra morphism.

1.3.3 Examples Commutative or cocommutative Hopf algebras arise naturally from groups and Lie algebras.

(i ) Let Γ be a discrete (not necessarily finite) group with group algebra CΓ. Extending the maps

∆g = g ⊗C g, εg = 1C, Sg = g−1, ∀g ∈ Γ,

linearly to all of CΓ, one obtains a cocommutative Hopf algebra structure on CΓ. This Hopf algebra
is commutative if and only if Γ is commutative.

(ii ) The universal enveloping algebraUg of a Lie algebra g is a cocommutative Hopf algebra. The structure
maps have the defining properties

∆X = X ⊗C 1 + 1⊗C X, εX = 0, SX = −X ∀X ∈ g.

Ug is a commutative Hopf algebra if and only if g is abelian, in which case Ug coincides with the
symmetric algebra Sg of g.

See e.g. [Sw1, Kas3, Str, ChPr] for extensive material on Hopf algebras.
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1.3.2 Hopf-Cyclic Cohomology
In [CoMos2] a new cohomology theory of Hopf algebras was launched, nowadays referred to as Hopf-cyclic
(co)homology. One may consider this as the correct noncommutative analogue of both group and Lie algebra
homology, see below. The original motivation was to obtain a noncommutative characteristic map

χtr : HC•δ,σ(H)→ HC•(A) (1.3.1)

from a certain cyclic cohomology group to the standard cyclic cohomology group of an algebra A needed for
the study of transverse elliptic operators, induced on the cochain level by a map

χtr : H⊗kn → CnA, χtr(h1, . . . , hn)(a0, . . . , an) = tr (a0h1(a1), . . . , hn(an)) (1.3.2)

in degree n. Here, H is a Hopf algebra (with structure maps as before) acting on a unital k-algebra A by the
assignment (h, a) 7→ h(a), satisfying in particular the Leibniz rule

h(ab) = h(1)(a)h(2)(b), a, b ∈ A, h ∈ H.

Such a Hopf algebra action may be seen as a notion of ‘quantum’ symmetry on a noncommutative space, see
e.g. [CoMos1]. The data (δ, σ) that appears in (1.3.1) form an algebraic analogue of the modular function of
a locally compact group:

1.3.4 Definition A character δ ∈ H∗ (i.e. a ring homomorphism δ : H → k) together with a grouplike
element σ ∈ H (i.e. an element that fulfills ∆σ = σ ⊗k σ, εσ = 1k) related to each other by the condition
δσ = 1k is called a modular pair.

Modular pairs turns out to be self-dual in some sense when passing to the dual Hopf algebra, see [CoMos4].
Finally, the linear map tr : A→ k that appears in (1.3.2) is a σ-invariant δ-trace, i.e. a map fulfilling

tr (h(a)) = δ(h)tr (a), tr (ab) = tr (bσ(a)), a, b ∈ A.

Maps of the kind (1.3.2), originally introduced in [Co1], are typical ingredients in cyclic cohomology.

1.3.5 Twisted Antipodes The character δ gives rise to a twisted antipode S̃ : H → H , defined by [CoMos4]

S̃h := η(δh(1))Sh(2), h ∈ H, (1.3.3)

where S is the antipode of the Hopf algebra H . The twisted antipode S̃ is an anti-algebra morphism and a
twisted anti-coalgebra morphism, that is

∆S̃h = Sh(2) ⊗k S̃h(1), h ∈ H. (1.3.4)

Furthermore, it satisfies
εS̃ = δ, δS̃ = ε. (1.3.5)

If A is unital, one also proves that δ-invariance of tr is equivalent to partial integration

tr (h(a)b) = tr (a(S̃h)(b)), a, b ∈ A, h ∈ H,

and (δ, σ) is called a modular pair in involution if

S̃2h = σhσ−1, h ∈ H, (1.3.6)

where σ−1 := Sσ.

1.3.6 Example For any commutative or cocommutative Hopf algebra we have S2 = idH (cf. e.g. [Kas3]).
Hence (ε, 1H) is a modular pair in involution. See, however, [CoMos2] for a less trivial example.

1.3.7 The Hopf-Cocyclic Module In [CoMos2] a cocyclic module is attached to the triple (H, δ, σ) as fol-
lows. Set Hδ,σ

\ := {H⊗n}n≥0, i.e. H⊗n in degree n and H⊗0 := k in degree zero. The cosimplicial
operators are then given as

δi(h
1 ⊗k · · · ⊗k hn) =

 1⊗k h1 ⊗k · · · ⊗k hn
h1 ⊗k · · · ⊗k ∆`h

i ⊗k · · · ⊗k hn
h1 ⊗k · · · ⊗k hn ⊗k σ

if i = 0,
if 1 ≤ i ≤ n,
if i = n+ 1,

σi(h
1 ⊗k · · · ⊗A hk) = h1 ⊗k · · · ⊗k εhi+1 ⊗k · · · ⊗k hn if 0 ≤ i ≤ n− 1,
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and in degree zero

δj1k =

{
1H if j = 0,
σ if j = 1.

Finally, the cocyclic operator is defined as

τn(h1 ⊗k · · · ⊗k hn) = (∆n−1
` S̃h1)(h2 ⊗k · · · ⊗k hn ⊗k σ)

= S(h1
(n))h

2 ⊗k · · · ⊗k S(h1
(2))h

n ⊗k S̃(h1
(1))σ.

These operators were originally obtained by pulling back the cocyclic structure of C•A and were dictated by
requiring the characteristic map (1.3.2) to be a morphism of cocyclic modules. One can now show [CoMos4]
thatHδ,σ

\ is cocyclic if and only if (1.3.6) is fulfilled. In such a case we speak of the Hopf-cyclic cohomology
of the triple (H, δ, σ), denoted HC•δ,σ(H) and HP •δ,σ(H), respectively.

1.3.8 Examples Let us state two results corresponding to the Examples 1.3.3; cf. [CoMos2, Cr3] for the
proofs.

(i ) For the group algebra CΓ of a discrete not necessarily finite group Γ one obtains

HP 0
ε,1(CΓ) ' C, HP 1

ε,1(CΓ) ' 0.

(ii ) For a Lie algebra g, a character δ : g → C is a linear map with δ|[g,g] = 0, and denote its unique
extension to an algebra morphism Ug → C by the same symbol δ. We write Cδ for C, seen as a g-
module via δ. For elements X ∈ g one obtains S̃X = −X + δX , hence σ = 1: this is the unimodular
case. One then computes [CoMos2, Cr3]

HP •δ,1(Ug) ' Hodd(g,Cδ)⊕Heven(g,Cδ),

where the right hand side denotes the Chevalley-Eilenberg homology of Lie algebras with values in the
g-module Cδ .

Example 1.3.8(ii) gives a hint why one should consider Hopf-cyclic cohomology as a noncommutative ana-
logue of Lie algebra homology. We will make a similar statement in the generalised context of Hopf alge-
broids and Lie algebroids (Lie-Rinehart algebras, respectively) as a consequence of Theorem 5.5.7(ii) below.

See e.g. [CoMos4, CoMos2, Cr3, HKhRSo1, HKhRSo2] for more material on Hopf-cyclic (co)homology
of Hopf algebras. There is also a Hopf-cyclic homology theory dual to the one above in the sense of cyclic
duality. We will not give the details here (cf. [KhR1, KhR4, KhR2, Tai]), but will immediately extend this
theory to the realm of Hopf algebroids in Chapter 6.

1.4 Lie-Rinehart Algebras
In this section we collect some material on Lie-Rinehart algebras. Lie-Rinehart algebras can be thought of as
algebraic versions of Lie algebroids. As for Lie algebroids (cf. [NisWeiX]), there is an associated universal
enveloping object associated to it. In Section 4.2 we will discuss the possibilities how this object can be
considered an example of a ‘generalised Hopf algebra’.

As before, let k be a commutative unital ring (containing Q) and A a commutative k-algebra. For the
subsequent definition unitality of A is not strictly required, but for convenience we will assume this as well.

1.4.1 Definition [Rin] Let L be a k-Lie algebra L, a ⊗k X 7→ aX for a ∈ A, X ∈ L a left A-module
structure on L, and ω : L→ Derk A, X 7→ {a 7→ X(a)} a morphism of k-Lie algebras. The pair (A,L) is
called a Lie-Rinehart algebra with anchor ω, provided

(aX)(b) = a(X(b)) X ∈ L, a, b ∈ A, (1.4.1)
[X, aY ] = a[X,Y ] +X(a)Y X, Y ∈ L, a ∈ A. (1.4.2)

A morphism (A,L)→ (A′, L′) of Lie-Rinehart algebras is a pair of maps (φ : A→ A′, ψ : L→ L′) where
φ is a morphism of k-algebras and ψ a morphism of k-Lie algebras with the properties ψ(aX) = φ(a)ψ(X)
and φ(X(a)) = ψ(X)(φ(a)).
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1.4.2 Examples Two immediate examples are given by the following:

(i ) The pair (A,Derk A) of a commutative algebra A and its k-derivations with obvious anchor yields a
Lie-Rinehart algebra.

(ii ) A Lie algebroid is a vector bundle E → M over a smooth manifold M , together with a map ω :
E → TM of vector bundles and a (real) Lie algebra structure [., .] on the vector space ΓE of sections
of E, such that the induced map Γ(ω) : ΓE → X (M) is a Lie algebra homomorphism, and for all
X,Y ∈ ΓE and any f ∈ C∞(M), one has [X, fY ] = f [X,Y ] + Γ(ω)(X)(f)Y . Then the pair
(C∞(M),ΓE) is obviously a Lie-Rinehart algebra; see e.g. [CanWei] and [Mac] for more details on
Lie algebroids.

1.4.3 Definition [Rin, Hue1] The universal object (V L, iL, iA) of a Lie-Rinehart algebra (A,L) is a k-
algebra V L with two morphisms iA : A → V L and iL : L → V L of k-algebras and k-Lie algebras,
respectively, subject to the conditions

iA(a)iL(X) = iL(aX), iL(X)iA(a)− iA(a)iL(X) = iA(X(a)), a ∈ A, X ∈ L,

universal in the following sense: for any other triple (W,φL, φA) of a k-algebra W and two morphisms
φA : A → W , φL : L → WL of k-algebras and k-Lie algebras, respectively (where WL is the commutator
Lie algebra) that obey

φA(a)φL(X) = φL(aX), φL(X)φA(a)− φA(a)φL(X) = φA(X(a)), (1.4.3)

there is a unique morphism
Φ : V L→W (1.4.4)

of k-algebras such that ΦiA = φA and ΦiL = φL.

Note that in case of a trivial anchor one obtains the universal enveloping algebra of L as an A-Lie algebra.

1.4.4 Remark An alternative construction [Hue1] describes V L as a Massey-Peterson algebra [MasPe]:
this coincides with what we will call a ‘smash ring’ in Lemma 3.3.2, see below. Let UL be the universal
enveloping algebra of the k-Lie algebra Lwith coproduct ∆ULu = u(1)⊗ku(2). Then clearlyA is a left UL-
module ring (under the canonical action (2.3.3) and considering (2.3.4)), and one can set V L = A>C

AUL
with product

(a>CAu)(a′>CAv
′) = au(1)(a

′)>CAu(2)u
′, a, a′ ∈ A, u, u′ ∈ UL.

We may now obviously set iL : L → V L, X 7→ 1A>CAX and iA : A → V L, a 7→ a>CA1UL; from this
description it is obvious that iA is an algebra morphism and iL is a morphism of Lie algebras.

1.4.5 The Poincaré-Birkhoff-Witt Theorem for V L The algebra V L carries a natural filtration

V0L ⊂ V1L ⊂ V2L ⊂ . . . ,

where V−1L := 0, V0L := A and for p ≥ 0, VpL is the left A-submodule of V L generated by iL(L)p,
i.e. products of the image of L in V L of length at most p. Since au − ua ∈ Vp−1L for any a ∈ A and
u ∈ VpL, left and right A-module structures coincide on VpL/Vp−1L. It follows that the associated graded
object gr V L inherits the structure of a graded commutative A-algebra. Denote the symmetric A-algebra by
SAL and define SpAL as the pth symmetric power of L. If L is projective over A, the canonical A-linear
epimorphism SAL

'−→ gr V L is an isomorphism of A-algebras (cf. [Rin, Thm. 3.1] see also [NisWeiX] for
a more differential geometric version). Hence iL and iA are injective; we may therefore identify elements
a ∈ A and X ∈ L with their images in V L. As in the classical Lie algebra case, the symmetrisation

π : SpAV → VpL, v1 · · · vp 7→
1

p!

∑
σ∈P (p)

vσ(1) ⊗A · · · ⊗A vσ(p), (1.4.5)

(where vi ∈ L or vi ∈ A) induces an isomorphism of (left) A-modules SAL → V L. As an algebra with
multiplication mV L, we may also describe V L as generated by elements X ∈ L and a ∈ A respecting the
relations mV L(a,X) = aX and [X, a] := mV L(X, a)−mV L(a,X) = X(a).
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1.5 Groupoids
This section contains some basic material on groupoids.

1.5.1 (Etale) Groupoids A groupoid G is a small category in which each arrow is invertible. Somewhat
more explicitly, a groupoid consists of a space of objects G0, a space of arrows G1 (often denoted G as well)
and five structure maps relating the two:

(i ) source and target maps s, t : G1 → G0, assigning to each arrow g its source s(g) and target t(g); we
say that g ‘goes from s(g) to t(g)’;

(ii ) a partially defined composition of arrows, that is, only for those arrows g, h for which source and
target match, s(g) = t(h), i.e. a map m : G2 := G1

s×tG0
G1 → G1, (g, h) 7→ gh that is associative

whenever defined, producing the composite arrow going from s(gh) = s(h) to t(gh) = t(g);

(iii ) a unit map 1 : G0 → G1, x 7→ 1x that has the property 1t(g)g = g1s(g);

(iv ) an inversion inv : G1 → G1, g 7→ g−1 that produces the inverse arrow going from s(g−1) = t(g) to
t(g−1) = s(g), fulfilling g−1g = 1s(g), gg

−1 = 1t(g).

These maps can be assembled into a diagram

G2
m // G1

inv // G1

s //
t

// G0
1 // G1 .

An arrow may be denoted x
g←− y to indicate that y = s(g) and x = t(g), but usually we abbreviate this to

· g←− ·.
A topological groupoid is a groupoid in which G1, G0 are topological spaces and all the structure maps

are continuous. Mutatis mutandis one defines smooth groupoids, where in addition s and t are required to
be surjective submersions in order to guarantee that G2 = G1

s×tG0
G1 remains a manifold. A topological (or

smooth) groupoid is called étale if the source map is a local homeomorphism (or local diffeomorphism). This
implies that all structure maps are local homeomorphisms (or local diffeomorphisms, respectively). In the
smooth case, this equivalently amounts to saying that dimG1 = dimG0. In particular, an étale groupoid has
zero-dimensional source and target fibres, hence they are discrete. See e.g. [CanWei, L1, Mac, MoeMrč2]
for more material on groupoids.

1.5.2 Local Bisections and Germs A local bisection of a Lie groupoid G is a local section σ : U → G
of s : G → G0 defined on an open subset U ⊂ G0 such that tσ is an open embedding. If G is étale,
any arrow g induces a germ of a homeomorphism σg : (U, s(g)) → (V, t(g)) from a neighbourhood U of
s(g) to a neighbourhood V of t(g): choosing U small enough such that a bisection σ exists and t|σU is a
homeomorphism into V := t(σU), we simply set σg := tσ. We usually do not distinguish between σg and
the ‘actual’ germ of this map at the point s(g).

1.5.3 Fibre Sum. Notation For a space X we denote the set of sheaves over X by Sh(X) (cf. [Br]). If
F ∈ Sh(X), E ∈ Sh(Y ) are (c-soft [Br]) sheaves over some spaces X,Y , respectively, φ : X → Y an étale
map (i.e. a local homeomorphism) and α : F → φ−1E a sheaf morphism, we often consider maps of type

(α, φ)∗ : Γc(X,F)→ Γc(Y, E), ((α, φ)∗u)(y) =
∑

y=φ(x)

αx(u(x)) ∈ Ey, x ∈ X, y ∈ Y,

where Γc(−,−) denote the groups of compactly supported sections (cf. e.g. [Br], and [Cr2] for an extension
of the functor Γc to non-Hausdorff spaces). This map is abbreviated to

(α, φ)∗ : Γc(X,F)→ Γc(Y, E), (u | x) 7→ (α(u) | φ(x)), x ∈ X,u ∈ Fx.

In particular, if X,Y are two manifolds and C∞X , C∞Y the sheaves of smooth functions over X and Y ,
respectively, a smooth map φ : X → Y yields a homomorphism of commutative algebras φ∗x : C∞Y,φ(x) →
C∞X,x on each stalk for x ∈ X . If φ is étale, i.e. a local diffeomorphism, φ∗x is an isomorphism with inverse
φ∗x, and φ induces the linear map

φ+ : C∞c (X)→ C∞c (Y ), φ+(u)y = ((φ∗, φ)∗u)(y) =
∑

y=φ(x)

φ∗x(ux), (1.5.1)

the sum over the φ-fibres.



Chapter 2

Hopf Algebroids

Roughly speaking, a Hopf algebroid is an algebra carrying simultaneously

(1) a ‘left’ coalgebra structure,

(2) a ‘right’ coalgebra structure,

(3) an ‘antipode’ intertwining these two structures.

We emphasise here that although the information given in (1)–(3) is partly redundant, the Hopf algebroid
axioms and resulting identities are much more natural and symmetric if one distinguishes the three different
structures. For instance, the right coalgebra structure can be reconstructed from (1) and (3), but the Hopf
algebroid axioms written just in terms of the left coalgebra structure and the antipode would then become
unnatural and complicated.

More precisely, a Hopf algebroid should be a kind of generalised bialgebra—a so-called bialgebroid—
with a certain notion of an antipode on it. A typical generalisation of a k-bialgebra consists in replacing the
commutative ground ring k by a noncommutative ring, involving the concepts of A-ring and coring from
§1.2.1 and §1.2.2, respectively, and a certain interaction between them. However, as said, instead of only
one even two such generalised bialgebra structures (left and right bialgebroids) of a different nature will be
required, two concepts that we recall below.

2.1 Left Bialgebroid Structures
Like k-bialgebras, bialgebroids are both algebras and coalgebras, but over different base rings. In other
words, they are monoids and comonoids in different monoidal categories and the interplay between these
is far from obvious. The correct setup presumably appeared for the first time in [Tak] under the name ×A-
bialgebras. They were rediscovered several times, apparently independently, and baptised bialgebroid in
[Lu], bialgebroid with anchor in [X3, X1], and all these notions were shown to be equivalent in [BrzMi].

Recall from §1.2.1 that an Ae-ring U can be described by a k-algebra map ηU = η : Ae → U . Equiva-
lently, one can consider its restrictions

s := η(−⊗k 1A) : A→ U and t := η(1A ⊗k −) : Aop → U,

and call these the source and target map of the Ae-ring U ; hence an Ae-ring may be equally given by such
a triple (U, s, t), which is also called an (s, t)-ring [Tak]. Using the left Ae-module structure (a⊗k ã, u) 7→
η(a⊗k ã)u on U , one considers

U ⊗A U :=U ⊗k U/span{η(1⊗k a)u⊗k u′ − u⊗k η(a⊗k 1)u′ | a ∈ A, u, u′ ∈ U}
=U ⊗k U/span{t(a)u⊗k u′ − u⊗k s(a)u′ | a ∈ A, u, u′ ∈ U}.

(2.1.1)

Note that by (a⊗k ã) · (u⊗A u′) := s(a)u⊗A t(ã)u′, the tensor product U ⊗A U becomes a left Ae-module
or (A,A)-bimodule in a standard way (see (A.1.1)).

2.1.1 Definition The k-submodule U ×A U ⊂ U ⊗A U defined by

U ×A U := {
∑
i

ui ⊗A u′i ∈ U ⊗A U |
∑
i

uit(a)⊗A u′i =
∑
i

ui ⊗A u′is(a), ∀a ∈ A} (2.1.2)

27
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is called the (left) Takeuchi product of the Ae-ring U with itself.

One easily verifies that U ×A U is an Ae-ring via factorwise multiplication, with unit element 1U ⊗A 1U and
ηU×AU (a ⊗ ã) = s(a) ⊗A t(ã). On the other hand, there is no well-defined algebra structure on U ⊗A U ,
not even if A were commutative, since we do not assume η(Ae) ⊂ ZU , the centre of U : it is precisely the
defining property of U ×A U which makes factorwise multiplication well-defined on this subspace.

2.1.2 Definition A leftA-bialgebroid or×A-bialgebra is a k-moduleU that carries simultaneously the struc-
ture of an Ae-ring (U, s`, t`) as above and an A-coring (U,∆`, ε) (cf. §1.2.2), subject to the following
compatibility axioms:

(i ) The (A,A)-bimodule structure in the A-coring (U,∆`, ε) is related to the Ae-ring (U, s`, t`) by

a �u � ã := η`(a⊗ ã)u = s`(a)t`(ã)u, a, ã ∈ A, u ∈ U, (2.1.3)

and we refer to this structure by writing �U� . In particular, we write U� ⊗ �U := U ⊗A U .

(ii ) Considering the bimodule �U� , the (left) coproduct ∆` is a (unital) k-algebra morphism taking values
in U ×A U .

(iii ) For all a, ã ∈ A, u, u′ ∈ U , the (left) counit ε has the property

ε(s`(a)t`(ã)u) = aε(u)ã and ε(uu′) = ε(us`(εu′)) = ε(ut`(εu′)). (2.1.4)

Observe that, being an Ae-ring, such a left bialgebroid in total carries four A-module structures: one also has

a Iu J ã := uη`(ã⊗ a) = us`ãt`a, (2.1.5)

and whenever we refer to this situation, we denote it by IUJ . Also note that (i) combined with (ii) implies
that

∆`s
`a = s`a⊗A 1, ∆`t

`a = 1⊗A t`a, for a ∈ A. (2.1.6)

Hence ∆ is also an Ae-module morphism for the action in (2.1.5), i.e., for both (2.1.3) and (2.1.5) one has

∆`(a �u � ã) = (a �u(1))⊗A (u(2) � ã),
∆`(a Iu J ã) = (u(1) J ã)⊗A (a Iu(2)).

(2.1.7)

2.1.3 Remarks (i ) Even ifA were commutative, source and target do not necessarily coincide, as we will
see in examples.

(ii ) Since this will be of frequent technical use in all that follows, let us also explicitly state the comonoid
identities involved. If mU and mUop denote the multiplication in U and Uop, respectively, one has

mU (s`ε⊗ idU )∆` = mUop(idU ⊗ t`ε)∆` = idU . (2.1.8)

For the coproduct of a left bialgebroid, we will use the Sweedler notation ∆`u = u(1) ⊗A u(2) with
lower indices: it will become clear in a moment why we stress this distinction. The identity (2.1.8)
then reads

s`(εu(1))u(2) = t`(εu(2))u(1) = idU , u ∈ U.

Finally, let us recall the notion of morphisms of bialgebroids [Sz].

2.1.4 Definition A left bialgebroid morphism (U,A, s`, t`,∆`, ε) → (U ′, A′, s`
′
, t`
′
,∆′`, ε

′) is a pair (φ :
A → A′, ψ : U → U ′) of ring homomorphisms that commute with the structure maps in the obvious
fashion. It is called a left bialgebroid isomorphism if φ and ψ are bijective ring homomorphisms.

2.1.5 Primitive and Grouplike Elements As for ordinary coalgebras, an element X ∈ U is called primitive
if ∆`X = X ⊗A 1 + 1 ⊗A X . Using (2.1.8), this means εX = 0 if X is primitive. Likewise, an element
σ ∈ U is called grouplike if ∆`σ = σ ⊗A σ and εσ = 1. We denote the space of primitive elements and
grouplike elements by P `U and G`U , respectively.
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2.2 Left Hopf Algebroids
In this section, we present a generalisation of the notion of a Hopf algebra, which is based upon the notion
of left bialgebroids: namely, the so-called ×A-Hopf algebra of [Schau2]. We propose the name left Hopf
algebroid instead, the reason for which will be explained in §2.6.14 (apart from solving a pronunciation
problem). We will need this concept at various points, e.g. in Section 6.1 and Section 4.3. In particular, it
will be the main ingredient in Chapter 7.

Let U be a left bialgebroid over A and define the so-called (Hopf-)Galois map of U by

β : IU ⊗Aop U� → U� ⊗A �U, u⊗Aop v 7→ u(1) ⊗A u(2)v, (2.2.1)

where
IU ⊗Aop U� = U ⊗k U/span{a Iu⊗k v − u⊗k v � a |u, v ∈ U, a ∈ A}. (2.2.2)

One could flip the tensor components in order to avoid taking the tensor product over Aop, but we find it
more convenient to keep β in a form which is standard for bialgebras over fields. For the latter it is easily
seen that β is bijective if and only if U is a Hopf algebra with β−1(u⊗k v) := u(1) ⊗ S(u(2))v, where S is
the antipode of U . This motivates the following definition due to Schauenburg [Schau2]:

2.2.1 Definition A left A-bialgebroid U is called a left Hopf algebroid (or ×A-Hopf algebra) if β is a bijec-
tion.

Following [Schau2], we adopt a Sweedler-type notation

u+ ⊗Aop u− := β−1(u⊗A 1) (2.2.3)

for the so-called translation map

β−1(· ⊗A 1) : U → IU ⊗Aop U� .

Since these are substantial for calculations, e.g. in Chapter 7, we list some properties of β−1 as proven in
[Schau2, Proposition 3.7]: one has for all u, v ∈ U , a ∈ A

u+(1) ⊗A u+(2)u− = u⊗A 1 ∈ U� ⊗A �U, (2.2.4)
u(1)+ ⊗Aop u(1)−u(2) = u⊗Aop 1 ∈ IU ⊗Aop U� , (2.2.5)

u+ ⊗Aop u− ∈ U ×Aop U, (2.2.6)
u+(1) ⊗A u+(2) ⊗Aop u− = u(1) ⊗A u(2)+ ⊗Aop u(2)−, (2.2.7)
u+ ⊗Aop u−(1) ⊗A u−(2) = u++ ⊗Aop u− ⊗A u+−, (2.2.8)

(uv)+ ⊗Aop (uv)− = u+v+ ⊗Aop v−u−, (2.2.9)
u+u− = η(εu⊗ 1), (2.2.10)

η(a⊗ b)+ ⊗Aop η(a⊗ b)− = η(a⊗ 1)⊗Aop η(b⊗ 1), (2.2.11)

where in (2.2.6) we used the Takeuchi product

U ×Aop U :=
{∑

i

ui ⊗Aop vi ∈ IU ⊗Aop U� |
∑
i

ui � a⊗Aop vi =
∑
i

ui ⊗Aop a I vi

}
(2.2.12)

which is an algebra by factorwise multiplication, but with opposite multiplication on the second factor. Note
that in (2.2.8) the tensor product over Aop links the first and third tensor component (cf. [Schau2, Equation
(3.7)]). By (2.2.4) and (2.2.6) one can write

β−1(u⊗A v) = u+ ⊗Aop u−v, (2.2.13)

which is easily checked to be well-defined over A with (2.2.9) and (2.2.11).

2.2.2 Examples (i ) The enveloping algebra Ae of an associative algebra A that governs Hochschild
(co)homology is an example of a left Hopf algebroid over A, as already pointed out in [Schau2];
see Subsection 4.1.1 for details.

(ii ) Clearly, Hopf algebras over k—such as universal enveloping algebras of Lie algebras or group
algebras—are also left Hopf algebroids over k. More precisely, it is well-known [Schau2, p. 9] that
Hopf algebras are in bijective correspondence with left Hopf algebroids over k: the inverse of (2.2.1)
for a Hopf algebra (H, η,∆, ε, S) is given by β−1(h⊗k h′) = h(1) ⊗k Sh(2)h

′. Conversely, if H is a
left Hopf algebroid over k, an antipode for H is given by Sh := η(εh+)h−.
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2.3 Left Bialgebroid Modules and Comodules

2.3.1 The Monoidal category U -Mod

As for rings, one can consider modules over a left bialgebroid. However, there are some peculiarities attached
to it, which we discuss in this subsection.

A standard characterisation [P] of bialgebras (common in quantum group theory) is as follows. A k-
algebra U is a bialgebra if and only if the category U -Mod of left U -modules is a monoidal category such
that the underlying forgetful functor U -Mod → k-Mod is monoidal. The following theorem indicates
that the definition of bialgebroids, though somewhat complicated, appears to be the right notion in this more
general context.

2.3.1 Theorem [Schau1, Thm. 5.1] The left A-bialgebroid structures on an Ae-ring η : Ae → U correspond
bijectively to monoidal structures on U -Mod for which the forgetful functor U -Mod→ Ae-Mod induced
by η is strictly monoidal.

In particular, given a left A-bialgebroid structure on U , for M ∈ U -Mod with action (u,m) 7→ um the
induced Ae-module structure is given by

amã := t`ãs`am, m ∈M, a, ã ∈ A. (2.3.1)

The monoidal structure on U -Mod is defined analogously as for bialgebras: for M,M ′ ∈ U -Mod, the
tensor product M ⊗AM of A-bimodules carries a U -module structure given by the diagonal

u(m⊗A m′) := u(1)m⊗A u(2)m
′, m ∈M, m′ ∈M ′, u ∈ U, (2.3.2)

which is well-defined since U is a left bialgebroid. The monoidal unit in U -Mod is A and U acts on A from
the left in a canonical way,

ua := ε(us`a) = ε(ut`a), a ∈ A, u ∈ U, (2.3.3)

where the (A,A)-bimodule structure IUJ appears. This may be called a (left) anchor [X3] for the bialge-
broid. One easily gets the following Leibniz rule,

u(aa′) = ε(us`(aa′)) = ε(us`at`a) = ε(u(1)s
`a)ε(u(2)t

`a′) = (u(1)a)(u(2)b), (2.3.4)

hence PU ⊂ Derk A by means of the canonical action.
On the other hand, for a left bialgebroid U there is in general no canonical monoidal structure on

Uop-Mod, and in particular no right action of U on A.
There is a straightforward generalisation of a (left) module structure to a (left) connection, a notion with

respect to which module structures give the special cases of flat left connections. Since we will need explicit
details of this concept only for the ‘opposite’ notion of right bialgebroids (see below), we refer to Section
2.5.1.

2.3.2 The Monoidal Categories U -Comod and Comod-U
Likewise, similarly as for coalgebras, one may define comodules over bialgebroids. This section contains
some issues characteristic to the situation of bialgebroids.

Let U be a left bialgebroid over A with structure maps as above. For the following definition confer e.g.
[Schau1, B2, BrzWi].

2.3.2 Definition (i ) A right U -comodule for a left bialgebroid U over A is a right comodule of the under-
lyingA-coring (U,∆`, ε), i.e. a rightA-moduleN with actionRA : (n, a) 7→ na and a rightA-module
map

N∆ : N → N ⊗A U, n 7→ n(0) ⊗A n(1), (2.3.5)

where
N ⊗A U := N ⊗k U/span{na⊗ u− n⊗ s`au | a ∈ A},

satisfying the usual coassociativity and counitality axioms, i.e.,

(N∆ ⊗ id)N∆ = (id⊗∆`)N∆ and RA(id⊗ ε)N∆ = id,
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respectively. For two right U -comodules N,N ′, the set of right U -comodule morphisms is given as

ComU (N,N ′) := {φ ∈ Hom(−,A)(N,N
′)|(φ⊗ id)N∆ = N′∆φ},

and the corresponding category of right U -comodules and right U -comodule morphisms will be de-
noted Comod-U .

(ii ) A left U -comodule for a left bialgebroid U over A is a left comodule of the underlying A-coring
(U,∆`, ε), i.e. a left A-module M with action LA : (a,m) 7→ am and a left A-module map

∆M : M → U ⊗AM, m 7→ m(−1) ⊗A m(0), (2.3.6)

where
U ⊗AM := U ⊗kM/span{t`au⊗m− u⊗ am | a ∈ A},

satisfying the usual coassociativity and counitality axioms

(∆` ⊗ id)∆M = (id⊗∆M)∆M and LA(id⊗ ε)∆M = id.

For two left U -comodules M,M ′, the set of left U -comodule morphisms is given as

ComU (M,M ′) := {ψ ∈ Hom(A,−)(M,M ′)|(id⊗ ψ)∆M = ∆M′ψ},

and the corresponding category of left U -comodules and left U -comodule morphisms will be denoted
U -Comod.

2.3.3 Examples (i ) Obviously, the k-module U underlying a left bialgebroid is both a left and right U -
comodule through the left coproduct.

(ii ) In particular (and in contrast to the situation of U -modules), the base algebra A carries both right and
left coaction. Let σ ∈ G`U be a grouplike element. Then

A∆a = t`(a)σ and ∆Aa = s`(a)σ, a ∈ A, σ ∈ G`U, (2.3.7)

define a right and left U -comodule structure on A, which we shall refer to as induced by σ.

Furthermore, on any right U -comodule one can additionally define a left A-action

an := n(0)ε(n(1)t
`a), a ∈ A,n ∈ N, (2.3.8)

being the unique action that turnsN into anAe-module and with respect to which N∆ becomes anAe-module
morphism

N∆ : N → N ×A U := {
∑
i

ni ⊗A ui ∈ N ⊗A U |
∑
i

ani ⊗ ui =
∑
i

ni ⊗ uis`a, ∀a ∈ A} (2.3.9)

to the Takeuchi product of N with U . That means, for a, b ∈ A and n ∈ N one obtains the identities

N∆(anb) = n(0) ⊗A t`bn(1)t
`a,

an(0) ⊗A n(1) = n(0) ⊗A n(1)s
`a.

(2.3.10)

Analogous considerations hold for left U -comodules M : one has an additional right A-action

ma := ε(m(−1)s
`a)m(0),

and as a result gets the coaction as an Ae-module morphism into yet another Takeuchi product

∆N : M → U ×AM := {
∑
i

ui ⊗A mi ∈ U ⊗AM |
∑
i

uit
`a⊗mi =

∑
i

ui ⊗mia, ∀a ∈ A},

hence satisfying the identities

∆M(amb) = s`am(−1)s
`b⊗A m(0),

m(−1) ⊗A m(0)a = m(−1)t
`a⊗A m(0).
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One can then prove (see [B3, Thm. 3.18] and [Schau1, Prop. 5.6]) that, say, the category Comod-U of right
U -comodules is monoidal such that the forgetful functor Comod-U → (Aop)e-Mod is monoidal (and
similar for U -Comod): for any two comodules N,N ′ ∈ Comod-U , their tensor product N ⊗Aop N ′ is a
right U -comodule by means of the coaction

N⊗AN ′∆ : N ⊗Aop N ′ → (N ⊗Aop N ′)⊗A U,
n⊗Aop n′ 7→ n(0) ⊗Aop n′(0) ⊗A n(1)n

′
(1),

(2.3.11)

where
N ⊗Aop N ′ := N ⊗k N′/span{an⊗k n′ − n⊗k n′a | a ∈ A} (2.3.12)

is a right A-module by (n⊗Aop n′)a = na⊗Aop n′. The map N⊗AN ′∆ is easily checked to be well-defined.
Turning the tensor product around to avoid Aop, this appears to be equivalent to a right U -coaction

N⊗N ′∆ : N ⊗A N ′ → (N ⊗A N ′)⊗A U, n⊗A n′ 7→ n(0) ⊗A n′(0) ⊗A n
′
(1)n(1),

but for technical reasons in later sections and also because it is the analogue to the form which is standard
for bialgebras we will prefer (2.3.11). All statements can also be made mutatis mutandis for the category
U -Comod.

2.4 Homological Coalgebra for Left Bialgebroid Comodules

In this section we discuss the notion of cotensor product with its derived functor Cotor for U -comodules.
This will be of importance for our cyclic (co)homology computations in Chapter 5 and 6. Here, the term
‘homological coalgebra’ [Do] refers to the corresponding standard notions for k-coalgebras (see also [EMo]),
which we transfer to the categories U -Comod and Comod-U for a left bialgebroid U .

2.4.1 Theorem Let U be a left bialgebroid. If �U is flat over A, then the category Comod-U is abelian.
The same statement can be made about U -Comod if U� is flat.

PROOF: The theorem appears in [Ra] in the special situation U and A are commutative, but can be
generalised without major changes to the present situation: the proof relies entirely on standard arguments
from homological algebra, so we omit the details. 2

2.4.2 Definition Let U be a left bialgebroid, and take M ∈ U -Comod and N ∈ Comod-U .

(i ) The cotensor product of N and M over U is the A-module defined by the exact sequence

0 // N UM // N ⊗AM
N∆⊗idM−idN⊗∆M // N ⊗A U ⊗AM.

(ii ) Consider the base algebra A as a right U -comodule as in (2.3.7). The subspace

A UM = {m ∈M | |∆Mm = σ ⊗A m} ⊂M, (2.4.1)

where σ ∈ G`U is a grouplike element, will be called the subspace of left bialgebroid (left) invariants
of M .

Form the terminology and (2.3.7) it is clear that one may analogously introduce left bialgebroid right invari-
ants on a right U -comodule N .

2.4.3 Lemma Let M,M ′ ∈ U -Comod be left U -comodules, with AM finitely generated projective over
A. In such a case

(i ) Hom(A,−)(M,A) is a right U -comodule,

(ii ) ComU (M,M ′) = Hom(A,−)(M,A) UM
′, e.g. ComU (A,M ′) = A UM

′.
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PROOF: Part (i): let e1, . . . , en be a generating set of M . Hence, there are elements e1, . . . , en in M∗ :=
Hom(A,−)(M,A) such that each elementm ∈M can be decomposed asm =

∑n
i=1 e

i(m)ei. Now consider
the map

ζ : Hom(A,−)(M,A)→ Hom(A,−)(M, �U), f 7→ mUop(idU ⊗ t`f)∆M .

Using the isomorphism

ξ : Hom(A,−)(M, �U)→ (Hom(A,−)(M,A))A ⊗ �U, ψ 7→
n∑
i=1

ei ⊗A ψ(ei),

we obtain a map

∆∗M : M∗ = Hom(A,−)(M,A)→ (Hom(A,−)(M,A))A ⊗ �U, f 7→
n∑
i=1

ei ⊗A (ζf)(ei),

and we claim that this defines a rightU -coaction onM∗, where Hom(A,−)(M,A) is seen as a rightA-module
with actionRA : (f, a) 7→ fa in the standard way. One verifies counitality as follows. For f ∈M∗, m ∈M ,
applying the inverse ξ−1 : (g ⊗ u)(m) 7→ g(m)u, we obtain

mRA(id⊗ ε)∆∗Mf =

n∑
i=1

(
ei ⊗A ε(ei(−1))f(ei(0)

)
(m) =

n∑
i=1

(
ei ⊗A f(ei)

)
(m) = f(m),

since M ∈ U -Comod. Also, coassociativity is straightforward:

(∆∗M ⊗ id)∆∗Mf =

n∑
i,j=1

ej ⊗A t`ei(ej(0))ej(−1) ⊗A t
`f(ei(0))ei(−1)

=

n∑
i,j=1

ej ⊗A ej(−1) ⊗A t
`f(ei(0))s

`ei(ej(0))ei(−1)

=

n∑
i,j=1

ej ⊗A ej(−1) ⊗A t
`f((ei(ej(0))ei)(0))(e

i(ej(0))ei)(−1)

=

n∑
j=1

ej ⊗A ej(−2) ⊗A t
`f(ej(0))ej(−1)

=

n∑
j=1

(idM∗ ⊗∆`)(idM∗ ⊗mUop)(idM∗ ⊗ idU ⊗ t`f)(idM∗ ⊗∆M )(ej ⊗A ej)

= (id⊗∆`)∆
∗
Mf.

It remains to show the A-module morphism property. For a ∈ A,

∆∗M (fa) =

n∑
i=1

ei ⊗A t`(f(ei(0))a)ei(−1)

=

n∑
i=1

ei ⊗A t`at`(f(ei(0)))ei(−1) = f(0) ⊗ t`af(1).

Part (ii) can be shown exactly as in [Ra, Lem. A.1.1.6]. 2

As a consequence of part (ii), that is,

A UM ' ComU (A,M) = {f ∈ Hom(A,−)(A,M)|(id⊗ f)∆A = ∆Mf},

applying the isomorphism Hom(A,−)(A,M) ' M, f 7→ f(1A) =: m and using ∆A from (2.3.7) for a
grouplike element σ ∈ G`U , we obtain

σ ⊗A m = (id⊗ f)∆A = ∆Mf(1A) = m(−1) ⊗A m(0) = ∆Mm,

as before.



34 CHAPTER 2. HOPF ALGEBROIDS

2.4.4 Lemma Let I be an injective A-module. Then U ⊗A I is an injective (left) U -comodule; hence the
category of U -Comod has enough injectives.

PROOF: Also this lemma is a generalisation of a result in [Ra] to noncommutative U and A, and the proof
can be taken over with only minor modifications. For a left A-module M with action LA : (a,m) 7→ am,
define a left U -coaction on U ⊗A M by ∆U⊗N := ∆` ⊗ idM . With Lemma 2.4.3(ii) we get for any N ∈
U -Comod an isomorphism

θ : Hom(A,−)(N,M)→ ComU (N,U ⊗AM), f 7→ (idU ⊗ f)∆N

with inverse θ−1 : ψ 7→ mLA(ε⊗ idM )ψ for any ψ ∈ ComU (N,U ⊗AM). To show that U ⊗A I is injective
we need to show now that if P is a U -subcomodule of N (i.e. both an A-submodule and a subcomodule in
the conventional sense), then ψ ∈ ComU (P,U ⊗A I) extends to a map in ComU (N,U ⊗A I). We have

ComU (P,U ⊗A I) ' Hom(A,−)(P, I) ⊂ Hom(A,−)(N, I) ' ComH(N,U ⊗A I)

as subgroups by injectivity of I . Since the category of left A-modules already has enough injectives, one can
therefore construct enough injectives in U -Comod as well. 2

Now we are in a position to finally define the following derived functors, analogously as in [Do, EMo]:

2.4.5 Definition (i ) For two left U -comodules M,M ′ ∈ U -Comod, the group ExtiU (M,M ′) is the i-th
right derived functor of ComU (M,M ′), as functor in M ′.

(ii ) For M ∈ U -Comod and N ∈ Comod-U , the group CotoriU (N,M) is the i-th right derived functor
of N UM , as functor in M .

As already mentioned, these notions will be used in Chapters 5 and 6.

2.5 Right Bialgebroids
In this section we proceed with the ingredients of a Hopf algebroid as mentioned in aspect (2) at the beginning
of this chapter.

If one wants to turn a bialgebra into a Hopf algebra, one needs to hunt for an antipode, i.e. for a k-
bialgebra morphism U → Uop

coop into the opposite and coopposite bialgebra. If one aims to naturally gener-
alise this idea to the case of (left) bialgebroids, one observes that the ‘opposite’ bialgebroid (see below) does
not fulfill the left bialgebroid axioms any more, but rather the ones of a ‘mirrored’, or opposite version of it,
i.e. of a right bialgebroid. These objects were introduced in [KSz] for the first time, confer also e.g. [B3] for
the subsequent definition.

Let B be a k-algebra. Similarly as for left bialgebroids, we consider a Be-ring V given by an k-algebra
map ηV = η : Be → V with source and target maps s := η(− ⊗k 1B) and t := η(1B ⊗k −). In contrast
to left bialgebroids, one now considers the right Be-module structure (v, b ⊗k b̃) 7→ vη(b ⊗k b̃) on V , and
forms correspondingly the tensor product

V ⊗B V :=V ⊗k V/span{vη(b⊗k 1)⊗ v′ − v ⊗ v′η(1⊗k b) | b ∈ B, v, v′ ∈ V }
=V ⊗k V/span{vs(b)⊗ v′ − v ⊗ v′t(b) | b ∈ B, v, v′ ∈ V }.

(2.5.1)

Again, V ⊗B V becomes a (B,B)-bimodule in a standard way (see (A.1.1)), that is (b, v ⊗B v′, b̃) 7→
vt(b)⊗B v′s(b̃), and as before, V ⊗B V does not carry a well-defined algebra structure. One correspondingly
introduces the (right) Takeuchi product of V with itself, i.e. the k submodule V ⊗B V ⊂ V ×B V given by

V ×B V := {
∑
i

vi ⊗B v′i ∈ V ⊗B V |
∑
i

s(b)vi ⊗B v′i =
∑
i

vi ⊗B t(b)v′i, ∀b ∈},

and one easily verifies that now this is a Be-ring via factorwise multiplication, with unit element 1V ⊗B 1V
and ηV×BV (b⊗k b̃) = t(b̃)⊗B s(b).

2.5.1 Definition A right B-bialgebroid or ×B-bialgebra is a k-module V which carries simultaneously the
structure of a Be-ring (V, sr, tr) and a B-coring (V,∆r, ∂), subject to the following compatibility axioms:
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(i ) The (B,B)-bimodule structure in the B-coring is related to the Be-ring (V, sr, tr) by

b I v J b̃ := vsr(b̃)tr(b) = vηr(b̃⊗ b), b, b̃ ∈ B, v ∈ V, (2.5.2)

and we refer to this structure as IVJ . In particular, we write VJ ⊗ IV := V ⊗B V .

(ii ) Considering the bimodule IVJ , the (right) coproduct ∆r is a (unital) k-algebra morphism taking
values in V ×B V .

(iii ) For all b, b̃ ∈ B, v, v′ ∈ V , the (right) counit has the property

∂(vηr(b̃⊗ b)) = b∂(v)b̃ and ∂(vv′) = ∂(sr(∂v)v′) = ∂(tr(∂v)v′). (2.5.3)

For the right coproduct, we will use the Sweedler notation ∆rv = v(1) ⊗B v(2) with upper indices so as not
to confuse it with the left coproduct for objects that carry both structures. Here V clearly acts on its base
algebra B from the right in a canonical way, namely

bv := ∂(sr(b)v) = ∂(tr(b)v), b ∈ B, v ∈ V, (2.5.4)

where the remaining two B-module structures �V� , given by

b � v � b̃ := ηr(b⊗ b̃)v = sr(b)tr(b̃)v, (2.5.5)

appear. Similarly as for left bialgebroids, one has

∆rs
rb = 1⊗B srb, ∆rt

rb = trb⊗B 1, for b ∈ B,

as well as

∆r(b I v J b̃) = (b I v(1))⊗B (v(2)
J b̃), ∆r(b � v � b̃) = (v(1)

� b̃)⊗B (b � v(2)),

and the comonoid identities in this case read

mV (idV ⊗ sr∂)∆r = mV op(tr∂ ⊗ idV )∆r = idV , (2.5.6)

that is, using the Sweedler notation for the right coproduct, we have

v(1)sr∂v(2) = v(2)tr∂v(1) = idV , v ∈ V.

2.5.2 Remarks (i ) The ‘opposite’ of a left bialgebroid U = (U,A, s`, t`,∆`, ε) is defined as Uop :=
(Uop, A, t`, s`,∆`, ε). This can be shown to be a right bialgebroid, whereas its ‘coopposite’ given by
Ucoop := (U,Aop, t`, s`,∆coop

` , ε) with ∆coop
` seen as a map U → �U ⊗Aop U� , h 7→ u(2)⊗Aop u(1)

remains a left bialgebroid. Note that in both cases source and target map interchange their rôles. In
total, the object Uop

coop will be a right bialgebroid, as announced above.

(ii ) The idea of a right bialgebroid for the first time seems to appear in [KSz]. The necessity of such
an analogous bialgebroid structure with some sort of ‘opposite’ properties became clear to us while
considering Lie-Rinehart homology and attempting to introducing antipodes for (the left bialgebroid
associated to) a Lie-Rinehart algebra; see below.

(iii ) One may be tempted to think that the concepts of left and right counits coincide whenever the base
algebra is commutative. This is, however, not the case, not even if source and target map are equal or
trivial (in a context-determined sense), as the following examples will reveal.

2.5.1 Right Bialgebroid Connections
2.5.3 The Monoidal Category Mod-V Of course, all concepts from Sections 2.3 and 2.4 dealing with
bialgebroid modules and comodules could be repeated applying all statements to the opposite Ae-ring. We
will refrain from doing so in detail and rather refer to [B3]. However, for later use, let us explicitly mention
that any N in the category Mod-V of right V -modules for a right bialgebroid V carries its induced right
Be-structure by

b̃nb := nsrbtr b̃, n ∈ N, b, b̃ ∈ B.
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The category Mod-V acquires a monoidal structure by deploying the right coproduct, i.e., for N,N ′ ∈
Mod-V , their tensor product over B is in Mod-V , with right V -action

(n⊗B n′)v := nv(1) ⊗B n′v(2), n ∈ N,n′ ∈ N ′, v ∈ V.

Similarly as before, one also has B ∈Mod-V , with right V -action

bv := ∂(srbv) = ∂(trbv), b ∈ B, v ∈ V,

and the Leibniz rule this time reads

(bb̃)v = (bv(1))(b̃v(2)), b, b̃ ∈ B, v ∈ V.

One may also vary the notion of a right V -module: consider e.g. a Be-module N and define a right V -
action onN such that the inducedBe-module structure coincides with the a priori given one. For example,B
itself already carries a natural Be-module structure (by left and right multiplication) and one may try to find
a right V -module structure on it which does not originate from the right counit ∂. For certain modules N ,
we will come back to a situation like that in Section 4.7. Starting at this point, one also may introduce right
V -connections, which are called flat if they specialise with right V -module structures. We will encounter
these constructions again e.g. in Proposition 3.1.14 and Section 4.2.

2.5.4 Definition Let N be a Be-module. A right V -connection on N is a map

∇r : N → Hom(B,B)( IVJ , N),

such that the Leibniz rule

∇rv(nb) = ∇rsrbvn, ∇rv(bn) = ∇rtrbvn, v ∈ V, n ∈ N, b ∈ B (2.5.7)

holds. A right V -connection is called flat if ∇rv∇rv′ = ∇rv′v for all v, v′ ∈ U .

One easily verifies that

∇rv(nb) =
(
∇rv(1)n

)
∂srbv(2), ∇rv(bm) = ∂(trbv(1))

(
∇rv(2)m

)
.

Hence for a primitive element Y ∈ P rU one obtains the more familiar formulae

∇rY (nb) = n(bY ) + (∇rY n)b, ∇rY (bn) = b∇rY n+ (bY )n, (2.5.8)

where, as in (2.5.4), we denoted the canonical right V -action on B by bY = ∂(sr(b)Y ) = ∂(tr(b)Y ).

2.5.5 In the particular case N = B, where B carries the natural right Be-module structure by multiplication,
evaluating a right connection on 1B ∈ B defines a k-linear operator D ∈ Hom(B,B)( IUJ , B) by

Dr : V → B, v 7→ ∇rv1B .

If the connection is flat, we have for all v, v′ ∈ V

Dr(vv′) = ∇rvv′1B = ∇rv′∇rv1B = ∇rv′Drv

= ∇rsr(Drv)v′1B = ∇rtr(Drv)v′1B

= Dr(sr(Drv)v′) = Dr(tr(Drv)v′),

(2.5.9)

which is the property (2.5.3) of a right counit. In the terminology of [B3], a map V → B with such a property
is called a right character for the B-rings (V, sr) and (V, tr), respectively.

2.6 Hopf Algebroids
As intimated at the beginning of this chapter, a Hopf algebroid is simultaneously both a left and a right bial-
gebroid, with an antipode intertwining these structures. The following definition is due to Böhm-Szlachányi
[BSz2, B1], cf. in particular [B3].
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2.6.1 Definition Let A,B be two k-algebras and H a k-module. A (double-sided) Hopf algebroid structure
on H consists of

(1) a left bialgebroid structure (H,A, s`, t`,∆`, ε) on H over A,

(2) a right bialgebroid structure (H,B, sr, tr,∆r, ∂) on H over B, such that the underlying k-algebra
structure on H is the same as in (1),

(3) a k-module map S : H → H .

These structures are subject to the following compatibility axioms:

(i )
s`εtr = tr, t`εsr = sr, sr∂t` = t`, tr∂s` = s`. (2.6.1)

(ii ) Twisted coassociativity holds, that is to say

(∆` ⊗ idH)∆r = (idH ⊗∆r)∆` and (∆r ⊗ idH)∆` = (idH ⊗∆`)∆r. (2.6.2)

(iii )
S(t`ah trb) = srbShs`a a ∈ A, b ∈ B, h ∈ H. (2.6.3)

(iv )
mH(S ⊗A idH)∆` = sr∂ and mH(idH ⊗B S)∆r = s`ε. (2.6.4)

We call S the antipode of the Hopf algebroid.

If particular reference is needed, we will denote the underlying left and right bialgebroid structures of a Hopf
algebroid H by H` and Hr, respectively.

2.6.2 Remarks (i ) Applying ∂ to the first two and ε to the second pair of identities in (2.6.1), one obtains
that A and B are anti-isomorphic, i.e.,

µ := ∂s` : Aop '−→ B, µ−1 := εtr : B
'−→ Aop,

ν := ∂t` : A
'−→ Bop, ν−1 := εsr : Bop '−→ A.

(2.6.5)

Hence the ranges of s` and tr as well as sr and t`, respectively, are coinciding subalgebras in H .

(ii ) In particular, (i) implies that ∆` behaves as follows with respect to the Be-bimodule structure men-
tioned in (2.5.2) and (2.5.5). For h ∈ H, b, b̃ ∈ B,

∆`(b Ih J b̃) = (b Ih(1))⊗A (h(2) J b̃),

∆`(b �h � b̃) = (h(1) � b̃)⊗A (b �h(2)).
(2.6.6)

Likewise for ∆r with respect to (2.1.3) and (2.1.5): for h ∈ H, a, ã ∈ A one has

∆r(a �h � ã) = (a �h(1))⊗B (h(2)
� ã),

∆r(a Ih J ã) = (h(1) J ã)⊗B (a Ih(2)).
(2.6.7)

Introducing a (B,B)-bimodule structure on H ⊗A H by (b, h⊗A h′, b̃) 7→ (b Ih)⊗A (h′ J b̃) and an
(A,A)-bimodule structure on H ⊗B H by (a, h ⊗A h′, ã) 7→ (a �h) ⊗B (h′ � ã), the respective first
equations in (2.6.6) and (2.6.7) say that ∆` is also a (B,B)-bimodule morphism, while ∆r is also an
(A,A)-bimodule morphism. This observation makes axiom (ii) meaningful, the first identity of which
can be expressed as follows,

H

∆r

''OOOOOOOOOOOOOO
∆` // H ⊗A H

idH⊗∆r // H ⊗A (H ⊗B H)

'
��

H ⊗B H
∆`⊗idH // (H ⊗A H)⊗B H,

and likewise for the second identity. As follows from Example 2.3.3(i), the underlying left bialgebroid
H` of H determines both left and right coactions via ∆`; the same is true for the underlying right
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bialgebroid Hr of H with respect to ∆r. Hence in total there are four bialgebroid coactions on H , and
twisted coassociativity states that they all commute with each other. This can be expressed by saying
that the k-module H is both an H`-Hr-bicomodule and an Hr-H`-bicomodule. For future use, let us
mention that twisted coassociativity immediately leads to its ‘higher’ version,

(∆n
` ⊗ id⊗mH )∆m

r = (id⊗nH ⊗∆m
r )∆n

`

(∆n
r ⊗ id⊗mH )∆m

` = (id⊗nH ⊗∆m
` )∆n

r

(2.6.8)

for n,m ∈ N.

(iii ) The axiom (iii) may be expressed by saying that the map S is a morphism of twisted bimodules. That is,
it intertwines the leftAe-module structure (2.1.3) onH` with the right one from (2.1.5), as a morphism
H`

� → H`
J . This is worth mentioning, because (2.1.5) does not explicitly appear in the axioms of

a left bialgebroid. Similarly, it links the right and left Be-module structures (2.5.2) and (2.5.5) of the
right bialgebroid Hr, i.e., it is a morphism IHr → �Hr .

(iv ) The left hand side of the first equation in (2.6.4) is a composition of maps

H
∆` // H� ⊗ �H

S⊗idH // HJ ⊗ �H
mH // H, (2.6.9)

where H� ⊗ �H = H ⊗A H is given as in (2.1.1), whereas

HJ ⊗ �H = H ⊗k H/span{hs`a⊗ h′ − h⊗ s`ah′ | a ∈ A, h, h′ ∈ H}

is in a sense the tensor product naturally associated to the A-ring (H, s`), and mH is to be understood
the multiplication in this ring. The composition (2.6.9) is well-defined due to (iii), and a similar
consideration holds for the second equation in (2.6.4). Observe that in this second case mH refers to
multiplication in the B-ring (H, sr), despite of the identical notation.

At the latest at this point one recognises the need for two kinds of Sweedler notations. Using lower
indices for the left and upper ones for the right coproduct, (2.6.4) reads

Sh(1)h(2) = sr∂h and h(1)Sh(2) = s`εh, h ∈ H.

(v ) Although not explicitly required in the definition, we will usually assume S to be invertible.

2.6.3 Examples For examples one may jump directly to Chapter 4.

See also [BSz2, B1] for further details on Hopf algebroids, discussion, and many examples, and [B3] for
a comparison with alternative notions.

The fact that the antipode of a Hopf algebra is an anti-homomorphism for the algebra structure and an
anti-cohomomorphism for the coalgebra structure has the following counterpart in the bialgebroid framework
[BSz2, B3].

2.6.4 Proposition Let H be a Hopf algebroid with structure maps as before.

(i ) The antipode S is a homomorphism of both Ae-rings (H, s`, t`) → (Hop, srµ, trµ) and Be-rings
(H, sr, tr) → (Hop, s`ν−1, t`ν−1), where the isomorphisms from (2.6.5) were used. In particular, S
is an k-algebra morphism H → Hop.

(ii ) Likewise, S is a cohomomorphism of A-corings (H,∆`, ε) → (H,∆coop
r , ν−1∂) as well as of B-

corings (H,∆r, ∂) → (H,∆coop
` , µε), where ∆coop

r is a map H → H ⊗Bop

H := IH ⊗ HJ '
H ⊗A H by means of ν, and ∆coop

` : H → H ⊗Aop H := �H ⊗H� ' H ⊗B H via µ.

In particular, if H` and Hr denote the underlying left and right bialgebroids of H , respectively, the pair
(S, ∂s`) is a morphism H` → (Hr)op

coop of left bialgebroids and (S, εsr) is a morphism Hr → (H`)op
coop of

right bialgebroids.

2.6.5 Remark (i ) If the antipode is invertible, one can make an analogous statement about S−1, cf. [B1,
BSz2]. Moreover, using (i) of the preceding proposition, one may now consider S both as an (A,A)-
bimodule morphism IH`

� → �H`
J and a (B,B)-bimodule morphism IHr

� → �Hr
J .
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(ii ) We want to stress here that S being an algebra anti-homomorphism is a consequence of the antipode
axioms in Definition 2.6.1 and also that the antipode is unique [B1] (if it exists), provided left and right
bialgebroid structures were given.

(iii ) If S2 =id, one obtains µ=ν and hence a canonical identification of Aop with B.

Define the maps

S⊗2
A :H� ⊗A �H → HJ ⊗B IH, h⊗A h′ 7→ Sh′ ⊗B Sh
SB⊗2 :HJ ⊗B IH → H� ⊗A �H, h⊗B h′ 7→ Sh′ ⊗A Sh,

where the tensor products (2.1.1) and (2.5.1) are used. These maps also have ‘higher’ analogues for n factors,
consisting in totally reversing the order followed by applying the antipode. The preceding proposition can
then be given as a table by (ignore the right hand side if the antipode is not invertible):

sr∂s` =Ss` s`εsr =Ssr sr∂ t` =S−1s` s`ε tr =S−1sr

tr∂s` =St` t`εsr =Str tr∂ t` =S−1t` t`ε tr =S−1tr

∂s`ε= ∂S εsr∂= εS ∂ t`ε= ∂S−1 ε tr∂= εS−1

S⊗2
A ∆` = ∆rS SB⊗2∆r = ∆`S (SB⊗2)−1∆` = ∆rS

−1 (S⊗2
A )−1∆r = ∆`S

−1.

(2.6.10)

We now collect a list of basic technical identities involving the antipode (which can be ignored on a first
reading; again, ignore the last three lines if the antipode is not invertible).

2.6.6 Lemma For a Hopf algebroid H with the above structure maps, the following identities hold.

mH(S ⊗ s`ε)∆` = S, mH(sr∂ ⊗ S)∆r = S,
mHop(S2 ⊗ t`εS2)∆` = S2, mHop(tr∂S2 ⊗ S2)∆r = S2,

mHop(S2 ⊗ S)∆` = tr∂S2, mHop(S ⊗ S2)∆r = t`εS2,

mHop(idH ⊗ S−1)∆` = tr∂, mHop(S−1 ⊗ idH)∆r = t`ε,
mHop(t`ε⊗ S−1)∆` = S−1, mHop(S−1 ⊗ tr∂)∆r = S−1,
mH(S−1 ⊗ S−2)∆` = sr∂S−2, mH(S−2 ⊗ S−1)∆r = s`εS−2.

(2.6.11)

Here mHop is the multiplication in the opposite ring of H .

PROOF: All identities follow from a straightforward computation using (2.6.10), (2.6.4) as well as the
comonoid identities (2.1.8) and (2.5.6). As an example, we prove

mHop(S−1 ⊗ tr∂)∆r = mH(tr∂S ⊗ idH)∆`S
−1

= mH(tr∂s`ε⊗ idH)∆`S
−1

= mH(s`ε⊗ idH)∆`S
−1 = S−1.

2

2.6.7 Remarks (i ) For the identities given in the preceding lemma, the same comment applies we made
in Remark 2.6.2(iv): strictly speaking, the operations mH and mHop refer to multiplication in one of
the various underlying ring structures. For example, the left hand side of mHop(S−1 ⊗ idH)∆r = t`ε
can be decomposed as

H
∆` // HJ ⊗ IH

S−1⊗idH // H� ⊗ IH
mHop // H,

where HJ ⊗ IH = H ⊗B H is given as in (2.5.1), whereas

H� ⊗ IH = H ⊗k H/span{tr(b)h⊗ h′ − h⊗ h′tr(b) | b ∈ B, h, h′ ∈ H}

is the tensor product naturally associated to the Bop-ring (H, tr), and mHop is to be understood as
multiplication in this ring.
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(ii ) If (S,mS) is a k-algebra and (C,∆C) a k-coalgebra for some commutative ring k, the space
Homk(C, S) can be given a k-algebra structure by means of the convolution product (f ∗ f ′) =
mS(f ⊗ f ′)∆C for f, f ′ ∈ Homk(C, S) (see e.g. [Str]. We do not address the question in detail how
this can be transferred to the case of monoids and comonoids in bimodule categories (see, however,
[B3, Section 4.5.2]), but the first line of equalities in the preceding Lemma reflects that ε and ∂ are
counits, that is, units in some generalised convolution algebra. However, in the first equation S is seen
as an (A,A)-bimodule map on IH`

� , whereas ε is an (A,A)-bimodule map with respect to �H`
�

(cf. (2.1.3) and (2.1.5) for the notation). This gives a hint why ε is only a ‘right unit’ for S; analogously
in the second case, S is an (B,B)-bimodule map on IHr

� and ∂ on IHr
J (cf. (2.5.2) and (2.5.5)

for the notation). In these terms, also (2.6.4) can be reformulated saying that S is a convolution inverse
to idH , but from left and right in two different ways (involving different coalgebra structures and over
two different base algebras). As a consequence and in contrast to Hopf algebras, in general there is no
information for terms of the form, say, h(1)Sh(2) or Sh(1)h(2).

2.6.8 Alternative Formulation Evidently, constructing a Hopf algebroid by left and right bialgebroid struc-
tures plus an antipode leads to some redundancy. Alternatively, one may start with a left bialgebroid
(U,A, s`, t`,∆`, ε) only, plus a bijective anti-algebra isomorphism S : U → U subject to

(i ) St` = s`,

(ii ) mU (S ⊗ idU )∆` = t`εS,

(iii ) S⊗2
A ∆`S

−1 = (SA
op

⊗2 )−1∆`S

(iv ) (∆` ⊗ idH)S⊗2
A ∆`S

−1 = (S⊗2
A ∆`S

−1 ⊗ idH)∆`.

It then follows from Proposition 2.6.4 that (up to a trivial bialgebroid isomorphism) the set

(H,B, Ss`ν−1, s`ν−1, S⊗2
A ∆`S

−1, νεS−1)

constitutes a right bialgebroid (where ν : Aop → B is an arbitrary isomorphism). Together with the given
data of a left bialgebroid and the map S this yields a Hopf algebroid, as in Definition 2.6.1. However, for an
arbitrary isomorphism µ : Aop → B, also

(H,B, t`µ−1, S−1t`µ−1, (SB⊗2)
−1

∆`S, µεS),

fulfills the requirements; see [BSz2, Prop. 4.2] for yet another formulations of Hopf algebroids in this sense,
and their mutual equivalence. However, in our opinion the version cited here serves best for maintaining a
certain transparency in Hopf-cyclic (co)homology.

We already mentioned that if left and right bialgebroid structures are given, the antipode is unique if
it exists. However, in case that only a left bialgebroid structure is given, there is a certain ambiguity in
the choice of the antipode (which corresponds to the choice of certain connections in Section 4.2). This is
different from what is known for (weak) Hopf algebras and is also reflected in the following definition, which
allows Hopf algebroid isomorphisms that ‘ignore’ the antipode.

2.6.9 Definition A Hopf algebroid (iso)morphism (H,S) → (H ′, S′) is an (iso)morphism (φ, ψ) of the
underlying left bialgebroid structure. It is called strict if ψ commutes with the respective antipodes, that is,
S′ψ = ψS.

2.6.10 Primitive Elements Formally, a Hopf algebroid has two kinds of primitive elements (cf. §2.1.5) with
respect to ∆` and ∆r, denoted P `H and P rH . We have

SX = −X + sr∂X ∀X ∈ P `H (2.6.12)
SX ′ = −X ′ + s`εX ′ ∀X ′ ∈ P rH, (2.6.13)

since P rH is generally not contained in ker ε, and P `H is not in ker ∂ either, again in contrast to the case of
Hopf algebras.
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2.6.11 Grouplike Elements Similarly, one has two kinds of grouplike elements (cf. §2.1.5) for H with
respect to the two underlying bialgebroids, denoted by G`H and GrH . These may be called left and right
grouplike, respectively. Proposition 2.6.4 then entails

σ ∈ G`H ⇐⇒ Sσ ∈ GrH.

However, only the set GH := G`H ∩GrH forms a group.

2.6.12 Proposition The sets G`U and GrV for left and right bialgebroids U and V , respectively, are multi-
plicative monoids with unit 1U and 1V , respectively. If H is a Hopf algebroid, only an element σ that is both
left and right grouplike has (two-sided) inverse Sσ, hence the set GH = G`H ∩GrH is a group.

Compare, however, the notions of weakly grouplike elements in [Mrč2] and groupoidlike elements in
[Kap].

2.6.13 Comparison with Alternative Definitions

(i ) In [Lu], a Hopf algebroid is defined to be a certain ‘bialgebroid’ with a concept of an antipode plus
some extra data. The definition of a bialgebroid in [Lu] appears almost identical to the one we use
here, the only difference being that the axiom (2.1.4) is replaced by asking ker ε to be a left ideal
in H . However, this last statement can be shown [BrzMi] to be equivalent to (2.1.4). Next, such a
bialgebroid (H,A, s, t,∆, ε) is equipped with an anti-algebra homomorphism S : H → H , subject to
the properties

(a) St = s,

(b) mH(S ⊗ idH)∆ = tεS,

(c) mH(idH ⊗ S)γ∆ = sε, where a section γ : H ⊗A H → H ⊗ H of the natural projection
H ⊗H → H ⊗A H is required to give a meaning to this identity,

is called a Hopf algebroid in [Lu].

(ii ) In [KhR3] a Hopf algebroid (baptised ‘para-Hopf algebroid’ there) consists of a sextuple
(H,A, s, t,∆, ε) fulfilling the left bialgebroid axioms we use here, again without (2.1.4). Furthermore,
one requires a map T : H → H obeying the conditions

(a) T : H → H is an anti-algebra homomorphism,

(b) Tt = s,

(c) mH(T ⊗ idH)∆ = tεT ,

(d) T 2 = idH , implying however [KhR3, Lem. 2.1] the ‘missing’ condition (2.1.4), i.e., ε(h′h) =
ε(h′s(h)) = ε(h′t(h)),

(e)
(Th(1))(1)h(2) ⊗A (Th(1))(2) = 1⊗A Th. (2.6.14)

Compared to the formulation in §2.6.8, the notion of Hopf algebroid as given in (i) above has the obvious
handicap that the additional antipode axiom (i)(c) requires a section γ of the natural projection H ⊗k H →
H� ⊗A �H , which does not come into play quite naturally and seems to be deprived of any geometrical
meaning or justification; see [BSz2, KSz, B1] for a discussion of this complex of problems for bialgebroids
associated to a depth-2 Frobenius extension of rings. There, the authors also give an example of Hopf
algebroid which is not a Hopf algebroid in the sense of point (i) above. Finally, as observed in [KhR3], this
approach does not seem to be suitable for defining (Hopf-)cyclic cohomology. As for the second approach
(point (ii) above), it was shown in [BSz2] to be contained in the concept we use here (for an invertible
antipode), but, as we think, also has certain disadvantages in dealing with Hopf-cyclic homology; see §5.2.12
for a discussion.

2.6.14 Hopf Algebroids versus Left Hopf Algebroids For a Hopf algebroid H with structure maps as
before, one checks that [BSz2]

β−1(h⊗A h′) = h+ ⊗Aop h−h
′ = h(1)⊗AopSh(2)h′, (2.6.15)
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is an inverse of the Hopf-Galois map (2.2.1). Hence every (Böhm-Szlachányi-)Hopf algebroid is a left Hopf
algebroid over A (cf. Definition 2.2.1). However, the opposite implication is not true, as we will show in
Example 4.2.13: this answers a question posed in [B3] whether every left Hopf algebroid over A is the
constituent left bialgebroid in a Hopf algebroid.

As the reader may expect, the Hopf-Galois map (2.2.1) is not the only possibility of such a kind, given the
abundance of tensor products in this context. Indeed, in [BSz2, Prop. 4.2] a Hopf algebroid with invertible
antipode is equivalently characterised as follows: a pair of a left bialgebroid over A and a right bialgebroid
over B ' Aop, subject to (2.6.1) and (2.6.2), such that not only (2.2.1) is bijective, but also the map

α : �U ⊗Aop UJ → U� ⊗A �U, u⊗Aop v 7→ v(1)u⊗A v(2). (2.6.16)

For a Hopf algebroid with invertible antipode, the inverse α−1 is in this case given by u ⊗A v 7→
S−1(v(1))u⊗Aop v(2).

However, both β and α use the left coproduct of the underlying left bialgebroid. We expect that one
can equivalently characterise a Hopf algebroid by β and a Hopf-Galois map α′ which rather uses some right
coproduct. More precisely, a left Hopf algebroid and a right Hopf algebroid (subject to some compatibility
conditions) should determine a (double-sided) Hopf algebroid: hence our new terminology for ×A-Hopf
algebras.



Chapter 3

Constructions

3.1 Left and Right Duals of Bialgebroids
The main result in this section is to show that the classical correspondence between modules and comodules
for algebras and their Hom-duals extends to more possibilities when considering bialgebroids, as we show
in Theorem 3.1.11 and Proposition 3.1.9. This is a consequence of the fact that each left bialgebroid comes
equipped with two natural duals. Both of them can be given—under certain projectivity assumptions—a right
bialgebroid structure [KSz, Propositions 2.5 and 2.6], as we recall below, cf. §3.1.6.

Recall that the notion of Hopf algebra is self-dual [Sw1], so if one can define a dual of H (which is e.g.
always possible if H is finite-dimensional, for k a field), then it is automatically a Hopf algebra. However,
this is not necessarily the case for Hopf algebroids, for which duality is in fact considerably more intricate
(see [BSz2]), which is why we do not treat this complex of problems here. Nevertheless, we conclude this
section by an analogue of the classical statement that a character on a Hopf algebra correspond to a grouplike
element on its dual (see Proposition 3.1.14).

Since any bialgebroid carries four natural A-module structures, we often take the liberty of somewhat
redundantly indicating the module structure in question in the hope of increasing clarity. For further notation
see the conventions on page 9 at the end of the Introduction as well as §A.1.1 for standard constructions on
bimodules (implicitly used in the following).

3.1.1 Definition Let U be a left bialgebroid with structure maps as before.

(i ) The left dual of U is the space

U∗ := Hom(A,−)( �U,AA) = {φ : U → A | φ(s`au) = aφ(u),∀ a ∈ A, u ∈ U}.

(ii ) The right dual of U is the space

U∗ := Hom(−,A)(U� , AA) = {ψ : U → A | ψ(t`au) = ψ(u)a,∀ a ∈ A, u ∈ U}.

3.1.2 Notation We write φ(u) =: 〈φ, u〉 for φ ∈ U∗, u ∈ U , and also ψ(u) =: 〈ψ, u〉 for φ ∈ U∗, u ∈ U ,
whenever we think that this may increase clarity.

Before we proceed, we will explain how these duals can be made into bialgebroids, following [KSz].
To this end, we give the details of their ring structures, their various A-modules structures and their coring
structures.

3.1.3 Ring Structures on U∗ and U∗ We recall from [KSz] that both duals can be equipped with a product
structure:

(i ) ‘Target’ transposing of the comonoid structure of U yields the following monoid structure mU∗ on U∗
with the (two-sided) unit ε:

mU∗(φ⊗ φ′)(u) = (φφ′)(u) := φ′
(
mUop(id⊗ t`φ)∆`u

)
, (3.1.1)

where φ, φ′ ∈ U∗, u ∈ U .

43
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(ii ) ‘Source’ transposing of the comonoid structure of U yields the following monoid structure mU∗ on
U∗ with the (two-sided) unit ε:

mU∗(ψ ⊗ ψ′)(u) = (ψψ′)(u) := ψ′
(
mU (s`ψ ⊗ id)∆`u

)
, (3.1.2)

where ψ,ψ′ ∈ U∗, u ∈ U .

3.1.4 Remark There are some subtleties attached to the fact thatmU∗ andmU∗ are well-defined as maps act-
ing on a certain tensor product of the (left or right) dual with itself. We refer to the proof of Proposition 3.1.9
for the technical details, and in particular to (3.1.16)–(3.1.19) and (3.1.24)–(3.1.26) for further explanation
why these ring structures make sense.

3.1.5 A-Module Structures on Left and Right Duals
Beyond the product structure on the duals, we also want them to become Ae-rings, hence we equip them

with source and target maps. As a straightforward consequence of how Hom-spaces of bimodules become
(bi)modules again (cf. §A.1.1), left and right duals carry four A-module structures each:

(i ) In case of the left dual U∗, one encounters the following four situations. Let u ∈ U, φ ∈ U∗ and
a ∈ A.

(a) The left dual source map sr∗ is defined as

sr∗ : A→ U∗, a 7→ ε(t`(a)(·)) = ε(·)a. (3.1.3)

As in (2.5.2), write φsr∗(a) =: φ J a. Then (φ J a)(u) = (φsr∗(a))(u) = φ(u)a, and this is the A-
module structure that arises from the pair ( �U ,AAA) of A-(bi)modules, cf. §A.1.1. Analogously
to §A.1.1, we denote this situation by ( �U ,AAA) =⇒ U∗ J .

(b) The left dual target map tr∗ is defined as

tr∗ : A→ U∗, a 7→ ε((·)t`(a)). (3.1.4)

As in (2.5.2), write φtr∗(a) =: a Iφ. Hence (a Iφ)(u) = (φtr∗(a))(u) = φ(us`a), and this
corresponds to the situation ( �UJ ,AA) =⇒ IU∗ .

(c) ( I ,�U ,AA) =⇒ U∗ � , given by (φ � a)(u) := φ(ut`a) = (tr∗(a)φ)(u).

(d) ( �U� ,AA) =⇒ �U∗ , given by (a �φ)(u) := φ(t`au) = (sr∗(a)φ)(u).

(ii ) In case of the right dual U∗, things read as follows. Let u ∈ U, ψ ∈ U∗ and a ∈ A.

(a) Define the right dual source map s∗r by

s∗r : A→ U∗, a 7→ ε((·)s`(a)), (3.1.5)

and write ψs∗r(a) =: ψ J a. Hence (ψ J a)(u) = (ψs∗r(a))(u) = ψ(ut`a), corresponding to the
situation ( IU� , AA) =⇒ U∗ J .

(b) Define the right dual target map t∗r by

t∗r : A→ U∗, a 7→ ε(s`(a)(·)) = aε(·), (3.1.6)

and write ψt∗r(a) =: a Iψ. Hence (a Iψ)(u) = (ψt∗r(a))(u) = aψ(u), corresponding to
(U� ,AAA) =⇒ IU

∗ .

(c) (U� ,J , AA) =⇒ �U
∗ , given by (a �ψ)(u) := (s∗r(a)ψ)(u) = ψ(us`a).

(d) ( �U� , AA) =⇒ U∗ � , given by (ψ � a)(u) := (t∗r(a)ψ)(u) = ψ(s`au).

3.1.6 Right Bialgebroid Structures on U∗ and U∗ We recall from [KSz] how the left and right dual can
both be made into a right bialgebroid:
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(i ) If �U is finitely generated projective over A, the left dual U∗ can be given the structure of a right
bialgebroid over A∗ ≡ A with the following structure maps: the Ae-ring structure is determined by
the product (3.1.1) and source and target are as in (3.1.3), (3.1.4). The A-coring structure (U∗,∆

r
∗, ∂∗)

is given by the following (right) coproduct and (right) counit:

∆r
∗ : U∗ → Hom(A,−)( �(UJ ⊗ �U),AA), φ 7→ {u⊗A u′ 7→ φ(uu′)},
∂∗ : U∗ → A, φ 7→ φ(1U ).

(3.1.7)

To see that ∆r
∗ is really a right coproduct, i.e. a map U → U∗ J ⊗ IU∗ , where U∗ J ⊗ IU∗ is defined

with respect to (3.1.3) and (3.1.4), we will rewrite it in a different way that is also more convenient
for our following considerations: by projectivity of �U , elements in U can be decomposed according
to §A.1.2 as u =

∑
i s
`(ei(u))ei, where {ei}1≤i≤n ∈ U, {ei}1≤i≤n ∈ U∗ is a dual basis of �U .

Furthermore, introduce the following left U -module structures on U∗:

(u ⇁ φ)(u′) := φ(u′u) for u, u′ ∈ U, φ ∈ U∗. (3.1.8)

Using the fact that U∗ J ⊗ IU∗ → Hom(A,−)( �(UJ ⊗ �U),AA), given by

(φ⊗A φ′)(u⊗A u′) := φ′(us`(φu′)),

is an isomorphism because of the projectivity of U (see [KSz] for a proof, or our similar considerations
in the proof of Proposition 3.1.9), one may write

(∆r
∗φ)(u, u′) = φ(uu′) =

∑
i

φ(us`ei(u′)ei) =
∑
i

(ei ⇁ φ)(us`ei(u′)).

Hence instead of (3.1.7), for the right coproduct and right counit one finds the more systematic form

∆r
∗ : U∗ → U∗ J ⊗A IU∗ , φ 7→

∑
i e
i ⊗ (ei ⇁ φ),

∂∗ : U∗ → A, φ 7→ φ(1U ).
(3.1.9)

(ii ) Likewise, if U� is finitely generated projective over A, the right dual U∗ is a right bialgebroid as
well over the same base A∗ ≡ A. The Ae-ring structure is defined by the product (3.1.2) and source
and target as in (3.1.5), (3.1.6). The A-coring structure (U∗,∆∗r , ∂

∗) is given by the following (right)
coproduct and (right) counit:

∆∗r : U∗ → Hom(−,A)((U� ⊗ IU) � , AA), ψ 7→ {u⊗A u′ 7→ φ(uu′)},
∂∗ : U∗ → A, ψ 7→ ψ(1U ).

Again, by projectivity of U� we may rewrite this, decomposing elements in U� as v =∑
j t
`(f j(v))fj , where {fj}1≤j≤m ∈ U, {f j}1≤j≤m ∈ U∗ is a dual basis for U� . With the left

U -action on U∗ given by

(u ⇀ ψ)(u′) := ψ(u′u) for u, u′ ∈ U, ψ ∈ U∗, (3.1.10)

and the isomorphism U∗ J ⊗ IU∗ → Hom(−,A)((U� ⊗ IU) � , AA) given by

(ψ ⊗A ψ′)(u⊗A u′) := ψ(ut`(ψ′u′)),

where U∗ J ⊗ IU∗ is defined with respect to (3.1.5) and (3.1.6), we have the following expressions
for the right coproduct and the right counit:

∆∗r : U∗ → U∗ J ⊗ IU∗ , ψ 7→
∑
j(fj ⇀ ψ)⊗A f j ,

∂∗ : U∗ → A, ψ 7→ ψ(1U ).
(3.1.11)

3.1.7 Remark Under analogous assumptions, a right bialgebroid has two duals as well, which can be made
into left bialgebroids.

3.1.8 Module-Comodule Correspondence Classically [AW, Cart], if U happens to be a finite dimensional
algebra over a field k and DU := Homk(U, k) is its dual (carrying the structure of a coassociative coalge-
bra [Sw1, 1.1.2]), right DU -modules naturally correspond to left U -comodules, i.e., one has a categorical
equivalence

Mod-DU ' U -Comod.

The situation in the bialgebroid context is richer, as summarised by the main result of this section, Theorem
3.1.11 below. The following proposition explains how module and comodule structures imply each other.
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3.1.9 Proposition Let U be a left bialgebroid, as above.

(i ) Given a right U -comodule N ∈ Comod-U with coaction N∆ : N → N ⊗A U, n 7→ n(0) ⊗A n(1),
the assignment

µN∗ : N ⊗ U∗ → N, n⊗A φ 7→ n(0)φ(n(1)) (3.1.12)

defines a right U∗-module structure on N . Conversely, for each right U∗-module M with U∗-action
(m,φ) 7→ mφ, the assignment

M∆(m)(φ) := mφ ∀m ∈M, φ ∈ U∗ (3.1.13)

defines a map M∆ : M → Hom(−,A)(U∗,M), and if �U is finitely generated projective over A, this
yields a right U -comodule structure M∆ : M → M ⊗A U on M . In particular, these processes of
assigning modules and comodules are inverse to each other.

(ii ) Similarly, given a left U -comodule N with coaction ∆N : N → U ⊗A N, n 7→ n(−1) ⊗A n(0), the
assignment

µ∗N : N ⊗ U∗ → N, n⊗A ψ 7→ ψ(n(−1))n(0) (3.1.14)

defines a right U∗-module structure on N . Conversely, for each right U∗-module M with U∗-action
(m,ψ) 7→ mψ, the assignment

∆M(m)(ψ) := mψ ∀m ∈M, ψ ∈ U∗, (3.1.15)

defines a map ∆M : M → Hom(A,−)(U
∗,M), and if U� is finitely generated projective over A,

this yields a left U -comodule structure ∆M : M → U ⊗A M on M . Again, these two processes of
assigning modules and comodules are inverse to each other.

3.1.10 Remark This result is not totally obvious since the category of (A,A)-bimodules is not symmetric
and even if A is commutative, parts (i) and (ii) will be distinguished by both the facts that source and target
maps do not need to coincide, and in any case do not necessarily map into the centre of U .

PROOF: To check the respective comodule identities, one expresses the comonoid structure on U in terms of
the monoid structures on U∗ and U∗ to obtain (3.1.13) and (3.1.15), similar to [KSz], but in a sense dualised
again (we give all details only in case of the left dual, inasmuch this case is less expected, and leave the
rigorous elaboration of the second one to the reader).

(i ) To prove the first statement, we need to show that µN∗ (idN ⊗mU∗) = µN∗ (µN∗ ⊗ idU∗), where mU∗ is
as in (3.1.1). One has

µN∗ (idN ⊗mU∗)(n⊗A φ⊗A φ′) = n(0)〈φφ′, n(1)〉
= n(0)〈φ′, t`(〈φ, n(2)〉)n(1)〉 =

(
n(0)φ(n(1))

)
(0)
〈φ′,

(
n(0)〈φ, n(1)〉

)
(1)
〉

= µN∗ (µN∗ ⊗ idU∗)(n⊗A φ⊗A φ′) = n(0)〈φ′, t`(〈φ, n(2)〉)n(1)〉,

since N is assumed to be a right U -comodule. Hence the two expressions coincide.

For the second claim, consider the (A,A)-bimodule �U∗J (‘source-source’). The corresponding
tensor product U∗ ⊗A U∗ := U∗J ⊗ �U∗ carries an (A,A)-bimodule structure in the standard way,
given by �(U∗ ⊗A U∗)J = �U∗ ⊗AU∗J . Assuming that �U is finitely generated A-projective with
dual basis {ei}1≤i≤n ∈ U, {ei}1≤i≤n ∈ U∗ as before, the map

U ⊗A U → Hom(−,A)((U∗ ⊗A U∗)J , AA),

u⊗A u′ 7→
(
φ⊗A φ′ 7→ φ′(t`(φu′)u) = 〈φ′, t`(〈φ, u′〉)u〉

) (3.1.16)

is an isomorphism. Its inverse is determined by calculating

u⊗A u′ =
∑
i

u⊗A s`(ei(u′))ei

≡
∑
i

t`(ei(u′))u⊗A ei =
∑
i,j

s`
(
〈ej , t`(〈ei, u′〉)u〉

)
ej ⊗A ei.
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Hence the inverse can be expressed as

Φ 7→
∑
i,j

s`(Φ(ei ⊗A ej))ej ⊗A ei.

Now for each u ∈ U the map
φ⊗A φ′ 7→ 〈φφ′, u〉 (3.1.17)

lies in Hom(−,A)((U∗ ⊗A U∗)J , AA), as follows from §3.1.5(i)(a) and the relation of the monoid
structure on U∗. The identity

〈φφ′, u〉 = 〈φ⊗A φ′, u(1) ⊗A u(2)〉 = 〈φ′, t`(〈φ, u(2)〉)u(1)〉 (3.1.18)

can either be read from left to right, in which case it defines the ring structure mU∗ on the dual in
dependence of the coproduct on U , as was done in §3.1.1, i.e.,

mU∗ : U∗ ⊗A U∗ → U∗, φ⊗A φ′ 7→ φφ′. (3.1.19)

Or, (3.1.18) can be read from right to left, so as to express the coproduct on U using the product in U∗;
this is the point of view we adopt here. The coproduct on U then reads

∆`u =
∑
i,j

s`(〈eiej , u〉)ej ⊗A ei ∀ u ∈ U. (3.1.20)

We need this formula to verify the comodule identities of M∆: let M be a right U∗-module with action
(m,φ) 7→ mφ, so that in particular M is an (A,A)-bimodule. Define a map

MA ⊗ �U → Hom(−,A)( �U∗J ,MA), m⊗A u 7→ m〈−, u〉. (3.1.21)

Under the hypotheses that �U is finitely generated A-projective, this map is an isomorphism, with
inverse

Hom(−,A)( �U∗J ,MA)→MA ⊗ �U, f 7→
∑
i

f(ei)⊗A ei. (3.1.22)

Finally, define the right U -comodule structure on M

M∆ : M → Hom(−,A)( �U∗J ,MA), M∆(m)(φ) := mφ ∀m ∈M, φ ∈ U∗,

that is, with the isomorphisms (3.1.22) this amounts to a map M∆ : M →M ⊗A U that reads

M∆m =
∑
i

mei ⊗A ei. (3.1.23)

To check the comodule identities, calculate

(M∆ ⊗ idU )M∆m =
∑
i,j

m(eiej)⊗A ej ⊗A ei,

and, by making use of (3.1.20),

(idM ⊗∆`)M∆m =
∑
k

mek ⊗A ∆`ek

=
∑
i,j,k

mek ⊗A s`(〈eiej , ek〉)ej ⊗A ei

=
∑
i,j,k

(mek)〈eiej , ek〉 ⊗A ej ⊗A ei

=
∑
i,j,k

m
(
eksr∗(〈eiej , ek〉)

)
⊗A ej ⊗A ei

=
∑
i,j

m(eiej)⊗A ej ⊗A ei,



48 CHAPTER 3. CONSTRUCTIONS

where we used the fact that M is a right U∗-module and the projectivity of �U , compare the construc-
tion of sr∗ from §3.1.5(i)(a). Furthermore, if RA : (m, a) 7→ ma denotes the right A-action M , we see
that

RA(idM ⊗ ε)M∆m =
∑
i

(mei)ε(ei) =
∑
i

m(eisr∗(εei)) = mε = m,

since ε = 1U∗ , and the right comodule identities are proven. It is now easy to see that M∆ is a (right)
A-module morphism (in fact an (A,A)-bimodule morphism under the left A-action (2.3.8)). With
(3.1.21) one gets

M∆(ma)(φ) = M∆(m)(sr∗(a)φ) = m(0)〈φ, t`(a)m(1)〉,

hence M∆(ma) = m(0) ⊗A t`(a)m(1).

To see that the two processes of defining U∗-modules and U -comodules are inverse to each other is
straightforward. Assume that a right U∗-action on M induces the right U -coaction M∆ , as in (3.1.13).
Then, as in (3.1.12), M∆ induces in turn a right U∗-action which is given with (3.1.23) as

µN∗ (m⊗A φ) =
∑
i

mei(φ(ei)) =
∑
i

meisr∗(φ(ei)), m ∈M.

With §3.1.5(i)(a), by projectivity we have for any u ∈ U∑
i

〈eisr∗(φ(ei)), u〉 = 〈
∑
i

ei, u〉〈φ, ei〉 = 〈φ,
∑
i

s`(〈ei, u〉)ei〉 = φ(u).

Hence
∑
im(eisr∗(φei)) = mφ, and the two module structures µN∗ and (m,φ) 7→ mφ coincide. Vice

versa, if the right U∗-module structure µN∗ on N originates from a right U -comodule structure as in
(3.1.12), it induces a right U -comodule structure N∆′ : n 7→ n(0)′ ⊗A n(1)′ on N by (3.1.13), hence
for any n ∈ N and all φ ∈ U∗ one obtains

n(0)′φ(n(1)′) = N∆′ (n)(φ) = µN∗ (n⊗A φ) = n(0)φ(n(1)) = N∆(n)(φ).

This means N∆ = N∆′ .

(ii ) The case for the right dual is proven analogously; as said, we just give the analogous formulae for the
second statement for later use, but still in quite some detail due to the slightly confusing richness of
choices in this context.

This time, instead of (3.1.16), consider the (A,A)-bimodule IU∗� (‘target-target’), and for the tensor
product U∗⊗AU∗ :=U∗� ⊗ IU∗ , consider the (A,A)-bimodule I(U∗ ⊗A U∗)� := IU∗⊗AU∗� .
Assuming thatU� is finitely generated A-projective, with {fj}1≤j≤m ∈ U, {f j}1≤j≤m ∈ U∗ a dual
basis of U� , the map

U ⊗A U → Hom(A,−)( I(U∗ ⊗A U∗),AA),

u⊗A u′ 7→
(
ψ ⊗A ψ′ 7→ 〈ψ′, s`(〈ψ, u〉)u′〉

)
is an isomorphism, with inverse

Ψ 7→
∑
i,j

fi ⊗A t`(Ψ(f i ⊗A f j))fj .

For each u ∈ U the map
ψ ⊗A ψ′ 7→ 〈ψ′ψ, u〉 (3.1.24)

lies in Hom(A,−)( I(U∗ ⊗A U∗),AA). This map reverses the order, which makes it well-defined on
the chosen quotient in the tensor product (‘target-target’). Now use the pairing

〈ψ′ψ, u〉 = 〈ψ ⊗A ψ′, u(1) ⊗A u(2)〉 = 〈ψ, s`(〈ψ′, u(1)〉)u(2)〉 (3.1.25)

to either define a ring structure on the right dual U∗ by

mU∗ : U∗ ⊗A U∗ → U∗, ψ ⊗A ψ′ 7→ ψ′ψ, (3.1.26)
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which is well-defined only in this order reversing way (cf. (3.1.2)). Or, deploy (3.1.25) to obtain the
expression

∆`u =
∑
i,j

fi ⊗A t`(〈f jf i, u〉)fj ∀ u ∈ U (3.1.27)

for the coproduct on U . Furthermore, for a right U∗-module M , define

U� ⊗AM → Hom(A,−)( IU∗� ,AM), u⊗A m 7→ 〈−, u〉m,

which, under the hypotheses that U� is finitely generated A-projective, is an isomorphism, with in-
verse

Hom(A,−)( IU∗� ,AM)→ U� ⊗AM, g 7→
∑
j

fj ⊗A g(f j).

Now, for the left U -comodule structure on M , set

∆M : M → Hom(A,−)( IU∗� ,AM), ∆M(m)(ψ) := mψ ∀m ∈M, ψ ∈ U∗,

so that we finally obtain a map ∆M : M → U ⊗AM given by

∆Mm =
∑
j

fj ⊗A mf j .

With these formulae at hand, the U -comodule identities can be verified as before.

2

We now have all necessary information to state the main result of this section.

3.1.11 Theorem Let U be a left bialgebroid with left and right duals U∗ and U∗, respectively.

(i ) There is a canonical functor Comod-U → Mod-U∗ from the category of right U -comodules to
the category of right U∗-modules, induced by (3.1.12). If �U is finitely generated A-projective, this
functor is an equivalence of categories:

Comod-U 'Mod-U∗.

(ii ) There is a canonical functor U -Comod → Mod-U∗ from the category of left U -comodules to the
category of right U∗-modules, induced by (3.1.14). If U� is finitely generated A-projective, this
functor is an equivalence of categories:

U -Comod 'Mod-U∗.

PROOF: It remains to show that module and comodule morphisms correspond to each other. This can
be modelled after [Sw1, Thm. 2.1.3.(e)]. We only show the first part, part (ii) works mutatis mutandis.
Recall the space of morphisms of right U -comodules in Definition 2.4.2(ii). Suppose f ∈ ComU (M,N) ⊂
Hom(−,A)(M,N) is a comodule morphisms for twoM,N ∈ Comod-U . With the induced right U -module
structure maps µM∗ and µN∗ as in (3.1.12), we have for m ∈M and φ ∈ U∗,

µN∗ (f(m)⊗A φ) = f(m)(0)〈φ, f(m)(1)〉
= f(m(0))〈φ,m(1)〉
= f(m(0)〈φ,m(1)〉)
= f(µM∗ (m⊗A φ)).

Hence f is a morphism of U∗-modules. Conversely, if g ∈ HomU∗(M,N) for M,N ∈Mod-U∗, we have

g(m)(0)〈φ, g(m)(1)〉 = µN∗ (g(m)⊗A φ) = g(µM∗ (m⊗A φ)) = g(m(0))〈φ,m(1)〉

for all φ ∈ U∗, m ∈ M , and by the relation between (induced) module and comodule structures in the
preceding Proposition, this implies N∆g(m) = (g ⊗ idU )M∆m, i.e., g ∈ ComU (M,N). Again, (ii) is
proven analogously. 2
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3.1.12 Remark As the base algebra of right bialgebroids, A carries a right U∗-action as well as a right U∗-
action, respectively. One may be tempted to think that both of these lead to left U -coactions, but this is not
the case, as shown. Considering A as the base algebra of the left bialgebroid U , it carries a priori only one
left U -action (cf. (2.3.3)), but two U -coactions from left and right (cf. (2.3.7)). At least conceptually, this is
reflected by the preceding proposition. One has the following chain of structures for the base algebra:

Left U -action⇒ right U∗- as well as right U∗-action⇒ right as well as left U -coaction.

We will continue this discussion in the subsequent proposition.

3.1.13 Grouplike Elements and Generalised Right Characters Recall that a character on the dual U∗ of a
Hopf algebra U is equivalent to giving a grouplike element in U and vice versa, compare the self-duality of
a modular pair mentioned in Section 1.3.

A generalised right character [B3] on a right B-bialgebroid V is a (B,B)-bimodule map IVJ → B
with respect to the bimodule structure (2.5.2) which fulfills the property (2.5.3). Hence every right counit of
a right bialgebroid is by definition a generalised right character.

Using the expressions (3.1.20) and (3.1.27) for the coproduct in U depending respectively on the ring
structures on U∗ and U∗, one proves the following result.

3.1.14 Proposition Let U be a left bialgebroid and assume that �U is finitely generated A-projective. Then
there is a bijective correspondence between grouplike elements G`U and generalised right characters on U∗.
Likewise, if U� is finitely generated A-projective, there is a bijective correspondence between G`U and
generalised right characters on U∗. In particular, each right U∗-action (resp. U∗-action) on A corresponds to
a grouplike element in U , which induces the canonical right (resp. left) U -coaction on A as in (2.3.7). These
are the only ways in which U -coactions on A appear.

PROOF: Denote a right U∗-action on A by ∇rφ : a 7→ ∇rφa. From (3.1.21) follows that u 7→ 〈−, u〉 gives
the isomorphism �U ' Hom(−,A)( �U∗J , AA). Hence set

∇r1A =: σ ∈ U, (3.1.28)

cf. §2.5.5, and for each u ∈ U define correspondingly u(−) := 〈−, u〉 ∈ Hom(−,A)( �U∗J , AA). Using
(3.1.18) and §3.1.5(i), it is not difficult to see that σ fulfills σ(φφ′) = σ(sr∗(σ(φ))φ′) = σ(tr∗(σ(φ))φ′), i.e.
(2.5.3) (cf. also (2.5.9)), and also that it is an (A,A)-bimodule map with respect to the structures IU∗J .
With (3.1.20), it follows that

∆`σ =
∑
i,j

s`(〈eiej , σ〉)ej ⊗A ei

=
∑
i,j

s`(〈sr∗(σ(ei))ej , σ〉)ej ⊗A ei

=
∑
i,j

s`(〈ej , t`(σ(ei))σ〉)ej ⊗A ei

=
∑
i

t`(σ(ei))σ ⊗A ei

= σ ⊗ σ,

(3.1.29)

hence σ is a grouplike element in U . The opposite direction is proved by reading all statements backwards;
that is, if σ is grouplike, it can be concluded from (3.1.29) (since s` has the left inverse ε) that the property
(2.5.3) holds; defining an operator∇r by

∇r1A := σ

yields a right U∗-action on A. In particular, we have t`aσ = ∇ra, as seen by 〈φ, t`aσ〉 = 〈sr∗(a)φ, σ〉 and

A∆a =
∑
i

∇reia⊗A ei =
∑
i

〈ei, t`(a)σ〉 ⊗A ei

=
∑
i

1A ⊗A s`
(
〈ei, t`(a)σ〉

)
ei = 1A ⊗A t`(a)σ.
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To prove the statement about A we need to make use of (3.1.28) as well as of (3.1.9), (3.1.3), (3.1.1) and
(3.1.8). Since U∗ is a right bialgebroid, one notices that

A∆(a)(φ) = aφ = (1Aφ
(1))∂∗(s

r
∗(a)φ(2))

=
∑
i

〈ei, σ〉 (sr∗(a)(ei ⇁ φ)(1U ))

=
∑
i

〈ei, σ〉 ((ei ⇁ φ)(t`a))

=
∑
i

〈ei, σ〉〈φ, t`(a)ei〉,

which reads a(0)〈φ, a(1)〉 = 〈φ, t`aσ〉, and in view of (3.1.22) means that A∆a = 1A ⊗A t`(a)σ. Again, all
assertions for U∗ work analogously. 2

It is not by pure coincidence that in the preceding proposition we chose the symbol ∇r. In fact, ∇r may be
seen as a (flat) right connection as in Subsection 2.5.1. We will later see an example of the intimate relation
between flat right connections and right counits (Propositions 4.2.9 and 4.2.11).

3.2 Push Forward Bialgebroids
In this section we shall construct a new bialgebroid from a known one, provided one has some extra data;
namely, a ring extension of the base algebra.

Let A,B be two k-algebras and σ : A → B a ring homomorphism. This defines an obvious (A,A)-
bimodule structure on B by (a, b, ã) 7→ σ(a)bσ(ã) for a, ã ∈ A and b ∈ B.

Now let U be a left bialgebroid over A with structure maps as before. We set

Bop ⊗A U ⊗A B = Bop ⊗k U ⊗k B/I, (3.2.1)

where
I = span{b⊗k t`ãs`au⊗k b̃− bσ(a)⊗k u⊗k σ(ã)b̃ | a, ã ∈ A, b, b̃ ∈ B, u ∈ U}.

We furthermore define the Takeuchi product σ∗U := Bop ×A U ×A B, which, similarly as before, denotes
the subspace in Bop ⊗A U ⊗A B given by

σ∗U = {
∑
ibi ⊗A ui ⊗A b̃i ∈ Bop ⊗A U ⊗A B |
|
∑
ibi ⊗A uis`at`ã⊗A b̃i =

∑
iσ(a)bi ⊗A ui ⊗A b̃iσ(ã), a, ã ∈ A}.

(3.2.2)

Then factorwise multiplication (with the opposite product on the first factor) gives a well-defined k-algebra
structure on σ∗U with unit 1B ⊗A 1U ⊗A 1B.

The following statement may appear surprising to some extent.

3.2.1 Proposition Let U be a left bialgebroid. Then the k-algebra σ∗U carries the structure of a right bial-
gebroid over B.

PROOF: The right source and target maps are given by

srB : B → σ∗U, b 7→ 1B ⊗A 1U ⊗A b,
trB : B → σ∗U, b 7→ b⊗A 1U ⊗A 1B.

In particular, this defines the structure of aBe-ring with the fourB-module structures as in (2.5.2) and (2.5.5)
for right source and target maps. We may also form the tensor product σ∗U ⊗B σ∗U , which is defined as in
(2.5.1). If now ∆`u = u(1) ⊗A u(2) describes the left coproduct on elements u ∈ U and ε : U → A is the
left counit in U , we define the right coproduct and right counit on σ∗U as

∆B
r : σ∗U → σ∗U ⊗B σ∗U, b⊗A u⊗A b̃ 7→ (b⊗A u(1) ⊗A 1B)⊗B (1B ⊗A u(2) ⊗A b̃),

∂B : σ∗U → B, b⊗A u⊗A b̃ 7→ bσ(εu)b̃,

which are easily seen to be well-defined, also with respect to the presentation of ∆`. While most of the
properties in Definition 2.5.1 of right bialgebroids are obvious, let us just prove (2.5.6) and (2.5.3). One has

mU (idU ⊗ sr∂B)∆B

r (b⊗A u⊗A b̃) = b⊗A u(1) ⊗A σ(ε(u(2)))b̃ = b⊗A u⊗A b̃,
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using (2.1.8), and likewise one proves the second identity in (2.5.6). Furthermore, one has

∂B
(
(b⊗A u⊗A b̃)(b′ ⊗A u′ ⊗A b̃′)

)
= b′bσ

(
ε(uu′)

)
b̃b̃′

= b′bσ
(
ε(us`εu′)

)
b̃b̃′

= b′σ(εu′)bσ(εu)b̃b̃′

= b′σ(εu′)∂B(b⊗A u⊗A b̃)b̃′

= ∂B
(
b′ ⊗ u′ ⊗A ∂B(b⊗A u⊗A b̃)b̃′

)
= ∂B

(
(srB∂B(b⊗A u⊗A b̃))(b′ ⊗ u′ ⊗A ⊗Ab̃)

)
,

where we used the fact that σ∗U is given as a Takeuchi product. Putting t` instead of s` in the second equation
then leads to the second equation in (2.5.3). 2

3.2.2 Remark One may also alter the push forward construction by taking different tensor products, oppo-
sites, coopposites or even σ as an anti-homomorphism; however, none of these possibilities seem to lead to a
left bialgebroid, precisely due to the requirement (2.1.4).

3.2.3 Examples (Localisation of Hopf algebroids)

(i ) Let E → M be a Lie algebroid over a smooth manifold M with anchor ω. Denote the correspond-
ing Lie-Rinehart algebra by (C∞(M),ΓE), and let V E := V ΓE be the associated left C∞(M)-
bialgebroid; cf. Subsection 4.2.2 for all details of this construction. Let evx : C∞(M)→ C, a 7→ a(x)
be the evaluation at a point x ∈ M and write Cx for C seen as (left or right) C∞(M)-module by this
map. By the PBW Theorem one has a C∞(M)-module isomorphism V E ' Γ(M,SE) on sections of
the symmetric algebra SE, hence in particular V E⊗C∞(M)Cx ' SEx, given by u⊗C∞(M)λ 7→ u(x)λ.
The condition (3.2.2) for the right tensor factor for X ∈ ΓE yields (Xa)(x) = a(x)X(x), which
is true if X(a)(x) = 0 for all a ∈ C∞(M). Hence X ∈ kerωx, the fibre at x of the isotropy
of the Lie algebroid; this is a Lie algebra. An analogous consideration for the left tensor factor
yields the same information (since the source and target maps are equal). By extension, one obtains
evx∗V E ' U(kerωx), i.e. a C-bialgebra.

(ii ) Let s, t : G ⇒ G0 be an étale groupoid over a smooth manifold G0, and denote the compactly
supported functions over G by C∞c (G); see Section 4.4 how this can be seen as a left bialgebroid
over C∞(G0). The left and right C∞(G0)-actions on C∞c (G) used in (3.2.1) are given in (4.4.4), i.e.,
(au)(g) = a(t(g))u(g) and (ua)(g) = u(g)a(s(g)), where u ∈ C∞c (G), a ∈ C∞(G0). Again, let
evx : C∞(G0) → C, a 7→ a(x) be the evaluation at x ∈ G0. Then the right tensor product in (3.2.1)
identifies elements a(t(g))u(g) = a(x)u(g), i.e., C∞c (G) ⊗C∞(G0) Cx ' C∞c (t−1(x)). The subspace
in (3.2.2), however, consists of those elements in C∞c (t−1(x)) for which u(g)a(s(g)) = u(g)a(x). As
in (i), analogous considerations on the first tensor factor do not lead to any further conditions. Hence
if Gx = {g | s(g) = t(g) = x} denotes the isotropy subgroup of x, which is a discrete group here,
one obtains evx∗C∞c (G) ' C∞c (Gx), i.e. a C-bialgebra again.

3.3 Matched Pairs of Bialgebroids
In this section we present a method to construct a new bialgebroid out of two known ones. It will give
a generalisation of a similar consideration for k-bialgebras (see e.g. [Maj]), which is needed in Section
4.7 to analyse the structure of (generalised) Connes-Moscovici algebras (cf. [CoMos5, MosR]). The main
ingredients of the construction are:

(i ) two (left) bialgebroids U,F ,

(ii ) an action of U on F , satisfying certain properties,

(iii ) a coaction of F on U , satisfying certain properties.

If the structures from (ii) and (iii) ‘match’ in a sense to be specified, a particular tensor product F ⊗U carries
the structure of a left bialgebroid again.

Note that already for k-bialgebras there are various possibilities of how to produce new bialgebras in this
spirit (cf. [Maj, Kas3]), corresponding to the various action-coaction pictures but we will only generalise the
case of the ‘left-right bicrossproduct bialgebra’ from [Maj, Thm. 6.2.2] to bialgebroids.
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3.3.1 Left Module Rings for Bialgebroids
Here, we give a more precise sense to the ‘action picture’ of point (ii) above.

The additional structure on a ring U that makes it a left (or right) bialgebroid over A is precisely a
monoidal structure on the category U -Mod of left U -modules (right U -modules, respectively) together
with a strictly monoidal forgetful functor U -Mod → Ae-Mod; see Theorem 2.3.1 from [Schau1]. Hence
the following analogue of a ‘module algebra’ appears quite naturally. Let (U,A, s`U , t

`
U ,∆

U

` , εU) be a left
bialgebroid, as before.

3.3.1 Definition [KSz] A left U -module ringM is a monoid in U -Mod. That is, by strict monoidality of the
forgetful functor U -Mod → Ae-Mod, the space M carries a canonical A-ring structure with A-balanced
multiplication µM(m ⊗A m′) = mm′ for m,m′ ∈ M , and unit map A → M, a 7→ s`U(a)1M = t`U(a)1M
such that for u ∈ U, m,m′ ∈M

u(mm′) = (u(1)m)(u(2)m
′), and u1M = s`UεU(u)1M . (3.3.1)

Here the U -action on M is denoted by (u,m) 7→ um.

For example, the base algebra A is a left U -module ring, but U itself usually is not.
Observe in particular that with the induced Ae-module structure on M given by

amb := t`Ubs
`
Uam, (3.3.2)

one has
a(mm′) = s`Ua(mm′) = (s`Uam)m′ = (am)m′

(mm′)a = t`Ua(mm′) = m(t`Uam
′) = m(m′a),

(3.3.3)

and moreover
m(am′) = m(s`Uam

′) = (t`Uam)m′ = (ma)m′. (3.3.4)

We can then prove the following fact similar as in [KSz].

3.3.2 Lemma Let U be a left bialgebroid as above and M a left U -module ring. Then M ⊗A U carries an
A-ring structure, called the smash ring or crossed product ring, denoted by M>C

AU .

PROOF: Here
M ⊗A U := M ⊗k U/span{ma⊗ u−m⊗ s`Uau | a ∈ A}, (3.3.5)

where ma = t`Uam as above. The Ae-module structure on M ⊗A U is given by

a(m⊗A u)b = am⊗A us`Ub = s`Uam⊗A us`Ub for a, b ∈ A. (3.3.6)

The product structure µ is

(m⊗A u)(m′ ⊗A u′) := µ
(
(m⊗A u)⊗A (m′ ⊗A u′)

)
:= m(u(1)m

′)⊗A u(2)u
′, (3.3.7)

and the unit is

A→M ⊗A U, a 7→ a1M ⊗A 1U = s`Ua1M ⊗A 1U = t`Ua1M ⊗A 1U = 1M ⊗A s`Ua.

Both maps are clearlyAe-module morphisms. While the associativity and unitality axioms are easily checked
using coassociativity of ∆U

` , we restrict ourselves to showing that (3.3.7) is actually well-defined overA. One
has, for a, b ∈ A,

(ma⊗A u)(m′b⊗A u′) = (ma)(u(1)(m
′b))⊗A u(2)u

′ = m((s`Uau(1)t
`
Ub)m

′)⊗A u(2)u
′

= m((s`Uau)(1)m
′)⊗A (s`Uau)(2)s

`
Ubu
′ = (m⊗A s`Uau)(m′ ⊗A s`Ubu′).

Also, if multiplication is thought of as a composition of single maps, one has to show well-definedness of the
Sweedler components, i.e.,

m((t`Uau(1))m
′)⊗A u(2)u

′ = m((u(1)m
′)a)⊗A u(2)u

′

= (m(u(1)m
′))a⊗A u(2)u

′ = m(u(1)m
′)⊗A s`Uau(2)u

′.

With the mentioned Ae-module structure on M ⊗A U , the fact that µ is A-balanced is obvious. 2

For example, the universal enveloping algebra V L of a Lie-Rinehart algebra (A,L) arises in such a way, i.e.,
V L = A>C

AUL where UL is the universal enveloping algebra of the k-Lie algebra L; see also Remark 1.4.4
above.

We finally remark that M ⊗A U can even be seen as an M -ring [B3].
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3.3.2 Right Comodule Corings for Bialgebroids
Now we specify what we mean by the ‘coaction picture’ mentioned in point (iii) at the beginning of Section
3.3.

Let (F,A, s`F , t
`
F ,∆

F

` , εF ) be an arbitrary left bialgebroid and denote the Sweedler components of its left
coproduct by ∆F

` f = f[1] ⊗A f[2] for all f ∈ F .

3.3.3 Definition A right F -comodule coring N is a comonoid in Comod-F . That is, by strict monoidality
of the forgetful functor Comod-F → (Aop)e-Mod, the space N carries a canonical Aop-coring structure
(N,∆N , εN) with an (Aop)e-linear coproduct ∆Nn =: n(1) ⊗Aop n(2) and a right F -comodule structure
N∆n =: n[0] ⊗Aop n[1], such that

mF (s`F εN ⊗ idF )N∆ = t`F εN , (∆N ⊗ idF )N∆ = N⊗N∆∆N . (3.3.8)

Here N⊗N∆ denotes the right F -coaction on N ⊗Aop N from (2.3.11).

Again, the base algebra A is a right F -comodule coring (see (2.3.7)), whereas this is generally not the
case for F itself.

Compare [BŞ] for the analogous definition of a left F -comodule coring. Observe also that it is this
Aop-construction that generalises the bialgebra case (cf. e.g. [Maj]), at least if one wants the same order of
elements in the formulae.

For the reader’s convenience, let us explicitly recall all maps and tensor products involved. For the
coproduct on N we have ∆N : N → N ⊗Aop N , where

N ⊗Aop N := N ⊗k N/span{an⊗ n′ − n⊗ n′a | a ∈ A}, (3.3.9)

andN⊗AopN is an (A,A)-bimodule in a standard way, i.e. by (a, n⊗Aop n′, b) 7→ nb⊗Aop an′; in particular

∆N(anb) = n(1)b⊗Aop an(2) for all a, b ∈ A. (3.3.10)

For the right F -coaction on N we have N∆ : N → N ⊗A F , where

N ⊗A F := N ⊗k F/span{na⊗k f − n⊗ s`Faf | a ∈ A} (3.3.11)

is the tensor product from (2.3.5). Written explicitly, the conditions (3.3.8) then read

s`F εN(n[0])n[1] = t`F εNn,
n[0](1) ⊗Aop n[0](2) ⊗A n[1] = n(1)[0] ⊗Aop n(2)[0] ⊗A n(1)[1]n(2)[1].

(3.3.12)

Note that these conditions are well-defined by (2.3.10), (3.3.10) and (3.3.11). For example, on the right hand
side in the second equation of (3.3.12) one has

(an(1))[0] ⊗Aop n(2)[0] ⊗A n(1)[1]n(2)[1] = n(1)[0] ⊗Aop n(2)[0] ⊗A n(1)[1]t
`an(2)[1]

= n(1)[0] ⊗Aop (n(2)a)[0] ⊗A n(1)[1]n(2)[1],

from which the well-definedness over the presentation of ∆N follows.

3.3.4 Lemma Let (F,A) be a left bialgebroid and N a right F -comodule coring, with all structures maps as
above. Then the space F ⊗Aop N carries the structure of an A-coring, called the cocrossed product coring,
denoted by FI<

AopN .

PROOF: Firstly, we recall that the underlying A-linear space of FI<
AopN is

F ⊗Aop N := F ⊗k N/span{ft`Fa⊗ n− f ⊗ na | a ∈ A}, (3.3.13)

which is an (A,A)-bimodule with left A-action LA and right A-action RA given by

a(f ⊗Aop n)b := s`Fat
`
F bf ⊗Aop n, (3.3.14)

with respect to which we define the tensor product (F ⊗Aop N)⊗A (F ⊗Aop N). The coproduct and counit
are maps ∆ccr

` : F ⊗Aop N → (F ⊗Aop N)⊗A (F ⊗Aop N) and εccr : F ⊗Aop N → A, given by

∆ccr

` (fI<Aopn) := (f[1]I<Aopn(1)[0])⊗A (f[2]n(1)[1]I<Aopn(2)), (3.3.15)

εccr(fI<Aopn) := εF (ft`F εNn). (3.3.16)
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While it is trivial to check that the counit is well-defined over A (recall that εN is an (Aop, Aop)-bimodule
map), this is somewhat more tedious for ∆ccr

` . With (2.3.10) and (3.3.10) one has

∆ccr

` (ft`FaI<Aopn) = (f[1]I<Aopn(1)[0])⊗A (f[2]t
`
Fan(1)[1]I<Aopn(2))

= (f[1]I<Aop(na)(1)[0])⊗A (f[2](na)(1)[1]I<Aop(na)(2))

= ∆ccr

` (uI<Aopna).

The well-definedness over the presentation of ∆F

` immediately follows from (3.3.14). Moreover, one has to
check the well-definedness over the presentation of N∆ , i.e.,

(f[1]I<Aopn(1)[0]a)⊗A (f[2]n(1)[1]I<Aopn(2)) =

= (f[1]t
`
FaI<Aopn(1)[0])⊗A (f[2]n(1)[1]I<Aopn(2))

= (f[1]I<Aopn(1)[0])⊗A (f[2]s
`
Fan(1)[1]I<Aopn(2)),

by the very definition of all tensor products involved, as well as the property im(∆F

` ) ⊂ F ×A F . Now, by
(2.3.10) again, the computation

(f[1]I<Aop(an(1))[0])⊗A (f[2]n(1)[1]I<Aopn(2)) =

= (f[1]I<Aopn(1)[0])⊗A (f[2]n(1)[1]t
`
FaI<Aopn(2))

= (f[1]I<Aopn(1)[0])⊗A (f[2]n(1)[1]I<Aopn(2)a),

proves that the presentation of ∆N is well-defined. Finally, we are left with checking the comonoid identities.
With (3.3.8), (3.3.12) and (2.3.10) one obtains

LA(εccr ⊗ id)∆ccr

` (fI<Aopn) = s`F εF
(
f[1]t

`
F εN(n(1)[0])

)
f[2]n(1)[1]I<Aopn(2)

= fs`F εN(n(1)[0])n(1)[1]I<Aopn(2)

= ft`F εN(n(1))I<Aopn(2)

= fI<Aopn(2)εN(n(1)) = fI<Aopn,

since N is an Aop-coring. Also, with the same kind of arguments,

RA(id⊗ εccr)∆ccr

` (fI<Aopn) = t`F εF (f[2]n(1)[1]t
`
F εNn(2))f[1]I<Aopn(1)[0]

= t`F εF (f[2](εN(n(2))n(1))[1])f[1]I<Aop(εN(n(2))n(1))[0]

= t`F εF (f[2]n[1])f[1]I<Aopn[0]

= t`F εF (f[2])f[1]t
`
F εFn[1]I<Aopn[0] = fI<Aopn.

Spelling out the coassociativity condition of ∆ccr

` , one finds

(∆ccr

` ⊗ id)∆ccr

` (fI<Aopn) =

= (f[1]I<Aopn(1)[0](1)[0])⊗A (f[2]n(1)[0](1)[1]I<Aopn(1)[0](2))⊗A (f[3]n(1)[1]I<Aopn(2))

= (f[1]I<Aopn(1)[0])⊗A (f[2]n(1)[1]I<Aopn(2)[0])⊗A (f[3]n(1)[1]n(2)[1]I<Aopn(3))

= (id⊗∆ccr

` )∆ccr

` (fI<Aopn).

Here we used coassociativity of both ∆F

` , ∆N , and in the third line the comodule coring property (3.3.12)
was applied. 2

3.3.3 Matched Pairs
In this subsection we merge the concepts of left U -module rings and right F -comodule corings to produce
a new bialgebroid, which will be called a bicrossed product bialgebroid. This is possible if F and U and
their mutual coaction and action meet certain conditions (so as to yield a matched pair of bialgebroids; see
below). Assume that both M = F in Definition 3.3.1 and N = U in Definition 3.3.3 are (left) bialgebroids;
we want to impose a bialgebroid structure on some tensor product F ⊗ U . The obvious problem that the
ring structure from Lemma 3.3.2 and coring structure from Lemma 3.3.4 are on different tensor products
can be removed by assuming F to be a bialgebroid over Aop and U over A. On the other hand, further
(seemingly unavoidable) compatibility conditions (see below) will force A to be commutative, such that the
tensor products underlying the crossed product ring and the cocrossed product coring become (automatically)
the same.
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3.3.5 Theorem Let (F,A, s`F , t
`
F ,∆

F

` , εF ) and (U,A, s`U , t
`
U ,∆

U

` , εU) be left bialgebroids over some com-
mutative base algebra A, and let F be a left U -module ring and U a right F -comodule coring with maps

U × F → F, (u, f) 7→ u(f) and U∆ : U → U ⊗A F, u 7→ u[0] ⊗A u[1].

Furthermore, assume that for all f, f ′ ∈ F, u, u′ ∈ U, a ∈ A the compatibility conditions

s`U ≡ t`U , (3.3.17)
t`Faf = ft`Fa, (3.3.18)

u[0] ⊗A s`Fau[1] = u[0] ⊗A u[1]s
`
Fa, (3.3.19)

f[1] ⊗A s`Faf[2] = f[1] ⊗A f[2]s
`
Fa, (3.3.20)

as well as

εF
(
u(f)

)
= εU

(
us`UεF (f)

)
, (3.3.21)

U∆1U = 1U ⊗A 1F , (3.3.22)
∆F

`

(
u(f)

)
= u(1)[0](f[1])⊗A u(1)[1]u(2)(f[2]), (3.3.23)

u(2)[0] ⊗A u(1)(f)u(2)[1] = u(1)[0] ⊗A u(1)[1]u(2)(f), (3.3.24)

U∆(uu′) = u(1)[0]u
′
[0] ⊗A u(1)[1]u(2)(u

′
[1]) (3.3.25)

hold, where we used the Sweedler notation ∆U

` u =: u(1) ⊗A u(2) and ∆F

` f =: f[1] ⊗A f[2] for the left
coproducts. Then the linear space

F ⊗A U := F ⊗k U/span{t`Faf ⊗ u− f ⊗ s`Uau | a ∈ A} (3.3.26)

carries compatible structures of both an Ae-coring with ring structure F>C
AU from Lemma 3.3.2 and an

A-coring with coring structure FI<
AU from Lemma 3.3.4, so as to form a left A-bialgebroid, denoted by

FIC
AU .

PROOF: First, note that the tensor products in (3.3.20) and (3.3.23) refer to (2.1.1) for the leftA-bialgebroid
F , whereas the tensor product used in (3.3.19), (3.3.22) (3.3.24) and (3.3.25) is meant to be the one defined
in (3.3.11); now (3.3.23)–(3.3.25) are well-defined precisely due to (3.3.17)–(3.3.20). We will first dedicate
our attention to the conditions (3.3.17)–(3.3.20), which are sufficient for both the construction of the crossed
product ring F>C

AU and the cocrossed product coring FI<
AU on the linear space (3.3.26). Clearly, once

established, (3.3.17) then implies that A needs to be commutative. Asking U to be a right F -comodule
requires compatibility in the sense of (2.3.10) with respect to one of the right A-actions � or J on U from
(2.1.3) or (2.1.5) (provided one does not want to introduce extra data, i.e. even more A-actions on U ). If one
furthermore wants to impose U to be a right F -comodule coring, one of the left and one of the right of the
four natural A-actions on U has to be compatible with (3.3.10). By (2.1.7), this implies that one needs to use
either (2.1.3) or (2.1.5). For either choice, one has, by (2.3.10),

U∆(a � 1U) = U∆(1U � a) = U∆(a I 1U) = U∆(1U J a) = 1U ⊗A t`Fa, a ∈ A,

and hence by the comodule properties

s`Ua = a � 1U = RA(id⊗ εF )U∆(a � 1U) = RA(id⊗ εF )U∆(1U � a) = 1U � a = t`Ua,

where RA is one of the two natural right A-actions � or J on U from either (2.1.3) or (2.1.5). Analogous
considerations hold for the (A,A)-bimodule IUJ , but since we aim to produce the same linear space in
the tensor products (3.3.5) and (3.3.13), the canonical right A-module structure on the right F -comodule U
needs to be left multiplication with s`Ua (= t`Ua), which coincides with the additional left A-action (2.3.8) on
the right F -comodule U . Observe that right multiplication with s`Ua (= t`Ua) does not come into the picture,
i.e. is not induced by the F -coaction on U . In particular, the tensor product (3.3.9) is then the standard
one from (2.1.1) for the left bialgebroid U (things would not have changed if we assumed that F was a left
Aop-bialgebroid).

On the other hand, F is requested to be a left U -module ring with compatibleA-action with respect to the
induced (A,A)-bimodule structure (3.3.2). Since we want to match the tensor products (3.3.5) with (3.3.13),
we obtain the condition

t`Uaf = ft`Fa, f ∈ F, a ∈ A,
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and from (3.3.4) and (3.3.3) it follows, with s`U = t`U , that

ft`Faf
′ = (ft`Fa)f ′ = (s`Uaf)f ′ = s`Ua(ff ′) = ff ′t`Fa, f, f ′ ∈ F, a ∈ A.

Hence t`Faf = ft`Fa, and A needs to be central in F by means of t`F . Observe that both the left and right
A-actions induced by the U -action on F (cf. (3.3.2)) coincide with the A-module structure defined by t`F
(i.e., the A-action by the source map s`F does not arise from the fact that F is a left U -module ring).

Now the underlying linear spaces of F>C
AU and FI<

AU are given by (3.3.26); moreover F>C
AU can be

seen as an Ae-ring by defining source and target as in (3.3.14), i.e.,

s`ccr : a 7→ s`Fa⊗A 1U , t`ccr : b 7→ t`F b⊗A 1U . (3.3.27)

Then the canonical left Ae-module structure on F>C
AU from (2.1.3) is

a � (f ⊗A u) � b = s`Fat
`
F bf ⊗A u = s`Faf ⊗A s`Ubu,

whereas (2.1.5) reads

(f ⊗A u) J a = fu(1)(s
`
Fa)⊗A u(2) and b I (f ⊗ u) = f ⊗A us`Ub, (3.3.28)

where in the second equation we used (3.3.7), (3.3.1), (3.3.26), and s`U = t`U . The bimodule structures on
F ⊗A U corresponding to (3.3.14) and (3.3.6) are then a � (f ⊗A u) � b and (f ⊗A u) J b � a, respectively.
So far, part (i) in Definition (2.1.2) of a left bialgebroid has been shown.

As for part (ii), we need to show that the coring structure ∆ccr

` on FI<
AU from Lemma 3.3.4 is a k-

algebra morphism with respect to the algebra structure on F>C
AU from Lemma 3.3.2. We will do this in an

analogous manner as in [Maj, Thm. 6.2.2]. For this to hold, the identities (3.3.23)–(3.3.25) will be sufficient.
Note that these are well-defined due to (3.3.19), and that (3.3.20) and inserting (3.3.23)–(3.3.25) into the
following calculation is permitted by (2.1.2) and (2.3.9):

∆ccr

`

(
(fIC

Au)(f ′IC
Au
′)
)

=
(3.3.7)

∆ccr

`

(
fu(1)(f

′)IC
Au(2)u

′)
=

(3.3.15)

(
f[1](u(1)(f

′))[1]ICA(u(2)u
′
(1))[0]

)
⊗A
(
f[2](u(1)(f

′))[2](u(2)u
′
(1))[1]ICAu(3)u

′
(2)

)
=

(3.3.23)

(
f[1]u(1)[0](f

′
[1])IC

A(u(3)u
′
(1))[0]

)
⊗A
(
f[2]u(1)[1]u(2)(f

′
[2])(u(3)u

′
(1))[1]IC

Au(4)u
′
(2)

)
=

(3.3.25)

(
f[1]u(1)[0](f

′
[1])IC

Au(3)[0]u
′
(1)[0]

)
⊗A
(
f[2]u(1)[1]u(2)(f

′
[2])u(3)[1]u(4)(u

′
(1)[1])IC

Au(5)u
′
(2)

)
=

(3.3.24)

(
f[1]u(2)[0](f

′
[1])ICAu(3)[0]u

′
(1)[0]

)
⊗A
(
f[2]u(1)(f

′
[2])u(2)[1]u(3)[1]u(4)(u

′
(1)[1])ICAu(5)u

′
(2)

)
=

(3.3.12)

(
f[1]u(2)[0](1)(f

′
[1])IC

Au(2)[0](2)u
′
(1)[0]

)
⊗A
(
f[2]u(1)(f

′
[2])u(2)[1]u(3)(u

′
(1)[1])IC

Au(4)u
′
(2)

)
=

(3.3.24)

(
f[1]u(1)[0](1)(f

′
[1])IC

Au(1)[0](2)u
′
(1)[0]

)
⊗A
(
f[2]u(1)[1]u(2)(f

′
[2])u(3)(u

′
(1)[1])IC

Au(4)u
′
(2)

)
=

(3.3.1)

(
f[1]u(1)[0](1)(f

′
[1])ICAu(1)[0](2)u

′
(1)[0]

)
⊗A
(
f[2]u(1)[1]u(2)(f

′
[2]u
′
(1)[1])ICAu(3)u

′
(2)

)
=

(3.3.7)

(
(f[1]IC

Au(1)[0])(f
′
[1]

IC
Au
′
(1)[0])

)
⊗A
(
(f[2]u(1)[1]IC

Au(2))(f
′
[2]u
′
(1)[1]

IC
Au
′
(2))
)

= ∆ccr

` (fICAu)∆ccr

` (f ′ICAu
′).

Finally, as part (iii) in Definition 2.1.2, we need to prove the left counit property (2.1.4) for εccr with respect
to the A-actions (3.3.28) on FIC

AU . Here (3.3.21), (3.3.18), (2.1.4) for εF , εU , and the commutativity of A
will be needed:

εccr
(
(fICAu)(f ′ICAu

′)
)

= εccr
(
fu(1)(f

′)ICAu(2)u
′)

= εF (fu(1)(f
′)t`F εU(u(2)u

′)
)

= εF (u(1)(f
′))εU(u(2)u

′)εF (f)

= εU(u(1)s
`
F εFf

′)εU(u(2)u
′)εF (f) with (3.3.21)

= εU(s`UεF (f)us`UεF (f ′)u′)

= εF
(
ft`F εU(us`UεF (f ′t`F εUu

′))
)

= εccr
(
fICA(us`UεF (f ′t`F εUu

′))
)

= εccr
(
(fICAu)t`ccrεF (f ′t`F εUu

′)
)
.
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Likewise one can show that

εccr
(
(fICAu)s`ccrεF (f ′t`F εUu

′)
)

= εF
(
fu(1)(s

`
F εF (f ′t`F εUu

′))t`F εUu(2)

)
= εU(s`UεF (f)us`UεF (f ′)u′),

and then continue as above from the third line from below. 2

3.3.6 Definition A pair (F,U) of two left A-bialgebroids related to each other by the properties (3.3.17)–
(3.3.25) is called a matched pair of left bialgebroids. The resulting left A-bialgebroid FIC

AU is called the
bicrossed product bialgebroid of the matched pair (F,U).

In Sections 4.5-4.7 we will present a context in which such a construction appears quite naturally.

3.3.7 Remark Of course, there is an analogous construction for right bialgebroids. We hence conjecture
that, analogously as for Hopf algebras [Maj], the bicrossed product bialgebroid FIC

AM can be made into a
Hopf algebroid with antipode

S(fICAu) =
(
1FICASUu[0]

)(
SF (fu[1])ICA1U) =

(
SUu[0]

)
(1)

(
SF (fu[1])

)
ICA(SUu[0])(2),

where u ∈ U, f ∈ F , provided that F,U are Hopf algebroids with antipodes SF , SU , respectively. This
will probably require U to be both a right F `-comodule and a right F r-comodule for the underlying left and
right bialgebroid structures of F , and in particular additional compatibility conditions for these coactions
will have to be added. We expect these conditions to correspond to those occurring in the definition of right
Hopf algebroid comodules, a subtle notion which was completely clarified only recently in [B3, Def. 4.6].



Chapter 4

Examples of Hopf Algebroids

4.1 Immediate Examples

In this section we present a few examples that one expects or rather requires to fulfill the axioms of a Hopf
algebroid; see e.g. [B3] for more straightforward examples.

4.1.1 The Enveloping Algebra Ae

One of the most basic examples (see e.g. [Lu, Schau1, B3]) of a Hopf algebroid is the enveloping algebra
Ae = A⊗k Aop of any k-algebra A. Now Ae is a left bialgebroid over A by η`Ae := idAe , i.e., s`a = a⊗k 1,
t`b = 1⊗k b, and left coproduct as well as left counit given by

∆` : Ae → Ae ⊗A Ae, a⊗k b 7→ (a⊗k 1)⊗A (1⊗k b), ε : Ae → A, a⊗k b 7→ ab.

We recall that Ae ⊗A Ae := Ae ⊗k Ae/spank{(a⊗k bc)⊗k (a′ ⊗k b′)− (a⊗k b)⊗k (ca′ ⊗k b′), c ∈ A};
here and in what follows we express the product structure on Aop by the one in A. Similarly, there is a right
bialgebroid structure on Ae over Aop given by ηrAe := id(Aop)e , i.e., sra = 1 ⊗k a, trb = b ⊗k 1, and right
coproduct as well as right counit

∆r : Ae → Ae ⊗A
op

Ae, a⊗k b 7→ (1⊗k a)⊗A (b⊗k 1), ∂ : Ae → Aop, a⊗k b 7→ ba,

where Ae⊗Aop

Ae = Ae⊗k Ae/spank{(a⊗k cb)⊗k (a′⊗k b′)− (a⊗k b)⊗k (a′c⊗k b′), c ∈ A}. Finally,
the antipode is given by the tensor flip, i.e.,

S : Ae → Ae, a⊗k b 7→ b⊗k a.

As for the left Hopf algebroid (×A-Hopf algebra) structure, the tensor product in question reads

IAe ⊗Aop Ae
� = Ae ⊗k Ae/spank{(a⊗k cb)⊗k (a′ ⊗k b′)− (a⊗k b)⊗k (a′ ⊗k b′c)},

where cb and b′c is understood to be the product in A. One then easily verifies that

(a⊗k b)+ ⊗Aop (a⊗k b)− := (a⊗k 1)⊗Aop (b⊗k 1)

yields an inverse of the Hopf-Galois map defined as in (2.2.13).

4.1.2 Hopf Algebras Twisted by a Character

In this subsection we indicate how Hopf algebras with a character and Hopf algebroids over a commutative
ground ring k correspond to each other. More precisely, we explain and prove

4.1.1 Proposition There is a bijective correspondence between Hopf algebroids over a commutative ground
ring k and Hopf algebras over k equipped with a character.
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A Hopf algebra H = (H,mH , η,∆, ε, S) together with a character δ : H → k and the twisted an-
tipodeS̃ = mH(δ⊗S)∆ from [CoMos4] (cf. (1.3.3) in Section 1.3) can be considered a Hopf algebroid over
k as follows: the underlying k-bialgebra (H,mH , η,∆, ε) is clearly a left k-bialgebroid, source and target
map both being given by η : k → ZH ⊂ H , mapping into the centre of H . As for the right k-bialgebroid
structure, source and target maps are again given by η, whereas the right coproduct and the right counit read

∆r : H → H ⊗k H, h 7→ h(1) ⊗k η(δSh(2))h(3),
∂ := δ : H → k, h 7→ δh,

where ∆h = h(1) ⊗k h(2) are the Sweedler components of ∆. Observe that δS̃ = ε while generally δS 6= ε.
One easily checks that the comonoid identities (2.5.6) are fulfilled, for example for each h ∈ H ,

mH(idH ⊗ ∂)∆rh = h(1)ηδ(δ(Sh(2))h(3))

= h(1)ηδ(Sh(2)h(3))

= h(1)ηδεh(2) = h(1)ηεh(2) = h,

since (H,S) is a Hopf algebra. Likewise, one checks that the data (H,mH , η,∆,∆r, ε, δ, S̃) fulfill all re-
quirements in Definition 2.6.1 of a Hopf algebroid. As an example, we prove (2.6.4)

mH(S̃ ⊗ idH)∆h = η(δh(1))Sh(2)h(3) = η(δh(1))εh(2) = ηδh,

and also

mH(idH ⊗ ∂)∆rh = h(1)S̃
(
η(δSh(2))h(3)

)
= h(1)η(δSh(2))δh(3)Sh(4)

= h(1)η(δSh(2)h(3))Sh(4) = h(1)η(εh(2))Sh(3) = ηεh.

Observe that if S is invertible, then the inverse of S̃ is given by S̃−1 = mHop(S−1 ⊗ δ)∆.
Now consider the converse situation of a Hopf algebroid (H, k, η,∆`,∆r, ε, ∂, S) over a commutative

ground ring k: since source and target (for both the left and right bialgebroid) are unital maps k → H for
the unital k-algebra H , all of them coincide with the unit η : k → ZH ⊂ H . The left and right counit are
k-algebra characters ε, ∂ : H → k, but the underlying left and right bialgebroid structures do not necessarily
coincide. If S denotes the antipode of the Hopf algebroid, define

S′ := mH(η∂ ⊗ S)∆`.

One then verifies S′(hh′) = S′h′S′h and

∆rS
′h = η∂h(1)Sh(3) ⊗k Sh(2)

= Sh(2) ⊗k S′h(1)

= Sh(2) ⊗k η∂h
(2)
(1)S

′h
(1)
(1) = S′h(2)0⊗k S′h(1).

Hence S′ is an antipode for the k-bialgebra (H,∆r, ∂) and ε plays the role of a character for it: twisting again
as in (1.3.3) returns the original Hopf algebroid antipode, i.e., mH(ηε ⊗ S′)∆r = S. Of course, a similar
construction can be made for the k-bialgebra (H,∆`, ε): here the antipode reads S′ = mH(S⊗ηε)∆r and the
character is ∂. These two Hopf algebras are not independent from each other, though: as for the underlying
left and right bialgebroid in the Hopf algebroid H , they can be transferred into each other by means of S.

4.1.2 Remarks Let us conclude this section by pointing on some generalisations of the concepts used above:

(i ) If on a Hopf algebra there is no character given (apart from its counit), the proposition above does
not produce anything new. In such a case one simply has the bijective correspondence between Hopf
algebras and left Hopf algebroids over k, as mentioned in Example 2.2.2(ii). Hence, as a summary of
Proposition 4.1.1 and Example 2.2.2 one may state that left Hopf algebroids generalise Hopf algebras,
whereas Hopf algebroids generalise Hopf algebras with a character (or twisted antipode).

(ii ) As observed in [B1], for a cocommutative Hopf algebra one can always find nontrivial characters.
Twisting the antipode with respect to these characters produces Hopf algebroids which do not fulfill
the axioms of the different definition of Hopf algebroid in [Lu], cf. §2.6.13(i). This shows that the
two definitions (i.e. the one from [Lu] and the one from [BSz2] used throughout this thesis) are not
equivalent.
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(iii ) The procedure of twisting a Hopf algebra antipode by a character is only a special case of the notion
of twist of a Hopf algebroid [B1], producing new Hopf algebroids out of known ones. On top of that,
in [BŞ, Ex. 2.18] one can find the generalisation of a modular pair in involution (see Subsection 1.3.2)
to the realm of Hopf algebroids.

4.2 Universal Enveloping Algebras of Lie-Rinehart Algebras
In this section we discuss the fact that a Lie-Rinehart algebra always gives rise to a left bialgebroid as well
as a left Hopf algebroid. Adding some extra structure, one may even obtain a (double-sided) Hopf algebroid.

4.2.1 The Canonical Left Hopf Algebroid Structure on V L

Let (A,L) be a Lie-Rinehart algebra. Several authors [X3, KhR2, MoeMrč3] have shown that the enveloping
algebra V L is a left A-bialgebroid, but it is in fact also a left Hopf algebroid over A.

Recall first from e.g. [X3, KhR2, MoeMrč3] its left bialgebroid structure: source and target are equal
and are given by ιA : A → V L. The (A,A)-bimodule structure �V L� is hence given by multiplication of
elements in V L, i.e., a �u � ã = auã, which enables us to suggestively denote the tensor product (2.1.1) by

V L⊗ll V L := V L� ⊗A �V L, (4.2.1)

and likewise V L×ll V L := V L×A V L for the Takeuchi product (2.1.2). The prescriptions

∆`X = 1⊗ll X +X ⊗ll 1, ∆`a = a⊗ll 1, (4.2.2)

which map X ∈ L and a ∈ A into V L ×ll V L, can be extended by the universal property to a coproduct
∆ : V L → V L ×A V L ⊂ V L ⊗ll V L. The counit is similarly given by extension of the anchor ω to V L,
more precisely, by

ε : V L→ A, u 7→ ω(u)(1A).

As in (2.3.3), this defines a left V L-action on A, which we abbreviate as u(a) := ε(ua), and in particular,
one has

εX = 0, εa = a, ∀X ∈ L, a ∈ A.

The defining property of a left Hopf algebroid, i.e. the bijectivity of the Galois map, is seen in the same
way: denote the tensor product (2.2.2) by

V L⊗rl V L := I V L⊗Aop V L� , (4.2.3)

and write V L×rl V L := V L×Aop V L for the Takeuchi product (2.2.12). Then the translation map β−1 is
given on generators as

a+ ⊗rl a− := a⊗rl 1, X+ ⊗rl X− := X ⊗rl 1− 1⊗rl X. (4.2.4)

These maps stay in V L ×rl V L, which is an algebra through the product of V L in the first and its opposite
in the second tensor factor. By universality we obtain a map V L → V L ×rl V L ⊂ V L ⊗rl V L, and then
β−1 is defined using (2.2.13).

Conversely, certain left bialgebroids give rise to Lie-Rinehart algebras:

4.2.1 Proposition For a left bialgebroid (U,A, s`, t`,∆`, ε) with A commutative and s` ≡ t`, the pair
(A,P `H) of the base algebra and the left primitive elements forms a Lie-Rinehart algebra.

PROOF: The proof is quite straightforward. Firstly, since s` ≡ t` we usually refrain from mentioning these
maps; the remaining two left and right A-module structures on U read au := s`(a)u and ua := us`(a).
Then the coproduct ∆` is a map U → U ⊗ll U , where we use again the notation U ⊗ll U , with its obvious
meaning analogous to (4.2.1). The natural Lie algebra structure on U is simply [u, u′] := uu′−u′u, which is
closed in P `U . We have ∆`(au) = au⊗ll 1+1⊗ll au for u ∈ P `U , which is therefore a (left)A-submodule
(since s` ≡ t`). The anchor is given by the Lie algebra action

P `U → Derk A, u→ {a 7→ ε(ua) =: u(a)}.
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The required property (1.4.1) is obvious and for u, u′ ∈ P `U and a, b ∈ A, we conclude that

([u, au′])(b) = ε(u(au′(b))− au′(u(b)))

= u(a)u′(b)− a([u, u′])(b) = (u(a)u′)(b)− (a[u, u′])(b).

Since b ∈ A was arbitrary, this proves (1.4.2). 2

4.2.2 Remark (i ) Somewhat more generally, for any left bialgebroid (U,A, s`, t`,∆`, ε) for which
s`|ZA ≡ t`|ZA on the center ZA of A, one can analogously show that the pair (ZA,P `U) forms
a Lie-Rinehart algebra.

(ii ) Observe that even if one omits the ‘action axiom’ ε(uu′) = ε(uεu′) of a counit, one is still able to
define a Lie algebra action: first, for u ∈ P `U we have ∆`(ua) = ua ⊗ll 1 + 1 ⊗ll au. Applying
mU(ε⊗ id) on both sides yields

ua = u(a) + au, a ∈ A, u ∈ P `U,

from which can be read off again that εu = 0 for u ∈ P `U . Now we have for any two primitive u, u′,

([u, u′])(a) = ε(uu′a− u′ua)

= ε(u(u′(a)) + u(au′)− u′(u(a)) + u′(au))

= u(u′(a))− u′(u(a))− ε(u(a)u′ + [au, u′])

= [u, u′](a),

since P `U ⊂ ker ε was both an A-submodule and a Lie subalgebra in U . Hence we again obtain the
desired Lie algebra action.

4.2.3 Proposition Let (U,A, s`,∆`, ε) and (U ′, A′, s`
′
,∆′`, ε

′) be left bialgebroids over commutative bases
and suppose s` ≡ t` as well as s`′ ≡ t`

′. A left bialgebroid morphism (ψ, φ) : (U,A)→ (U ′, A′) induces a
morphism

(Pφ, Pψ) : (A,P `U)→ (A′, P `U ′)

of the corresponding Lie-Rinehart algebras of primitive elements. In case A = A′, this leads to a functor
P : A-LBiAlgd → A-LieRine from the category A-LBiAlgd of left A-bialgebroids to the category
A-LieRine of Lie-Rinehart algebras over A. Conversely, a morphism (A,L) → (A′, L′) of Lie-Rinehart
algebras induces a morphism (V L,A)→ (V L′, A′) of left bialgebroids, which in case A = A′ in turn leads
to a functor V : A-LieRine→ A-LBiAlgd.

PROOF: Using ψ(1U ) = 1U ′ , it is easy to check that ψ(P `U) ⊂ P `U ′. Hence the induced map reads

(Pφ, Pψ) := (φ, ψ|P `U ) : (A,P `U)→ (A′, P `U ′).

Moreover, we see that Pψ(au) = ψ(au) = φ(a)ψ(u) = Pφ(a)Pψ(u), since the primitive elements were
respective A-submodules. Secondly, Pψ is automatically a Lie algebra morphism since the Lie bracket is
simply the commutator. Thirdly, φu(a) = φε(ua) = ε′(ψ(ua)) = ε′(ψ(h)a) = (ψ(u))(φa). These three
statements together prove (Pφ, Pψ) to be a morphism of Lie-Rinehart algebras. By the universal property,
the converse statement is similarly simple to see. 2

See Corollary 5.5.8 and in particular [MoeMrč3] for further statements on the interplay between Lie-
Rinehart algebras and primitive elements of bialgebroids.

4.2.2 Hopf Algebroid Structures on V L

We saw in the previous subsection that V L is a left bialgebroid and even a left Hopf algebroid in a canonical
way. Adding some further (non-canonical and not necessarily existing) datum, one could even establish the
structure of a Hopf algebroid on it. This subsection will be dedicated to explain and prove the following
result:

4.2.4 Theorem Let (A,L) be a Lie-Rinehart algebra. If a flat right (A,L)-connection exists on A, the
universal enveloping algebra V L can be equipped with an antipode, and in particular can be made into a
Hopf algebroid.
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We start discussing the concepts needed in this theorem.

4.2.5 Connections A main ingredient in the following discussion is the notion of (A,L)-connections for a
Lie-Rinehart algebra (A,L) from [Hue1, Hue2], with the slight difference that we assumeA to be unital. Let
M ∈ A-Mod. A map

∇` : M → HomA(L,M) (4.2.5)

that fulfills
∇`X(am) = a∇`X(m) +X(a)m, a ∈ A,m ∈M, (4.2.6)

is called a left (A,L)-connection on M . It is said to be flat if it establishes a (left) Lie algebra action
m 7→ (X 7→ [X,m]) of L on M , in which case M is called a left (A,L)-module. Clearly, A itself carries
such a left (A,L)-connection (given by the anchor), and flat (A,L)-connections uniquely correspond to left
V L-modules structures by the universal property of V L. A right (A,L)-connection on an A-module N is a
map∇r : N → Homk(L,N) that fulfills

∇rX(an) = a∇rXn−X(a)n, (4.2.7)
∇raXn = a∇rXn−X(a)n, a ∈ A,n ∈ N. (4.2.8)

Again, the connection is called flat if it establishes a (right) Lie algebra module structure n 7→ (X 7→ [n,X])
on N , in which case N is called a right (A,L)-module (which, in turn, uniquely correspond to a right
V L-module). See §4.2.10 for a comment on the apparent asymmetry in the definitions of left and right
connections.

4.2.6 Lie Algebroid Connections Assume now that L is A-projective of finite constant rank n, so that
ΛnAL is the highest non-zero power of L in the category of A-modules. A result in [Hue2, Thm. 3] says
that right (A,L)-connections on A are equivalent to left (A,L)-connections on ΛnAL: the latter were (if
(A,L) := (C∞(M),ΓE) originates from a Lie algebroid E → M ) introduced in [X2] under the name Lie
algebroid connection or E-connection. In this particular case, there is always an E-connection that is flat,
implying existence of a flat right connection on A = C∞(M), although there is still no canonical choice for
it; cf. [EvLuWei, Prop. 4.3] and [X2]. A flatE-connection on a vector bundle F is also called a representation
of the Lie algebroid [Mac, EvLuWei]. In general, right (A,L)-connections on A need not exist: see Example
4.2.13.

Recall that a Gerstenhaber algebra [G, GSch] is a graded commutative k-algebra V together with a Lie
bracket [., .]G : V ⊗k V → V of degree −1 (a graded Lie bracket in the usual sense when the degrees of the
elements of V are lowered by 1) that satisfies a graded Leibniz identity (cf. e.g. [Kos] for details). A k-linear
operator ∂ of degree −1 is said to generate a Gerstenhaber algebra V if for every homogeneous v, w ∈ V ,
one has

[v, w]G = (−1)deg v(∂(vw)− (∂v)w − (−1)deg vv∂w).

The operator ∂ is called exact if ∂2 = 0 and a Gerstenhaber algebra with an exact generator is called a
Batalin-Vilkovisky algebra [Kos, X2]. On the A-exterior algebra ∧•AL, one has the following Gerstenhaber
bracket:

[., .]G : ∧•A L⊗k ∧•AL→ ∧•AL,

[u, v]G = (−1)deg u
∑
i≤j<l

(−1)i+l[Xi, Xl] ∧X1 ∧ · · · X̂i · · · X̂l · · · ∧Xn,
(4.2.9)

for u = X1 ∧ · · · ∧Xl ∈ ∧lAL and v = Xl+1 ∧ · · · ∧Xn ∈ ∧n−lA L, where the bracket [., .] is the one from
the Lie-Rinehart structure on L. Right connections can then be characterised by the following statement.

4.2.7 Theorem [Hue2, Thm. 1] Right (A,L)-connections on A bijectively correspond to k-linear operators
∂ of degree−1 generating the Gerstenhaber bracket on ∧•AL. Exact operators or differentials, that is, k-linear
operators ∂ of degree −1 with ∂2 = 0 generating the Gerstenhaber bracket on ∧•AL, correspond to flat right
(A,L)-connections.

See [Hue2, Thm. 1] for a detailed proof. For later use we repeat how the precise correspondence is given. A
k-linear operator ∂ generating the Gerstenhaber bracket (4.2.9) defines a right (A,L)-connection on A via

∇rXa := a ∂X −X(a) = a(∂X) + [a,X]G = ∂(aX).
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In particular,
∇rX1A = ∂X, (4.2.10)

see also our Proposition 3.1.14 for a dual construction in the general context of left bialgebroids. Conversely,
if (a,X) 7→∇rXa is such a connection, the operator ∂ on ∧•AL defined by

∂(X1 ∧ · · · ∧Xn) =

n∑
i=1

(−1)i−1(∇rXi1A)X1 ∧ · · · ∧ X̂i ∧ · · · ∧Xn

+
∑
i<j

(−1)j+i[Xi, Xj ] ∧X1 · · · ∧ X̂i ∧ · · · ∧ X̂j ∧ · · · ∧Xn

yields an k-linear operator ∂ generating [., .]G.

4.2.8 Hopf Algebroid Structure on V L
By now, we have gathered all necessary ingredients to establish a Hopf algebroid structure on V L. To

start, a right bialgebroid structure on V L is given as follows: since A = Aop, set

sr ≡ tr ≡ s` ≡ t` ≡ iA : A ↪→ V L, (4.2.11)

and the (A,A)-bimodule structure IV LJ is given again by multiplication in V L, i.e., a Iu J ã = auã. We
therefore suggestively denote the tensor product (2.5.1) by

V L⊗rr V L := V LJ ⊗A IV L.

4.2.9 Proposition Flat left and right (A,L)-connections on A correspond to left and right bialgebroid struc-
tures on V L over A, respectively. In particular, a Lie-Rinehart algebra (A,L) with a flat right (A,L)-
connection on its base algebra carries both left and right bialgebroid structures.

PROOF: Recall that, as morphisms of k-Lie algebras, flat left and right connections∇` : L→ Endk A and
∇r : Lop → Endk A can be extended to k-algebra morphisms ∇` : V L → Endk A and ∇r : (V L)op →
Endk A, with respective properties ∇`uu′a = ∇`u∇`u′a and ∇ruu′a = ∇ru′∇rua for all u, u′ ∈ V L, a ∈ A.
Given such flat connections as above, with associated operators

ε̃u := ∇`u1A, ∂u := ∇ru1A, u ∈ V L,

both seen as maps V L→ A, one has

∂(∂(u)u′) = ∇ru′∂u = ∇ru′∇ru1A = ∇ruu′1A = ∂(uu′), (4.2.12)

and also
ε̃(uε̃(u′)) = ∇`uε̃(u′) = ∇`u∇`u′1A = ∇`uu′1A = ε̃(uu′). (4.2.13)

Define two coproducts by setting on generators

∆`X = 1⊗ll X +X ⊗ll 1− ε̃X ⊗ll 1, ∆`a = a⊗ll 1,
∆rX = 1⊗rr X +X ⊗rr 1− ∂X ⊗rr 1, ∆ra = a⊗rr 1,

(4.2.14)

and extend these maps to the whole of V L by requiring them to corestrict to k-algebra morphisms ∆` :
V L → V L ×A V L and ∆r : V L → V L ×A V L. One then easily checks that (V L,A, iA,∆`, ε̃) and
(V L,A, iA,∆r, ∂) are left and right bialgebroids, respectively. 2

4.2.10 Remarks (i ) Clearly, the anchor already defines such a left (A,L)-connection, which reproduces
the canonical left bialgebroid structure on V L from Subsection 4.2.1.

(ii ) By (2.1.8) one has X + εX = X , hence ε(aX) = 0, ε(a) = a and also ε(Xa) = X(a) which reveals
that ε (and also ∂) is an algebra morphism if the (left respectively right) action of L onA is trivial. This
is, for example, the case for the symmetric algebra SAL, which expressed on generators has analogous
structure maps as V L, but defines a trivial action on A (since it is commutative).
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(iii ) The apparent asymmetry in the definition of left and right (A,L)-connections in (4.2.5)–(4.2.8) is es-
sentially due to the fact that A already carries a canonical V L-module structure from the left (namely
by the anchor), but not from the right. Hence Lie-Rinehart algebras should actually be called left
Lie-Rinehart algebras. In case there is a right V L-action (a, u) 7→ ∂(au) on A, one may refor-
mulate the right connection identities (4.2.7) and (4.2.8) and thus obtain a more symmetric defini-
tion compared to left connections: a flat right (A,L)-connection on a right A-module N is a map
∇r : N → Hom(−,A)(V LJ , NA) of right A-modules, subject to

∇rX(na) = n∂(aX) + (∇rXn)a− na∂X, a ∈ A,X ∈ L, n ∈ N. (4.2.15)

Hence using [X, a] = X(a), one has ∇raXn + X(a)n = ∇rXan = (∇rXn)a, which is (4.2.7) again,
and inserting ∂(aX) = a∂X −X(a) into (4.2.15) reproduces (4.2.8). The fact that (4.2.15) contains
three terms whereas there are only two in (4.2.6), is due to the fact that elements X ∈ L are primitive
with respect to ∆` but not with respect to ∆r, hence εX = 0, whereas most generally ∂X 6= 0 (see
also the next comment).

(iv ) It is then evident that right (A,L)-connections are a special case of right bialgebroid connections from
Section 2.5.1. Compare (2.5.8) to (4.2.15), again the additional summand derives from the fact that X
is not primitive with respect to ∆r.

Linking right and left bialgebroid structures on V L by an antipode leads to the structure of a Hopf
algebroid on V L: let (A,L) be a Lie-Rinehart algebra and∇r a right (A,L)-connection onAwith associated
operator ∂X := ∇rX1A, seen as a map ∂ : L→ A (cf. Theorem 4.2.7). Define a pair of maps SL∂ : L→ V L,
SA∂ : A→ V L by

SL∂ (X) = −X + ∂X, SA∂ (a) = a, ∀ X ∈ L, a ∈ A. (4.2.16)

Combining (4.2.7) with (4.2.8), this implies that

SL∂ (aX) = −aX +∇rXa X ∈ L, a ∈ A.

4.2.11 Proposition (Antipodes for Lie-Rinehart algebras) Let (A,L) be a Lie-Rinehart algebra and ∇r a
right (A,L)-connection on A, as above.

(i ) The pair (SA∂ , S
L
∂ ) extends to a k-algebra anti-homomorphism S : V L→ V L if and only if∇r is flat.

In such a case, S is an involutive antipode with respect to the canonical left bialgebroid structure (see
Subsection 4.2.1) and the right bialgebroid structure from Proposition 4.2.9.

(ii ) Conversely, given a unital map S : V L → V L that is an isomorphism of twisted bimodules, i.e.,
S(aub) = bS(u)a and S(1V L) = 1V L, a, b ∈ A, u ∈ V L, the assignment

∇ : A → Homk(L,A), a 7→ {X 7→ ε(S(X)a)} (4.2.17)

defines a right (A,L)-connection onAwhich is flat if and only if S is a k-algebra anti-homomorphism.

PROOF: Part (i): exploiting the universal property of V L, we show that ((V L)op, SL∂ , S
A
∂ ) is a triple of

the kind (1.4.3). First, SA∂ : A → V L, a 7→ iA(a) = a is clearly a morphism of k-algebras; considering
SL∂ : L→ V L, X 7→ −iL(X) + iA(∂X) = −X + ∂X (refraining from mentioning iL, iA all the time), we
have

[SL∂X,S
L
∂ Y ] = [X,Y ] + [Y, ∂X]− [X, ∂Y ] + ∂X∂Y − ∂Y ∂X

= [X,Y ] + Y (∂X)−X(∂Y )

= SL∂ ([Y,X])− ∂([Y,X]) + Y (∂X)−X(∂Y ) + ∂X∂Y − ∂Y ∂X
= SL∂ ([Y,X])−∇r[Y,X]1A +∇rX∂Y −∇rY ∂X

= SL∂ ([Y,X])−∇r[Y,X]1A +∇rX∇rY 1A −∇rY∇rX1A

= SL∂ ([Y,X]) +
(
[∇rX ,∇rY ]−∇r[Y,X]

)
(1A).

The last term is the curvature of∇r, so SL∂ : L→ (V L)op
L is a homomorphism of k-Lie algebras if and only

if the connection is flat. We now check

SA∂ (a)SL∂ (X) = −Xa+ a∂X = −aX +∇rXa = SL∂ (aX),
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and also
SL∂ (X)SA∂ (a)− SA∂ (a)SL∂ (X) = −aX + a∂X +Xa− a∂X = SA∂ (X(a)),

hence the property (1.4.3) for the pair (φL, φA) := (SL∂ , S
A
∂ ). As in Definition 1.4.3, we infer the existence of

a unique morphism S∂ : V L→ (V L)op of k-algebras such that S∂iA = SA∂ , S∂iL = SL∂ . If the connection
is flat, the antipode axioms including S2

∂ = id are straightforward to check by considering e.g. a PBW basis
of V L, and making use of the anti-homomorphism property.

Part (ii): we need to check the properties (4.2.7) and (4.2.8) for a right connection. It is easy to see that

∇X(ab) = ε(S(X)ab) = ε((−Xa+ a∂X)b) = ε((−aX −X(a) + a∂X)b)

= aε(S(X)b)−X(a)b = a∇Xb−X(a)b,

which is (4.2.7), and similarly one proves the second identity. To show flatness if and only if S is a k-algebra
anti-homomorphism, compare (reintroducing iL here)

[∇Y ,∇X ](a) = ε(S(iL(Y ))ε(S(iL(X))a))− ε(S(iL(X))ε(S(iL(Y ))a))

= ε(S(iL(Y ))S(iL(X))a))− ε(S(iL(X))S(iL(Y ))a).

with∇[X,Y ]a = ε
(
SL([X,Y ])a

)
. The statement follows by the universal property. 2

4.2.12 Remarks (i ) We want to stress that flatness of the connection is needed in Proposition 4.2.11(i) to
show that S∂ is a k-algebra anti-homomorphism.

(ii ) There seems to be no way of introducing an antipode on V L other than by flat right connections;
furthermore, there does not seem to be a canonical choice for such a connection, or even a ‘trivial’
one. The analogue for the Lie algebra case, i.e., SX = −X for X ∈ L is not well-defined unless the
anchor is trivial, which essentially leads back to Lie algebras. Related to this is the problem of how to
define the ‘opposite’ of a Lie-Rinehart algebra.

(iii ) There might be an obstruction for the existence of such a flat right connection onA (as in the following
Example 4.2.13); consequently, in such a case V L cannot be given the structure of a Hopf algebroid.
However, as we have seen, V L is always a left Hopf algebroid. Hence the answer to the question posed
in [B3] whether every left Hopf algebroid is the constituent left bialgebroid in a Hopf algebroid is no.

4.2.13 A Counterexample The simplest example of a Lie-Rinehart algebra that cannot be made into a Hopf
algebroid might be L = Γ(T 1,0S2). Here T 1,0S2 ⊕ T 0,1S2 = TS2 ⊗ C is the decomposition of the
complexified tangent bundle of S2 into the holomorphic and antiholomorphic part with respect to the standard
complex structure. Together with A = C∞(S2,C) this defines a Lie-Rinehart algebra, where the action
of L on A is the usual action of a vector field on a smooth function and the action of A on L is given by
fibrewise multiplication. We know from [Hue2, Thm. 3] that the right V L-module structures onA correspond
bijectively to left V L-module structures on L itself (as seen, in general on its top exterior power over A,
but here this is L because T 1,0S2 is a line bundle). Such a left V L-action corresponds precisely to a flat
connection∇ on the complex line bundle T 1,0S2, with X ∈ L acting on sections of T 1,0S2 by the covariant
derivative ∇X (see [Hue2] for the details). But the curvature of any connection represents the first Chern
class of the bundle, which is nonvanishing since T 1,0S2 is not trivial. Therefore, there is no flat connection,
i.e. left V L-action on L and hence no right V L-action on A.

4.3 Jet Spaces of Lie-Rinehart Algebras

Now we describe another Hopf algebroid associated to a Lie-Rinehart algebra (A,L), where, as anA-module,
L is finitely generated projective of constant rank (this means that it is the same for every prime ideal of A).
We will prove the following theorem:

4.3.1 Theorem The space ofL-jets JL is a Hopf algebroid with involutive antipode in the sense of Definition
2.6.1.
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Some of its structure maps have been used before in the literature, cf. [NeTs, CalVdB], but here we give a
complete description: the Hopf algebroid of L-jets is in a certain sense dual to V L. As mentioned in Section
3.1, duality in the category of bialgebroids has been described in [KSz] under certain projectivity assumptions
of the bialgebroid over their base algebra. These are clearly not satisfied for V L, but each successive quotient
V Lp/V Lp−1 in the Poincaré-Birkhoff-Witt filtration of §1.4.5 is projective, provided L is projective over A.
With this, the bialgebroid structure for JL can be seen to be given essentially by that of the dual of a left
bialgebroid, as in Section 3.1. Observe that the left and right dual coincide (as k-modules) since source and
target map are equal for V L; also note that the dual is a right bialgebroid, but since the jet spaces will be
commutative (see below), we may equally consider it as a left bialgebroid.

Let (A,L) be a Lie-Rinehart algebra and L finitely generated A-projective of constant rank. The space
of p-jets of (A,L) is now defined as JpL := HomA(V L≤p, A), where V L≤p denotes the elements in V L of
degree ≤ p. The infinite jet space is defined as the projective limit

JL = J∞L := lim
←−

JpL.

We will now list the Hopf algebroid structure maps of JL over A:

(i ) (Ring structure) The monoid structure is given by a commutative product on JL that can be described
using the left coproduct on V L by

φφ′(u) = φ(u(1))φ
′(u(2)), φ, φ′ ∈ JL, u ∈ V L,

which is (3.1.18) adapted to this situation. The unit is given by the left counit on V L, for better
distinction denoted by εVL : V L→ A in this section, since

εVLφ(u) = εVL(u(1))φ(u(2)) = φ(εVL(u(1))u(2)) = φ(u).

(ii ) (Source and target) As in (3.1.3) and (3.1.4), define source and target maps s`JL, t
`
JL : A→ JL by

s`JLa(u) := εVL(au) = aεVL(u), t`JLa(u) := εVL(ua) = u(a).

It is easy to see that their images commute, and hence that (JL, s`JL, t
`
JL) becomes an Ae-ring. Observe

that this gives an example of a commutative base algebra where source and target do not coincide.

(iii ) (Coring structure) To define additionally the structure of an A-coring, we need:

4.3.2 Lemma There is a canonical isomorphism

JL� ⊗A �JL ' lim
←−
p

HomA

(
(V L⊗rl V L)≤p, A

)
,

where ⊗rl is defined as in (4.2.3).

PROOF: By definition (cf. (2.1.1)),

JL� ⊗A �JL = JL⊗k JL/spank{t`JLaφ⊗k φ′ − φ⊗ s`JLaφ′, a ∈ A}.

The first term in the ideal, evaluated on u⊗k u′ ∈ V L⊗k V L, reads

(t`JLaφ⊗k φ′)(u⊗k u′) = t`JLaφ(u)⊗ φ′(u′)
= εVL(u(1)a)φ(u(2))⊗ φ′(u′) = φ(ua)⊗ φ′(u′),

whereas for the second

(φ⊗k s`JLaφ′)(u⊗k u′) = φ(u)⊗ aεVL(u′(1))φ
′(u′(2)) = φ(u)⊗ φ′(au′).

Observe that these two expressions use exactly the A-bimodule structure on V L used in the⊗rl-tensor
product. It therefore follows that the map φ ⊗k φ′ 7→ {u ⊗k u′ 7→ φ(uφ′(u′))} induces the desired
isomorphism (by projectivity of L this is an isomorphism in each degree). 2
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Clearly, the product on V L descends to a map V L ⊗rl V L → V L which allows one to dualise the
product to obtain the coproduct ∆JL

` : JL→ JL� ⊗A �JL , i.e.,

φ(uu′) =: ∆JL

` (φ)(u⊗rl u′) = φ(1)

(
uφ(2)(u

′)
)
, (4.3.1)

similarly as in §3.1.6(i). Associativity of the multiplication in V L implies that ∆JL

` is coassociative.
Finally, the left counit is given as in (3.1.9) by

εJL : JL→ A, φ 7→ φ(1V L),

and it is straightforward to see that (JL,∆JL

` , εJL) is an A-coring.

(iv ) (Antipodes for Jet Spaces) It is now easy to verify that (JL,A, s`JL, t
`
JL, εJL,∆

JL

` ) is a left bialgebroid.
Since JL is commutative, it is also a right bialgebroid. To obtain a Hopf algebroid, all we need is an
antipode.

As observed in [NeTs], there are two left V L-module structures on JL. First there is the ‘obvious’
module structure given by

(u ⇁ φ)(u′) = φ(u′u),

as in (3.1.8) or §A.1.1(i), induced by right multiplication of V L on itself. Second, there is another left
V L-action on JL, constructed as follows. Consider the A-module structure �JL , i.e., (a �φ)(u) :=
(s`JLaφ)(u) = φ(au). On this A-module, there is a canonical left connection induced by the anchor
(also called the Grothendieck connection), given by

∇`X(φ)(u) := εVL
(
X(φu)

)
− φ(Xu), X ∈ L, φ ∈ JL, u ∈ V L. (4.3.2)

One easily checks that this connection is flat, and we can write the induced V L-module structure in
terms of the canonical left Hopf algebroid structure on V L from (4.2.4) as

(uφ)(u′) := u+

(
φ(u−u

′)
)

= εVL
(
u+φ(u−u

′)
)
. (4.3.3)

With respect to the coproduct, these two module structure satisfy

∆JL

` (u ⇁ φ) = (u ⇁ φ(1))⊗A φ(2),

∆JL

` (uφ) = φ(1) ⊗A uφ(2).
(4.3.4)

We now define the antipode on JL to be the following map SJL : JL→ JL:

(SJLφ)(u) := εJL(uφ) = u+(φ(u−)) = εVL(u+φ(u−)).

PROOF: (of Theorem 4.3.1) Since L acts on V L via (4.3.2) by derivations, L→ Derk JL is a morphism of
Lie algebras. It therefore follows from the PBW theorem that (4.3.3) satisfies

u(φφ′) = (u(1)φ)(u(2)φ
′).

Using this property, one finds that S is a homomorphism of commutative algebras:

SJL(φφ′)(u) = (u(φφ′))(1) = ((u(1)φ)(u(2)φ
′))(1) = ((SJLφ)(SJLφ

′))(u).

To prove the theorem, we verify the axioms of Definition 2.6.1: since s`JL = trJL, t`JL = srJL, the first one is
trivially satisfied, whereas the second is equivalent to the coassociativity of ∆JL

` , because ∆JL

` = ∆JL
r . For

(2.6.3), we compute with (2.1.4), (2.3.4) and (2.2.4)

SJL(s`JLa)(u) = εVL
(
u+(s`JLa)(u−)

)
= εVL

(
u+εVL(au−)

)
= εVL(u+(1)a)εVL(u+(2)u−) = εVL(ua) = (t`JLa)(u).

and with (2.2.10)

SJL(t`JLa)(u) = εVL
(
u+(t`JLa)(u−)

)
= εVL

(
u+εVL(u−a)

)
= εVL(u+u−a)

= aεVL(u) = (s`JLa)(u).
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To prove that S is an involution, one computes

(S2
JLφ)(u) = εVL

(
u+(SJLφ)(u−)

)
= εVL

(
u+εVL(u−+φ(u−−))

)
= εVL

(
u+u−+φ(u−−)

)
.

(4.3.5)

To find an identity for the term u+u−+ ⊗rl u−− that appears in the last line, apply the Hopf-Galois map
(2.2.1) to it:

β(u+u−+ ⊗rl u−−) = u+(1)u−+(1) ⊗ll u+(2)u−+(2)u−−

= u+(1)u− ⊗ll u+(2)

= 1⊗ll u,

where (2.2.4) was used in the second line and the last line follows from the fact that V L is cocommutative
together with (2.2.4) again. Hence

u+u−+ ⊗rl u−− = β−1(1⊗ll u) = 1+ ⊗rl 1−u = 1⊗rl u,

and inserting this identity into (4.3.5) yields S2
JL = idJL. We are left with proving the axioms (2.6.4). Observe

that since the antipode is involutive, JL is commutative, and both left and right bialgebroid structures are
given by (JL, s`JL, t

`
JL,∆

JL

` , εVL), it suffices to verify one of the two identities in (2.6.4). For example,(
φ(1)SJLφ(2)

)
(u) = φ(1)(u(1))SJLφ(2)(u(2))

= φ(1)(u(1))εVL
(
u(2)+φ(2)(u(2)−)

)
= φ(1)(u+(1))εVL

(
u+(2)φ(2)(u−)

)
= φ(1)

(
u+φ(2)(u−)

)
= φ(u+u−) = φ(1VL)εVL(u) = (s`JLεJLφ)(u),

where (2.2.7) and (2.2.10) were used. This proves the second identity and therefore concludes the proof that
JL carries the structure of a Hopf algebroid. 2

4.3.3 Remark Theorem 4.3.1 is remarkable in the sense that whereas the universal enveloping algebra V L
of a Lie-Rinehart algebra carries no canonical Hopf algebroid structure, its dual JL does. Close inspection of
the preceding proof shows that the Hopf algebroid structure—more precisely the antipode—depends solely
on the left Hopf algebroid structure on V L, which is canonical, i.e. does not depend on the choice of a flat
right connection (cf. Subsection 4.2.13).

4.3.4 Remark In the previous construction of the jet space J`L := JL we regarded V L as an A-module
by left multiplication. Right multiplication leads to a space written JrL without much structure. Only after
introducing a flat right (A,L)-connection on A, we can introduce a ring structure using the right comultipli-
cation ∆r on V L and source and target maps using the right counit ∂. This does lead to a Hopf algebroid,
but one easily proves that the map φ 7→ φ◦S defines an isomorphism J`L→ JrL of Hopf algebroids, where
S is the antipode on V L constructed from the same flat right connection as in Proposition 4.2.11.

4.4 Convolution Algebras
IfG⇒ G0 is an étale groupoid over a compact Hausdorff manifoldG0, the space C∞c (G) of smooth functions
on G = G1 with compact support carries a Hopf algebroid structure:

4.4.1 Proposition The groupoid structure of an étale groupoid G⇒ G0 over a compact manifold G0 deter-
mines a Hopf algebroid structure on the convolution algebra C∞c (G) over C∞(G0).

We will dedicate this section to explain the Hopf algebroid structure of C∞c (G), i.e. prove this proposition.

4.4.2 Overall Assumption AlthoughG = G1 often happens to be non-Hausdorff in examples, we do assume
this in the rest of this section as well as in Sections 5.7 and 6.6, to simplify the computations a bit. However,
we presume that all results in the mentioned sections can be adapted to the non-Hausdorff case by combining
the formalism of [CrMoe1] for the functor Γc for non-Hausdorff spaces with the results in [Mrč2].
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The required structure maps are induced by the target sheaf t : G → G0 (which is a sheaf since G
is étale) for the underlying left bialgebroid structure plus antipode, and are basically already mentioned in
[Mrč1] (for G Hausdorff) or [Mrč2] (general case). We only need to add the corresponding right structure
given by the source sheaf s : G → G0 to assemble all data into a Hopf algebroid. Compactness of G0 is
needed here to obtain unital algebras instead of merely algebras with local units.

Note that, corresponding to the identities 1t(g)g = g1s(g), the source and target sheaves induce
two natural C∞(G0)-module structures on C∞c (G), seen as left and right module structures. Since
C∞(G0) with pointwise product is commutative, we can again define four different tensor products denoted
⊗llC∞(G0), ⊗

rr
C∞(G0), ⊗

rl
C∞(G0), ⊗

lr
C∞(G0) with obvious meaning. We will frequently need the following iso-

morphisms
Ωs,t : C∞c (G)⊗rlC∞(G0) C

∞
c (G)

'−→ C∞c (Gs×tG0
G) = C∞c (G2),

Ωt,t : C∞c (G)⊗llC∞(G0) C
∞
c (G)

'−→ C∞c (Gt×tG0
G) = C∞c (G2),

Ωs,s : C∞c (G)⊗rrC∞(G0) C
∞
c (G)

'−→ C∞c (Gs×sG0
G),

Ωt,s : C∞c (G)⊗lrC∞(G0) C
∞
c (G)

'−→ C∞c (Gt×sG0
G)

(4.4.1)

all given by the formula
Ω−,−(u⊗−−C∞(G0) u

′)(g, g′) = u(g)u′(g′), (4.4.2)

for u, u′ ∈ C∞c (G) and (g, g′) in the respective pull-back G−×−G0
G. The fact that these maps are isomor-

phisms was shown in [Mrč1] (for G Hausdorff), and for non-Hausdorff spaces can be derived from a more
general result on sheaves in [Mrč2, p. 271]. Moreover, one can combine the various isomorphisms to produce
‘mixed’ ones, e.g.,

C∞c (G)⊗rlC∞(G0) C
∞
c (G)⊗lrC∞(G0) C

∞
c (G) ' C∞c (Gs×tG0

Gt×sG0
G). (4.4.3)

We now give a list of the Hopf algebroid structure maps of C∞c (G) over C∞(G0):

(i ) (Ring structure) On the base algebra C∞(G0) one uses the commutative pointwise product, whereas
the total algebra C∞c (G) will be equipped with a convolution product, defined as the composition

∗ : C∞c (G)⊗rlC∞(G0) C
∞
c (G)

Ω2
s,t→ C∞c (G2)

m+→ C∞c (G).

Explicitly,
(u ∗ v)(g) := ∗(u⊗ v) = (m+Ωs,t(u⊗ v))(g) =

∑
g=g1g2

u(g1)v(g2),

which can be used to show associativity of the product ∗.

(ii ) (Source and target maps) In particular, taking f ∈ C∞(G0) and u ∈ C∞c (G) one has

(f ∗ u)(g) = f(t(g))u(g) and (u ∗ f)(g) = u(g)f(s(g)), (4.4.4)

hence the left and right C∞(G0)-action by the (groupoid) source and target sheaf. One can now show
that C∞(G0), identified with those functions in C∞c (G) having support on 1G0 ⊂ G, is a commutative
subalgebra of C∞c (G). Correspondingly, we put for the (left and right bialgebroid) source and target
maps

s` ≡ t` ≡ sr ≡ tr ≡ 1+ : C∞(G0)→ C∞c (G),

i.e. the injection as subalgebra given by the fibre sum of the unit map 1 : G0 → G (which we usually
refrain from mentioning at all). Explicitly,

s` : f 7→ f̃ , where f̃(g) =

{
f(x) if g = 1x for some x ∈ G0,
0 otherwise, (4.4.5)

and the tensor products ⊗llC∞(G0), ⊗
rr
C∞(G0), ⊗

rl
C∞(G0), ⊗

lr
C∞(G0) introduced before can now be inter-

preted with respect to this injection.

(iii ) (Left and right coproduct) With the help of the isomorphisms Ω·,·, the left and right coproducts read as
follows:

∆′` := Ω2
t,t ∆` : C∞c (G)→ C∞c (Gt×tG0

G), (∆′`u)(g, g′)=

{
u(g) if g = g′,
0 else,

∆′r := Ω2
s,s ∆r : C∞c (G)→ C∞c (Gs×sG0

G), (∆′ru)(g̃, g̃′)=

{
u(g̃) if g̃ = g̃′,
0 else.

(4.4.6)
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If one introduces the diagonal maps d` : G → Gt×tG0
G, g 7→ (g, g) as well as dr : G →

Gs×sG0
G, g 7→ (g, g), this can be obviously rewritten as ∆′` = d`+ and ∆′r = dr+ or even as

∆` = Ω−1
t,t d

`
+ and ∆r = Ω−1

s,s d
r
+. For later computations, let us also mention that higher coprod-

ucts are given by

(∆′
n
` u)(g1, . . . , gn) =

{
u(g1) if g1 = . . . = gn,
0 else,

for (g1, . . . , gn) ∈ Gn, where Gn := Gt×tG0
· · · t×tG0

G, and likewise for ∆′
n
r .

(iv ) (Left and right counit) Both left and right counit are determined by the fibre sum of the germ bundle
projection of the target and source sheaf, respectively. For any x ∈ G0, set

ε : C∞c (G)→ C∞(G0), εu(x) =
∑
t(g)=x

u(g) = t+u(x),

∂ : C∞c (G)→ C∞(G0), ∂u(x) =
∑
s(g)=x

u(g) = s+u(x).
(4.4.7)

(v ) (Antipode) Finally, the antipode is given by the groupoid inversion,

S : C∞c (G)→ C∞c (G), (Su)(g) = u(g−1) = (inv+u)(g). (4.4.8)

The proof of Proposition 4.4.1 is now a straightforward verification:
PROOF: (of Proposition 4.4.1) We remark once again that compactness of G0 makes both algebras
(C∞c (G), ∗) and (C∞(G0), ·) unital. The fact that (C∞c (G), C∞(G0),∆`, ε) is a left bialgebroid having an
antipode S with certain properties was already shown in [Mrč2, Prop. 2.5]. This can be carried over, mutatis
mutandis, by simply replacing the target sheaf by the source sheaf to prove that (C∞c (G), C∞(G0),∆r, ∂)
gives a right bialgebroid. As an example, for u, v ∈ C∞c (G) we have (∂u ∗ v)(g) = ∂u(t(g))v(g) =∑
s(g1)=t(g) u(g1)v(g), hence for some x ∈ G0,

∂(u ∗ v)(x) =
∑

s(g)=x,

∑
g=g1g2

u(g1)v(g2) =
∑

s(g2)=x,

∑
s(g1)=t(g2)

u(g1)v(g2) = ∂(∂u ∗ v)(x),

and, using implicitly ∆r = Ω−1
s,s d

r
+,

(∗(id⊗ ∂)∆ru)(g) = (u(1) ∗ ∂u(2))(g)

= u(1)(g)∂u(2)(s(g)) =
∑

s(g′)=s(g)

u(1)(g)u(2)(g′) = u(g)

and so forth. Hence ∂ is indeed a right counit for ∆r. In what follows, we can now restrict ourselves
to verify the Hopf algebroid identities in which left and right bialgebroid structures are intertwined: for
example, twisted coassociativity (2.6.2) is obvious, so we only prove the second identity in (2.6.4):

(∗(id⊗ S)∆ru)(g) =
∑

g=g1g2

(Ω−1
s,s d

r
+u)(g1, g

−1
2 )

=
∑

{g1∈G|t(g1)=t(g),g1=g−1g1}

u(g1)

=

{ ∑
t(g1)=x u(g1) if g = 1x for some x ∈ G0,

0 else

= (s`εu)(g).

We leave the verification of the remaining identities in Definition 2.6.1 to the reader, but as an illustration,
we also state the third relation in (2.6.10), i.e.,

(∂Su)(x) =
∑
s(g)=x

Su(g) =
∑
s(g)=x

u(g−1) =
∑
t(g)=x

u(g) = (εu)(x),

or ∂S = s+S = t+ = ε. 2

A different way to obtain a (topological) Hopf algebroid from an étale groupoid is described in [KaTan].
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4.5 Function Algebras
The convolution algebra in Section 4.4 is not the only Hopf algebroid which arises from an étale groupoid. In
this section, we use pullbacks of the structure maps rather than push forwards. Let s, t : G ⇒ P be an étale
groupoid and consider the algebra C∞(G) of smooth functions with its commutative pointwise multiplication.
We are going to consider a subspace of C∞(G), invariant under an action of (lifted) differential operators on
the base manifold P (see Definition 4.5.1 for the precise construction), and prove that it is a Hopf algebroid
(see Proposition 4.5.6).

The Lie-Rinehart algebra (C∞(P ),ΓTP ) of smooth sections of the tangent bundle TP over C∞(P ) acts
in two ways from the left on C∞(G): firstly, the assignment

C∞(P )⊗ C∞(G)→ C∞(G), (a, f) 7→ at(f) := t∗(a)f
ΓTP ⊗ C∞(G)→ C∞(G), (X, f) 7→ Xt(f) := Lt∗Xf (4.5.1)

can be extended by the universal property to a left action

V P ⊗ C∞(G)→ C∞(G), (u, f) 7→ ut(f) (4.5.2)

of the universal enveloping algebra V P := V ΓTP on C∞(G). Secondly, the same considerations with
respect to the source map s lead analogously to the left action

V P ⊗ C∞(G)→ C∞(G), (u, f) 7→ us(f). (4.5.3)

Furthermore, the assignment

(a, f, b) 7→ t∗(a)fs∗(b), f ∈ C∞(G), a, b ∈ C∞(P ), (4.5.4)

equips C∞(G) with a C∞(P )-bimodule or left C∞(P )e-module structure and we denote the canonical injec-
tion by

η : C∞(P )e → C∞(G), a⊗C b 7→ t∗(a)s∗(b).

We can now make the following definition.

4.5.1 Definition The space F = F∞ is the smallest left V P -submodule with respect to the action (4.5.2)
that contains F0 := C∞(P )e and is closed under groupoid inversion.

As the notation suggests, F carries a filtration, which can be seen to originate from the canonical filtration
of V P . To see what it looks like, we need to calculate the V P -action on elements of the form t∗(a)s∗(b).
One obviously has

at(s∗b) = t∗(a)s∗(b) ∈ F0, Xt(t∗a) = t∗(LXa) ∈ F0, a, b ∈ C∞(P ), X ∈ XP.

To calculate elements of type Lt∗Xs∗a one most conveniently makes use of the following lemma (cf. Lemma
A.1.4).

4.5.2 Lemma (Dual Basis Lemma for the tangent bundle) Let P be a smooth manifold. Then there exist
vector fields X1, . . . , Xn ∈ XP and one-forms θ1, . . . , θn ∈ Ω1P such that each vector field X ∈ XP can
be decomposed as X =

∑n
i=1 θ

i(X)Xi.

As we will explain now, there are functions ηiX ∈ C∞(G) such that

t∗X =

n∑
i=1

ηiXs
∗Xi.

Equivalently, at a point g ∈ G, this means

(dt)−1
g (Xt(g)) =

n∑
i=1

ηiX(g)(ds)−1
g (Xi,s(g)).

That is to say,

g−1 ·Xt(g) =

n∑
i=1

ηiX(g)Xi,s(g),
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where g−1· : Tt(g)P → Ts(g)P denotes the rightG-action ds◦dt−1 on TP . On the other hand, from Lemma
4.5.2 one also obtains

g−1 ·Xt(g) =

n∑
i=1

θi(g−1 ·Xt(g))Xi,s(g), (4.5.5)

hence we choose
ηiX(g) := θi(g−1 ·Xt(g)).

An analogous consideration holds for the functions η̃jX arising from the decomposition s∗X =∑n
i=1 η̃

i
Xt
∗Xi, where one clearly obtains

η̃iX(g) := θi(g ·Xs(g)),

that is
η̃jX = ηjX ◦ inv, (4.5.6)

where inv is the groupoid inversion. Observe that we chose here the notation such that g−1· is a right and g·
is a left action on TP . Applying Lemma 4.5.2 again yields the property

ηiX =

n∑
j=1

t∗(θj(X))ηij and η̃iX =

n∑
j=1

s∗(θj(X))η̃ij , (4.5.7)

with ηji (g) := θj(g−1 ·Xi,t(g)) and η̃ji (g) := θj(g ·Xi,s(g)). Since g· is a left action, one furthermore has
the following useful properties:

η̃iX(gh) = θi((gh) ·Xs(h)) = θi(g · (h ·Xs(h)))

=

n∑
j=1

θi
(
g ·
(
θj(h ·Xs(h))Xj,t(h)

))
=

n∑
j=1

η̃jX(h)θi(g ·Xj,s(g))

=

n∑
j=1

η̃jX(h)η̃ij(g) =

n∑
j=1

η̃ij(g)η̃jX(h),

(4.5.8)

and analogously

ηiX(gh) =

n∑
j=1

ηjX(g)ηij(h). (4.5.9)

Correspondingly, we will decompose now t∗X and s∗X as follows:

t∗X=
∑n
i=1 t

∗(θi(X))t∗Xi =
∑n
i,j=1 t

∗(θi(X))ηji s
∗Xj =

∑n
j=1 η

j
Xs
∗Xj ,

s∗X=
∑n
i=1 s

∗(θi(X))s∗Xi =
∑n
i,j=1 s

∗(θi(X))η̃ji t
∗Xj =

∑n
j=1 η̃

j
Xt
∗Xj .

(4.5.10)

As a consequence, one has

Lt∗Xs
∗a =

n∑
i,j=1

t∗(θi(X))ηji s
∗(LXja) =

n∑
j=1

ηjXs
∗(LXja), (4.5.11)

and this is the type of element lying in F1. Likewise,

Ls∗Xt
∗a =

n∑
i,j=1

s∗(θi(X))η̃ji t
∗(LXja) =

n∑
j=1

η̃jXt
∗(LXja). (4.5.12)

4.5.3 Lemma For each vector field X ∈ XP , the functions ηjX , η̃jX and hence in particular elements of the
form Ls∗X(s∗at∗b) lie in the submodule F ⊂ C∞(G).
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PROOF: Let σ = σg : (U, s(g)) → (V, t(g)) be the germ associated to g as in §1.5.2. Assign to any
X ∈ XP and θ ∈ Ω1P functions (X, θ) 7→ ηθX ∈ C∞(G), (X, θ) 7→ η̃θX ∈ C∞(G) by defining

ηθX(g) := θs(g)
(
(dσ)−1

t(g)(Xt(g))
)
, η̃θX(g) := θt(g)

(
(dσ)s(g)(Xs(g))

)
.

Now decompose an arbitrary θ ∈ Ω1P into θ =
∑
i aidbi where ai, bi ∈ C∞(P ). We then have

∑
i

s∗aiLt∗X(s∗bi)(g) =
∑
i

ai(s(g))(dbi)s(g)(dσ
−1
g )t(g)(Xt(g))

= θs(g)
(
(dσ−1

g )t(g)(Xt(g))
)

= ηθX(g),

and the left hand side is by definition in F ; hence the claim follows. In particular, this is true for ηjX ∈ F ;
the same holds then for η̃jX by (4.5.6) and the definition of F . 2

Somewhat simplified, for functions fi, f̃i ∈ F with f̃i = fi ◦ inv one finds the identities

t∗X =

n∑
i=1

fis
∗Xi and s∗X =

n∑
i=1

f̃it
∗Xi. (4.5.13)

Now it is clear how the higher degrees Fk of the filtration of F arise: taking Lt∗Y Lt∗Xs∗a for X,Y ∈
XP and a ∈ C∞(P ), one obtains with (4.5.11) two summands that stay in F1 and a term containing Lt∗Y η

j
i ,

which characterises the terms in F2. It is also clear now that, seen this way, the filtration of V P determines
the one of F .

Next, we want to give F the structure of a Hopf algebroid. To this end, set up the following.

4.5.4 Definition A function f ∈ F is called F -codecomposable if

f(gh) =
∑
i

f ′i(g)f ′′i (h), g, h ∈ G, (4.5.14)

for functions f ′i , f
′′
i ∈ F , where the sum is finite.

4.5.5 Lemma Each element in F is F -codecomposable.

PROOF: If f, f ′ are F -codecomposable, then so is their product ff ′. Also, for a, b ∈ C∞(P ), the function
s∗at∗b is F -codecomposable. Hence it suffices to prove that for anyX ∈ XP and a F -codecomposable func-
tion f , the expression Lt∗Xf is F -codecomposable. To this end, assume that f ∈ F is F -codecomposable
as in (4.5.14). Since G is étale, its tangent bundle is a multiplicative distribution, i.e., for any k, g, h ∈ G
with k = gh and Wk ∈ TkG there are paths k(t), g(t), h(t) in G with k(t) = g(t)h(t), k̇(t) ∈ Tk(t)G,
ġ(t) ∈ Tg(t)G and ḣ(t) ∈ Th(t)G such that k(0) = k, g(0) = g and h(0) = h as well as k̇(0) = Wk.
Identifying spaces TkG with Tt(k)P by means of t∗, we may in particular choose W to correspond to the
given vector field X , i.e., k̇(0) = Wk = (dt)−1

k (Xt(k)). Therefore,

(dt)g(ġ(0)) = (dt)k(k̇(0)) = Xt(k) = Xt(g),

and with (4.5.5)

(ds)h(ḣ(0)) = (ds)k(k̇(0)) = (ds)k(dt)−1
k (Xt(k))

= k−1 ·Xt(k) =

n∑
j=1

ηjX(k)Xj,s(k) =

n∑
j=1

ηjX(k)Xj,s(h).
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With (4.5.9) one now calculates

Lt∗Xf(gh) =
d

dt

∣∣∣∣
t=0

∑
i

f ′i(g(t))f ′′i (h(t))

=
∑
i

(Lġ(0)f
′
i)(g)f ′′i (h) +

∑
i

f ′i(g)(Lḣ(0)f
′′
i )(h)

=
∑
i

(Lt∗Xf
′
i)(g)f ′′i (h) +

∑
i

n∑
j=1

f ′i(g)ηjX(k)(Ls∗Xjf
′′
i )(h)

=
∑
i

(Lt∗Xf
′
i)(g)f ′′i (h) +

∑
i

n∑
j,l=1

f ′i(g)ηlX(g)ηjl (h)(Ls∗Xjf
′′
i )(h)

=
∑
i

(Lt∗Xf
′
i)(g)f ′′i (h) +

∑
i

n∑
l=1

ηlX(g)f ′i(g)(Lt∗Xlf
′′
i )(h).

(4.5.15)

Now elements of type Lt∗Xf ′i and ηiX were already shown above to be functions in F , hence the claim
follows. 2

For later use we mention that one analogously obtains

Ls∗Xf(gh) =
∑
i

n∑
l=1

(Ls∗Xlf
′
i)(g)η̃lX(h)f ′′i (h) +

∑
i

f ′i(g)(Ls∗Xf
′′
i )(h). (4.5.16)

With the left C∞(P )
e-module structure on F from (4.5.4), define

F ⊗C∞(P ) F := F ⊗C F/spanC{s∗(a)f ⊗C f
′ − f ⊗C t

∗(a)f ′, a ∈ C∞(P )},

and set G2 := G×P G and G3 := G×P G×P G.

4.5.6 Proposition Assume that both maps

 : F⊗C∞(P )2 → C∞(G2), f ⊗C∞(P ) f
′ 7→ {(g, h) 7→ f(g)f ′(h)},

 : F⊗C∞(P )3 → C∞(G3), f ⊗C∞(P ) f
′ ⊗C∞(P ) f

′′ 7→ {(g, h, k) 7→ f(g)f ′(h)f ′′(k)},

are injective and let mG(g, h) = gh for (g, h) ∈ G ×P G be the groupoid multiplication. For a function
f ∈ F with F -codecomposition f(gh) =

∑
i f
′
i(g)f ′′i (h), f ′i , f

′′
i ∈ F , the formula ∆F

` f := m∗Gf gives a
well-defined map

∆F

` : F → F ⊗C∞(P ) F, f 7→
∑
i

f ′i ⊗C∞(P ) f
′′
i . (4.5.17)

Together with the map
εF : F → C∞(P ), f 7→ 1∗Gf, (4.5.18)

where 1G : P → G is the groupoid embedding, the triple (F,∆F

` , εF ) becomes a C∞(P )-coring with respect
to the bimodule structure (4.5.4). In particular, with its pointwise product mF and defining source and target
maps as maps C∞(P )→ F by

s`F : a 7→ t∗a and t`F : a 7→ s∗a, (4.5.19)

the C∞(P )-coring F is a left bialgebroid over C∞(P ). On the other hand, defining two maps C∞(P ) → F
by

srF : a 7→ s∗a and trF : a 7→ t∗a

equips the (same) quintuple (F, C∞(P ),mF ,∆
F

` , εF ) with the structure of a right bialgebroid. Finally, the
map

SF : F → F, f 7→ inv∗f (4.5.20)

defines an antipode on F and all data can be assembled into a Hopf algebroid.

PROOF: Note firstly that m∗G(F ) ⊆ (F ⊗C∞(P ) F ) and with the injectivity of  the well-definedness of
∆F

` follows directly. Coassociativity then follows from the injectivity of the second map. The bialgebroid
axioms are not difficult to verify. We have, for example,

(mF (id⊗ t`F εF )∆F

` f)(g) =
∑
i

f ′i(g)f ′′i (1s(g)) = f(g1s(g)) = f(g),
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and similar for all remaining identities; in particular it is easy to see that εF and ∆F

` can be simultaneously
considered to be left and right counit and coproduct of a left and right bialgebroid, respectively. The fact that
these are the constituent bialgebroid structures of a Hopf algebroid with antipode S is seen by computing

(εFSf)(x) = f
(
(1x)−1

)
= f(1x) = (εFf)(x).

Hence right and left counits coincide. Also, using S−1 = S and Sf(gh) =
∑
i f
′
i(h
−1)f ′′i (g−1), we have

(S⊗2∆F

` Sf)(g, h) = (∆F

` Sf)(h−1, g−1) =
∑
i

f ′i(g)f ′′i (h).

Hence S⊗2∆F

` S = ∆F

` , and the right and left coproducts coincide as well. Finally, we check

(mF (S ⊗ idF )∆F

` f)(g) =
∑
i

Sf ′i(g)f ′′i (g) =
∑
i

f ′i(g
−1)f ′′i (g)

= f(g−1g) = f(1s(g)) = s∗1∗f(g)

= (srF εFf)(g),

and leave all remaining identities to the reader. 2

For later use, we give some explicit coproduct expressions. One clearly has m∗Gs
∗a(g, h) = s∗a(gh) =

s∗a(h) and m∗Gt
∗b(g, h) = t∗b(g) for a, b ∈ C∞(P ), g, h ∈ G. Hence

∆F

` s
∗a = 1⊗C∞(P ) s

∗a and ∆F

` t
∗b = t∗b⊗C∞(P ) 1, a, b ∈ C∞(P ). (4.5.21)

More interesting is the case of the elements η̃iX and ηiX . With (4.5.8) and (4.5.9) one obtains

∆F

` η̃
i
X =

n∑
j=1

η̃ij ⊗C∞(P ) η̃
j
X , and ∆F

` η
i
X =

n∑
j=1

ηjX ⊗C∞(P ) η
i
j . (4.5.22)

4.6 Connes-Moscovici Algebras
‘Extending’ F from the previous section by the (lifted) differential operators on P , one gets a subspace of
the differential operators on G which can be given the structure of a left bialgebroid again (see Proposition
4.6.4), and presumably even of a Hopf algebroid (see Remark 4.6.5). We see this as a general background
picture from which the constructions in [CoMos5] and [MosR] can be understood.

Consider the convolution algebra (C∞c (G), ∗) with multiplication mC∞c (G)(f, f
′) = f ∗ f ′ of compactly

supported functions on G and denote the space of linear maps C∞c (G) → C∞c (G) by C1(C∞c (G)). For
example, one can consider operators mf of pointwise multiplication with an element f ∈ F , or, by locality,
the restriction to compactly supported functions of the action Lt∗X from (4.5.1) and (4.5.2).

4.6.1 Definition The space of transverse differential operators on an étale groupoid s, t : G⇒P is the
subalgebra H ⊂ V G := V ΓTG generated by elements in F and t∗X for a, b ∈ C∞(P ), X ∈ XP .

By construction, H ∩ C∞(G) = F. In particular, elements of the form s∗X for X ∈ XP are contained
in H as well. Interpreting V G as the space of differential operators on C∞(G) (with elements in C∞(G) as
multiplication operators), elements in V G act on the convolution algebra (C∞c (G), ∗). One has the inclusions
H ⊂ V G ⊂ C1(C∞c (G)).

4.6.2 Definition An operator D ∈ H is called H-codecomposable if one has a finite sum

D(f ∗ f ′) =
∑
i

D′i(f) ∗D′′i (f ′), f, f ′ ∈ C∞c (G),

for elements D′i, D
′′
i ∈ H .

4.6.3 Lemma Each element in H is H-codecomposable.
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PROOF: For a, b ∈ C∞(P ), the operators ms∗a, mt∗b are evidently H-codecomposable. If D,E are
H-codecomposable, then so is their product DE. This follows from

ED(f ∗ f ′) = E
(∑

i

D′i(f) ∗D′′i (f ′)
)

=
∑
i,j

E′jD
′
i(f) ∗ E′′jD′′i (f ′).

Finally, for X,Y ∈ XP , the operators Lt∗X , Ls∗Y are H-codecomposable. This can be seen by repeating
the argumentation in the proof of Lemma 4.5.5:

(
Lt∗X(f ∗ f ′)

)
(g) =

∑
g=hk

(
Lt∗Xf(h)f ′(k) +

n∑
l=1

f(h)ηlX(h)Lt∗Xlf
′(k)

)
=
(
Lt∗Xf ∗ f ′

)
(g) +

n∑
l=1

(
fηlX ∗ Lt∗Xlf ′

)
(g),

(4.6.1)

and similar for Ls∗Y using (4.5.16). Hence Lt∗X and Ls∗Y are H-codecomposable. These statements are
sufficient to prove the lemma. 2

Observe that for an element f ∈ F with F -codecomposition f(gh) =
∑
i f
′
i(g)f ′′i (h), the H-

codecomposition of the corresponding multiplication operator and f1, f2 ∈ C∞c (G) reads

mf (f1 ∗ f2)(g) =
∑
g=hk

f(hk)f1(h)f2(k)

=
∑
i

∑
g=hk

mf ′i
(h)f1(h)mf ′′i

(k)f2(k) =
∑
i

mf ′i
f1 ∗mf ′′i

f2.

Hence H-codecomposition, restricted to elements in F ⊂ H , coincides with F -codecomposition.
Now note that the space H carries an obvious left C∞(P )

e-module structure arising from (4.5.4), namely

(a,D, b) 7→ mt∗(a)ms∗(b)D, D ∈ H, a, b ∈ C∞(P ), (4.6.2)

with respect to which we define

H ⊗C∞(P ) H = H ⊗k H/span{ms∗(b)D ⊗ E −D ⊗mt∗(a)E, a ∈ C∞(P )}.

Furthermore, we regard the space C∞c (P ) as subalgebra of C∞c (G) by means of

C∞c (P ) ↪→ C∞c (G), f 7→ f̃ , where f̃(g) =

{
f(x) if g = 1x for some x ∈ G0,
0 otherwise.

Observe that the H-action on C∞c (G) leaves this subalgebra C∞c (P ) invariant. The restriction of H to
End C∞c (P ) coincides with V P , and therefore admits a tautological extension to an action on C∞c (P ). With
these preliminary remarks in mind (which will allow us to define a counit for H), we can prove

4.6.4 Proposition Assume that the maps

J : H ⊗C∞(P ) H → C2(C∞c (G)),

D ⊗C∞(P ) D
′ 7→ {f ⊗C f

′ 7→ D(f) ∗D′(f ′)},
J : H ⊗C∞(P ) H ⊗C∞(P ) H → C3(C∞c (G)),

D ⊗C∞(P ) D
′ ⊗C∞(P ) D

′′ 7→ {f ⊗C f
′ ⊗C f

′′ 7→ D(f) ∗D′(f ′) ∗D′′(f ′′)},

are injective. Then the formula ∆H

` D := m∗C∞c (G)D gives a well-defined map

∆H

` : H → H ⊗C∞(P ) H, D 7→
∑
i

D′i ⊗C∞(P ) D
′′
i ,

where D has H-codecomposition D(f ∗ f ′) =
∑
iD
′
i(f) ∗D′′i (f ′). Together with the map

εH : H → C∞(P ), D 7→ D(1C∞(G)),
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the triple (H,∆H

` , εH) becomes a C∞(P )-coring with respect to the C∞(P )-bimodule structure (4.6.2). In
particular, with the composition of operators and source and target maps

s`H : a→ mt∗a and t`H : a→ ms∗a, (4.6.3)

as maps C∞(P )→ H , the C-module H is a left bialgebroid over C∞(P ).

PROOF: Usingm∗C∞c (G)(H) ⊆ J(H⊗C∞(P )H) and the injectivity of J , the well-definedness for ∆H

` follows
directly. Also, coassociativity follows from the injectivity of the second map. The bialgebroid axioms are
again easy to check. For example,(

mH(s`H ⊗ id)∆H

` D(f)
)
(g) =

∑
i

(
D′i(1C∞(G))

)
(1t(g))

(
D′′i (f)

)
(g)

=
∑
i

(
D′i(1C∞(G)) ∗D′′i (f)

)
(g)

= D(1C∞(G) ∗ f)(g) = D(f)(g).

Also,

εH(DD′) = DD′(1C∞(G)) = D(εHD
′)

= D
(
ms∗(εHD′)(1C∞(G))

)
= Dms∗(εHD′)(1C∞(G)) = εH

(
Dt`H(εHD

′)
)
.

2

Let us also mention some explicit coproduct expressions for certain elements, e.g. generators ofH . These
are calculated as in the proof of Lemma 4.6.3. Letmf denote the multiplication operator associated to f ∈ F .
One sees that for a, b ∈ C∞(P ), one has(

m∗C∞c (G)(ms∗a)(f ⊗ f ′)
)
(g) =

(
ms∗a(f ∗ f ′)

)
(g)

=
∑
g=hk

s∗a(hk)f(h)f ′(k) = (f ∗ms∗af
′)(g),

and analogously
(
m∗C∞c (G)(mt∗b)(f ⊗ f ′)

)
(g) = (mt∗bf ∗ f ′)(g). Hence

∆H

` ms∗a = 1⊗C∞(P ) ms∗a and ∆H

` mt∗b = mt∗b ⊗C∞(P ) 1, a, b ∈ C∞(P ).

It follows from (4.5.22) that

(
m∗C∞c (G)(mηiX

)(f ⊗ f ′)
)
(g) =

∑
g=hk

n∑
j=1

ηjX(h)f(h)ηij(k)f ′(k).

Hence, as expected,

∆H

` mηiX
=

n∑
j=1

mηjX
⊗C∞(P ) mηij

and ∆H

` mη̃iX
=

n∑
j=1

mη̃ij
⊗C∞(P ) mη̃jX

. (4.6.4)

In the same fashion, one obtains from (4.5.15) and (4.5.16),

∆H

` t
∗X = t∗X ⊗C∞(P ) 1 +

n∑
i=1

ηiX(g)⊗C∞(P ) t
∗Xi, (4.6.5)

∆H

` s
∗X =

n∑
i=1

s∗Xi ⊗C∞(P ) η̃
i
X + 1⊗C∞(P ) s

∗X. (4.6.6)

4.6.5 Remark Let SF be the antipode on F given in (4.5.20) and SVP the antipode of the Lie algebroid V P
given in (4.2.16) (depending on a (Lie algebroid) connection as in §4.2.5). We conjecture that one can extend
the assignment

f 7→ SFf, ∀ f ∈ F,
t∗X 7→ s∗(SVPX), ∀ X ∈ XP

to an antipode on H turning H into a Hopf algebroid; see also Remarks 3.3.7 and 4.7.4.
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4.7 Bicrossed Product Realisation
In this section we describe how H can be ‘composed’ from the bialgebroids F and V P . For this, we will
need the concepts of Section 3.3 of matched pairs and the bicrossproduct bialgebroid, i.e., we will discuss a
V P -action on F and an F -coaction on V P to obtain the main result of this section:

4.7.1 Theorem The pair (F, V P ) is a matched pair of left bialgebroids (see Definition 3.3.6), and the map
(4.7.3) defines a left C∞(P )-bialgebroid isomorphism

FIC
C∞(P )V P

'−→ H. (4.7.1)

The procedure we give here generalises methods of [MosR] to bialgebroids.
The pullbacks of the groupoid source and target maps give two algebra morphisms s∗, t∗ : V P → V G,

where we recall the notation V P := V ΓTP and V G := V ΓTG. In particular, we have two vector space
isomorphisms

V P ⊗C∞(P ) C∞(G)
'−→ V G, (u, f) 7−→ ft∗u, (4.7.2)

C∞(G)⊗C∞(P ) V P
'−→ V G, (f, u) 7−→ fs∗u, (4.7.3)

where the left C∞(P )-action on V P is denoted by (a, u) 7→ au, and where the C∞(P )-bimodule structure
on C∞(G) from (4.5.4) has been used to define the tensor products.

The fact that (4.7.2) (and likewise (4.7.3)) is a vector space isomorphism can be seen as follows: with
the help of the PBW map (1.4.5), (4.7.2) can be seen to be induced degree-wise by the isomorphism
ΓSpTP ⊗C∞(P ) C∞(G) ' ΓSpTG on the respective symmetric algebras, considered to be vector bun-
dles over P and G, respectively (cf. also §1.4.5 for notation). Since TG ' t∗TP in the étale case, the
isomorphism ΓSpTP ⊗C∞(P ) C∞(G) ' ΓSpTG in turn follows from a general result on pullback vector
bundles.

The maps (4.7.2) and (4.7.3) serve to define a right F -comodule structure on V P :

4.7.2 Lemma The assignment
V P 3 u 7→ s∗u ∈ V G (4.7.4)

defines a right F -coaction

VP∆ : V P → V P ⊗C∞(P ) F, u 7→ u[0] ⊗C∞(P ) u[1] (4.7.5)

on the universal enveloping algebra V P .

PROOF: Firstly we state that the canonical right C∞(P )-action RC∞(P ) on V P from Definition 2.3.2(i) is
given here by RC∞(P )(u, a) = au = s`VPau. Hence the tensor product in question is

V P ⊗C∞(P ) F = V P ⊗ F/span{au⊗ f − u⊗ t∗(a)f, a ∈ C∞(P ), u ∈ V P, f ∈ F}.

Observe that VP∆ maps into this space, indeed, as follows from the definition of (the filtration of) F . We use
(4.7.2) and (4.5.10) to write on generators

VP∆a = 1⊗C∞(P ) s
∗a ∈ V P ⊗C∞(P ) F0, (4.7.6)

VP∆X =

n∑
j=1

Xj ⊗C∞(P ) η̃
j
X ∈ V P ⊗C∞(P ) F1. (4.7.7)

It is now enough to check the coaction axioms on a PBW basis of V P : let I be a (finite) sequence i1 ≤
. . . ≤ ip and set XI := Xi1 · · ·Xip for Xij ∈ XTP ⊂ V P as elements in V P (if I is empty, set XI = 1).
Elements of the form aXI with a ∈ C∞(P ) form a basis of V P ; see [Rin] for details. Since VP∆ and ∆F

`

are C∞(P )-linear, we can restrict to the case a = 1.
Using (4.5.10), the action (−)t from (4.5.2) and abbreviating ηjil := η̃jXil

for l = 1, . . . , p one can write

s∗XI = s∗Xi1 · · · s∗Xip =

n∑
j1,...,jp

η̃j1i1 t
∗Xj1 · · · η̃

jp
ip
t∗Xjp

=

n∑
j1,...,jp

η̃j1i1Xj1
t
(1)(η̃

j2
i2

)(Xj1 (2)Xj2 (1))
t(η̃j3i3 ) · · · (Xj1 (p−1)Xj2 (p−2) · · ·Xjp−1 (2)

)t(η̃
jp
ip

)·

· t∗
(
Xj1 (p)Xj2 (p−1) · · ·Xjp−1 (1)

Xjp

)
,
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and hence with (4.7.2)

VP∆XI = XI [0] ⊗C∞(P ) XI [1]

=

n∑
j1,...,jp

Xj1 (p)Xj2 (p−1) · · ·Xjp−1 (1)
Xjp

⊗C∞(P ) η̃
j1
i1
Xj1

t
(1)(η̃

j2
i2

)(Xj1 (2)Xj2 (1))
t(η̃j3i3 ) · · · (Xj1 (p−1) · · ·Xjp−1 (2)

)t(η̃
jp
ip

).

(4.7.8)

We now show that the coaction axioms hold by induction over the length p of a PBW basis: one has for
X ∈ XP with (4.5.22)

(VP∆ ⊗ idF )VP∆X =

n∑
i,j=1

Xj ⊗C∞(P ) η̃
j
i ⊗C∞(P ) η̃

i
X = (idVP ⊗∆F

` )VP∆X, (4.7.9)

as the start of the induction, and we proceed to prove that if this coaction axiom is true forXI′ := Xi2 · · ·Xip ,
where I ′ is the finite increasing series i2 ≤ . . . ≤ ip, it is also true for the sequence I introduced before.
From (4.7.8) one checks

VP∆XI = VP∆(Xi1XI′)

=

n∑
j1,...,jp

Xj1 (1)Xj2 (p−1) · · ·Xjp−1 (1)
Xjp

⊗C∞(P ) η̃
j1
i1
Xj1

t
(2)

(
η̃j2i2Xj2

t
(1)(η̃

j3
i3

) · · · (Xj2 (p−2) · · ·Xjp−1 (2)
)t(η̃

jp
ip

)
)

=

n∑
j1,...,jp

Xj1Xj2 (p−1) · · ·Xjp−1 (1)
Xjp

⊗C∞(P ) η̃
j1
i1
η̃j2i2Xj2

t
(1)(η̃

j3
i3

) · · · (Xj2 (p−2) · · ·Xjp−1 (2)
)t(η̃

jp
ip

)

+

n∑
j2,...,jp

Xj2 (p−1) · · ·Xjp−1 (1)
Xjp

⊗C∞(P ) X
s
i1

(
η̃j2i2Xj2

t
(1)(η̃

j3
i3

) · · · (Xj2 (p−2) · · ·Xjp−1 (2)
)t(η̃

jp
ip

)
)
,

since V P is cocommutative and Xj1 is primitive. Hence with (4.7.9) and the action (−)s from (4.5.3),

VP∆XI =

n∑
j1

Xj1XI′ [0] ⊗C∞(P ) η̃
j1
i1
XI′ [1] +XI′ [0] ⊗C∞(P ) X

s
i1(XI′ [1]), (4.7.10)

and therefore with the same argument again, as well as using the induction assumption,

(VP∆ ⊗ id)VP∆XI =

n∑
j1,k1

Xk1XI′ [0] ⊗C∞(P ) η̃
k1
j1
XI′ [1] ⊗C∞(P ) η̃

j1
i1
XI′ [2]

+

n∑
j1

XI′ [0] ⊗C∞(P ) X
s
j1(XI′ [1])⊗C∞(P ) η̃

j1
i1
XI′ [2]

+XI′ [0] ⊗C∞(P ) XI′ [1] ⊗C∞(P ) X
s
i1(XI′ [2])

= (id⊗∆F

` )VP∆XI

by (4.5.22) and (4.5.16).
Counitality is proven by the same kind of argument: first calculate

εF (η̃iX)(x) = η̃iX(1x) = θi((1x)−1 ·Xs(1x)) = θi(X)(x) (4.7.11)

at a point x ∈ P . Hence, the first step of the induction is

RC∞(P )(idVP ⊗ εF )F∆X =

n∑
i=1

εF (η̃iX)Xi = X.
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Subsequently, with (4.7.10), (2.1.4), (4.5.18) and the fact that F is commutative,

RC∞(P )(idVP ⊗ εF )F∆XI =

n∑
j1

εF (XI′ [1])εF (η̃j1i1 )Xj1XI′ [0] + εF
(
Xs
i1(XI′ [1])

)
XI′ [0]

= Xi1εF (XI′ [1])XI′ [0] −Xω
i1

(
εF (XI′ [1])

)
XI′ [0] + εF

(
Xs
i1(XI′ [1])

)
XI′ [0]

= XI ,

since the assumption holds for XI′ (where Xω denotes the action originating from the anchor of V P , i.e. the
Lie derivative of ΓTP on C∞(P )). 2

4.7.3 Proposition The bialgebroid F is a left V P -module ring (cf. Definition 3.3.1) with respect to the
action (4.5.3), whereas V P is a right F -comodule coring (cf. Definition 3.3.3) with respect to the coaction
(4.7.5). In particular, the left C∞(P )-bialgebroids F and U form a matched pair in the sense of Definition
3.3.6.

PROOF: The first part is obvious: the action (4.5.3) clearly restricts to an action (u, f) 7→ us(f) on F by
the definition of F and Lemma 4.5.3, and all properties in Definition 3.3.1 of left module rings are trivial to
check (e.g., for a PBW basis of V P ). In particular, the induced left and right C∞(P )-actions from (3.3.2)
coincide with F� , i.e., (s`VPa)s(f) = as(f) = s∗af = t`Faf .

Let (V P,∆VP

` , εVP ) denote the coring structure of V P as given in Proposition 4.2.9. To show that it is a
right F -comodule coring we check the conditions (3.3.8): by (4.7.8), (2.1.4) and εX = 0 for all X ∈ XP ,
the first condition is trivially fulfilled for any PBW basis aXI for a ∈ C∞(P ) and I the increasing sequence
i1 ≤ . . . ≤ ip; in case I is empty, it follows by (4.7.6) and (4.5.19). The second equation in (3.3.8) is
again proven by induction over the length p of XI and by C∞(P )-linearity it is again enough to consider the
case a = 1. Now equation (3.3.8) is obviously fulfilled for any X ∈ XP using (4.7.7) and the primitivity
of X; this gives the induction start. Hence assume (3.3.8) to be fulfilled for XI′ where I ′ is the sequence
i2 ≤ . . . ≤ ip. It follows from (4.7.10) that

(∆VP

` ⊗ id)VP∆XI = (∆VP

` ⊗ id)VP∆(Xi1XI′)

=

n∑
j1

Xj1XI′ [0](1) ⊗C∞(P ) XI′ [0](2) ⊗C∞(P ) η̃
j1
i1
XI′ [1]

+

n∑
j1

XI′ [0](1) ⊗C∞(P ) Xj1XI′ [0](2) ⊗C∞(P ) η̃
j1
i1
XI′ [1]

+
n∑
j1

XI′ [0](1) ⊗C∞(P ) XI′ [0](2) ⊗C∞(P ) X
s
i1(XI′ [1])

=

n∑
j1

Xj1 (1)XI′ (1)[0] ⊗C∞(P ) Xj1 (2)XI′ (2)[0] ⊗C∞(P ) η̃
j1
i1
XI′ (1)[1]XI′ (2)[1]

+

n∑
j1

XI′ (1)[0] ⊗C∞(P ) XI′ (2)[0] ⊗C∞(P ) X
s
i1(XI′ (1)[1]XI′ (2)[1])

= VP⊗VP∆∆VP

` (Xi1XI′) = VP⊗VP∆∆VP

` XI ,

since F is commutative and a left V P -module ring. This concludes the induction and we have shown that
V P is a right F -comodule coring.

We proceed by considering the conditions in Theorem 3.3.5. The identities (3.3.17)–(3.3.20) are
obviously fulfilled by (4.2.11) and the commutativity of F . For an f ∈ F with F -codecomposition
f(gh) =

∑
i f
′
i(g)f ′′i (h), with (4.5.16) at a point x ∈ P we have

εF
(
Xs(f)

)
= (Ls∗Xf(1x))

=
∑
i

n∑
l=1

(Ls∗Xlf
′
i)(1x)η̃lX(1x)f ′′i (1x) +

∑
i

f ′i(1x)(Ls∗Xf
′′
i )(1x)

=
∑
i

LX(1∗f ′i 1∗f ′′i )(x) =
∑
i

εVP
(
X(1∗(f ′if

′′
i ))
)
(x) = εVP (XεFf)(x),



82 CHAPTER 4. EXAMPLES OF HOPF ALGEBROIDS

which is (3.3.21) for X ∈ XP and analogously on a PBW basis XI of V P using (2.1.4). Now (3.3.22) is
obvious from (4.7.6). For (3.3.23) we argue by induction on the length p of XI again: the induction start
follows from (4.5.16), (4.5.17) and (4.7.6), and the induction step to pass from XI′ to XI (see above) works
as follows: considering Xs

I′(f) as an element in F again, the assumption is already true for Xs
i1

(
Xs
I′(f)

)
.

Hence with (4.7.10),

∆F

`

(
Xs
I (f)

)
= ∆F

`

(
Xs
i1(Xs

I′(f))
)

= Xi1 (1)[0]

(
(Xs

I′(f))[1]

)
⊗C∞(P ) Xi1 (1)[1]Xi1 (2)

(
(Xs

I′(f))[2]

)
= Xi1

s
(1)[0]

(
XI′

s
(1)[0](f[1])

)
⊗C∞(P ) Xi1 (1)[1]Xi1

s
(2)

(
XI′ (1)[1]XI′

s
(2)(f[2])

)
= Xi1

s
(1)[0]

(
XI′

s
(1)[0](f[1])

)
⊗C∞(P ) Xi1 (1)[1]Xi1

s
(2)(XI′ (1)[1])Xi1

s
(3)

(
XI′

s
(2)(f[2])

)
= (Xi1XI′)

s
(1)[0](f[1])⊗C∞(P ) (Xi1XI′)(1)[1](Xi1XI′)

s
(2)(f[2])

= XI
s
(1)[0](f[1])⊗C∞(P ) XI (1)[1]XI

s
(2)(f[2]),

which is (3.3.23) for u = XI , as desired.
Next, (3.3.24) is automatically fulfilled since F is commutative and V P is cocommutative. Finally, for

(3.3.25), let J be another increasing sequence of indices of length q. Then it is enough to show this identity
for u = XI and u′ = aXJ where a ∈ C∞(P ). The statement is already implicit in (4.7.10): the induction
start is (4.7.10), choosing I ′ = J and observing the relation Xi1aXJ = aXi1XJ + Xi1(a)XJ whereas the
induction is concluded by the same argument replacing XI′ in (4.7.10) by elements of the form XI′aXJ . 2

PROOF: (of Theorem 4.7.1) First observe that, by definition of F and H , (4.7.3) restricts to a vector space
isomorphism

φ : F ⊗C∞(P ) V P → H, f ⊗C∞(P ) u 7→ fs∗u. (4.7.12)

As before we view elements in F as multiplication operators. Hence it is enough to show that φ is both an
isomorphism of C∞(P )

e-rings and of C∞(P )-corings: with (4.6.3), (4.5.19), (3.3.27) and the commutativity
of F , it is clear that φ is a C∞(P )

e-bimodule map; hence it remains to show that it is a morphism of algebras
and coalgebras. As already seen, F is a left V P -module ring and therefore we have for any ξ ∈ C∞(G),
with the notation (4.5.3),(

φ(f ⊗C∞(P ) u)φ(f ′ ⊗C∞(P ) u
′)
)
(ξ) = fus

(
f ′u′

s
(ξ)
)

= fus(1)(f
′)(u(2)u

′)
s
(ξ)

= φ
(
(f ⊗C∞(P ) u)(f ′ ⊗C∞(P ) u

′)
)
(ξ),

where in the last term the product (3.3.7) on the space F>C
C∞(P )V P is meant. To show that φ is also a

coalgebra morphism, we proceed as in the proof of Proposition 4.7.3 by induction on the length p of a PBW
basis aXI with respect to a finite increasing sequence I of indices i1 ≤ . . . ≤ ip and a ∈ C∞(P ). Since φ,
∆H

` and ∆ccr

` are bimodule maps, we can set a = 1; since these are C-algebra morphisms on the respective
tensor products, we may even take f = 1F . Now the induction start for X ∈ XP and (4.6.6) is easily
checked, namely

(φ⊗ φ)∆ccr

` (1F ⊗C∞(P ) X) =

n∑
i=1

s∗Xi ⊗C∞(P ) η̃
i
X + 1H ⊗C∞(P ) s

∗X = ∆H

` φ(1F ⊗C∞(P ) X).

Hence if the claim holds for the sequence I ′ given by i2 ≤ . . . ≤ ip, i.e., ∆H

` s
∗XI′ = s∗XI′ (1)[0] ⊗C∞(P )

XI′ (1)[1]s
∗XI′ (2), we show that it also holds for I: for ξ, ξ′ ∈ C∞(G), we have with (3.3.25), F commutative

and Proposition 4.7.3,

(φ⊗ φ)∆ccr

` (1FICC∞(P )XI)(ξ ⊗ ξ′)
= (φ⊗ φ)

((
1FICC∞(P )(Xi1XI′ (1))[0]

)
⊗C∞(P )

(
(Xi1 (1)XI′ (1))[1]ICC∞(P )Xi1 (2)XI′ (2)

))
(ξ ⊗ ξ′)

= (φ⊗ φ)
((

1FICC∞(P )Xi1 (1)[0]XI′ (1)[0]

)
⊗C∞(P )

(
Xi1 (1)[1]Xi1

s
(2)(XI′ (1)[1])ICC∞(P )Xi1 (3)XI′ (2)

))
(ξ ⊗ ξ′)

= Xi1
s
(1)[0]XI′

s
(1)[0](ξ)⊗C∞(P ) Xi1 (1)[1]Xi1

s
(2)

(
XI′ (1)[1]XI′

s
(2)(ξ

′)
)

= ∆H

` (s∗Xi1)∆H

` (s∗XI′)(ξ ⊗ ξ′) = ∆H

` (φ(1FICC∞(P )XI))(ξ ⊗ ξ′).
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2

4.7.4 Remark We conjecture that the isomorphism (4.7.1) is even an isomorphism of Hopf algebroids: it is
not difficult to see (at least on generators) that the candidate for the antipode for matched pairs of bialgebroids
from Remark 3.3.7 is mapped by means of (4.7.1) to the antipode candidate for H , mentioned in Remark
4.6.5.





Chapter 5

Hopf-Cyclic Cohomology

Hopf-cyclic cohomology (and also its dual homology in Chapter 6) cannot be defined as the cyclic theory of
some algebra or coalgebra itself, but only as a theory deriving from certain cyclic and cocyclic modules. As
suggested by the concept of the space of coinvariants introduced in the next section, there are some rough
similarities to the procedure in group (co)homology. We shall indeed be able to associate a cyclic complex
(more precisely, a cocyclic module) to any Hopf algebroid if and only if its antipode is an involution (possibly
twisted by a grouplike element). In particular, we will show that this cocyclic structure ‘descends’ in a natural
way from the canonical cocyclic structure of a Hopf algebroid, regarded as a coring.

The resulting cyclic cohomology could be considered (by Theorem 5.5.7 and (5.6.2)) to be a natural
generalisation of Lie-Rinehart (Lie algebroid) (co)homology within the context of Hopf algebroids and hence
of noncommutative geometry.

5.1 The Space of Coinvariants
In this section we introduce the notion of coinvariants as a first step towards Hopf-cyclic cohomology. The
method introduced here is a generalisation of a similar procedure for Hopf algebras in [Cr3].

Let H be a Hopf algebroid with structure maps as in Definition 2.6.1 and let M ∈ H-Mod, with action
denoted (h,m) 7→ hm. In particular, M carries an induced (A,A)-bimodule structure, which we use to
define a (B,B)-bimodule structure with the help of the map ν−1 = εsr : Bop '−→ A from (2.6.5), namely

b �m � b̃ := t`(ν−1b)s`(ν−1b̃)m = sr(b)Ssr(b̃)m, b, b̃ ∈ B, m ∈M.

5.1.1 Definition (i ) The space of coinvariants I∂ of M is the k-linear span of elements

∂h �m− hm, ∀m ∈M, h ∈ H.

(ii ) The ∂-localised module M∂ is given as the quotient

M∂ := B∂ ⊗H M, (5.1.1)

where B = B∂ ∈Mod-H by (2.5.4).

In particular, this defines a functor (−)∂ : H-Mod→ k-Mod. We also introduce the coinvariant localisa-
tion

π∂ : M →M∂ , m 7→ 1B ⊗H m.

One sees that
M∂ = B ⊗AM/spank{∂h⊗A m− 1B ⊗A hm} = M/I∂ ,

where A acts on B by means of ν. If in particular M := A is the base algebra of the underlying left
bialgebroid itself, one obtains the identification εh ≡ ∂h in A∂ = B ⊗H A, i.e. up to coinvariants (ν−1

suppressed here).

5.1.2 Lemma (Partial Integration) Let H be a Hopf algebroid as before. For any two M,N ∈ H-Mod, the
identity

hm⊗A n ≡ m⊗A (Sh)n ∀m ∈M, n ∈ N, h ∈ H
holds up to coinvariants.

85
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PROOF: The induced H-module structure (for the underlying left bialgebroid) on M ⊗A N is given by
(2.3.2), i.e., h(m ⊗A n) = h(1)m ⊗A h(2)n. This induces not only an (A,A)-bimodule structure but also a
(B,B)-bimodule structure on M ⊗A N :

b � (m⊗A n) � b̃ := s`(ν−1b̃)m⊗A t`(ν−1b)n, b, b̃ ∈ B, m ∈M,n ∈ N.

Then one has

m⊗A (Sh)n = m⊗A (sr∂h(1)Sh(2))n by Lemma 2.6.6,
= ∂h(1)

� (m⊗A (Sh(2))n)
≡ ∆`h

(1)
(
m⊗A (Sh(2))n

)
modulo coinvariants

= h(1)m⊗A h
(1)
(2)(Sh

(2)
(2)n) by twisted coassociativity (2.6.2),

= h(1)m⊗A (h
(1)
(2)Sh

(2)
(2))n by N ∈ H-Mod,

= h(1)m⊗A (s`ε(h(2)))n by (2.6.4),
= h(1)m⊗A εh(2) �n
= (h(1)m) � εh(2) ⊗A n in the tensor product ⊗A,
= (t`ε(h(2))h(1))m⊗A n
= hm⊗A n,

where the last identity is simply one of the comonoid identities of a left bialgebroid. 2

Regarding H as a module over itself with respect to multiplication, we obtain

5.1.3 Corollary For a M ∈ H-Mod, there is an isomorphism of k-modules

φ : (H ⊗AM)∂
'−→M, (5.1.2)

induced by the covariant localisation

π∂ : H ⊗AM → (H ⊗AM)∂ , h⊗A m 7→ 1B ⊗H (h⊗A m).

Hence the isomorphism (5.1.2) takes the form

φ : (H ⊗AM)∂ →M, h⊗A m 7→ (Sh)m, (5.1.3)

with inverse
M → (H ⊗AM)∂ , m 7→ 1H ⊗A m. (5.1.4)

5.2 Cocyclic Structures on Hopf Algebroids
The basic idea is to define the structure of a cocyclic module on the space of coinvariants obtained by pro-
jecting the structure of the canonical cyclic module of H as an A-coring by the map π∂ as in §1.2.5. Next,
the isomorphism φ from (5.1.3) maps the cocyclic and cosimplicial operators on the space we are interested
in.

Consider theA-coring structure (H`,∆`, ε) of the Hopf algebroidH , originating from the left underlying
bialgebroid. As in §1.2.5 for any coring, this defines a para-cocyclic module in a natural way: define

CnAH := H⊗An,

and as in §1.2.5 set
HA
\,S2 := {BnAH}n≥0

for the choice ψ := S2, where

BnAH = B ⊗Ae Cn+1
A H = Cn+1

A H⊗A

in degree n, i.e. B ⊗Ae H in degree zero. Here, Ae acts on B by means of ν in an obvious way and the left
Ae-action on CnAH is given by

(a⊗ b) · (h1 ⊗A · · · ⊗A hn) := s`(a)h1 ⊗A · · · ⊗A t̃`(b)hn,
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where t̃` := t` ν−1µ with ν−1µ := εsr∂s` ∈ Endk A
op from (2.6.5). This little modification of the left

target map is necessary to make S2 an (A,A)-bimodule map (hence the operators (1.2.4) for ψ = S2 well-
defined). As stated in §1.2.5, HA

\,S2 is cocyclic if and only if S2 = id. In such a case ν−1µ ≡ id and
t̃` ≡ t`. Of course, one may also define another para-cocyclic module on H based on the B-coring structure
(Hr,∆r, ∂) of H originating from the underlying right bialgebroid Hr, but we are not going to pursue this
here.

The step from coring (para-)cocyclic modules to ‘Hopf-(para-)cocyclic’ modules is now performed by
projection on coinvariants. Hence, define

H\,∂ := {B ⊗H Cn+1
A H}n≥0,

the (degree-wise) coinvariant localisation of HA
\,S2 . In a second move, this space is mapped (degree-wise) by

the isomorphism φ from (5.1.3) onto {CnAH}n≥0, which will again be denoted by H\,∂ . Stated as a diagram,
we have the situation

B•AH

π∂

��

φ̄∂

))RRRRRRRR

B ⊗H C•+1
A H

φ
// C•AH.

In the next proposition, we will show that the cosimplicial and cocyclic operators on B ⊗H Cn+1
A H are

essentially still given by the same formula expressions (1.2.4) as on B ⊗Ae Cn+1
A H . However, the map φ̄∂

changes the form of these cosimplicial and cocyclic operators on CnAH to quite some extent. We are going
to come back to this point in a moment in more detail.

5.2.1 Proposition The cosimplicial and cocyclic operators on HA
\,S2 descend to well-defined operators on

H\,∂ if and only if S2 = idH . In that case, H\,∂ is a cocyclic module.

PROOF: First, note that in this case the covariant localisation π∂ : HA
\,S2 → H\,∂ takes the form (π∂)n :

B ⊗Ae Cn+1
A H → B ⊗H Cn+1

A H in degree n. By the left Ae-action on the unit element 1H ∈ C1
AH = H ,

we can consider Ae as a subring of H and the projection π∂ is induced by this inclusion. Correspondingly,
consider the space of coinvariants as

B ⊗H Cn+1
A H = (B ⊗Ae Cn+1

A H)/I,

where
I = spank{∂h⊗Ae h0 ⊗A · · · ⊗A hn − 1B ⊗Ae ∆n

` h(h0 ⊗A · · · ⊗A hn)}.

To show that the operators δi, σi, τ in (1.2.4) for ψ := S2 descend to maps (B ⊗Ae Cn+1
A H)/I → (B ⊗Ae

Cn+1
A H)/I , one needs to prove that I is in the respective kernel of these maps if their image is again projected

on the quotient with respect to I . We only prove some of the identities and leave the rest to the reader. With
the notation B ⊗Ae Cn+1

A H =: Cn+1
A H⊗A as in §1.2.3, one obtains, for example

δn+1(∂h⊗Ae h0 ⊗A · · · ⊗A hn − 1B ⊗Ae h(1)h
0 ⊗A · · · ⊗A h(n+1)h

n)

= h0
(2) ⊗A · · · ⊗A t

`ν−1(∂h)hn ⊗A S2h0
(1)⊗A

− h(2)h
0
(2) ⊗A h(3)h

1 · · · ⊗A h(n+2)h
n ⊗A S2(h(1)h

0
(1))⊗A

= h0
(2) ⊗A · · · ⊗A s

r∂(h)hn ⊗A S2h0
(1)⊗A

− h(2)h
0
(2) ⊗A h(3)h

1 · · · ⊗A t`ε(h(n+3))h(n+2)h
n ⊗A S2(h(1)h

0
(1))⊗A

= h0
(2) ⊗A · · · ⊗A s

r∂(h)hn ⊗A S2h0
(1)⊗A

− h(2)h
0
(2) ⊗A h(3)h

1 · · · ⊗A h(n+2)h
n ⊗A h(1)

(n+3)Sh
(2)
(n+3)S

2(h(1)h
0
(1))⊗A

= h0
(2) ⊗A · · · ⊗A s

r∂(h)hn ⊗A S2h0
(1)⊗A

− (∆n+1
` h

(1)
(2))(h

0
(2) ⊗A h

1 · · · ⊗A hn ⊗A Sh(2)S2(h
(1)
(1)h

0
(1)))⊗A,

where higher twisted coassociativity (2.6.8) was repeatedly used. Projecting on coinvariants by the map
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π∂ : B ⊗Ae Cn+1
A H → B ⊗H Cn+1

A H , this becomes

1B ⊗H h0
(2) ⊗A · · · ⊗A s

r∂(h)hn ⊗A S2h0
(1)

− 1B ⊗H (∆n+1
` h

(1)
(2))(h

0
(2) ⊗A h

1 · · · ⊗A hn ⊗A Sh(2)S2(h
(1)
(1)h

0
(1)))

= 1B ⊗H h0
(2) ⊗A · · · ⊗A s

r∂(h)hn ⊗A S2h0
(1)

− 1B ⊗H h0
(2) ⊗A h

1 · · · ⊗A hn ⊗A sr∂(h
(1)
(2))Sh

(2)S2(h
(1)
(1)h

0
(1))

= 1B ⊗H h0
(2) ⊗A · · · ⊗A s

r∂(h)hn ⊗A S2h0
(1)

− 1B ⊗H h0
(2) ⊗A h

1 · · · ⊗A hn ⊗A Sh(2)S
2h(1)S

2h0
(1)

= 1B ⊗H h0
(2) ⊗A · · · ⊗A s

r∂(h)hn ⊗A S2h0
(1)

− 1B ⊗H h0
(2) ⊗A h

1 · · · ⊗A t`ε(Sh)hn ⊗A S2h0
(1)

= 0.

Also, the cyclic relation works analogously,

τ(∂h⊗Ae h0 ⊗A · · · ⊗A hn − 1B ⊗Ae h(1)h
0 ⊗A · · · ⊗A h(n+1)h

n)

= h1 ⊗A · · · ⊗A t`ν−1(∂h)hn ⊗A S2h0⊗A
− h(2)h

1 ⊗A h(3)h
2 · · · ⊗A h(n+1)h

n ⊗A S2(h(1)h
0)⊗A

= h1 ⊗A · · · ⊗A sr(∂h)hn ⊗A S2h0⊗A
− h(2)h

1 ⊗A h(3)h
2 · · · ⊗A h(n+1)h

n ⊗A s`ε(h(n+2))S
2(h(1)h

0)⊗A
= h1 ⊗A · · · ⊗A sr(∂h)hn ⊗A S2h0⊗A

− h(1)
(2)h

1 ⊗A h(1)
(3)h

2 · · · ⊗A h(1)
(n+1)h

n ⊗A h(1)
(n+2)Sh

(2)S2(h
(1)
(1)h

0)⊗A
= h1 ⊗A · · · ⊗A sr(∂h)hn ⊗A S2h0⊗A

− (∆n
` h

(1)
(2))(h

1 ⊗A h2 · · · ⊗A hn ⊗A Sh(2)S2(h
(1)
(1)h

0))⊗A .

Again, projecting on coinvariants yields

1B ⊗H h1 ⊗A · · · ⊗A sr(∂h)hn ⊗A S2h0

− 1B ⊗H (∆n
` h

(1)
(2))(h

1 ⊗A h2 · · · ⊗A hn ⊗A Sh(2)S2(h
(1)
(1)h

0))

= 1B ⊗H h1 ⊗A · · · ⊗A sr(∂h)hn ⊗A S2h0

− 1B ⊗H h1 ⊗A h2 · · · ⊗A hn ⊗A sr∂(h
(1)
(2))Sh

(2)
(2)S

2(h(1)h
0))

= 1B ⊗H h1 ⊗A · · · ⊗A sr(∂h)hn ⊗A S2h0

− 1B ⊗H h1 ⊗A · · · ⊗A hn ⊗A tr∂(S2h)S2h0)

= 0,

as above; similarly for the remaining relations. Hence all operators descend to well-defined maps B ⊗H
Cn+1
A H → B ⊗H Cn+1

A H . In particular,

τn+1
n (b⊗H h0 ⊗A · · · ⊗A hn) = b⊗H S2h0 ⊗A · · · ⊗A S2hn, b ∈ B,

and τn+1
n = id if and only if S2 = id, analogously to the consideration for A-corings. 2

The next step is to apply the isomorphism (5.1.3). It follows from Corollary 5.1.3 follows that φ :

(H ⊗A CnAH)∂
'−→ CnAH is an isomorphism in all degrees n, and the map φ̄∂ := φπ∂ explicitly reads

φ̄∂ : BnAH → CnAH, h0 ⊗A · · · ⊗A hn⊗A 7→ (∆n−1
` Sh0)(h1 ⊗A · · · ⊗A hn). (5.2.1)

Correspondingly, define
H\,∂ := {CnAH}n≥0,

(ab)using the same notation as before. In degree zero, set C0
AH := A. Note that H\,∂ is a cocyclic module

over k only (and not over A); we will refer to it as the Hopf-cocyclic module associated to a Hopf algebroid
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H . The cosimplicial and cocyclic operators on H\,∂ can be described as follows (the fact that they define a
cocyclic module will be proven in Theorem 5.2.5 below). The coface maps are

δi(h
1 ⊗A · · · ⊗A hn) =

 1⊗A h1 ⊗A · · · ⊗A hn if i = 0,
h1 ⊗A · · · ⊗A ∆`h

i ⊗A · · · ⊗A hn if 1 ≤ i ≤ n,
h1 ⊗A · · · ⊗A hn ⊗A 1 if i = n+ 1.

(5.2.2)

In degree zero, set

δja =

{
t`a if j = 0,
s`a if j = 1.

∀ a ∈ A.

The codegeneracies read

σi(h
1 ⊗A · · · ⊗A hn) = h1 ⊗A · · · ⊗A εhi+1 ⊗A · · · ⊗A hn 0 ≤ i ≤ n− 1. (5.2.3)

For the cocyclic operation, we finally set in each degree n

τn(h1 ⊗A · · · ⊗A hn) = (∆n−1
` Sh1)(h2 ⊗A · · · ⊗A hn ⊗A 1). (5.2.4)

The property of S being an isomorphism of twisted bimodules induces a similar property for the cocyclic
operator: the map τn is a map of (A,A)-bimodules, from I(CnAH)� , that is ‘t` multiplied from the right on
the first and from the left on the last factor’ to �(CnAH)J , which means ‘s` multiplied from the left on the
first and from the right on the last factor’, as is the case for τ1 = S.

5.2.2 Remark The operators (5.2.2)–(5.2.4) first appeared in [CoMos5] in an explicit example, and were
shown to make sense in general in [KhR3], defining a Hopf-cocyclic module for any Hopf algebroid. Our
Theorem 5.2.5 below states that they can be obtained naturally from the standardA-coring cocyclic operators
(1.2.4) associated to H (by covariant localisation and the isomorphism (5.1.3)).

Since for the definition of the underlying cosimplicial module only the underlying left bialgebroid structure
of H is needed, one easily verifies:

5.2.3 Proposition For an arbitrary left bialgebroid U , the space C•AU is a cosimplicial module by means of
the above structure maps.

5.2.4 Remark An analogous result holds for right bialgebroids.

Adding the cocyclic operator (5.2.4) to Proposition 5.2.3 gives the following theorem, generalising a similar
result in [Cr3] from Hopf algebras to Hopf algebroids:

5.2.5 Theorem For a Hopf algebroid H , the formulae (5.2.2)–(5.2.4) equip H\,∂ with the structure of a
cocyclic module if and only if S2 = id. In particular,

τn+1
n (h1 ⊗A · · · ⊗A hn) = S2h1 ⊗A · · · ⊗A S2hn. (5.2.5)

PROOF: We proceed in much the same way as in the proof of Proposition 5.2.1. Consider (1.2.4) for
C := H and ψ := S2. Since φ̄∂ : HA

\,S2 → H\,∂ is surjective with right inverse

h1 ⊗A · · · ⊗A hn 7→ 1H ⊗A h1 ⊗A · · · ⊗A hn⊗A,

it suffices to show that φ̄∂ commutes with the structure maps, i.e.,

δiφ̄∂ = φ̄∂δi for 0 ≤ i ≤ n+ 1,
σiφ̄∂ = φ̄∂σi for 0 ≤ i ≤ n− 1,
τ φ̄∂ = φ̄∂τ,

(5.2.6)

where the left hand side refers to the maps (5.2.2)–(5.2.4) above, whereas the right hand side refers to (1.2.4)
for ψ = S2.

We will use the identities

∆n−1
` Sh = Sh(n) ⊗A · · · ⊗A Sh(1),

∆n−1
` S2h = S2h(1) ⊗A · · · ⊗A S2h(n),

(5.2.7)
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which easily follow by induction from higher twisted coassociativity (2.6.8), as well as Proposition 2.6.4.
Consider now left and right hand sides of the third equation in (5.2.6) for ψ = S2. We have

φ̄∂τn+1(h0 ⊗A h1 ⊗A · · · ⊗A hn⊗A) = (∆n−1
` Sh1)(h2 ⊗A · · · ⊗A hn ⊗A S2h0).

On the other hand,

τnφ̄∂(h0 ⊗A h1 ⊗A · · · ⊗A hn⊗A) = τn((∆n−1
` Sh0)(h1 ⊗A · · · ⊗A hn))

= (∆n−1
` S(Sh

(n)
0 h1))(Sh

(n−1)
0 h2 ⊗A · · · ⊗A Sh(1)

0 hn ⊗A 1)

by (5.2.7). Since S is an anti-algebra morphism on H , this reads

τnφ̄∂(h0 ⊗A h1 ⊗A · · · ⊗A hn⊗A) =

= (∆n−1
` Sh1∆n−1

` S2h
(n)
0 )(Sh

(n−1)
0 h2 ⊗A · · · ⊗A Sh(1)

0 hn ⊗A 1).

Hence, for φ̄∂τ = τ φ̄∂ to hold it suffices to show that

h1 ⊗A · · · ⊗A hn−1 ⊗A S2h0 =

= (∆n−1
` (S2h

(n)
0 ))(Sh

(n−1)
0 h1 ⊗A · · · ⊗A Sh(1)

0 hn−1 ⊗A 1),
(5.2.8)

as an element inH� ⊗A �H� ⊗A · · · ⊗A �H . The case n = 2 is shown in the subsequent lemma, and
higher degrees will follow by induction.

5.2.6 Lemma For each h ∈ H , we have

(i ) (Sh(1))(1)h(2) ⊗A (Sh(1))(2) = Sh
(2)
(1)h(2) ⊗A Sh

(1)
(1) = 1H ⊗A Sh,

(ii ) S2h
(2)
(1)Sh

(1) ⊗A S2h
(2)
(2) = 1H ⊗A S2h,

as elements inH� ⊗A �H .

PROOF: With the right comonoid identities (2.5.6) as well as (2.6.10) and (2.6.4) we have

1⊗A Sh = 1⊗A S(h(1)sr(∂h(2)))

= t`εsr∂h(2) ⊗A Sh(1)

= sr∂h(2) ⊗A Sh(1)

= Sh
(2)
(1)h

(2)
(2) ⊗A Sh

(1) = Sh
(2)
(1)h(2) ⊗A Sh

(1)
(1),

which proves the first part; the second part can be shown by simply applying the first equation to an element
of the form h′ = Sh. 2

By the same calculation one proves h2⊗AS2h = S2h
(2)
(1)Sh

(1)h⊗AS2h
(2)
(2), i.e. (5.2.8) for n = 2. Henceforth,

assume (5.2.8) to be already true for n−1 and show that it holds for n as well. Again, with the help of (5.2.7),
(2.6.11), (2.6.10) and (2.6.4), we obtain

h1 ⊗A · · · ⊗A hn ⊗A S2h0 =

= h1 ⊗A (∆n−1
` S2h

(n)
0 )(Sh

(n−1)
0 h2 ⊗A · · · ⊗A Sh(1)

0 hn ⊗A 1)

= h1 ⊗A S2h0
(n)
(1)Sh

(n−1)
0 h2 ⊗A · · · ⊗A S2h0

(n)
(n−1)Sh

(1)
0 hn ⊗A S2h0

(n)
(n)

= h1 ⊗A s`ε(S2h0
(n)
(1) )S2h0

(n)
(2)Sh

(n−1)
0 h2 ⊗A · · · ⊗A S2h0

(n)
(n)Sh

(1)
0 hn ⊗A S2h0

(n)
(n+1)

= sr∂(Sh0
(n)
(1) )h1 ⊗A S2h0

(n)
(2)Sh

(n−1)
0 h2 ⊗A · · · ⊗A S2h0

(n)
(n)Sh

(1)
0 hn ⊗A S2h0

(n)
(n+1)

= S2h0
(n+1)
(1) Sh

(n)
0 h1 ⊗A S2h0

(n+1)
(2) Sh

(n−1)
0 h2 ⊗A · · ·

· · · ⊗A S2h0
(n+1)
(n) Sh

(1)
0 hn ⊗A S2h0

(n+1)
(n+1)

= (∆n
` S

2h
(n+1)
0 )(Sh

(n)
0 h1 ⊗A · · · ⊗A Sh(1)

0 hn ⊗A 1),

i.e. the desired claim, where higher coassociativity was used again.
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The remaining identities in (5.2.6) easily follow by deploying twisted coassociativity, Lemma 2.6.6 and
Proposition 2.6.4. The proof of the identity for δn+1 repeats a similar (and similarly tedious) induction as is
done above. The opposite direction is obtained by considering (5.2.5) for the case n = 1. 2

Consequently, in case S2 = id the map φ̄∂ is a morphism of cocyclic modules and we are in a position
to depict the situation by a commutative diagram (in each degree):

H\ H\,∂ .-
φ̄∂

H\ H\,∂-φ̄∂

?

(β, σ, τ)

?

(β, σ, τ)

(5.2.9)

5.2.7 Definition In case S2 = id, we denote the associated Tsygan’s cyclic bicomplex of the cocyclic mod-
ule H\,∂ by CC•,•∂ (H), and define HH•∂(H), HC•∂(H) and HP •∂ (H) to be its Hochschild and cyclic coho-
mology groups, respectively. We will refer to these as Hopf-Hochschild and Hopf-cyclic cohomology.

5.2.8 Hopf-Cyclic Cohomology Twisted by a Grouplike Element If σ ∈ GH = G`H∩GrH is a grouplike
element for the Hopf algebroid H (cf. §2.6.11), one may twist H\,∂ by a grouplike element, similarly as for
Hopf algebras [CoMos4]. The motivation for such an extension (at least in the Hopf algebra case) came from
examples of quantum groups or compact matrix pseudogroups [Wo], where the antipode is not involutive any
more but rather fulfills S2h = σhσ−1. In such a case, the cosimplicial and cocyclic operators read

δi(h
1 ⊗A · · · ⊗A hn) =

 1⊗A h1 ⊗A · · · ⊗A hn
h1 ⊗A · · · ⊗A ∆`h

i ⊗A · · · ⊗A hn
h1 ⊗A · · · ⊗A hn ⊗A σ

if i = 0,
if 1 ≤ i ≤ n,
if i = n+ 1.

δja =

{
t`a
s`aσ

if j = 0,
if j = 1,

σi(h
1 ⊗A · · · ⊗A hn) = h1 ⊗A · · · ⊗A εhi+1 ⊗A · · · ⊗A hn 0 ≤ i ≤ n− 1,

τn(h1 ⊗A · · · ⊗A hn) = (∆n−1
` S(σh1))(h2 ⊗A · · · ⊗A hn ⊗A 1),

(5.2.10)

where a ∈ A, hi ∈ H, i = 1, . . . , n, which can be shown to determine a cocyclic module if S2h = σhσ−1

(where σ−1 = Sσ). We denote the corresponding cohomology groups by HH•∂,σ(H), HC•∂,σ(H) and
HP •∂,σ(H). Although we use the same symbol, one should not confuse the grouplike element with the
codegeneracies.

5.2.1 Connes’ Associated Bicomplex

Let us have a brief look at the associated Connes’ bicomplex (BC•,•∂ (H), β, B) for the cocyclic module
H\,∂ . It is defined as follows:

BCp,q∂ (H) =

{
Cp−qA H if q ≥ p,
0 if q < p.

(5.2.11)

The Hochschild coboundary β : CnAH → Cn+1
A H is given, as generally in (1.1.11), by

β =

n+1∑
i=0

(−1)iδi, (5.2.12)

using the operators (5.2.2) (or, if need be, using the twisted ones in (5.2.10)). In case n = 0 one has

βa = t`a− s`a, a ∈ A.

The operator (not to be confused with the algebra B)

B : Cn+1
A H → CnAH, B := Nσ−1(1− λn+1)
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may be calculated with the explicit formula for the extra codegeneracy σ−1 : Cn+1
A H → CnAH , σ−1 :=

σnτn+1, which here reads

σ−1(h⊗A h1 ⊗A · · · ⊗A hn) = σn((∆n
` Sh)(h1 ⊗A · · · ⊗A hn ⊗A 1H))

= (Sh)(1)h
1 ⊗A · · · ⊗A (Sh)(n)h

n ⊗A ε((Sh)(n+1))

≡ (Sh)(1)h
1 ⊗A · · · ⊗A t`ε((Sh)(n+1))(Sh)(n)h

n

= (∆n−1
` Sh)(h1 ⊗A · · · ⊗A hn),

by (2.1.8) and (5.2.7). This is formally the same operation as the coinvariant localisation which, however,
maps from a different space. Also, for n = 0 one finds σ−1h = εSh = ν−1∂. In particular,

Bh = ν−1∂h+ εh h ∈ H.

As in the case of Hopf algebras [CoMos4], this expression can be simplified by passing to the quasi-
isomorphic normalised bicomplex (B̄C•∂(H), β, B̄), which is defined in a similar manner:

B̄Cp,q∂ (H) =

{
C̄p−qA H if q ≥ p,
0 if q < p,

(5.2.13)

where

C̄nAH =

{
(ker ε)⊗An if n ≥ 1,
ker(s` − t`) if n = 0.

(5.2.14)

While the form of the Hochschild coboundary β remains unchanged, the new horizontal operator becomes

B̄ = Nσ−1 for n ≥ 0.

Specifically, for n = 0,
B̄h = ν−1∂h h ∈ H.

5.2.9 Left Haar Measures on Left Bialgebroids An important motivation to introduce the dual Hopf cyclic
homology in Chapter Six is the subsequent Proposition 5.2.11 from [KhR3], which tells us that in some
cases Hopf-cyclic cohomology is not sufficiently interesting. This hinges on the existence of a Haar system,
a notion from [KhR3] which we can apply without major reformulations since it only relies on the left
bialgebroid structure, and this is essentially the same [KhR3, Lem. 2.1] as used here.

5.2.10 Definition LetU be a left bialgebroid with structure maps as before and let T ∈ Hom(−,A)(U� , AA),
that is a map T : U → A with T (t`au) = T (u)a. The map T is called a left Haar system for the left
bialgebroid U if

mU (s`T ⊗ id)∆` = t`T.

It is called normal if T (1U ) = 1A.

This is still sufficient but is slightly weaker than the version in [KhR3], which requires mU (s`T ⊗ id)∆` =
s`T and s`T = t`T .

5.2.11 Proposition [KhR3] Let H be a Hopf algebroid that admits a normal left Haar system on its under-
lying left bialgebroid structure. Then we have

HP even
∂ (H) = ker(s` − t`) and HP odd

∂ (H) = 0.

PROOF: Introduce the map s : C•AH → C•−1
A H given by

sn(h1 ⊗A · · · ⊗A hn) = s`(Th1)h2 ⊗A · · · ⊗A hn.

If one introduces the (co-augmented) complex ker(s` − t`) ι−→ C•AH , where ι : ker(s` − t`) → A is the
canonical embedding and s−1 is defined as restriction, one sees that sβ + βs = id. Hence one obtains a
contracting homotopy for the Hochschild complex of H\,∂ and consequently HHn(H) = 0 for n > 0 and
HH0(H) = ker(s` − t`). Finally, apply an SBI-sequence kind of argument and the periodicity of HP . 2

See [Cr3] for this result in the context of Hopf algebras.
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5.2.12 Comparison to Earlier Approaches In the definition of para-Hopf algebroids from [KhR3] as pre-
sented in §2.6.13(ii), the condition T 2 = idH was already implemented in the definition of a para-antipode
T , implying the missing left bialgebroid axiom (2.1.4) (see [KhR3, Lem. 2.1]). From the perspective of
obtaining cocyclic structures we are mainly interested in the case S2 = idH , too, see Theorem 5.2.5. Fur-
thermore, the antipode axioms in Definition 2.6.1 from [BSz2] imply the ones (with the exception of the
condition T 2 = id) in §2.6.13(ii)(a)–(e), as is seen from Lemma 5.2.6 and Proposition 2.6.4(i). For the
opposite direction cf. [BSz2, Prop. 4.2].

In particular, the approach via left and right bialgebroids used here avoids the somewhat technical con-
dition (2.6.14), which in our context appears only in the auxiliary Lemma 5.2.6. Moreover, we gained the
possibility to define coinvariants and to see the Hopf-cyclic structure ‘descending’ from a standard coalgebra
(coring) cocyclic module (cf. §1.2.5) by means of the projection (5.2.1). This is particularly helpful in the
example of Lie-Rinehart algebras when hunting for an antipode (cf. Subsection 4.2.2) and its corresponding
cyclic structure (which cannot be so easily guessed from (2.6.14)).

5.3 Hopf-Hochschild Cohomology as a Derived Functor
In the next theorem we are going to show that Hopf-Hochschild cohomology given by the complex
(C•AH,βσ) for a grouplike element σ from (5.2.10) can be seen as a derived functor of the cotensor product
functor.

5.3.1 Coefficients Observe that the cosimplicial module given by (5.2.2) and (5.2.3) tacitly determines
cohomology with values in the base algebra A. More generally, let M ∈ Comod-H with coaction
M∆m =: m(0) ⊗A m(1) and define C•MH := {M ⊗A H⊗An}n≥0. For a grouplike element σ ∈ GH ,
the operators

δi(m⊗A h1 ⊗A · · · ⊗A hn) =

M∆m⊗A h1 ⊗A · · · ⊗A hn
m⊗A h1 ⊗A · · · ⊗A ∆`h

i ⊗A · · · ⊗A hn
m⊗A h1 ⊗A · · · ⊗A hn ⊗A σ

if i = 0,
if 1 ≤ i ≤ n,
if i = n+ 1,

δj(m) =

{
M∆m
m⊗A σ

if j = 0,
if j = 1,

σi(m⊗A h1 ⊗A · · · ⊗A hn) = m⊗A h1 ⊗A · · · ⊗A εhi+1 ⊗A · · · ⊗A hn 0 ≤ i ≤ n− 1

(5.3.1)

giveC•MH the structure of a cosimplicial module (we do not address the question here how to extend this to a
cocyclic module with coefficients). Denote byH•σ(H,M) the corresponding (Hopf-)Hochschild cohomology
computed by (C•MH,βσ). In particular, with the notation from Definition 5.2.7, one recovers H•σ(H,A) =
HH•∂,σ(H). Observe at this point that the fact that one can define Hopf-Hochschild homology with ‘trivial’
coefficients (i.e. with values in A) may be interpreted as a consequence of the existence of both left and right
H-coactions on A as in (2.3.7) (whereas a priori there is only one left U -action on A). This, in turn, we saw
to be strongly connected (under certain projectivity assumptions) to the appearance of two duals of U , cf.
Proposition 3.1.9.

5.3.2 The Cobar Complex The cohomology groups of the complex associated to (5.3.1) are calculated by
finding a suitable resolution provided by a generalisation of the classical cobar complex [Ad, Do]. It is
in some sense the complex arising from the so-called (co)path space PN• := {Nn+1}n≥0 associated to
any cosimplicial object N•: one has PNn := Nn+1 in degree n and the cosimplicial operators are shifted
correspondingly. More precisely, put M := H in (5.3.1) with right H-coaction simply given by the left
coproduct ∆`. Then the (co)path space

Cob•σ(H) := {H ⊗A H⊗An}n≥0

associated to the cosimplicial space C•HH has cosimplicial pieces given by

δ̃i(h
0 ⊗A · · · ⊗A hn) =

{
h0 ⊗A · · · ⊗A ∆`h

i ⊗A · · · ⊗A hn
h0 ⊗A · · · ⊗A hn ⊗A σ

if 0 ≤ i ≤ n,
if i = n+ 1,

σ̃i(h
0 ⊗A · · · ⊗A hn) = h0 ⊗A · · · ⊗A εhi+1 ⊗A · · · ⊗A hn 0 ≤ i ≤ n− 1.

A coboundary β′σ : Cobnσ(H)→ Cobn+1
σ (H) is defined by β′σ =

∑n+1
i=0 (−1)iδ̃i, and it is easy to see that that

β′σ β
′
σ = 0. We refer to (Cob•σ(H), β′σ) as the cobar complex of H . One can then describe Hopf-Hochschild

cohomology as follows:
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5.3.3 Theorem Let H be a left bialgebroid and M a right H-comodule. Then there is an isomorphism

H•σ(H,M) ' Cotor•H(M,Aσ).

In particular, one has
HH•∂,σ(H) ' Cotor•H(A,Aσ),

where Aσ is A seen as left H-comodule induced by the grouplike element σ and A is seen as a right H-
comodule with respect to the grouplike element 1H .

PROOF: The proof follows standard homological algebra arguments, slightly adapted to the case at hand.
Recall firstly from (2.3.7) that for any grouplike element σ the maps ∆A

σ a := s`(a)σ and A∆σ := t`(a)σ
induce left and right H-comodule structures on A, respectively. The left H-coaction (in each degree) on
Cob•σ(H) is simply ∆` ⊗ id⊗•H . Observe that β′σ is a morphism of left H-comodules. Moreover, the maps

sn−1 : Cobnσ(H)→ Cobn−1
σ (H), h0 ⊗A · · · ⊗A hn 7→ s`(εh0)h1 ⊗A · · · ⊗A hn

fulfill s β′σ + β′σ s = id, hence s together with the maps s−1 := ε and the source map s` is a contracting

homotopy for the complex (Cob•σ(H), β′σ) over Aσ . Correspondingly, Aσ
∆A
σ−→ Cob•σ(H) is a resolution of

Aσ by (free hence injective) left H-comodules: exactness in degree > 0 was shown a moment ago and as for
degree 0, observe that the space kerβ′σ = {h ∈ H | ∆`h = h ⊗A σ} is precisely given by elements of the
form s`(a)σ for all a ∈ A and fixed σ, and hence is isomorphic to A.

Now let M be a right H-comodule with coaction M∆ : M → M ⊗A H and recall that the groups
Cotor•H(M,Aσ) are computed by M H Cob•σ(H). To finish the proof it suffices to show that the isomor-
phism

φ : M H Cob•σ(H)
'−→ C•MH, m⊗A h0 ⊗A · · · ⊗A hn 7→ m⊗A s`(εh0)h1 ⊗A · · · ⊗A hn

is a morphism of complexes on the complex (C•MH,βσ) that computes Hochschild cohomology, that is

φ(idM ⊗ β′σ) = βσφ. (5.3.2)

Furthermore, for the left H-comodule H ⊗A N with coaction ∆` ⊗ idN , where N is any A-bimodule, one
has

M HH ⊗A N = {m⊗A h⊗A n ∈M ⊗A H ⊗A N |
| m⊗A h(1) ⊗A h(2) ⊗A n = m(0) ⊗A m(1) ⊗A h⊗A n}.

Applying the operator (idM ⊗mHop ⊗ idN )(idM ⊗ idH ⊗ t`ε⊗ idN ) yields the relation

m⊗A h⊗A n = m(0) ⊗A t`ε(h)m(1) ⊗A n = M∆(mε(h))⊗A n,

for all elements m ⊗A h ⊗A n ∈ M HH ⊗A N . To prove (5.3.2) we now only consider equality of the
respective first summands, the rest being evident. One has

φ((idM ⊗ β′σ)(m⊗A h0 ⊗A h1 ⊗A · · · ⊗A hn) = m⊗A h0 ⊗A h1 ⊗A · · · ⊗A hn + . . .

= M∆(mε(h0))⊗A h1 ⊗A · · · ⊗A hn + . . .

= M∆m⊗A s`(εh0)h1 ⊗A · · · ⊗A hn + . . .

= βσφ(m⊗A h0 ⊗A h1 ⊗A · · · ⊗A hn).

2

5.4 Hopf-Cyclic Cohomology of Commutative Hopf Algebroids

In case of a commutative Hopf algebroid one can make more specific statements about the Hopf-cyclic
cohomology groups: they are essentially determined by the Hopf-Hochschild groups, see Theorem 5.4.4.
We thereby generalise an idea for (commutative) Hopf algebras in [KhR1, Thm. 4.2] to Hopf algebroids.
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5.4.1 Commutative Hopf Algebroids A commutative Hopf algebroidH necessarily has a commutative base
algebra A. Furthermore, the left counit of the underlying left bialgebroid fulfills the required properties of a
right counit and likewise the left coproduct can be used as right coproduct. Hence adopting the alternative
perspective in §2.6.8, that is, constructing the right bialgebroid out of a left bialgebroid and an (invertible)
anti-algebra isomorphism S satisfying certain properties (see §2.6.8), a commutative Hopf algebroid may
always be described (up to automorphism) by a left bialgebroid structure (H,A, s`, t`,∆, ε) and a right
bialgebroid structure (H,A, t`, s`,∆, ε) plus an antipode fulfilling

St` = s`, Ss` = t`, mH(S ⊗ idH)∆` = t`ε, mH(idH ⊗ S)∆` = s`ε. (5.4.1)

One recovers this way the definition of commutative Hopf algebroids in [Ra]. In the rest of this section, we
assume H to be a commutative Hopf algebroids with this description.

For the sake of simplicity, we consider only the case where the grouplike element is σ = 1. Correspond-
ingly, for the cobar complex denote Cob•(H) := Cob•1(H).

5.4.2 Proposition Let H be a commutative Hopf algebroid over commutative base algebra A. Then
Cob•(H) is a para-cocyclic H-comodule with cocyclic operator

τ̃n : Cobn(H) → Cobn(H),

h0 ⊗A · · · ⊗A hn 7→ h0
(1) ⊗A h

0
(2)Sh

1
(n)h

2 ⊗A · · · ⊗A h0
(n)Sh

1
(2)h

n ⊗A h0
(n+1)Sh

1
(1),

which is cocyclic if and only if S2 = id. In particular,

τ̃n+1
n (h0 ⊗A h1 ⊗A · · · ⊗A hn) = h0 ⊗A S2h1 ⊗A · · · ⊗A S2hn.

PROOF: We only prove the cocyclic identity τ̃n+1
n = id and leave the remaining identities for a cocyclic

module to the reader. Using the commutativity ofH , the identities (5.4.1) as well as (2.6.11) (for the structure
maps of the commutative Hopf algebroid specified above), one obtains

τ̃2
n(h0 ⊗A · · · ⊗A hn) = h0

(1) ⊗A h
0
(2)Sh

2
(n)h

3Sh0
(2n+1)h

0
(2n+2)S

2h1
(n)Sh

1
(n−1)

⊗A h0
(3)Sh

2
(n−1)h

4Sh0
(2n)h

0
(2n+3)S

2h1
(n+1)Sh

1
(n−2) ⊗A · · ·

· · · ⊗A h0
(n−1)Sh

2
(3)h

nSh0
(n+4)h

0
(3n−1)S

2h1
(2n−3)Sh

1
(2)

⊗A h0
(n)Sh

2
(2)Sh

0
(n+3)h

0
(3n)S

2h1
(2n−2)Sh

1
(1) ⊗A h

0
(n+1)Sh

0
(n+2)Sh

2
(1)S

2h1
(2n−1)

= h0
(1) ⊗A h

0
(2)Sh

2
(n)h

3Sh0
(2n)h

0
(2n+1)t

`εh1
(n−1)

⊗A h0
(3)Sh

2
(n−1)h

4Sh0
(2n−1)h

0
(2n+2)S

2h1
(n)Sh

1
(n−2) ⊗A · · ·

· · · ⊗A h0
(n−1)Sh

2
(3)h

nSh0
(n+3)h

0
(3n−2)S

2h1
(2n−4)Sh

1
(2)

⊗A h0
(n)Sh

2
(2)Sh

0
(n+2)h

0
(3n−1)S

2h1
(2n−3)Sh

1
(1) ⊗A s

`εh0
(n+1)Sh

2
(1)S

2h1
(2n−2)

= h0
(1) ⊗A h

0
(2)Sh

2
(n)h

3Sh0
(2n−1)h

0
(2n)

⊗A h0
(3)Sh

2
(n−1)h

4Sh0
(2n−2)h

0
(2n+1)S

2h1
(n−1)Sh

1
(n−2) ⊗A · · ·

· · · ⊗A h0
(n−1)Sh

2
(3)h

nSh0
(n+2)h

0
(3n−3)S

2h1
(2n−5)Sh

1
(2)

⊗A h0
(n)Sh

2
(2)Sh

0
(n+1)h

0
(3n−2)S

2h1
(2n−4)Sh

1
(1) ⊗A Sh

2
(1)S

2h1
(2n−3)

= h0
(1) ⊗A h

0
(2)Sh

2
(n)h

3 ⊗A h0
(3)Sh

2
(n−1)h

4Sh0
(2n−2)h

0
(2n−1)t

`εh1
(n−2) ⊗A · · ·

· · · ⊗A h0
(n−1)Sh

2
(3)h

nSh0
(n+2)h

0
(3n−5)S

2h1
(2n−6)Sh

1
(2)

⊗A h0
(n)Sh

2
(2)Sh

0
(n+1)h

0
(3n−4)S

2h1
(2n−5)Sh

1
(1) ⊗A Sh

2
(1)S

2h1
(2n−4)

...

= h0
(1) ⊗A h

0
(2)Sh

2
(n)h

3 ⊗A · · · ⊗A h0
(n−1)Sh

2
(3)h

n ⊗A h0
(n)Sh

2
(2) ⊗A S

2h1S2h2
(1),

where the vertical dots mean another n− 3 repetitions of the same three steps as before. Repeating the same
procedure another n− 1 times, one finds

τ̃nn (h0 ⊗A · · · ⊗A hn) = h0
(1) ⊗A h

0
(2)Sh

n
(n) ⊗A S

2h1Sh
n
(n−1) ⊗A · · · ⊗A S

2hn−1Sh
n
(1).
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Hence finally

τ̃n+1
n (h0 ⊗A · · · ⊗A hn)

= h0
(1) ⊗A h

0
(2)Sh

0
(2n+1)S

2h1S2hn(n)Sh
n
(n−1)

⊗A h0
(3)Sh

0
(2n)S

2h2S2hn(n+1)Sh
n
(n−2) ⊗A · · ·

· · · ⊗A h0
(n)Sh

0
(n+3)S

2hn(2n−1)Sh
n
(1)S

2hn−1 ⊗A h0
(n+1)Sh

0
(n+2)S

2hn(2n)

...

= h0 ⊗A S2h1 ⊗A · · · ⊗A S2hn,

with the same steps as before. 2

5.4.3 Lemma The injection

C•AH ↪→ Cob•(H), h1 ⊗A · · · ⊗A hn 7→ 1H ⊗A h1 ⊗A · · · ⊗A hn

is a morphism of cosimplicial modules, and if H is a commutative Hopf algebroid with S2 = id it is even a
morphism of cocyclic modules.

PROOF: Straightforward computation. 2

As a consequence, we can generalise a result in [KhR1] from commutative Hopf algebras to commutative
Hopf algebroids:

5.4.4 Theorem If H is a commutative Hopf algebroid, its Hopf-cyclic cohomology is given as

HC•∂(H) =
⊕
i≥0

HH•−2i
∂ (H).

PROOF: We do not give the proof here but rather refer to Theorem 6.3.3, the dual version of this theorem.
Replacing there the bar resolution with the cobar resolution and the tensor product over H with the cotensor
product over H , one can easily dualise the proof given there. 2

5.5 Example: Lie-Rinehart Algebras
We show in this section that the Hopf-cyclic cohomology of the universal enveloping algebra of a Lie-
Rinehart algebra is given by its Lie-Rinehart homology, a generalised notion of Lie algebra homology. The
corresponding Theorem 5.5.7 is not only a generalisation of the analogous statement for Lie algebras (Exam-
ple 1.3.3(ii)), but may also justify why we regard Hopf-cyclic cohomology as a noncommutative analogue of
Lie-Rinehart homology.

Before we dedicate our attention to Hopf-cyclic cohomology of V L, let us recall a few facts about the
homology of Lie-Rinehart algebras [Rin, Hue2].

5.5.1 Lie-Rinehart Homology Let L be projective as an A-module and consider the graded left V L-module
V L ⊗A ∧•AL (both factors carry the obvious right and left A-module structures, respectively, and here ⊗A
refers to them). Consider the k-linear operator b′A,L : V L⊗A ∧nL→ V L⊗A ∧n−1L

b′A,L(u⊗A X1 ∧ · · · ∧Xn) :=

:=

n∑
i=1

(−1)i−1uXi ⊗A X1 ∧ · · · X̂i · · · ∧Xn

+
∑

1≤i<j≤n

(−1)i+ju⊗A [Xi, Xj ] ∧X1 ∧ · · · X̂i · · · X̂j · · · ∧Xn,

(5.5.1)

where uXi is the right (A,L)-module structure that corresponds to right multiplication in V L. Now b′A,L is
a V L-linear differential and if s denotes suspension, we will call the resulting chain complex

KA
• L := (V L⊗A ∧•AsL, b′A,L) (5.5.2)
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the Koszul-Rinehart complex. If M is a right (A,L)-module (right V L-module), define Lie-Rinehart homol-
ogy with coefficients in M as

HA
• (L,M) := TorV L• (M,A). (5.5.3)

In case L is projective as an A-module, the Koszul-Rinehart complex KA
• L provides a projective resolution

in the category of left V L-modules, and (M ⊗V LKA
• L, bA,L := idM ⊗ b′A,L) computes this homology with

coefficients in M . The differential (to which we will refer as Lie-Rinehart boundary) is then explicitly given
as

bA,L(m⊗A X1 ∧ · · · ∧Xn) =

=

n∑
i=1

(−1)i−1[m,Xi]⊗A X1 ∧ · · · X̂i · · · ∧Xn

+
∑

1≤i<j≤n

(−1)i+jm⊗A [Xi, Xj ] ∧X1 ∧ · · · X̂i · · · X̂j · · · ∧Xn,

(5.5.4)

for m ∈ M . If L is finitely generated A-projective of constant rank n, the Koszul-Rinehart complex even
yields a finite projective resolution of length n with V L ⊗A ∧nAL being the highest non-zero term; see
[Rin, Hue2] for further details. In case M = A, Theorem 4.2.7 leads to

5.5.2 Theorem [Hue2, Thm. 2] Let ∂ be an exact operator as in Theorem 4.2.7, making A a right (A,L)-
module, denoted A∂ . The Batalin-Vilkovisky algebra (∧•AL, ∂) coincides with (A∂ ⊗V L KA

• L, bA,L) as a
chain complex. In particular, when L is projective over A the complex (∧•AL, ∂) computes HA

• (L,A∂) =
TorV L• (A∂ , A), i.e. the Lie-Rinehart homology of L with values in its base algebra A∂ .

5.5.3 Remark Observe that the Lie-Rinehart boundary bA,L and coboundary dA,L (which will only be intro-
duced in (5.6.2)) correspond precisely to left and right counits of V L: one has

bA,L(a⊗V L X) = ∂(aX), whereas (dA,La)(X) = ε(Xa), a ∈ A, X ∈ L.

We stress here that in the absence of such a flat right connection on A, Lie-Rinehart homology with coeffi-
cients in A cannot even be defined. The chains of the form A∂ ⊗V L KA

• L in a sense correspond to what we
called coinvariant localisation in Section 5.1, and will reappear in Section 6.3.

We turn to Hopf-cyclic cohomology. Let us state another corollary to Proposition 4.2.11.

5.5.4 Corollary Let (A,L) be a Lie-Rinehart algebra. Any flat right (A,L)-connection on A defines a
cocyclic module V L\,∂ associated to the universal enveloping algebra V L.

5.5.5 Remark We want to underline again that flatness of the connection is needed in Proposition 4.2.11(i)
to show that S∂ is an anti-algebra homomorphism; this, in turn, is crucial for the cyclic relations to hold in
(the proof of) Theorem 5.2.5, in particular for τn+1

n = id.

The following lemma will serve as a tool to simplify the calculation of Hopf-Hochschild cohomology of
V L. Strictly speaking, it is an immediate consequence of the generalised PBW theorem; we give a proof that
fully relies on combinatorial arguments.

Like V L, the symmetric algebra SAL is generated by the elements both in L and A, with the difference
that SAL is commutative and hence acts trivially on A. Now any A-module L′ can be seen as a Lie-Rinehart
algebra with trivial bracket and zero anchor; in such a case, V L′ = SAL

′, and theA-coring structure is given
again as ∆SL′X = X ⊗ll 1 + 1⊗ll X for X ∈ L′ and ∆SL′a = a⊗ll 1 = 1⊗ll a for a ∈ A. Note that in
this case the counit ε : SAL

′ → A becomes in this case a morphism of algebras. We then have

5.5.6 Lemma For any Lie-Rinehart algebra (A,L), the A-module isomorphism π : SAL → V L from
(1.4.5) is an isomorphism of A-corings.

PROOF: Let (∆`, ε) be the (left) comonoid structure on V L and (∆SL, ε) the one on SAL. The assertions
are ε π = ε, which is trivial, as well as (π ⊗ π)∆SL = ∆` π. Clearly, by the PBW theorem it suffices to
prove this identity on elements aXp ∈ SAL for a ∈ A, X ∈ L, and a natural number p ≥ 0. For k ≥ 0,
denote the kth iterated action of the anchor on the algebra A by Xk(a). We have

π(aXp) =
1

p+ 1

p∑
k=0

(
p+ 1

k + 1

)
Xk(a)Xp−k =

1

p+ 1

p∑
k=0

(
p+ 1

k + 1

)
Xp−k(a)Xk.
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In particular, for a = 1 one gets π(Xp) = Xp. Furthermore, for the respective coproducts holds

∆SL(aXp) = ∆`(aX
p) =

p∑
j=0

(
p

j

)
aXj ⊗ll Xp−j =

p∑
j=0

(
p

j

)
aXp−j ⊗ll Xj ,

since both sides are A-linear. Hence for a = 1 or a trivial L-action on A the statement is immediate and
reproduces the argument for Lie and Hopf algebras. Otherwise, one has to consider

∆`π(aXp) =
1

p+ 1

p∑
k=0

(
p+ 1

k + 1

)
Xk(a)∆`X

p−k

=
1

p+ 1

p∑
k=0

p−k∑
j=0

(
p+ 1

k + 1

)(
p− k
j

)
Xk(a)Xj ⊗ll Xp−k

=
1

p+ 1

p∑
k=0

p−k∑
j=0

(p+ 1)!

(k + 1)! j! (p− k − j)!
Xk(a)Xj ⊗ll Xp−k,

and compare this with

(π ⊗ π) ∆SL(aXp) = (π ⊗ π) (

p∑
j=0

(
p

j

)
aXj ⊗ll Xp−j)

=

p∑
j=0

j∑
k=0

1

j + 1

(
p

j

)(
j + 1

k + 1

)
Xk(a)Xj−k ⊗ll Xp−j

=

p∑
j=0

j∑
k=0

1

p+ 1

(
p+ 1

j + 1

)(
j + 1

k + 1

)
Xk(a)Xj−k ⊗ll Xp−j

=
1

p+ 1

p∑
j=0

j∑
k=0

(p+ 1)!

(k + 1)! (p− j)! (j − k)!
Xk(a)Xj−k ⊗ll Xp−j .

Observe here that the map π ⊗ π is only well defined on operations aX(1) ⊗ll X(2) = X(1) ⊗ll aX(2) in the
sum of the coproduct, rather than on single summands. To interchange the rôles of j and k in this last double
sum, one lets k run from 0 to p and j to p−k only. Correspondingly, one has to raise the numbers j → j+k
to obtain the same coefficients; one immediately sees that this operation produces the same result as above,
hence ∆`π(aXp) = (π ⊗ π) ∆SL(aXp), as claimed. 2

Recall that Proposition 4.2.11 states that it is essentially a right (A,L)-connection ∂ on A determining
a right counit and an antipode on a Lie-Rinehart algebra, hence a cocyclic structure. The following theorem
may also be called a Hochschild-Kostant-Rosenberg-Theorem for Lie-Rinehart algebras or Lie algebroids. It
is a generalisation of a similar result for universal enveloping algebras of Lie algebras [CoMos2, Cr3].

5.5.7 Theorem Let (A,L) be a Lie-Rinehart algebra, with L projective over A, and k containing Q. Fur-
thermore, let ∂ a flat right (A,L)-connection on its base algebra A (or equivalently, an exact generator ∂ for
the Gerstenhaber algebra ∧•AL).

(i ) The Hochschild cohomology of the cocyclic module V L\,∂ is isomorphic to the exterior algebra of L
over A, i.e.,

HH•∂(V L)' ∧•A L.
This map is induced by both the antisymmetrisation map

Alt : ∧nAL→ SAL
⊗lln, X1 ∧ · · · ∧Xn 7→

1

n!

∑
σ∈P (n)

signσXσ(1) ⊗ll · · · ⊗ll Xσ(n),

as well as the map

P : SAL
⊗lln → ∧nAL, u1 ⊗ll · · · ⊗ll un 7→ pru1 ∧ · · · ∧ prun,

where pr : SAL → S1
AL is the projection on the direct summand S1

AL = L = ∧1
AL, and this

isomorphism does not depend on ∂.
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(ii ) The periodic cyclic cohomology of V L\,∂ is isomorphic to the Lie-Rinehart algebra homology of L
(cf. §5.5.1), i.e.,

HP •∂ (V L)
'−→ HA

odd(L,A∂)⊕HA
even(L,A∂),

where A∂ is a right V L-module via ∂.

PROOF: Part (i): since the Hochschild cohomology uses only the pertinent A-coring structure, the PBW
map induces an isomorphism HH•∂(SL)

'−→ HH•∂(V L) and we can restrict our investigation to SAL. The
proof follows standard homological algebra procedures.

Recall at first some facts about the symmetric algebra on modules, cf. e.g. [Eis, App. A2]. Assume first
L to be free of finite dimension N over A, with basis {ei}1≤i≤N . Then SAL = ⊕p≥0S

p
AL is the polynomial

ring on the ‘variables’ ei and SpAL is the free A-module of rank
(
N+p−1
N−1

)
, with basis the set of monomials of

degree p in ei. The graded dual of SAL is defined to be SA(L)∗ = ⊕pSpA(L)∗ = ⊕p Hom(A,−)(S
p
AL,A).

Observe that the distinction between left and right duals as in Section 3.1 disappears here since s` = t`.
If L is A-free and A contains Q, one has [Eis, Prop. A2.7] SA(L)∗ ' SA(L∗) as algebras, where L∗ :=
HomA(L,A); as a consequence, we will just write SAL∗. The module structures given in (3.1.14) or (3.1.12)
transfer to this context as follows: one obtains an SAL∗-module structure on SAL by

∇r : SAL⊗ SAL∗ −→ SAL, u⊗ v∗ 7−→ 〈v∗, u(1)〉u(2),

where the Sweedler components refer to the coproduct on SAL. Each φ ∈ L∗ acts as a derivation on
SAL: for two homogeneous elements u,w ∈ SAL one has ∇rφuw = 〈φ, u(1)w(1)〉u(2)w(2) since ∆SL is a
homomorphism of k-algebras. Furthermore, since φ ∈ L∗ = S1

AL
∗, the only nonzero elements in 〈., .〉 are

those for which u(1)w(1) ∈ S1
AL, i.e., one of the u(1), w(1) lies in S1

AL = L and the other one lies in S0
AL =

A. Now any element in SAL is a sum of products of elements of L, hence for any u ∈ SAL+ :=
∑
j>0 S

j
AL

one obtains ∆SLu = 1⊗ll u+u⊗ll 1+x with x ∈ SAL+⊗ll SAL+ (this is a general property of connected
bialgebras, see e.g. [GrVaFi, Lemma 14.10]). Therefore,

∇rφuw = 〈φ, u(1)〉u(2)w + 〈φ,w(1)〉uw(2) = (∇rφu)w + u∇rφw.

To compute HH•∂(SAL) one may use a Koszul resolution of A that is dual to the construction in [Kas3,
XVIII.7]. We will, however, generalise a method in [Cr3] and proceed mainly as there, considering a coaug-
mented complex. Versions of this proof can also be found in [KhR2] and, in the framework of Lie algebroids,
in [Cal].

Define the (dual) Koszul complex K̃•AL := SAL ⊗A ∧•AL, where each K̃n
AL := SAL ⊗A ∧nAL carries

a left SAL-coaction by ∆SL ⊗ id∧•AL. This yields a resolution of A by left SAL-comodules: consider the
coaugmented complex

A
1SL−→ SAL⊗A ∧0

AL
d−→ SAL⊗A ∧1

AL
d−→ . . . , (5.5.5)

with coboundary d defined as

d(u⊗A X1 ∧ · · · ∧Xn) =

N∑
i=1

∇reiu⊗A ei ∧X1 ∧ · · · ∧Xn,

which is easily seen not to depend on the chosen basis. One has

d d(u⊗A X1 ∧ · · · ∧Xn) =

N∑
i=1

N∑
j=1

〈ei, u(1)〉〈ej , u(2)〉u(3) ⊗A ei ∧ ej ∧X1 ∧ · · · ∧Xn,

and while 〈ei, u(1)〉〈ej , u(2)〉 is only nonzero if i = j, the wedge powers in this case vanish. Hence d 1SL =

d d = 0. The exactness of (5.5.5) is shown by the existence of a contracting homotopy: define s : K̃n
AL →

K̃n−1
A L by

s(u⊗A X1 ∧ · · · ∧Xn) =

N∑
j=1

(−1)j+1uXj ⊗A X1 ∧ · · · ∧ X̂j ∧ · · · ∧Xn.
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Then one obtains

ds(u⊗A X1 ∧ · · · ∧Xn) =

=

N∑
i=1

N∑
j=1

(−1)j+1(∇reiu)Xj ⊗A ei ∧X1 ∧ · · · ∧ X̂j ∧ · · · ∧Xn

+

N∑
i=1

N∑
j=1

(−1)j+1u⊗A X1 ∧ · · · ∧Xj−1 ∧ 〈ei, Xj〉ei ∧Xj+1 · · · ∧Xn,

whereas

sd(u⊗A X1 ∧ · · · ∧Xn) =

N∑
i=1

N∑
j=1

(−1)j(∇reiu)Xj ⊗A ei ∧X1 ∧ · · · ∧ X̂j ∧ · · · ∧Xn

+

N∑
i=1

N∑
j=1

(∇reiu)ei ⊗A X1 ∧ · · · ∧Xn.

Hence (d s + s d)(u ⊗A ω) = (p + n)(u ⊗A ω), where p, n ∈ N and u ∈ SpAL, ω ∈ ∧nAL. This shows
exactness of (5.5.5) in degree > 0. As for degree zero, note that the kernel of d : SAL → SAL ⊗A
∧1
AL, u 7→

∑n
i=1∇reiu ⊗A ei is isomorphic to A. One concludes that the complex A

1SL−→ K̃•AL is acyclic
and gives a resolution of A by free (hence injective) left SAL-comodules. Even simpler (cf. [Lo1, Thm.
3.2.2]), since L is A-free, one can write L = L1 ⊕ . . . ⊕ LN , where each Li is free of dimension one. By
SA(L1 ⊕ L2) ' SAL1 ⊗A SAL2 and ∧A(L1 ⊕ L2) ' ∧AL1 ⊗A ∧AL2, one reduces the consideration to
the dimension one situation, and easily sees that tensoring resolutions K̃•AL = ⊗iK̃•ALi leads to the same
conclusion.

Now by Theorem 5.3.3 one has HH•(SAL) = Cotor•SAL(A,A), hence it can be e.g. computed by
A SALK̃

•
AL. Under the isomorphism

f : A SALK̃
•
AL = A SALSAL⊗A ∧•AL

'−→ ∧•AL, u⊗A ω 7−→ ε(u)ω,

one has (idA ⊗A f)du = 0 for each homogeneous u ∈ SpAL for p > 0; in case p = 0 this follows trivially
from A = ker d. Hence

(A SALK̃
•
AL, idA ⊗A d) ' (∧•AL, 0),

as complexes.
To show that the isomorphism on cohomology is induced by P and Alt, we compare the Koszul resolution

to the standard cobar resolution (Cob•(SAL), β′) from Theorem 5.3.3: the map

idSAL ⊗A P : Cob•(SAL)→ K̃•AL, u⊗ll v1 ⊗ll · · · ⊗ll vn 7→ u⊗A pr (v1) ∧ · · · ∧ pr (vn)

will be shown to be a chain map over the identity, that is

(idSAL ⊗A P )β′ = d (idSAL ⊗A P ).

Both sides, applied to an element U = u⊗llW ∈ Cobn(SAL), where W ∈ Sp1A L⊗ll · · · ⊗ll S
pn
A L, vanish

under the projection pr if (p1, . . . , pn) 6= (1, . . . , 1). Set U = u ⊗ll X1 ⊗ll · · · ⊗ll Xn, where Xi ∈ L.
Consequently, one has

d (idSAL ⊗A P )(u⊗ll X1 ⊗ll · · · ⊗ll Xn) =

N∑
i=1

∇reiu⊗A ei ∧X1 ∧ · · · ∧Xn,

whereas with the same argument

(idSAL ⊗A P )β′(u⊗ll X1 ⊗ll · · · ⊗ll Xn) = (idSAL ⊗A pr )(∆SL(u) ∧X1 ∧ · · · ∧Xn),

by ∆SLXi = Xi ⊗ll 1 + 1 ⊗ll Xi and pr (1SAL) = pr (a) = 0. Comparing the two sides, one requires the
identity

(idSAL ⊗A pr )∆SLu =

N∑
i=1

∇reiu⊗A ei
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to hold, which indeed follows from (3.1.23), observing again that all basis elements of degrees higher than
one vanish under the projection. Hence (idSAL ⊗A P ) is a chain map between the two resolutions of A;
applying the functor A SAL− produces the map idA SAL(idSAL ⊗A P ) = P , and by standard homo-
logical algebra this yields an isomorphism on cohomology. The property P Alt = id∧•AL shows that this
isomorphism is induced by Alt as well. Finally, it is easy to see that P is a morphism of complexes, that is,
annihilates elements of the form

1⊗ll v1 ⊗ll · · · ⊗ll vn +

n−1∑
i=1

(−1)iv1 ⊗ll · · · ⊗ll∆SLvi ⊗ll · · · ⊗ll vn + (−1)n+1v1 ⊗ll · · · ⊗ll vn ⊗ll 1.

It is equally easy to see that βAlt = 0.
More generally, if L is flat over A (for example, if L is A-projective; in fact, flatness suffices for part (i)),

we continue as in [Lo1, Thm. 3.2.2]: there exists a filtered ordered set J as well as an inductive system of
free and finite dimensional A-modules Lj such that

L ' lim
−→
j∈J

Lj ,

cf. [Bou]. Since both HH (which is the derived functor Cotor here) as well as S commute with inductive
limits over a filtered ordered set, the flat case follows from the finite dimensional (free) case.

Part (ii): this part of the proof is a generalisation of a method in [Cr3] for the universal enveloping of a
Lie algebra.

Denote here by (BC•∂(V L), β∂ , B∂) Connes’ bicomplex associated to the cocyclic module V L\,∂ , cf.
§5.2.1, and by (BC•(V L), β, B) Connes’ bicomplex associated to the standard A-coring cocyclic module
V LA\ , cf. §1.2.5. Recall that Theorem 4.2.7 tells us that Lie-Rinehart homology is computed by (∧•AL, ∂).
Consider, therefore, the mixed complex

K : A
0 // ∧1

AL
bA,L

oo
0 //

bA,L

oo
0 // ∧2

AL
bA,L

oo
0 // . . .

bA,L

oo ,

where bA,L is the Lie-Rinehart boundary operator as in (5.5.4) with values in A∂ , seen as a right V L-module
via ∂. We will show that (K, 0, bA,L) and (BC•∂(V L), β∂ , B∂) are quasi-isomorphic mixed complexes, which
implies the claim. Similarly as in Theorem 5.2.5, it is easier to deduce the action of B∂ from the one of the
operator B (employing φ̄∂ from (5.2.1)) since it arises from a fairly simple cyclic operator.

Recall from Subsection 5.2 that V LA\ = {BnAV L}n≥0, that is, BnAV L := V L⊗
lln+1 in degree n: the

cyclic tensor product reduces tautologically to ⊗ll since source and target maps are equal. Generally, we
have B = Nσ−1(1− τ), where for V LA\ the operators N, σ−1, τ are given as the following left A-module
maps on BnAV L:

σ−1(u0 ⊗ll u1 ⊗ll · · · ⊗ll un) = ε(u0)u1 ⊗ll · · · ⊗ll un,
τ(u0 ⊗ll u1 ⊗ll · · · ⊗ll un) = (−1)n(u1 ⊗ll · · · ⊗ll un ⊗ll u0),

N = 1 + τ + . . .+ τn.

The map φ̄∂ from (5.2.1) reads here, degree-wise

φ̄∂ : V L⊗
lln+1 → V L⊗

lln, u0 ⊗ll · · · ⊗ll un 7→ (∆n−1
` S∂u0)(u1 ⊗ll · · · ⊗ll un), (5.5.6)

and B∂ φ̄∂ = φ̄∂B holds. On generators a ∈ A, X ∈ L with the antipode (4.2.16), one calculates

∆n−1
` S∂(aX) = −

n∑
i=1

1⊗
lli−1 ⊗ll aX

i
⊗ll 1⊗

lln−i + ∂(aX)⊗ll 1⊗
lln−1. (5.5.7)

The antisymmetrisation map

Alt : ∧nAL→ V L⊗
lln, X1 ∧ · · · ∧Xn 7→

1

n!

∑
σ∈P (n)

signσXσ(1) ⊗ll · · · ⊗ll Xσ(n) (5.5.8)

can now be seen to be a quasi-isomorphism of mixed complexes (K, 0, bA,L) → (BC•∂(V L), β∂ , B∂) as
follows (note that (5.5.8) is a well-defined map to the chosen tensor product): for the Hochschild boundaries
this was precisely shown in part (i) and it only remains to prove that

B∂ ◦Alt = Alt ◦ bA,L.
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Using the right inverse (5.1.4) of φ̄∂ , it is seen that

Alt(aX1 ∧ · · · ∧Xn) = φ̄∂
( 1

n!

∑
σ∈P (n)

signσ a⊗ll Xσ(1) ⊗ll · · · ⊗ll Xσ(n)

)
.

Hence

B∂
(
Alt(aX1 ∧ · · · ∧Xn)

)
= B∂(φ̄∂(

1

n!

∑
σ∈P (n)

signσ a⊗ll Xσ(1) ⊗ll · · · ⊗ll Xσ(n)))

= φ̄∂(B(
1

n!

∑
σ∈P (n)

signσ a⊗ll Xσ(1) ⊗ll · · · ⊗ll Xσ(n)))

= φ̄∂Nσ−1

( 1

n!

∑
σ∈P (n)

signσ a⊗ll Xσ(1) ⊗ll · · · ⊗ll Xσ(n)

− (−1)nXσ(1) ⊗ll · · · ⊗ll Xσ(n) ⊗ll a
)

= φ̄∂N(
1

n!

∑
σ∈P (n)

signσ aXσ(1) ⊗ll · · · ⊗ll Xσ(n))

= φ̄∂
( 1

(n− 1)!

∑
σ∈P (n)

signσ aXσ(1) ⊗ll · · · ⊗ll Xσ(n)

)
,

since L ⊂ ker ε and ε is a left A-module map. Theorem 5.5.2 now explains how ∂ equips A with a right V L-
module structure induced by the right (A,L)-module structure [a,X] := a∂X −X(a) (note that [1A, X] =
∂X 6= 0 in general). Using (5.5.6) and (5.5.7) gives

B∂(Alt(aX1 ∧ · · · ∧Xn)) =

= − 1

(n− 1)!

n∑
i=1

∑
σ∈P (n)

signσ aXσ(2) ⊗ll · · · ⊗ll Xσ(1)Xσ(i) ⊗ll · · · ⊗ll Xσ(n)

+
1

(n− 1)!

∑
σ∈P (n)

signσ
(
a∂Xσ(1) −Xσ(1)(a)

)
Xσ(2) ⊗ll · · · ⊗ll Xσ(n)

= Alt
( n∑
i=1

(−1)i+1[a,Xi]X1 ∧ · · · ∧ X̂i ∧ · · · ∧Xn

+
∑
i<j

(−1)i+ja[Xi, Xj ] ∧X1 ∧ · · · ∧ X̂i ∧ · · · ∧ X̂j ∧ · · · ∧Xn

)
= Alt ◦ bA,L(a⊗A X1 ∧ · · · ∧Xn).

This finishes the proof of the Theorem. 2

Since s` ≡ t` and S2 = id (hence σ = 1H for the grouplike element in this example), the first Hopf-
Hochschild cohomology group is formed precisely by the primitive elements of V L; by part (i) of the pre-
ceding Theorem, we have

imβ ⊕ ∧•AL = kerβ.

Hence with Proposition 4.2.1 the following statement makes sense.

5.5.8 Corollary The (left) primitive elements of the (left) bialgebroid given by the universal object V L of a
Lie-Rinehart algebra (A,L) are isomorphic to (A,L) as a Lie-Rinehart algebra, i.e.,

(A,PV L)
'−→ (A,L).

In a certain sense, this is the ‘easy half’ of a Cartier-Milnor-Moore type theorem for Lie-Rinehart alge-
bras; this essentially states that one has a left bialgebroid isomorphism V (PU) ' U , where U is a cocom-
mutative left bialgebroid (assumed to be filtered in a certain way and ‘cocomplete’) and where P, V are the
functors from Proposition 4.2.3. See [MoeMrč3] for the full theorem and details, [MiMo] for the original
version for Lie algebras (cf. also [Q1, App. B.4] for a different approach), and [Lo2] for an extension to a
vast choice of bialgebras of different type.



5.6. EXAMPLE: JET SPACES 103

5.6 Example: Jet Spaces
In this section we calculate the Hopf-cyclic cohomology for the jet spaces JL of a Lie-Rinehart algebra
(A,L): the outcome is in a certain sense dual to the result in the previous section. We therefore recall some
facts about Lie-Rinehart cohomology first.

5.6.1 Lie-Rinehart Cohomology Let (A,L) be a Lie-Rinehart algebra and M ∈ V L-Mod. Dually to
§5.5.1, define the Lie-Rinehart cohomology groups with values in M by

H•(L,M) := Ext•V L(A,M). (5.6.1)

IfL isA-projective,H•(L,M) is the homology of the complex HomV L(KA
• L,M) ' Hom(A,−)(∧•AL,M),

cf. (5.5.2), and the Lie-Rinehart coboundary is given by

dA,Lφ(X0 ∧ · · · ∧Xn) :=

:=

n∑
i=0

(−1)iεVL
(
Xiφ(X0, . . . , X̂i, . . . , Xn)

)
+
∑
i<j

(−1)i+jφ([Xi, Xj ], X0, . . . , X̂i, . . . , X̂j , . . . , Xn),

(5.6.2)

where εVL : V L→ A denotes in this section the left counit of V L, induced by the anchor, as before.

5.6.2 Theorem Let (A,L) be a Lie-Rinehart algebra for which L is finitely generated projective over A of
constant rank. There are canonical isomorphisms

HH•(JL) ' H•(L,A),

HC•(JL) '
⊕
i≥0

H•+2i(L,A),

where the left hand side refers to the Hopf-cyclic cohomology groups.

PROOF: Denote L∗ := HomA(L,A). By the given conditions we have
∧•
A L
∗ ' HomA(

∧•
AL,A). To

compute the Hochschild cohomology, instead of the cobar resolution one may use the dual of the Koszul-
Rinehart resolution (5.5.2), given by the cochain complex (cf. [NeTs])

0 −→ A
s`JL−→ JL

∇−→ JL⊗A ∧1
AL
∗ ∇−→ JL⊗A ∧2

AL
∗ ∇−→ . . .

where∇ is the continuation of the Grothendieck connection (4.3.2):

∇(φ⊗ ω)(X1, . . . , Xn+1) =

=

n+1∑
i=1

(−1)i−1∇`Xiφ⊗ ω(X1, . . . , X̂i, . . . , Xn+1)

+
∑
i<j

(−1)i+jφ⊗ ω([Xi, Xj ], X1 . . . , X̂i, . . . , X̂j , . . . , Xn+1),

for φ ∈ JL, ω ∈ ∧nAL∗ and X1, . . . , Xn+1 ∈ L. It follows from (4.3.4) that this is indeed a resolution of
A in the category of free (hence injective) left JL-comodules (observe that s`JL : A → JL is a morphism of
JL-comodules). To compute the Cotor-groups, consider invariants as in (2.4.1): one has the isomorphism

∧•AL∗
'−→ A JL

(
JL⊗A ∧•AL∗

)
,

given by X1 ∧ · · · ∧ Xn 7→ 1A ⊗ 1JL ⊗ X1 ∧ · · · ∧ Xn. Since the unit 1JL ∈ JL is given by the left
counit εVL : V L→ A, the induced differential is exactly the Lie-Rinehart coboundary dA,L. This proves the
isomorphism of the Hochschild cohomology groups.

The second isomorphism on cyclic cohomology now follows from Theorem 5.4.4. 2

5.6.3 Remark Observe that our computations remain consistent: to be defined at all, both the Hopf algebroid
structure for V L and Lie-Rinehart homology with values in A require an additional piece of information: the
flat right connection ∂. In contrast to that, the Hopf algebroid structure on JL (see Remark 4.3.3) as well as
Lie-Rinehart cohomology already make sense without such a datum.
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5.7 Example: Convolution Algebras
Let G ⇒ G0 be an étale groupoid over a compact base manifold G0 and consider the Hopf algebroid given
by its convolution algebra C∞c (G) over C∞(G0), see Section 4.4.

Recall from our general considerations that the spaces of interest for cohomology were

C∞c (G)\,∂ := {CnC∞(G0)C∞c (G)}n≥0, (5.7.1)

where
CnC∞(G0)C∞c (G) = C∞c (G)⊗llC∞(G0) · · · ⊗llC∞(G0) C∞c (G) ' C∞c (Gn), (5.7.2)

n times in degree n, where Gn = Gt×tG0
· · · t×tG0

G.

5.7.1 Theorem For any étale groupoid G⇒ G0 over a compact manifold G0, the periodic cyclic cohomol-
ogy of C∞c (G)\,∂ is trivial, i.e.,

HP even
∂ (C∞c (G)) = C∞c (G0) and HP odd

∂ (C∞c (G)) = 0.

PROOF: The (restriction) map T : C∞c (G)→ C∞(G0), u 7→ u(1(·)) fulfills

(∗(s`T ⊗ id)∆`u)(g) =

{
u(g) if g = 1x for some x ∈ G0,
0 else,

hence T is a left Haar system for C∞c (G). The statement follows now directly from Proposition 5.2.11 and
the SBI-sequence. 2

The triviality of this cohomology (and in general the cohomology for Hopf algebroids whose underlying
bialgebroids carry a left Haar system) is one of the motivations to introduce a certain dual theory. This will
be the subject of the next chapter.



Chapter 6

Dual Hopf-Cyclic Homology

Hopf-cyclic cohomology gives trivial results in some cases: as already seen in Theorem 5.7.1, in case of the
existence of a (left) Haar measure, the Hopf-cyclic complex computing cohomology is shown to be acyclic
[KhR3]. Clearly, taking any Hom-duals also does not furnish any new kind of information: hence the need
of a different, dual cyclic homology in the sense of cyclic duality [Co2].

6.1 The Cyclic Dual of Hopf-cyclic Homology
Recall from Section 3.1 that for a left bialgebroid U there exist two natural Hom-duals, corresponding to the
bimodule structure �U� . Both of them are (under suitable conditions) right bialgebroids [KSz]. Hence it
appears natural to start with a right bialgebroid to investigate the cyclic dual. Naively, a simplicial complex
with faces dual to (5.2.2) should contain product and counit rather than coproduct and unit.

Let V be a right bialgebroid over the base algebra B, with structure maps as before. To make the ring
multiplication well-defined, to start with, one chooses a tensor product

V B⊗V := VJ ⊗ �V = V ⊗k V/spank{vsr(b)⊗ v′ − v ⊗ sr(b)v′, v, v′ ∈ V, b ∈ B}; (6.1.1)

(taking e.g. the tensor product V� ⊗ IV with respect to the target maps and the monoid structure of V op

leads to a left bialgebroid again). At the second step, however, one runs into the problem that a bialgebroid
is a monoid and comonoid in different monoidal categories: the algebra B carries both left and right V -
comodule structures, but has a single right V -module structure only. As follows from Subsection 5.3, these
two comodule structures are those that appear in the coface operators δ0 and δn+1 of (5.2.2), in form of the
trivial coaction. For its dual version, already when defining Hochschild homology (with values in the base
algebra) by means of the simplicial pieces, one therefore realises the necessity of a ‘two-sided’ bialgebroid
equipped with respectively both left and right actions on the base algebra and its opposite; that is, one needs
the full Hopf algebroid structure.

Consequently, let H be a Hopf algebroid with structure maps as before and set

H\
∂ := {CBn H}n≥0, (6.1.2)

where CBn H := HB⊗n in degree n and CB0 H := B in degree zero. To give H\
∂ the structure of a simplicial

space, define face and degeneracy operators by

di(h
1
B⊗ · · · B⊗ hn) =

 sr(∂h1)h2
B⊗ · · · B⊗ hn

h1
B⊗ · · · B⊗ hihi+1

B⊗ · · · B⊗ hn
h1

B⊗ · · · B⊗ hn−1t`(εhn)

if i = 0,
if 1 ≤ i ≤ n− 1,
if i = n,

si(h
1
B⊗ · · · B⊗ hn) =

 1B⊗ h1
B⊗ · · · B⊗ hn

h1
B⊗ · · · B⊗ hiB⊗ 1B⊗ hi+1

B⊗ · · · B⊗ hn
h1

B⊗ · · · B⊗ hnB⊗ 1

if i = 0,
if 1 ≤ i ≤ n− 1,
if i = n.

(6.1.3)

Elements of degree zero (i.e. of B) are mapped to zero, d0(b) = 0 for all b ∈ B. We write the degeneracies
in this detail to stress that the ‘extra’ degeneracy s−1 := tn+1sn used for cyclic homology (cf. (1.1.7)) is
quite different from the classical one for k-algebras. To extend the simplicial structure to the structure of a
cyclic module on H\

∂ , we use the assumption that the antipode is invertible and set

tn(h1
B⊗ · · · B⊗ hn) = S−1(h1

(2) · · ·h
n−1
(2) h

n)B⊗ h1
(1)B⊗ h

2
(1)B⊗ · · · B⊗ h

n−1
(1) (6.1.4)

105
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as a cyclic operator on CBn H for each degree n ≥ 2, and t1(h) = S−1h in degree one. One easily verifies
that this operator is well-defined. Similarly as for Hopf-cyclic cohomology, the fact that S−1 is a morphism
�HJ → IH� of twisted bimodules transfers to the cyclic operator: tn is a map �(CBn H)J → I(CBn H)�

of (twisted) (B,B)-bimodules as well.
As in §5.2.8, one could also introduce grouplike elements in the dual theory, but we will avoid this here.
The main result of this section is:

6.1.1 Theorem LetH be a Hopf algebroid with invertible antipode. The para-cyclic moduleH\
∂ is the cyclic

dual of the para-cocyclic module H\,∂ from Theorem 5.2.5 (and vice versa).

PROOF: We will prove that the prescriptions in §1.1.17 turn the set of operators (δ•, σ•, τ•) from (5.2.2),
(5.2.3) and (5.2.4) into the set (d•, s•, t•) from (6.1.3) and (6.1.4). The subtlety in this proof lies in the fact
that this cannot simply done by replacing cofaces with degeneracies, codegeneracies with faces and so on,
since H\,∂ = {CnAH}n≥0 from cohomology and H\

∂ := {CBn H}n≥0 from homology do not have the same
underlying bimodule structures: the respective tensor products are different. Hence one first needs to find a
k-module isomorphism CnAH → CBn H , which amounts to a generalisation to higher degrees of the Hopf-
Galois map from [Schau2, Thm. 3.5] (see also (2.2.1)) and its inverse from [BSz2] for Hopf algebroids, cf.
(2.2.3) and (2.6.15).

6.1.2 Lemma For each n ≥ 2, the k-modules CnAH and CBn H are isomorphic as k-modules by means of
the (higher) Hopf-Galois map

ϕn : HB⊗ · · · B⊗H
'→ H ⊗A · · · ⊗A H (6.1.5)

h1
B⊗ · · · B⊗ hn 7→ h1

(1) ⊗A h
1
(2)h

2
(1) ⊗A · · · ⊗A h

1
(n)h

2
(n−1) · · ·h

n−1
(2) h

n

= (∆n−1
` h1)(∆n−2

` h2) · · · (∆`h
n−1)(1⊗A · · · ⊗A 1⊗A hn),

with inverse given by

ψn : H ⊗A · · · ⊗A H
'→ HB⊗ · · · B⊗H (6.1.6)

h1 ⊗A · · · ⊗A hn 7→ h
(1)
1 B⊗ S(h

(2)
1 )h

(1)
2 B⊗ S(h

(2)
2 )h

(1)
3 B⊗ · · · B⊗ S(h

(2)
n−1)hn,

= h+
1 B⊗h−1 h

+
2 B⊗ · · · B⊗h−n−2h

+
n−1B⊗h

−
n−1hn,

using the notation h+
B⊗h− := h(1)

B⊗ Sh(2), see (2.2.3) and (2.2.13). Note that the first map employs the
left coproduct only, whereas the inverse uses the right one plus the antipode. In case n = 1, set ϕ1 = ψ1 =
idH ; in case n = 0, one combines the isomorphism ∂s` : Aop → B with the canonical isomorphism of
k-modules A→ Aop.

PROOF: This is proven by induction on n ≥ 2. For n = 2, it can be directly checked. Hence assume that
the statement is already true for n, i.e., ϕn ψn = idCnAH and ψn ϕn = idCBn H . As for n + 1, note that one
can decompose

ϕn+1 = (id⊗ ϕn) (ϕ2 ⊗ id⊗n−1) and ψn+1 = (ψ2 ⊗ id⊗n−1) (id⊗ ψn)

and then one verifies directly that ϕn+1 and ψn+1 are mutually inverse. 2

The cyclic dual of a cocyclic operator is given by its inverse, see §1.1.17. To continue the proof, we hence
need the inverse of the cocyclic operator (5.2.4) from cohomology:

6.1.3 Lemma Let σ ∈ GH be a grouplike element. If the inverse of the antipode S exists, the cocyclic
operator given by the map (5.2.4) is an automorphism of the k-modules CnAH for n ≥ 1, with inverse

τ−1
n (h1 ⊗A · · · ⊗A hn) = (∆n−1

` S−1(hnσ−1))(1⊗A h1 ⊗A · · · ⊗A hn−1) (6.1.7)

for all n ≥ 1 as an (A,A)-bimodule morphism �(CnAH)J → I(CnAH)� . Likewise, the operator (6.1.4) is
an automorphism of the k-modules CBn H for all n ≥ 1 with inverse

t−1
n (h1B⊗ · · · B⊗hn) = h

(1)
2 B⊗ · · · B⊗h(1)

n B⊗S(h1h
(2)
2 · · ·h(2)

n ) (6.1.8)

for all n ≥ 1 as (B,B)-bimodule morphism I(CBn H)� → �(CBn H)J .
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PROOF: Clearly, this can be verified directly; however, we pursue a strategy with more structural insight,
that is, we express the operator tn+1 in terms of tn and prove the lemma by complete induction. For n = 1,
(6.1.7) reads τ−1

1 = S−1, hence the induction start. Now assume that the assertion already holds for degree
n and introduce the following bijective k-module morphism and its inverse,

φσ : H ⊗A H → H ⊗A H, hA⊗ h̃ 7→ ∆`h(σ−1h̃⊗ 1) = h(1)σ
−1h̃⊗A h(2),

φ−1
σ : H ⊗A H → HA⊗H, h⊗A h̃ 7→ h̃(2)

A⊗σS−1(h̃(1))h.

Observe that the tensor product A⊗ is the left bialgebroid version of (6.1.1), i.e., HA⊗H = HJ ⊗A �H .
Then φσ , φ−1

σ are morphisms with respect to the canonical left A-module structures �(HA⊗H) →
�(H ⊗A H) . One finds now that

τn+1 = (id⊗n−1 ⊗ φσ) (τn ⊗ id),

τ−1
n+1 = (τ−1

n ⊗ id) (id⊗n−1 ⊗ φ−1
σ ).

Note that τn⊗ id is only well-defined as a mapH⊗A · · ·⊗AH⊗AH → H⊗A · · ·⊗AHA⊗H , which is why
the map φ is required. It can be directly seen that τn+1 and τ−1

n+1 are mutually inverse; hence the induction is
completed. As for the second part, introduce the maps

φ̃ : HB⊗H → H ⊗B H, hB⊗ h′ 7→ ∆coop
` h(h′ ⊗ 1) = h(2)h

′ ⊗B h(1),

φ̃−1 : H ⊗B H → HB⊗H, h⊗B h′ 7→ h′
(1)

B⊗σS(h′(2))h,

which again can be directly checked to be mutually inverse. Here ⊗B is the tensor product given as

H ⊗B H := H ⊗k H/spank{trbh⊗k h′ − h⊗k sr(µν−1b)h′, b ∈ B},

where µ, ν are given in (2.6.5) and µν−1 = id in case S2 = id. Then one has

tn+1 = (tn ⊗ id) (id⊗n−1 ⊗ φ̃),

t−1
n+1 = (id⊗n−1 ⊗ φ̃−1) (t−1

n ⊗ id),

continuing to argue in the same fashion as in the first part of the proof. 2

One can now immediately write down

τ−1
n ϕn(h1

B⊗ · · · B⊗ hn) =

= τ−1
n (h1

(1) ⊗A h
1
(2)h

2
(1) ⊗A h

1
(3)h

2
(2)h

3
(1) ⊗A · · · ⊗A h

1
(n)h

2
(n−1) · · ·h

n−1
(2) h

n)

= S−1(h1(n)
(n) · · ·hn−1(n)

(2)h
n(n))⊗A S−1(h1(n−1)

(n) · · ·hn−1(n−1)
(2) hn(n−1))h1

(1) ⊗A · · ·

· · · ⊗A S−1(h1(1)
(n) · · ·hn−1(1)

(2)h
n(1))h1

(n−1)h
2
(n−2) · · ·h

n−1
(1) ,

and by higher twisted coassociativity one obtains

ϕntn(h1
B⊗ · · · B⊗ hn) = ϕn(S−1(h1

(2) · · ·h
n−1
(2) h

n)B⊗ h1
(1)B⊗ h

2
(1)B⊗ · · · B⊗ h

n−1
(1) )

= S−1(h1(n)
(n) · · ·hn−1(n)

(2)h
n(n))⊗A S−1(h1(n−1)

(n) · · ·hn−1(n−1)
(2) hn(n−1))h1

(1) ⊗A · · ·

· · · ⊗A S−1(h1(1)
(n) · · ·hn−1(1)

(2)h
n(1))h1

(n−1)h
2
(n−2) · · ·h

n−1
(1) .
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Hence ϕn tn = τ−1
n ϕn or tn = ψn τ

−1
n ϕn. In the same fashion,

σn−1τnϕn(h1
B⊗ · · · B⊗ hn)

= σn−1(S(h1(n)
(1) )h1

(2)h
2
(1) ⊗A · · · ⊗A S(h1(2)

(1))h
1
(n)h

2
(n−1) · · ·h

n−1
(2) h

n ⊗A S(h1(1)
(1)))

= S(h1(n−1)
(1) )h1

(2)h
2
(1) ⊗A · · · ⊗A S(h1(1)

(1))h
1
(n)h

2
(n−1) · · ·h

n−1
(2) h

n

= sr∂(h1(n−1)
(1) )h2

(1) ⊗A S(h1(n−2)
)h1(n−1)

(2) h2
(2)h

3
(1) ⊗A · · ·

· · · ⊗A S(h1(1)
)h1(n−1)

(n−1)h
2
(n−1) · · ·h

n−1
(2) h

n

= h2
(1) ⊗A S(h1(n−2)

sr∂(h1(n−1)
(1) ))h1(n−1)

(2) h2
(2)h

3
(1) ⊗A · · ·

· · · ⊗A S(h1(1)
)h1(n−1)

(n−1)h
2
(n−1) · · ·h

n−1
(2) h

n

= h2
(1) ⊗A S(h1(n−2)

(1) )h1
(2)h

2
(2)h

3
(1) ⊗A · · · ⊗A S(h1(1)

(1))h
1
(n−1)h

2
(n−1) · · ·h

n−1
(2) h

n

...

= h2
(1) ⊗A h

2
(2)h

3
(1) ⊗A · · · ⊗A s

r∂(h1)h2
(n−1) · · ·h

n−1
(2) h

n,

where the dots denote another n− 2 repetitions of the same procedure of the lines before: one observes that
the third compared to the sixth line from bottom has analogous left and right coproduct Sweedler components
of h1 with respectively one degree less and moved one factor to the right. On the other hand,

ϕn−1d0(h1
B⊗ · · · B⊗ hn) = h2

(1) ⊗A h
2
(2)h

3
(1) ⊗A · · · ⊗A s

r∂(h1)h2
(n−1) · · ·h

n−1
(2) h

n,

hence d0 = ψn−1 σn−1τnϕn as claimed. The proof of the remaining identities is left to the reader. 2

6.1.4 Corollary H\
∂ is a cyclic module if H\,∂ is cocyclic, i.e. if and only if S2 = id.

6.1.5 Definition In case S2 = id, denote the associated Tsygan’s cyclic bicomplex of the cyclic module H\
∂

by CC∂•,•(H), and the associated Connes’ bicomplex by (BC∂•,•(H), b, B), analogously as in §5.2.1. Define
HH∂

• (H), HC∂• (H) and HP ∂• (H) to be the associated Hochschild and cyclic homology groups. We will
refer to these as dual Hopf-Hochschild and dual Hopf-cyclic homology, respectively.

6.1.1 The Space of Invariants
In this subsection we make a few comments on a notion dual to coinvariants from Subsection 5.1, and its
significance for dual Hopf-cyclic homology.

6.1.6 Invariants Let H be a Hopf algebroid with structure maps as before, and denote the underlying right
bialgebroid over B by Hr.

Furthermore, let M ∈ Comod-Hr be a right Hr-comodule (hence in particular a (B,B)-bimodule)
with coaction M∆ : M →M ⊗B IHr , m 7→ m(0)⊗Bm(1). We do not treat the details of right bialgebroid
comodules here: these can be formulated mutatis mutandis as in Sections 2.3 and 2.4 for left bialgebroid
comodules (see e.g. [B3]). Analogously to (2.4.1), for M ∈ Comod-Hr define the right bialgebroid (right)
invariants of M by

Mε := M HrB = {m ∈M | M∆m = m⊗B 1} ⊂M.

ConsideringHr as a rightHr-comodule over itself by the right coproduct ∆r, we can analogously to (2.3.11)
equip the tensor product MB⊗ �Hr with the following right Hr-comodule structure

M⊗H∆ : MB⊗ �Hr →M ⊗B �Hr
J ⊗B IHr , mB⊗h 7→ m(0)

B⊗h(1) ⊗B m(1)h(2).

One then finds, dually to Corollary 5.1.3:

6.1.7 Lemma For any M ∈ Comod-Hr, there is a canonical isomorphism

M
'−→ (MB⊗ �Hr )ε

of k-modules, given by
m 7−→ m(0)

B⊗Sm(1).
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PROOF: We have

M⊗H∆(m(0)
B⊗Sm(1)) = m(0)

B⊗Sm(2)
(2) ⊗

B m(1)Sm
(2)
(1)

= m(0)
B⊗Sm(1)

(2) ⊗
B s`εm

(1)
(1)

= m(0)
B⊗Sm(1) ⊗B 1H ,

where (2.1.8) and (2.6.10) have been used. Hence m(0)
B⊗Sm(1) ∈ (MB⊗ �Hr )ε, indeed. It is easy to see

that this is a bijective map, with inverse

(MB⊗ �Hr )ε →M, mB⊗h 7→ mν(εh).

2

6.1.8 Relation to Dual Hopf-Cyclic Homology Let n ≥ 0 and compare the chain spaces CBn H of the Hopf-
cyclic module (6.1.2) with the chain spacesBBnH = CBn+1H⊗BeB associated to the canonical cyclic module
of H as B-ring (see §1.2.4). Since CBn+1H ∈ Comod-Hr, the preceding lemma yields the isomorphism
CBn H ' (CBn+1H)ε = CBn+1H HrB via the embedding

CBn H → CBn+1H, h1B⊗ · · · B⊗hn 7→ h
(1)
1 B⊗ · · · B⊗h(1)

n ⊗B S
(
h

(2)
1 · · ·h(2)

n ).

Combining this embedding with the canonical projection

CBn+1H = CBn HB⊗H → CBn H ⊗B
e
H ' BBnH

yields a map
Ψε : CBn H → BBnH.

Related to this map, one would expect a commutative diagram that is in some sense dual to the diagram (5.2.9)
in cohomology, where the vertical arrows should rather be injections than surjections. Such a statement at
least holds for Hopf algebras [KhR1, KhR2]. Unfortunately, for Hopf algebroids this does not appear to be
that simple, and only works in special cases (see Section 6.5 and Subsection 6.6.1). First of all, the precise
nature of the map Ψε is in general not clear to us. A related problem appears to be that H usually cannot
be given the structure of a coring over Be ' B ⊗k A, which is possibly required for the existence of a
well-defined injection CB• H ' CB•+1H HrB ↪→ BB• H ' CB•+1H ⊗Be B that would do the job.

Apparently, Hopf-cyclic cohomology and dual Hopf-cyclic homology are ‘not dual enough’ for such
a symmetric picture. Possible ways to investigate include Hopf algebroid comodules ([B3, Def. 4.6], cf.
Remark 3.3.7) or, as was suggested to us by G. Böhm, (co)tensor products over so-called bicoalgebroids
[BrzMi].

6.2 Dual Hopf-Hochschild Homology as a Derived Functor
In the next theorem we are going to show that the dual Hopf-Hochschild homology given by the complex(
CB• H, b =

∑n
j=0(−1)jdj

)
from (6.1.3) can be seen as a derived functor of the tensor product functor.

6.2.1 Coefficients As in the cohomological case, one may consider coefficients in the Hopf-Hochschild com-
plex. Let M be a right H-module with action (m,h) 7→ mh and define CM• H := {M ⊗AHB⊗n}n≥0. Face
and degeneracy operators are now given by

di(mB⊗h1
B⊗ · · · B⊗ hn) =

mh
1
B⊗h2

B⊗ · · · B⊗ hn
mB⊗h1

B⊗ · · · B⊗ hihi+1
B⊗ · · · B⊗ hn

mB⊗h1
B⊗ · · · B⊗ hn−1t`(εhn)

if i=0
if 1≤ i≤n− 1
if i=n,

si(mB⊗h1
B⊗ · · · B⊗ hn) =

mB⊗ 1HB⊗ h1
B⊗ · · · B⊗ hn

mB⊗ · · · B⊗ hiB⊗ 1B⊗ hi+1
B⊗ · · · B⊗ hn

mB⊗ h1
B⊗ · · · B⊗ hnB⊗ 1

if i=0
if 1≤ i≤n− 1
if i=n.

(6.2.1)

Elements of degree zero (i.e. of M ) are mapped to zero, d0(m) = 0 for all m ∈ M . The corresponding
(dual Hopf-)Hochschild homology computed by

(
CM• H, b =

∑n
j=0(−1)jdj

)
will be denoted H•(H,M);

in particular, if M = B∂ , one has, with the notation of Definition 6.1.5, H•(H,B∂) = HH∂
• (H).
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6.2.2 The Bar Complex As in the cohomology case, we will calculate the homology groups of the complex
associated to (6.2.1) by finding an appropriate resolution, dual to the cobar complex in Section 5.3. Such a
resolution is provided by an analogue of the classical bar complex. This is again in some sense the complex
originating from the so-called path space PM• := {Mn+1}n≥0 associated to any simplicial object M•;
hence PMn = Mn+1 in degree n, and face and degeneracy operators of the underlying simplicial object are
shifted correspondingly. For the simplicial space CH• H using M := H in (6.2.1), the simplicial pieces of its
path space

Bar•H := {HB⊗HB⊗n}n≥0

therefore read

d̃i(h
0
B⊗ · · · B⊗ hn) =

{
h0

B⊗ · · · B⊗ hihi+1
B⊗ · · · B⊗ hn

h0
B⊗ · · · B⊗ hn−1t`(εhn)

if 0 ≤ i ≤ n− 1
if i = n,

s̃i(h
0
B⊗ · · · B⊗ hn) =

{
h0

B⊗ · · · B⊗ hiB⊗ 1B⊗ hi+1
B⊗ · · · B⊗ hn

h0
B⊗ · · · B⊗ hnB⊗ 1

if 0 ≤ i ≤ n− 1
if i = n.

Defining b′ =
∑n
i=0(−1)id̃i, it is easily checked that b′ b′ = 0, and (Bar•H, b

′) is called the bar complex of
H . A simple characterisation of the dual Hopf-Hochschild homology is then the following.

6.2.3 Theorem Let H be a Hopf algebroid with structure maps as before, and let M be a right H-module.
If H is projective as a left B-module �H , there is an isomorphism

H•(H,M)
'−→ TorH• (M,Aε).

In particular,
HH∂

• (H)
'−→ TorH• (B∂ , Aε).

Here B∂ and Aε carry the canonical right and left H-module structures, originating from the right and left
counit, respectively.

PROOF: The proof works in a conceptually analogous manner to the classical statement for Hochschild
homology of algebras. Recall (cf. e.g. [M, p. 146]) that for a projective leftB-module P the spaceHJ ⊗B P
is projective as a left H-module, where the multiplication is simply h′(hB⊗p) := h′hB⊗p. Evidently,
BarnH is H-projective if H is B-projective (with respect to the module structure b �h := srb h for b ∈
B, h ∈ H). Now ε : H → A defines an augmentation of the bar complex and we need to show that
Aε

ε←− Bar•H is a projective resolution ofAε in the category of (left)H-modules. The map b′ : BarnH →
Barn−1H in degree n > 0 is a morphisms of left H-modules if the H-module structure mentioned above is
used; as for degree zero, this property of the map ε : Bar0H → Aε follows from (2.1.4). Then introduce the
‘extra degeneracy’

sn+1 : BarnH → Barn+1 H, h0
B⊗ · · · B⊗hn 7→ 1HB⊗h0

B⊗ · · · B⊗hn

for n ≥ 0. It is not particularly problematic to realise that sn−1 b
′ + b′ sn = id for n > 0; furthermore,

set s−1 := t` = sr∂ν to have ε s−1 = idA and sn−1 b
′ + b′ sn = id for n ≥ 0. Hence, s is a contracting

homotopy and (BarnH, b
′) is acyclic. In particular, the latter yields a resolution of Aε by projective left

H-modules and can therefore be used to compute the groups TorH• (M,Aε) for a right H-module M . Note
that in case M = B the functor (−)∂ := B∂ ⊗H − of coinvariants reappears here. For each n ≥ 0 one then
obtains an isomorphism

ψ : M ⊗H BarnH
'−→ CMn H, m⊗H h0

B⊗ · · · B⊗hn 7−→ mB⊗sr∂(h0)h1
B⊗ · · · B⊗hn,

and we are left to show that
ψ (idB ⊗ b′) = b ψ,

i.e. that (idB ⊗ b′) becomes the Hochschild differential b formed by the simplicial pieces from (6.2.1) under
the isomorphism ψ. We write this down only for the first summand, the rest being clear. One has

ψ(idM ⊗ b′)(m⊗H h0
B⊗ · · · B⊗hn) = m∂(h0h1)B⊗h2

B⊗ · · · B⊗hn + . . .

= b f ′(m⊗H h0
B⊗ · · · B⊗hn),

using the properties of a right counit. 2

6.2.4 Remark Hence the dual Hopf-Hochschild homology groups are the left derived functors of the functor
(5.1.1) of coinvariants. In the context of Hopf algebras in [KhR1] these are baptised Hopf algebra homology
groups.
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6.3 Dual Hopf-Cyclic Homology of Cocommutative Hopf Algebroids

The aim of the following consideration is to generally calculate the dual Hopf-cyclic homology of a cocom-
mutative Hopf algebroid, as a generalisation to [KhR1, Thm. 4.1], where this is done for Hopf algebras.

Clearly, cocommutativity only makes sense for a special kind of A-corings: namely those for which both
left and right A-module structures coincide, and as a consequence A needs to be commutative. Observe that
in case of a Hopf algebroid over commutativeA with, say, cocommutative right coproduct, the left coproduct
is automatically cocommutative as well, as follows from (2.6.10). In particular, A = B and both s` = t` as
well as sr = tr.

6.3.1 Proposition Let H be a cocommutative Hopf algebroid over commutative base algebra A with invert-
ible antipode S. Then Bar•H is a para-cyclic H-module with cyclic operator

t̃n : BarnH → BarnH,

h0B⊗ · · · B⊗ hn 7→

h0h1
(2) · · ·hn(2)

B⊗ S−1(h1
(1)
(2) · · ·hn−1

(1)
(2)hn

(1))B⊗ h1
(1)
(1)B⊗ · · · B⊗ hn−1

(1)
(1),

and is cyclic if and only if S−2 = id. In particular,

t̃n+1
n (h0B⊗ · · · B⊗ hn) = h0B⊗ S−2h1B⊗ · · · B⊗ S−2hn.

PROOF: We only prove the cyclicity condition t̃n+1
n = id and leave the remaining identities defining a

cyclic module to the reader. Since otherwise the Sweedler notation in this proof may be ambiguous, we
indicate the order in which the respective coproducts are taken by inserting, at times, little gaps. By higher
twisted coassociativity and the various antipode properties in (2.6.4) and (2.6.11), one finds

t̃2n(h0B⊗ · · · B⊗ hn) =

= t̃n
(
h0h1

(2) · · ·hn(2)
B⊗ S−1(h1

(1)
(2) · · ·hn−1

(1)
(2)hn

(1))B⊗ h1
(1)
(1)B⊗ · · · B⊗ hn−1

(1)
(1)

)
= h0h1

(4) · · ·hn−1
(4)hn

(3)S−1(h1
(2)

(2) · · ·hn−1
(2)

(2)hn
(1)
(1))h1

(2)
(1) · · ·hn−1

(2)
(1)

B⊗ S−1
(
S−1(hn

(1)
(2))S

−1(h1
(2)

(3) · · ·hn−1
(2)

(3))h1
(1)

(2) · · ·hn−2
(1)

(2)hn−1
(1)
)

B⊗ S−1(h1
(3) · · ·hn−1

(3)hn
(2))B⊗ h1

(1)
(1)B⊗ · · · B⊗ hn−2

(1)
(1)

= h0h1
(3) · · ·hn−1

(3)hn
(3)S−1(hn

(1)
(1))

B⊗ S−1
(
S−1(hn

(1)
(2))S

−1(h1
(1)
(3) · · ·hn−2

(1)
(3)hn−1

(1)
(2))h1

(1)
(2) · · ·hn−2

(1)
(2)hn−1

(1)
(1)

)
B⊗ S−1(h1

(2) · · ·hn−1
(2)hn

(2))B⊗ h1
(1)
(1)B⊗ · · · B⊗ hn−2

(1)
(1)

= h0h1
(3) · · ·hn−1

(3)t`εhn
(1)
(2)B⊗ s

r∂(h1
(1)
(2) · · ·hn−2

(1)
(2)hn−1

(1))S−2(hn
(1)
(1))

B⊗ S−1(h1
(2) · · ·hn−1

(2)hn
(2))B⊗ h1

(1)
(1)B⊗ · · · B⊗ hn−2

(1)
(1)

= h0h1
(2) · · ·hn−1

(2)
B⊗ S−2(hn

(1))

B⊗ S−1(h1
(1)
(2) · · ·hn−2

(1)
(2)hn−1

(2)hn
(2))B⊗ h1

(1)
(1)B⊗ · · · B⊗ hn−2

(1)
(1),

where to obtain e.g. the second line the identity

(∆` ⊗ id⊗5)(∆r ⊗ id⊗4)(id⊗2 ⊗∆r ⊗ id)(id⊗∆` ⊗ id)(∆` ⊗ id)∆r =

= (∆` ⊗ id⊗5)(id⊗∆2
` ⊗ id⊗2)∆3

r

was used. By repeating the above computation another n− 2 times, one obtains

t̃nn(h0B⊗ · · · B⊗ hn) =

= h0h1
(2)

B⊗ S−2(h2
(1))B⊗ · · · B⊗ S−2(hn

(1))B⊗ S−1(h1
(1)h2

(2) · · ·hn(2)).
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To end the proof we can now calculate

t̃n+1
n (h0B⊗ · · · B⊗ hn) =

= h0h1
(2)S−2(h2

(2)
(2) · · ·hn

(2)
(2))S

−1(h2
(3)
(2) · · ·hn

(3)
(2))S

−1(h1
(1)
(1))

B⊗ S−1
(
S−2(h2

(1)
(2) · · ·hn

(1)
(2))S

−1(h2(3) · · ·hn(3))S
−1(h1

(1)
(2))
)

B⊗ S−2(h2(1))B⊗ · · · B⊗ S−2(hn(1))

= h0h1
(2)S−1(h1

(1)
(1)t

`εS−2(h2
(2)
(2) · · ·hn

(2)
(2)))

B⊗ S−2(h1
(1)
(2)h2(3) · · ·hn(3))S

−3(h2
(1)
(2) · · ·hn

(1)
(2))B⊗ S

−2(h2(1))B⊗ · · · B⊗ S−2(hn(1))

= h0B⊗ t`ε(h1(2)S
−2(h2

(2)
(2) · · ·hn

(2)
(2)))S

−2(h1(1)h2(3) · · ·hn(3))S
−3(h2

(1)
(2) · · ·hn

(1)
(2))

B⊗ S−2(h2(1))B⊗ · · · B⊗ S−2(hn(1))

= h0B⊗ S−2(h1h2
(2)
(2) · · ·hn

(2)
(2))S

−3(h2
(1)
(2) · · ·hn

(1)
(2))

B⊗ S−2(h2(1))B⊗ · · · B⊗ S−2(hn(1))

= h0B⊗ S−2(h1)B⊗ t`εS−2(h2(2) · · ·hn(2))S
−2(h2(1))

B⊗ S−2(h3(1))B⊗ · · · B⊗ S−2(hn(1))

= h0B⊗ S−2(h1)B⊗ · · · B⊗ S−2(hn).

2

6.3.2 Lemma The projection

π∂ : Bar•H → CB• H, h0B⊗ · · · B⊗ hn 7→ sr∂h0h1B⊗ · · · B⊗ hn

is a morphism of simplicial modules. If H is a cocommutative Hopf algebroid with A = B and S−2 = id,
the map π∂ is even a morphism of cyclic modules.

PROOF: Straightforward computation. 2

The following theorem generalises [KhR1, Thm. 4.1] from cocommutative Hopf algebras (which in turn
for H = kG generalised Karoubi’s theorem [Karou]) to cocommutative Hopf algebroids.

6.3.3 Theorem If H is a cocommutative Hopf algebroid over commutative base A, one has

HC∂• (H) =
⊕
i≥0

HH∂
2•−i(H).

PROOF: We follow the pattern in [KhR1, Thm. 4.1]. As already mentioned in the proof of Theorem 6.2.3,
the complex Bar•H becomes a left H-module by multiplication on the first tensor factor. One then has
the relation (since A = B) CA• H = A∂ ⊗H Bar•H which transfers to the level of (cyclic) bicomplexes
CC∂• (CA• H) = A∂ ⊗H CC•(Bar•H). With the fact that the augmented complex ε : Bar•H → Aε is a
resolution for A, the bicomplex CC•(Bar•H) is in turn a resolution of the complex A• : A ← 0 ← A ←
0← . . .. One then computes

HC∂• (H) = H•
(
TotCC∂• (CA• H)

)
= H•

(
A∂ ⊗H TotCC•(Bar•H)

)
= Tor(A∂ , A•),

where the last term denotes the hyper-derived Tor groups [W, 5.7.8]. As [W, Lem. 5.7.2] reveals, we may
find a Cartan-Eilenberg resolution for A• with only zeros in every second column. One therefore concludes
HC∂• (H) = Tor(A∂ , A•) =

⊕
i≥0HH

∂
•−2i(H). 2

6.4 Example: Lie-Rinehart Algebras
As we have seen, already at the Hochschild level the dual theory requires the full Hopf algebroid structure;
as we learned from Proposition 4.2.9, we can equip V L with such a structure by choosing a flat right (A,L)-
connection ∂ on the base algebra A. Recall also that in contrast to the cohomology theory, we will need to
consider the tensor product V L⊗rl V L from (4.2.3).
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6.4.1 Theorem Let (A,L) be a Lie-Rinehart algebra and n ≥ 1. Under the same assumptions as in Theorem
5.5.7, the following holds.

(i ) The composition of the antisymmetrisation map Altn : ∧nAL→ V L⊗
lln with the inverse Hopf-Galois

map ψn : V L⊗
lln → V L⊗

rln from (6.1.6), more precisely, the map Altn := ψnn! Altn : ∧nAL →
V L⊗

rln given by

X1 ∧ · · · ∧Xn 7→
∑

σ∈P (n)

signσX+
σ(1) ⊗

rl X−σ(1)X
+
σ(2) ⊗

rl · · · ⊗rl X−σ(n−1)Xσ(n),

induces an isomorphism
HH∂

• (V L)
'←− HA

• (L,A∂). (6.4.1)

Hence the dual (Hopf-)Hochschild homology of the Hopf algebroid V L is isomorphic to the Lie-
Rinehart homology of L with values in its base algebra A.

(ii ) Furthermore, for the dual Hopf-cyclic homology we have an isomorphism

HC∂• (V L)
'←−
⊕
i≥0

HA
•−2i(L,A∂).

PROOF: Part (i): to prove at first that the homology groups in (6.4.1) are isomorphic, it suffices to apply
Theorem 6.2.3 to the case H = V L and compare this to (5.5.3). Secondly, we show that the isomorphism
is induced by Alt by comparing the Koszul-Rinehart resolution KA

• L = (V L ⊗A ∧•AL, b′A,L) from (5.5.2)
to the bar resolution Bar• V L = (V L⊗

rln+1, b′) from §6.2.2. The map idV L ⊗ nAltn : KA
n L→ Barn V L

given by

u⊗A X1 ∧ · · · ∧Xn 7→∑
σ∈P (n)

signσ u⊗rl X+
σ(1) ⊗

rl X−σ(1)X
+
σ(2) ⊗

rl · · · ⊗rl X−σ(n−1)Xσ(n)
(6.4.2)

is obviously a map of left V L-modules (where the left V L-module structure on both sides is just multiplica-
tion on the first tensor factor u) and does not depend on ∂ any more:

X+ ⊗rl X− = X ⊗rl 1− 1⊗rl X,

see (4.2.4). Note that the ‘conventional’ antisymmetrisation Alt cannot be seen directly as a map from ∧•AL
into V L⊗

rl• since it would not be well-defined; whereas Alt is. As an illustration, in degree n = 2, this
reads

Alt(X ∧ Y ) = X ⊗rl Y − Y ⊗rl X − 1⊗rl [X,Y ], X, Y ∈ L,

where [X,Y ] = XY − Y X (as elements in V L). We now show that (6.4.2) is a chain map, i.e.,

b′ (idV L ⊗Altn) = (idV L ⊗Altn−1) b′A,L,

or, equivalently, and slightly simpler to see,

n(idV L ⊗ ϕn−1) b′ (idV L ⊗ ψn Altn) = (idV L ⊗Altn−1) b′A,L,

where ϕ = ψ−1 from (6.1.5). To start with, observe first that the right hand side (idV L ⊗ Altn−1) b′A,L :

KA
n L→ V L⊗

lln can be written as

(idV L ⊗Altn−1) b′A,L(u⊗A X1 ∧ · · · ∧Xn) =

=
1

(n− 1)!

∑
σ∈P (n)

signσ
(
uXσ(1) ⊗rl Xσ(2) ⊗ll · · · ⊗ll Xσ(n)

−
n−1∑
i=1

(−1)iu⊗rl Xσ(1) ⊗ll · · · ⊗ll Xσ(i)Xσ(i+1) ⊗ll · · · ⊗ll Xσ(n)

)
,
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as a little thought reveals (or as proven easily by induction). As for the left hand side, with (4.2.16), (4.2.14)
and S(X(1))X(2) = 0 for any X ∈ L, we calculate at first

nb′ (idV L ⊗ ψn Altn)(u⊗A X1 ∧ · · · ∧Xn) =

=
1

(n− 1)!

∑
σ∈P (n)

signσ
(
uXσ(1) ⊗rl X+

σ(2) ⊗
rl X−σ(2)X

+
σ(3) ⊗

rl · · · ⊗rl X−σ(n−1)Xσ(n)

− u⊗rl Xσ(1)X
+
σ(2) ⊗

rl X−σ(2)X
+
σ(3) ⊗

rl · · · ⊗rl X−σ(n−1)Xσ(n)

)
=

1

(n− 1)!

∑
σ∈P (n)

signσ
(
uXσ(1) ⊗rl ψn−1(Xσ(2) ⊗ll Xσ(3) ⊗ll · · · ⊗ll Xσ(n))

− u⊗rl Xσ(1)X
+
σ(2) ⊗

rl X−σ(2)X
+
σ(3) ⊗

rl · · · ⊗rl X−σ(n−1)Xσ(n)

)
.

Using ∆n
` (uv) = ∆n

` u∆n
` v for u, v ∈ V L and n ≥ 0, one obtains for an element X ∈ L, as a primitive

element,

∆n
`X =

n+1∑
i=1

1⊗ll · · · ⊗ll 1⊗ll X
i
⊗ll 1⊗ll · · · ⊗ll 1,

which we need to apply the explicit form of ϕ from (6.1.6) to calculate

n(idV L ⊗ ϕn−1) b′ (idV L ⊗ ψn Altn)(u⊗A X1 ∧ · · · ∧Xn) =

=
1

(n− 1)!

∑
σ∈P (n)

signσ
(
uXσ(1) ⊗rl Xσ(2) ⊗ll · · · ⊗ll Xσ(n)

− u⊗rl (∆n−1
` Xσ(1))(∆

n−1
` X+

σ(2)) · · · (∆`X
−
σ(n−2)X

+
σ(n−1))·

· (1⊗ll · · · ⊗ll 1⊗ll X−σ(n−1)Xσ(n))
)
.

=
1

(n− 1)!

∑
σ∈P (n)

signσ
(
uXσ(1) ⊗rl Xσ(2) ⊗ll · · · ⊗ll Xσ(n)

−
n∑
i=1

u⊗rl (1⊗ll · · · ⊗ll 1⊗ll Xσ(1)
i

⊗ll 1⊗ll · · · ⊗ll 1)·

· ϕn−1ψn−1(Xσ(2) ⊗ll · · · ⊗ll Xσ(n))
)

=
1

(n− 1)!

∑
σ∈P (n)

signσ
(
uXσ(1) ⊗rl Xσ(2) ⊗ll · · · ⊗ll Xσ(n)

−
n−1∑
i

(−1)iu⊗rl Xσ(1) ⊗ll · · · ⊗ll Xσ(i)Xσ(i+1) ⊗ll · · · ⊗ll Xσ(n)

)
,

hence the right hand side again. By routine homological algebra, the induced map Alt∗ = (ψAlt)∗ obtained
by applying the functor A∂ ⊗V L − induces the isomorphism (6.4.1) in homology.

Part (ii): clearly, V L is cocommutative over commutative A with equal source and target maps; with
Theorem 6.3.3 and with part (i) the claim follows. 2

Observe that part (i) of the preceding theorem is a generalisation of the classical Chevalley-Eilenberg theo-
rem, cf. e.g. [CarE, Thm. 7.1] or [Lo1, Thm. 3.3.2].

6.5 Example: Jet Spaces
In this section we calculate the dual Hopf-cyclic homology for the jet spaces JL of a Lie-Rinehart algebra
(A,L), where L is finitely generated A-projective of constant rank. Again, the outcome is in a certain sense
dual to the result in the previous subsection. Write L∗ := Hom(A,−)(L,A) and, as in Section 5.6, we write
(∧AL∗, dA,L) for the Lie-Rinehart cochain complex (with values in A). Furthermore, recall from (6.1.2) that
the dual Hopf-cyclic module is given as JL\∂ = {CAn JL}n≥0, where the tensor product in CAn JL = JLA⊗n

reads (cf. (6.1.1))

JLA⊗JL = IJL ⊗Aop JL� = JL⊗k JL/spank{φt`JLa⊗k φ′ − φ⊗ t`JLaφ′, a ∈ A}.

This makes sense since A is commutative.
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6.5.1 Theorem Let (A,L) be a Lie-Rinehart algebra where, as an A-module, L is finitely generated projec-
tive of constant rank. There is a natural morphism of mixed complexes

F :
(
CA• JL, b,B

)
→
(
∧•A L∗, 0, dA,L

)
,

defined in degree n by

F : (φ1
A⊗ · · · A⊗φn)(X1 ∧ · · · ∧Xn) := (−1)n(SJLφ

1 ∧ · · · ∧ SJLφn)(X1, . . . , Xn).

This induces isomorphisms

HH•(JL) ' ∧•AL∗,

HP•(JL) '
∏
i≥0

H•+2i(L,A),

where the left hand side refers to the dual Hopf-cyclic homology groups.

PROOF: This statement is very much the dual of Theorem 5.5.7. First of all, the dual of the PBW
isomorphism yields JL ' ŜAL

∗ as commutative algebras. Similar to Lemma 4.3.2, there is a canonical
isomorphism

CAn JL ' lim
←−
p

HomA

(
(V L⊗

lln)≤p, A
)
,

induced by the map

(φ1 ⊗k · · · ⊗k φn)(u1 ⊗k · · · ⊗k un) = (SJLφ
1)(u1) · · · (SJLφn)(un).

The antipode SJL here comes into play to go from V L⊗
rrn to V L⊗

lln, so as to give a sense to the map F .
Since JL is a commutative algebra, it maps the Hochschild differential b to zero. Clearly, F is a morphism
of A-modules, where A acts on CA• JL by multiplication by t`JLa, a ∈ A, on the first component. Therefore
we can localise with respect to a maximal ideal m ⊂ A to prove that F is a quasi-isomorphism. Since L is
A-projective, Lm is free of rank r over Am and we choose a basis ei ∈ Lm, e

i ∈ L∗m, i = 1, . . . , r. The
Koszul resolution

0←− Am
ε←− JLm

∂′←− JLm ⊗Am
L∗m

∂′←− JLm ⊗Am
∧2
Am
L∗m

∂′←− . . .

is a resolution of Am in the category of left JL-modules with differential

∂′(φ⊗ ω) =

r∑
i=1

eiφ⊗ ιeiω.

The natural map JLm ⊗Am
∧•Am

L∗m → Bar•(JLm) given by

φ⊗Am
α1 ∧ · · · ∧ αn := φ⊗Am

(α1 ◦ pr ) ∧ · · · ∧ (αn ◦ pr ),

is a morphism of complexes, as one easily checks. Since SJL(α ◦ pr ) = −α ◦ pr for α ∈ L∗, the map
id⊗Fm : Bar•(JLm)→ JLm⊗Am

∧•Am
L∗m is a right inverse and induces the morphism F when taking the

tensor product Am ⊗JLm
− on both sides. This proves the first claim.

As for the second, recall the standard A-ring cyclic structure JL\A := {BAn JL}n≥0 for JL as in §1.2.4.
Notice that since JL is commutative, one simply has BAn JL ' CAn+1JL and the map to invariants Ψε :
CAn (JL) → CAn+1(JL) (see Subsection 6.1.1) is a morphism of cyclic modules. Explicitly, when restricted
to L∗ this map is given by

Ψε(φ
1
A⊗ · · · A⊗φn)(X1 ⊗ · · · ⊗Xn+1) =

= (SJLφ
1
(1))(X1) · · · (SJLφn(1))(Xn)∇`Xn+1

(φ1
(2) · · ·φ

n
(2))(1)

=

n∑
i=1

(
(SJLφ

1)(X1) · · · ̂(SJLφi)(Xi) · · · (SJLφn)(Xn)
)
·

· (SJLφi(1))(Xi)
(
εVL(Xn+1φ

i
(2)(1))− φi(2)(Xn+1)

)
.
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Since the cyclic structure on CA•+1(JL) depends only on the structure of JL as a commutative algebra, it is
well-known that the morphism

φ1
A⊗ · · · A⊗φn+1 7→ φn+1dA,Lφ

1 ∧ · · · ∧ dA,Lφn

induces a morphism of mixed complexes
(
CA• (JL)[1], b, B

)
→
(
∧•AL∗, 0, dA,L

)
(cf. Example 1.1.10(ii) for

a similar consideration). Composing this morphism with Ψε as above, one finds exactly the map stated in the
theorem. This proves that F intertwines the B-operator with the Lie-Rinehart coboundary dA,L. Since we
already know that this map is a quasi-isomorphism on the level of Hochschild homology, the SBI-sequence
implies that it is a quasi-isomorphism on the level of cyclic homology. This proves the theorem. 2

6.6 Example: Convolution Algebras
In this section we compute the dual Hopf-cyclic homology for the example of the convolution algebra C∞c (G)
for an étale groupoid s, t : G⇒ G0 (see Section 4.4); we will see that it coincides with groupoid homology,
see Theorem 6.6.4. To this end, let us first recall some material we need for the latter.

6.6.1 Nerve of a Groupoid For a groupoid G⇒ G0, denote by

Gn = {(g1, . . . , gn) ∈ G×n | s(gi) = t(gi+1), 1 ≤ i ≤ n− 1}

for n ≥ 1 the space of strings ~g of n composable arrows,

~g = (· g1←− · g2←− · . . . · gn←− ·).

This is consistent with the notation for G2 and G1 already introduced. The nerve of a groupoid is the
simplicial space

G• : . . .
// ////// G2

////// G1
//// G0 ,

formed by the family G• := {Gn}n≥0, where G0 is the base manifold as before, and the face operators
di : Gn → Gn−1 are given by

di(g1, . . . , gn) =

 (g2, . . . , gn) if i = 0,
(g1, . . . , gigi+1, . . . , gn) if 1 ≤ i ≤ n− 1,
(g1, . . . , gn−1) if i = n,

(6.6.1)

whereas d0, d1 : G1 → G0 are given by source and target map, respectively. Moreover, the degeneracy
operators si : Gn → Gn+1 are

si(g1, . . . , gn) =

{
(1t(g1), g1, . . . , gn) if i = 0,
(g1, . . . , gi, 1s(gi), gi+1, . . . , gn) if 1 ≤ i ≤ n. (6.6.2)

Finally, for all n ≥ 2 define an operator tn : Gn → Gn,

tn(g1, . . . , gn) = ((g1g2 · · · gn)−1, g1, . . . , gn−1), (6.6.3)

and set t1(g) = g−1 and t0 = idG0 . Then it is easy to see that the set of operators (d•, s•, t•) defines a cyclic
structure on G•.

6.6.2 Bar Complex for Groupoids Let G ⇒ G0 be an étale groupoid and assume that F ∈ Sh(G0) is a
c-soft G-sheaf (cf. [Br]). Consider the map τn : Gn → G0, ~g 7→ t(g1) for n ≥ 1, where ~g = (· g1← · g2←
· . . . · gn← ·) and set τ0 := idG0

. Observe that for all n ≥ 0 the pull-back sheaves Fn := τ−1
n F on Gn are

again c-soft since τn is étale. The family {Γc(Gn,Fn)}n≥0 of groups of compactly supported sections form
a simplicial abelian group

B•(G,F) : . . .
//////// Γc(G2,F2)

////// Γc(G1,F1)
//// Γc(G0,F0) ,

with simplicial operators defined as follows: for the face maps di : Gn → Gn−1 from (6.6.1) of the nerve,
one obtains the isomorphism Fn → d−1

i Fn−1, the stalk of which at ~g is given by Fn~g = Ft(g1) → Ft(g1) =
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d−1
i F

n−1
~g for i 6= 0, hence by the identity; for i = 0, however, the stalk at ~g is Fn~g = Ft(g1) → Fs(g1) =

d−1
0 F

n−1
~g , which is the (right) action R by g1. Analogously, one has the isomorphisms Fn → s−1

i Fn+1,
given for all i by the identity map. The face and degeneracy operators on B•(G,F) now read

di(u | g1, . . . , gn) =

(ug1 | g2, . . . , gn)
(u | g1, . . . , gigi+1, . . . , gn)
(u | g1, . . . , gn−1)

if i = 0,
if 1 ≤ i ≤ n− 1,
if i = n,

si(u | g1, . . . , gn) =

{
(u | 1t(g1), g1, . . . , gn)
(u | g1, . . . , gi, 1s(gi), gi+1, . . . , gn)

if i = 0,
if 1 ≤ i ≤ n.

(6.6.4)

A similar argument using (6.6.3) shows that there is an isomorphism Fn → t−1
n Fn with stalk at ~g given by

Fn~g = Ft(g1) → Fs(gn) = t−1
n Fn~g , i.e. the right action R by g1 · · · gn. One correspondingly defines

tn(u | g1, . . . , gn) = (ug1 · · · gn | (g1 · · · gn)−1, g1, . . . , gn−1) (6.6.5)

as a cyclic operator on B•(G,F). For later computations, we remind that our notation (cf. §1.5.3) explicitly
reads here

tn : Γc(Gn,Fn)→ Γc(Gn,Fn), ((tn, R)∗u)(~g) =
∑

~g=tn(~g′)

u(~g′)g′1 · · · g′n

for ~g′ = (g′1, . . . , g
′
n) ∈ Gn.

6.6.3 Lemma [Cr1, Lem. 3.2.9] IfF is a c-softG-sheaf, the cyclic spaceB•(G,F ) with the operators (6.6.4)
and (6.6.5) computes the homology groups HH•(G,F), HC•(G,F) and HP•(G,F).

Here we only presented a simplified version sufficient for our needs; see however [Cr1] and [CrMoe2] for
full details and generality introducing cyclic groupoids and cyclic sheaves.

Let us now turn to dual Hopf-cyclic homology. We will frequently need the following n-fold generalisa-
tions of the isomorphisms introduced in (4.4.1),

Ωns,t :

n times︷ ︸︸ ︷
C∞c (G)⊗rlC∞(G0) · · · ⊗

rl
C∞(G0) C

∞
c (G)

'−→ C∞c (

n times︷ ︸︸ ︷
Gs×tG0

· · · s×tG0
G) = C∞c (Gn),

Ωnt,t : C∞c (G)⊗llC∞(G0) · · · ⊗
ll
C∞(G0) C

∞
c (G)

'−→ C∞c (Gt×tG0
· · · t×tG0

G) = C∞c (Gn),

Ωns,s : C∞c (G)⊗rrC∞(G0) · · · ⊗
rr
C∞(G0) C

∞
c (G)

'−→ C∞c (Gs×sG0
· · · s×sG0

G),

Ωnt,s : C∞c (G)⊗lrC∞(G0) · · · ⊗
lr
C∞(G0) C

∞
c (G)

'−→ C∞c (Gt×sG0
· · · t×sG0

G)

all given by the formula

Ωn·,·(u1 ⊗··C∞(G0) · · · ⊗
··
C∞(G0) un)(g1, . . . , gn) = u1(g1)u2(g2) · · ·un(gn), (6.6.6)

for u1, . . . , un ∈ C∞c (G) and (g1, . . . , gn) in the respective pull-back G·×·G0
· · · ·×·G0

G. One can also de-
compose

Ωn·,· = Ω2
·,·(id⊗ Ωn−1

·,· ),

where in this case Ω2
·,· has the obvious meaning as an isomorphism

Ω2
·,· : C∞c (G)⊗··C∞(G0) C

∞
c (

n−1 times︷ ︸︸ ︷
G·×·G0

· · · ·×·G0
G)

'−→ C∞c (

n times︷ ︸︸ ︷
G·×·G0

· · · ·×·G0
G).

We hope that the notation by the same symbol does not create too much confusion; the individual meaning
will be clear from the context. We also remind the reader of the possibility of ‘mixing’ these maps, as in
(4.4.3). The space of interest for dual cyclic homology is then

C∞c (G)
\
∂ := {CC∞(G0)

n C∞c (G)}n≥0

where
CnC∞(G0)C∞c (G) = C∞c (G)⊗rlC∞(G0) · · · ⊗rlC∞(G0) C∞c (G), (6.6.7)

again n times in degree n.
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6.6.4 Theorem For any étale groupoid G ⇒ G0 over a compact manifold G0, the set of simplicial and
cyclic operators (d•, s•, t•) on the nerve G• makes (C∞c (G•), d•+, s•+, t•+) a cyclic vector space, which is
isomorphic to the Hopf-cyclic module C∞c (G)

\
∂ . Hence

HH∂
• (C∞c (G)) ' HH•(G, C∞G ),

HC∂• (C∞c (G)) ' HC•(G, C∞G ),

HP ∂• (C∞c (G)) ' HP•(G, C∞G ).

PROOF: Since G is étale, note first that the bar complex B•(G, C∞G ) is formed here by the pull-back
sheaves τ−1

n C∞G ' C∞Gn . In degree n one has Bn(G, C∞G ) ' Γc(Gn, C∞Gn) = C∞c (Gn). Hence the fact that
(C∞c (G), d•+, s•+, t•+) is a cyclic vector space follows from the general considerations in §6.6.2, see §1.5.3
for the notation. To show that it is isomorphic to the Hopf-cyclic module C∞c (G)

\
∂ , it only remains to prove

that

di+ Ωs,t = Ωs,t d̃i,

si+ Ωs,t = Ωs,t s̃i,

tn+ Ωs,t = Ωs,t t̃n,

for all 0 ≤ i ≤ n and in all degrees n, where (d̃•, s̃•, t̃•) denote in this proof the Hopf-cyclic operators from
(6.1.3)–(6.1.4) for C∞c (G)

\
∂ . For u1⊗rlC∞(G0) · · ·⊗rlC∞(G0) u

n ∈ CC
∞(G0)
n C∞c (G) and (g1, . . . , gn−1) ∈ Gn−1,

we compute

(d0+ Ωns,t(u
1 ⊗rlC∞(G0) · · · ⊗rlC∞(G0) u

n))(g1, . . . , gn−1)

=
∑

{g0∈G|s(g0)=t(g1)}

Ωns,t(u
1 ⊗rlC∞(G0) · · · ⊗rlC∞(G0) u

n)(g0, g1, . . . , gn−1)

=
∑

{g0∈G|s(g0)=t(g1)}

u1(g0)u2(g1) · · ·un(gn−1)

= ∂u1(1t(g1))u
2(g1) · · ·un(gn−1)

= (∂u1 ∗ u2)(g1) · · ·un(gn−1)

= (Ωn−1
s,t d̃0(u1 ⊗rlC∞(G0) · · · ⊗rlC∞(G0) u

n))(g1, . . . , gn−1),

and likewise for all remaining face and degeneracy operators. As far as the cyclic operator is concerned, one
has

(tn+ Ωns,t(u
1 ⊗rlC∞(G0) · · · ⊗rlC∞(G0) u

n))(g1, . . . , gn)

=
∑

. . .
∑

tn(g′1,...,g
′
n)=(g1,...,gn)

u1(g′1)u2(g′2) · · ·un(g′n)

= u1(g2) · · ·un−1(gn)un((g1 · · · gn)−1),

since in the sum one has (g′1 · · · g′n)−1 = g1, and moreover g′1 = g2, . . . , g
′
n−1 = gn; hence g′n =

(g′1 · · · g′n−1)−1g−1
1 = (g1 · · · gn−1)−1. On the other hand,

(Ωns,t t̃n(u1 ⊗rlC∞(G0) · · · ⊗rlC∞(G0) u
n))(g1, . . . , gn)

= Ωns,t(S
−1(u1

(2) ∗ · · · ∗ u
n−1
(2) ∗ u

n)⊗rlC∞(G0) u
1
(1) ⊗

rl
C∞(G0) · · · ⊗rlC∞(G0) u

n−1
(1) )(g1, . . . , gn)

= (u1
(2) ∗ · · · ∗ u

n−1
(2) ∗ u

n)(g−1
1 )u1

(1)(g2) · · ·un−1
(1) (gn)

=
∑

g−1
1 =g′1···g′n

u1
(2)(g

′
1) · · ·un−1

(2) (g′n−1)un(g′n)u1
(1)(g2) · · ·un−1

(1) (gn)

= u1(g2) · · ·un−1(gn)un((g1 · · · gn)−1),

by the left coproduct (4.4.6), which dictates g′j−1 = gj for all 2 ≤ j ≤ n, whereas for the last element one
has g′n = (g1g

′
1 · · · g′n−1)−1. 2

Taking into account that C∞c (G) is a cocommutative Hopf algebroid over C∞(G0) (see Section 4.4),
Theorem 6.3.3 immediately yields:
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6.6.5 Corollary For each étale groupoid G over compact base, one has

HCn(G, C∞G ) '
⊕

i≥0HH2n−i(G, C∞G ).

We end this subsection by showing that the Hopf-Galois maps (6.1.5) and (6.1.6) are dual to certain maps
defined on the groupoid level. Recall that for the coordinate ring U = k[G] of an algebraic semigroup, the
Hopf-Galois map β from (2.2.1) is dual to the map

G×G→ G×G, (g, h) 7→ (g, gh),

which is bijective if and only if G is a group. For groupoids, one obtains similar maps: making use of the
maps Ωs,t, Ωt,t and denoting (as before) Gn = Gs×tG0

· · · s×tG0
G (n times) and Gn = Gt×tG0

· · · t×tG0
G (n

times), one finds

6.6.6 Proposition The vector space isomorphisms (6.1.5) and (6.1.6) between CC
∞(G0)
n C∞c (G) from (6.6.7)

and CnC∞(G0)C∞c (G) from (5.7.2) are dual to the following diffeomorphisms on groupoids:

ϕ̃n : Gn → Gn, (g1, . . . , gn) 7→ (g1, g1g2, . . . , g1g2 · · · gn),

with inverse
ψ̃n : Gn → Gn, (g̃1, . . . , g̃n) 7→ (g̃1, g̃

−1
1 g̃2, . . . , g̃

−1
n−1g̃n).

More precisely, in each degree n one has the commutative diagram

CC
∞(G0)
n C∞c (G)

ϕn

��

Ωns,t // C∞c (Gn)

ϕ̃n+

��
CnC∞(G0)C∞c (G)

ψn

OO

Ωnt,t

// C∞c (Gn).

ψ̃n+

OO

PROOF: For u1, . . . , un ∈ C∞c (G), (g̃1, . . . , g̃n) ∈ Gn, we clearly have

(ϕ̃n+ Ωns,t(u
1 ⊗rlC∞(G0) · · · ⊗rlC∞(G0) u

n))(g̃1, . . . , g̃n) =

=
∑

. . .
∑

ϕ̃n(g1,...,gn)=(g̃1,...,g̃n)

u1(g1) · · ·un(gn)

=
∑

. . .
∑

(g1,...,gn)=ψ̃n(g̃1,...,g̃n)

u1(g1) · · ·un(gn)

= u1(g̃1)u2(g̃−1
1 g̃2) · · ·un(g̃−1

n−1g̃n),

but also

(Ωnt,t ϕn(u1 ⊗rlC∞(G0) · · · ⊗rlC∞(G0) u
n))(g̃1, . . . , g̃n) =

= u1
(1)(g̃1)(u1

(2) ∗ u
2
(1))(g̃2) · · · (u1

(n) ∗ u
2
(n−1) ∗ · · · ∗ u

n−1
(2) u

n)(g̃n)

= u1
(1)(g̃1)

∑
g̃2=g̃21 g̃22

u1
(2)(g̃21

)u2
(1)(g̃22

) · · ·

· · ·
∑

g̃n=g̃n1
···g̃nn

u1
(n)(g̃n1)u2

(n−1)(g̃n2) · · ·un−1
(2) (g̃nn−1)un(g̃nn)

= u1(g̃1)u2(g̃−1
1 g̃2) · · ·un(g̃−1

n−1g̃n).

This is seen as follows: as a first step, by the higher coproducts only elements with g̃1 = g̃21 = . . . = g̃n1 do
not disappear; as a second step, one finds g̃22

= g̃−1
1 g̃2, and only elements with g̃−1

1 g̃2 = g̃32
= . . . = g̃n2

do
not vanish. Hence g̃33

= (g̃31
g̃32

)−1g̃3 = (g̃1g̃
−1
1 g̃2)−1g̃3 = g̃−1

2 g̃3. By induction on n steps one concludes
that the non-vanishing elements have g̃jj = g̃−1

j−1g̃j for all j = 2, . . . , n which are the arguments in the first
components of the respective left coproducts. The same diagram can, of course, analogously be verified in
the opposite direction using ψn and ψ̃n. 2



120 CHAPTER 6. DUAL HOPF-CYCLIC HOMOLOGY

6.6.1 Invariants for the Convolution Algebra

In this subsection we are going to explicitly show how the dual Hopf-cyclic module C∞c (G)
\
∂ can be obtained

by restricting the standard cyclic C∞(G0)-ring structure of C∞c (G)
\
C∞(G0)

(given by (1.2.3)) to invariants, cf.
(2.4.1). As in §1.2.4, set

C∞c (G)
\
C∞(G0)

= {BC∞(G0)

n C∞c (G)}n≥0,

where in degree n ≥ 0

BC
∞(G0)

n C∞c (G) = CC
∞(G0)

n C∞c (G)⊗C∞(G0)⊗C∞(G0) C∞(G0) = CC
∞(G0)

n C∞c (G)⊗C∞(G0) .

In Theorem 6.6.4 we saw that dual Hopf-cyclic operators correspond to the respective cyclic operators on
the nerve of G as given in (6.6.1)–(6.6.3). The cyclic operators (1.2.3) on C∞c (G)

\
C∞(G0)

, on the other hand,
correspond to a different set of cyclic operators given on a certain subspace of the nerve. Let us introduce
this subspace first:

6.6.7 Burghelea Spaces [Bu] For an (étale) groupoid G⇒ G0, for n ≥ 0 define

Bn := {(g0, g1, . . . , gn) ∈ G×(n+1) | t(gi) = s(gi−1) for 1 ≤ i ≤ n, and t(g0) = s(gn)}, (6.6.8)

the space of closed strings of n + 1 composable arrows; note that Bn ⊂ Gn+1. The space B0 = {g ∈
G|s(g) = t(g)} is called the space of loops in G. The family B• := {Bn}n≥0, which we will call the
Burghelea space, can be turned into a simplicial space by defining face and degeneracy operators d′i : Bn →
Bn−1, s′i : Bn → Bn+1, respectively, by

d′i(g0, g1, . . . , gn) =

{
(g0, . . . , gigi+1, . . . , gn)
(gng0, g1, . . . , gn−1)

if 0 ≤ i ≤ n− 1,
if i = n,

s′i(g0, g1, . . . , gn) =

{
(g0, . . . , gi, 1t(gi+1), gi+1, . . . , gn)
(g0, . . . , gn, 1s(gn))

if 0 ≤ i ≤ n− 1,
if i = n.

(6.6.9)

Together with the cyclic operator t′n : Bn → Bn given by

t′n(g0, . . . , gn) = (gn, g0, . . . , gn−1), (6.6.10)

it is easy to see that the set of operators (d′•, s
′
•, t
′
•) defines a cyclic structure on B•. In particular, one has a

natural inclusion of the nerve Gn:

i : Gn ↪→ Bn, (g1, . . . , gn) 7→ ((g1g2 · · · gn)−1, g1, . . . , gn), (6.6.11)

which is compatible with the sets of operators (d•, s•, t•) from (6.6.1)–(6.6.3) and (d′•, s
′
•, t
′
•) (i.e. with the

simplicial and cyclic structures, respectively).

6.6.8 Proposition The set of simplicial and cyclic operators (d′•, s
′
•, t
′
•) on the Burghelea space B• makes

(C∞c (B•), d
′
•+, s

′
•+, t

′
•+) a cyclic vector space. In each degree n ≥ 0, one has

BC
∞(G0)

n C∞c (G) ' C∞c (Bn).

In particular, (C∞c (B•), d
′
•+, s

′
•+, t

′
•+) is isomorphic to the standard C∞(G0)-ring cyclic module

C∞c (G)
\
C∞(G0)

from §1.2.4, with operators given in (1.2.3).

PROOF: The fact that (C∞c (B•), d
′
•+, s

′
•+, t

′
•+) is a cyclic module follows from our considerations below.

It can be also shown by either a direct verification of the simplicial relations plus the additional ones (1.1.3),
(1.1.4), (1.1.5) for a cyclic module, or by deducing it from the cyclicity of B• and accounting for the fact that
the operation of fibre summing (1.5.1) is associative in a sense. Explicitly, for any n ≥ 0 and u ∈ C∞c (Bn),
(g0, . . . , gn−1) ∈ Bn−1,

(d′0+ (t′n+u))(g0, . . . , gn−1) =
∑

. . .
∑

d′0(g′0,...,g
′
n)=(g0,...,gn−1)

(t′n+u)(g′0, . . . , g
′
n)

=
∑

g0=g′0g
′
1

u(g′1, g1, . . . , gn−1, g
′
0)

=
∑

. . .
∑

(g′ng
′
0,g
′
1,...,g

′
n−1)=(g0,...,gn−1)

u(g′0, . . . , g
′
n)

=
∑

. . .
∑

d′0 t
′
n(g′0,...,g

′
n)=(g0,...,gn−1)

u(g′0, . . . , g
′
n)

= ((d′0+ t
′
n+)u)(g0, . . . , gn−1),
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and similarly for all other relations. Hence the cyclicity of C∞c (B•) follows, as could have been expected,
from the cyclicity of B•. As for the second part of the Proposition, write

BC
∞(G0)

n C∞c (G) =

n+1 times︷ ︸︸ ︷
C∞c (G)⊗rlC∞(G0) · · · ⊗rlC∞(G0) C∞c (G)⊗C∞(G0)⊗C∞(G0)C∞(G0)

' C∞c (Gs×tG0
· · · s×tG0

G︸ ︷︷ ︸
n times

)⊗rl,lrC∞(G0) C∞c (G),

where on the first n factors the isomorphism Ωn−1
s,t was used, and the last tensor product has the obvious

meaning of simultaneously balancing with respect to ⊗rlC∞(G0) and ⊗lrC∞(G0). The notation ⊗rl,lrC∞(G0) suggests
that a map Ω2

s,t ; t,s acting simultaneously as Ω2
s,t as well as Ω2

t,s by still the same formula (6.6.6) gives an
isomorphism, so that

BC
∞(G0)

n+1 C∞c (G) ' C∞c ((Gs×tG0
· · · s×tG0

G)s;t×t;sG0
G) ' C∞c (Bn).

Conceptually a repetition of what was implicit at the beginning of this proof, it remains to show that

d′i+ Ω2
s,t ; t,s(Ω

n
s,t ⊗ id) = Ω2

s,t ; t,s(Ω
n−1
s,t ⊗ id) d̃′i,

s′i+ Ω2
s,t ; t,s(Ω

n
s,t ⊗ id) = Ω2

s,t ; t,s(Ω
n+1
s,t ⊗ id) s̃′i,

t′n+ Ω2
s,t ; t,s(Ω

n
s,t ⊗ id) = Ω2

s,t; t,s(Ω
n
s,t ⊗ id) t̃′n,

for all 0 ≤ i ≤ n and all degrees n; in this proof, (d̃′•, s̃
′
•, d̃
′
•) are the standard C∞(G0)-ring cyclic op-

erators from (1.2.3). For example, for u0 ⊗rlC∞(G0) · · · ⊗rlC∞(G0) u
n−1 ⊗rl,lrC∞(G0) u

n ∈ B
C∞(G0)
n C∞c (G) and

(g0, . . . , gn−1) ∈ Bn−1, one has

(d′n+ Ω2
s,t ; t,s(Ω

n
s,t ⊗ id)(u0 ⊗rlC∞(G0) · · · ⊗rlC∞(G0) u

n−1 ⊗rl,lrC∞(G0) u
n))(g0, . . . , gn−1)

=
∑

. . .
∑

d′n(g′0,...,g
′
n)=(g0,...,gn−1)

u0(g′0) · · ·un(g′n)

=
∑

g0=g′ng
′
0

u0(g′0)u1(g1) · · ·un−1(gn−1)un(g′n)

= Ω2
s,t;t,s(Ω

n
s,t ⊗ id)((un∗u0)⊗rlC∞(G0) · · · ⊗rlC∞(G0) u

n−2 ⊗rl,lrC∞(G0) u
n−1))(g0, . . . , gn−1)

= Ω2
s,t ; t,s(Ω

n
s,t ⊗ id)(d̃′n(u0 ⊗rlC∞(G0) · · · ⊗rlC∞(G0) u

n−1 ⊗rl,lrC∞(G0) u
n))(g0, . . . , gn−1),

and much the same way for all remaining faces, degeneracies and the cyclic operator t. 2

6.6.9 Comodule Structures and Invariants For the consideration of invariants (cf. Subsection 6.1.1) one
wants to consider comodule structures over the enveloping algebra of the base algebra. Due to the form of
the left and right coproducts in the present example, this is particularly simple; we now show how C∞c (G)
can be seen as a coalgebra over C∞(G0)e = C∞(G0)⊗ C∞(G0). As a coproduct, one needs a map

∆ : C∞c (G)→ C∞c (G)⊗ll,rrC∞(G0) C∞c (G),

since s` = t` = sr = tr, and as in Proposition 6.6.8 one infers the existence of an isomorphisms Ωt,t ; s,s :

C∞c (G) ⊗ll,rrC∞(G0) C∞c (G) → C∞c (Gt;s×t;sG0
G) (that is, to the space of compactly supported smooth functions

over the space of pairs (g, g′) that have not only identical sources but also equal targets). Evidently, the non-
vanishing elements of both left and right coproduct in (4.4.6) are already of this form and one only needs
to modify the image space. Hence we can take the same formula, and set for the coproduct of C∞c (G) over
C∞(G0)e

∆′ := Ω2
t,t ; s,s ∆ : C∞c (G)→ C∞c (Gt;s×t;sG0

G), (∆′u)(g, g′) =

{
u(g) if g = g′,
0 otherwise.

Again, introducing the map d : G → Gt;s×t;sG0
G, g 7→ (g, g) one may write ∆′ = d+ or ∆ = Ω−1

t,t ; s,sd+.
The associated counit ε′ to this coalgebra structure is given as the ‘intersection’ of the left and right counits:
using the Sweedler components ∆`u = u(1) ⊗llC∞(G0) u(2) of the left coproduct, define

ε′ : C∞c (G)→ C∞(G0)⊗̂C∞(G0), u 7→ ∂u(1)⊗̂ εu(2).
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However, it will be also clear in a moment that there is an equivalent expression which uses the right co-
product. If the tensor product ⊗̂ is a topological (e.g. projective) one, which allows the identification of
C∞(G0)⊗̂C∞(G0) with C∞(G0 ×G0) in some sense, we write for u ∈ C∞c (G), x, y ∈ G0,

ε′(u)(x, y) = ∂u(1)(x)εu(2)(y) =
∑
s(g)=x

∑
t(g′)=y

u(1)(g)u(2)(g
′)

=
∑
y
g←x

u(g) =
∑

s(g)=x, t(g)=y

u(g).

In words, the last term involves the sum over all arrows from x to y. To prove that (C∞c (G),∆′, ε′) indeed ful-
fills the identities of a comonoid over C∞(G0)e, observe firstly that there is a twisted coassociativity between
∆′ and both ∆` and ∆r, respectively, analogous to (2.6.2). Then one has, denoting ∆′u = u(1)′⊗ll,rrC∞(G0)u

(2)′ ,

((id⊗ ε′)∆′u)(g) = (ε(u
(2)′

(2) )u(1)′∂(u
(2)′

(1) ))(g)

=
∑

t(g′)=t(g)

∑
s(g′′)=s(g)

u(2)(g
′)u

(1)′

(1) (g)u
(2)′

(1) (g′′) = u(g),

hence (id ⊗ ε′)∆′ = id as desired, and similarly for all remaining comonoid identities. We write C∞c (G)
′

instead of C∞c (G) whenever we refer to this coalgebra structure over C∞(G0)e.
Now consider the spaceM := CC

∞(G0)

n+1 C∞c (G). For u0, . . . , un ∈ C∞c (G) define M∆ : M →M⊗ll,rrC∞(G0)

C∞c (G) by

M∆(u0 ⊗rlC∞(G0) · · · ⊗rlC∞(G0) un) := u
(1)′

0 ⊗rlC∞(G0) · · · ⊗rlC∞(G0) u
(1)′

n ⊗ll,rrC∞(G0) u
(2)′

0 u
(2)′

1 · · ·u(2)′

n .

It is a straightforward calculation to see that M∆ is a right C∞c (G)-comodule structure over C∞(G0)e. In
particular, one can easily check

Ω2
t,t ; s,s(Ω

n
s,t ⊗ id)M∆(u0 ⊗rlC∞(G0) · · · ⊗rlC∞(G0) un)(g0, . . . , gn, g)

= u
(1)′

0 (g0) · · ·u(1)′

n (gn)(u
(2)′

0 ∗ · · · ∗ u(2)′

n )(g)

=

{
u0(g0) · · ·un(gn) if g = g0 · · · gn,
0 otherwise.

Hence for u ∈ C∞c (Gn+1) we write

M∆′ := Ω2
t,t ; s,s(Ω

n
s,t ⊗ id)M∆ : C∞c (Gn+1)→ C∞c (Gn+1

t;s×t;sG0
G),

M∆′u(g0, . . . , gn, g) =

{
u(g0, . . . , gn) if g = g0g1 · · · gn,
0 otherwise.

We finally mention that a left C∞c (G)-comodule structure on C∞(G0) over C∞(G0)e is simply given by the
injection (4.4.5), i.e.,

∆C∞(G0) : C∞(G0)→ C∞c (G), f 7→ f̃ , f̃(g) =

{
f(x) if g = 1x for some x ∈ G0,
0 otherwise.

We now have all ingredients to define the space of invariants of the complex in question. In each degree
n ≥ 0, set

BC
∞(G0)

n C∞c (G) ⊃ InvBC
∞(G0)

n C∞c (G) := CC
∞(G0)

n+1 C∞c (G) C∞c (G)′C∞(G0).

Explicitly, this means

0 = Ω2
t,t ; s,s(Ω

n
s,t ⊗ id)(M∆ ⊗ id− id⊗∆C∞(G0))

(u0 ⊗rlC∞(G0) · · · ⊗rlC∞(G0) un ⊗C∞(G0)e f)(g0, . . . , gn, g)

=

{
f(t(g))u0(g0) · · ·un(gn)− u0(g0) · · ·un(gn)f(x) if g = g0 · · · gn = 1x for x ∈ G0,
−u0(g0) · · ·un(gn)f(s(gn)) otherwise.

Here f ∈ C∞(G0), and in the last factor we took the tensor product over C∞(G0)e. While the lower
expression in the last line never vanishes in non-trivial cases, the upper one does if 1x = g = g0 · · · gn, that
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is, if g is a closed string that is a unit, i.e. an n + 1-tuple (g0, . . . , gn) ∈ Bn for which g0 · · · gn = 1x. We
reformulate this with the aid of Proposition 6.6.8: an invariant element in degree n is a function u ∈ C∞c (Bn)
with

(M∆′u)(g0, . . . , gn, g) =

{
u(g0, . . . , gn) if g = 1x for some x ∈ G0,
0 otherwise,

if M∆ is restricted from C∞c (Gn+1) to C∞c (Bn). Note that M∆ remains well-defined, since

(f ∗ u0)(g0)u1(g1) · · ·un(gn) = f(t(g0))u0(g0) · · ·un(gn)

= u0(g0) · · ·un(gn)f(s(gn)) = u0(g0) · · · (un ∗ f)(gn)

for closed strings, and that M∆ on C∞c (Bn) takes an analogous form as in (6.6.9), but now seen as map
C∞c (Bn)→ C∞c (Bn

s×sG0
G).

The following Theorem is basically a summary of what has been proven before. It explicitly connects dual
Hopf-cyclic homology for convolution algebras over étale groupoids to the standard C∞(G0)-ring homology
(cf. §1.2.4) by restriction (or injection) of the respective spaces. More precisely,

6.6.10 Theorem The subset of invariants of C∞c (Bn) in each degree n is isomorphic to C∞c (Gn), and the
injection i : Gn ↪→ Bn from (6.6.11) induces an injection i+ : C∞c (Gn) ↪→ C∞c (Bn), which is compatible
with the respective cyclic structures. Hence one has a commutative diagram

CC
∞(G0)
n C∞c (G)

(d•,s•,t•)

��

// BC
∞(G0)
n C∞c (G)

(d•,s•,t•)

��
CC
∞(G0)

n±{0,1}C
∞
c (G) // BC

∞(G0)

n±{0,1}C
∞
c (G),

where on the left-hand side one has the Hopf-cyclic operators from (6.1.3), (6.1.4) and on the right-hand side
one has the standard operators from (1.2.3) for the C∞(G0)-ring C∞c (G).

PROOF: The first statement follows from the simple observation that if u ∈ InvBC
∞(G0)
n C∞c (G), then

u ∈ C∞c (Bn) with

suppu⊂{(g0, . . . , gn)∈Bn | g0 · · · gn=1x}={(g0, . . . , gn)∈Bn | g0 =(g1 · · · gn)−1}
= i(Gn),

hence u may be identified with a function in C∞c (Gn). To continue, one only needs to apply Proposition
6.6.8 and Theorem 6.6.4, which allows to equivalently prove the commutativity of the diagram

C∞c (Gn)

(d•+,s•+,t•+)

��

// C∞c (Bn)

(d′•+,s
′
•+,t

′
•+)

��
C∞c (Gn±{0,1}) // C∞c (Bn±{0,1})

in each degree n ≥ 0; this time, the sets of operators are the fibre sums of the operators (6.6.1)–(6.6.2) on G•
and (6.6.9)–(6.6.10) on B•, respectively. Now, since i respects the cyclic structures of G• and B•, so does
the fibre sum i+. As an example, for u ∈ C∞c (Gn) we verify

i+tn+u(g0, . . . , gn) =

{∑
. . .
∑
tn(g′1,...,g

′
n)=(g1,...,gn)u(g′1, . . . , g

′
n)

0

if g−1
0 =g1g2 · · · gn,

otherwise

=

{
u(g2, . . . , gn, (g1g2 · · · gn)−1)
0

if g−1
0 =g1g2 · · · gn,

otherwise,

and

t′n+i+u(g0, . . . , gn) =
∑

. . .
∑

(g′n,g
′
0,...,g

′
n−1)=(g0,g1,...,gn)

i+u(g′0, . . . , g
′
n)

=

{
u(g2, . . . , gn, g0) if g−1

1 = g2 · · · gng0,
0 otherwise

which is seen to coincide with the expression above. 2





Chapter 7

Duality and Products in Algebraic
(Co)Homology Theories

7.1 Introduction
Most classical (co)homology theories of algebraic objects such as groups, or Lie, Lie-Rinehart or associative
algebras can be realised as

H•(X,M) := Ext•U (A,M), H•(X,N) := TorU• (N,A) (7.1.1)

for an augmented ring X = (U,A) (i.e. a ring with a distinguished left module) that is functorially attached
to a given object. The cohomology coefficients are left U -modules M and those in homology are right
U -modules N .

Our aim here is to clarify the origin and interplay of multiplicative structures and dualities between
such (co)homology groups, and to provide a unified treatment of results by Van den Bergh on Hochschild
(co)homology [VdB] and by Huebschmann on Lie-Rinehart (co)homology [Hue3]. The key concept involved
is that of a left Hopf algebroid (×A-Hopf algebra) introduced by Schauenburg [Schau2], cf. Section 2.2.

The main results can be summarised as follows:

7.1.1 Theorem For any A-biprojective left Hopf algebroid U there is a functor

⊗ : U -Mod× Uop-Mod→ Uop-Mod

that for M ∈ U -Mod, N ∈ Uop-Mod and m,n ≥ 0 induces natural products

a : ExtmU (A,M)× TorUn (N,A)→ TorUn−m(M ⊗N,A).

If A ∈ U -Mod admits a finitely generated projective resolution of finite length and there exists d ≥ 0
with ExtmU (A,U) = 0 for m 6= d, then there is a canonical element

[ω] ∈ TorUd (A∗, A), A∗ := ExtdU (A,U)

such that for m ≥ 0 and M ∈ U -Mod with TorAq (M,A∗) = 0 for q > 0

· a [ω] : ExtmU (A,M)→ TorUd−m(M ⊗A∗, A)

is an isomorphism.

This theorem will be proven in Section 7.3.
As we saw in Chapter 2 above, left A-bialgebroids and left Hopf algebroids over A generalise bialgebras

and Hopf algebras to possibly noncommutative base algebras A. Besides Hopf algebras, both the universal
enveloping algebra V L of a Lie-Rinehart algebra (A,L) and the enveloping algebra Ae = A ⊗k Aop of an
associative algebra A are left Hopf algebroids over A, see Subsections 4.2.1 and 4.1.1.

For any left A-bialgebroid U , the base algebra A carries a left U -action and the category U -Mod of left
U -modules is monoidal with unit object A, cf. Subsection 2.3.1. But it is only for left Hopf algebroids over

125
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A that one has a canonical operation ⊗ as in Theorem 7.1.1, which turns Uop-Mod into a module category
over (U -Mod,⊗, A) (Lemma 7.2.8).

Any left Hopf algebroid carries two left and two right actions of the base algebra that all commute with
each other. The biprojectivity assumed in Theorem 7.1.1 refers to the projectivity of two particular of these,
see Section 7.1.1. Under this condition, we can use the elegant formalism of suspended monoidal categories
from [Sua] to define products for M,N ∈ U -Mod and P ∈ Uop-Mod by means of

` : Hm(X,M)×Hn(X,N)→ Hm+n(X,M ⊗N),

a : Hn(X,N)×Hp(X,P )→ Hp−n(X,N ⊗ P ),

where once again we use the abbreviations from (7.1.1) (cf. Sections 7.2.2 and 7.2.5).
In the last part of Theorem 7.1.1, A∗ = Hd(X,U) = ExtdU (A,U) is a right U -module via right multi-

plication in U , and if we define the functor

ˆ : U -Mod→ Uop-Mod, M 7→ M̂ := M ⊗A∗,

then the statement can be rewritten as an isomorphism

Hm(X,M) ' Hdim(X)−m(X, M̂), dim(X) := proj.dimU (A)

given as in topology by the cap product with the fundamental class [ω] ∈ Hdim(X)(Â) which corresponds
under the duality to idA ∈ H0(A) = HomU (A,A). For M = A this simply means that the H•(A)-module
H•(A

∗) is free with generator [ω].
Theorem 7.1.1 is well known in group and Lie algebra (co)homology [Ha, Bie]. For U = A ⊗k Aop it

reduces to Van den Bergh’s result [VdB], which has stimulated a lot of recent research, see e.g. [BroZ, Dol,
Gi, LauRi]. Note that we do not need Van den Bergh’s invertibility assumption about A∗, which says that ˆ
is an equivalence. However, it is satisfied for many well-behaved algebras [ibid.] and implies the condition
TorAq (M,A∗) = 0 for arbitrary A-bimodules M (since invertible bimodules are finitely generated projective
as one-sided modules from either side). For Lie-Rinehart algebras, Theorem 7.1.1 is due to Huebschmann
[Hue3], and we find the general setting helpful, for example, to understand the different roles of left and
right modules that were observed by Huebschmann (cf. 4.2.5). As was shown in [loc. cit.], the conditions
of Theorem 7.1.1 are satisfied whenever L is finitely generated projective (of constant rank) over A, and A∗

coincides as an A-module with ΛdAL and is in particular projective, so also here we have TorAq (M,A∗) = 0
for arbitrary (A,L)-modules M .

So both these examples and the applications in homological algebra clearly demonstrate the relevance of
the intermediate concept of a left Hopf algebroid.

One could generalise Theorem 7.1.1 to differentially graded left Hopf algebroids, sheaves thereof, or
suitable abstract monoidal categories. One also could drop the condition ExtnU (A,U) = 0 for n 6= d
the assumption that TorAq (M,A∗) = 0. Then one obtains an isomorphism RHomU (A,M) ' (M ⊗L

A

RHomU (A,U))⊗L
U A for a bounded below chain complex M over U -Mod.

7.1.1 Some Conventions
Let U be a left bialgebroid over A with structure maps as in Definition 2.1.2, and consider the categories
U -Mod and Uop-Mod. Using the forgetful functor U -Mod → Ae-Mod, we regard, as in Subsection
2.3.1, any U -module M also as an (A,A)-bimodule with actions

a �m � b := η(a⊗k b)m, a, b ∈ A,m ∈M. (7.1.2)

Similarly, every right U -module N is also an A-bimodule via

a Im J b := nη(b⊗k a), a, b ∈ A,n ∈ N, (7.1.3)

although the category Uop-Mod for a left bialgebroid is usually not monoidal, in contrast to U -Mod. A
useful abbreviation in this section will be the following:

7.1.2 Definition If U is a left A-bialgebroid and M,N ∈ U -Mod are left U -modules, we denote the left
U -module M ⊗A N with U -action (2.3.2) by M ⊗N .
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As before, the notations from (7.1.2) and (7.1.3) apply in particular to U itself; let us repeat that as the
default case we consider U as an Ae-module using a �u � b, and otherwise we write e.g. IU� to denote
which actions are considered.

Since this will be repeatedly a necessary technical condition, we define:

7.1.3 Definition For an Ae-algebra U we call M ∈ U -Mod A-biprojective if both �M ∈ A-Mod and
M� ∈ Aop-Mod are projective modules.

7.2 Multiplicative Structures

7.2.1 D−(U) as a Suspended Monoidal Category
For any ring U , we denote the derived category of bounded above cochain complexes of left U -modules
by D−(U). As usual, we identify any M ∈ U -Mod with a complex in D−(U) concentrated in degree
0, and identify any bounded below chain complex P• with a bounded above cochain complex by putting
Pn := P−n.

If U is an A-biprojective left A-bialgebroid, then any projective P ∈ U -Mod is A-biprojective. Hence
the monoidal structure of U -Mod extends to a monoidal structure on D−(U) with unit object still given by
A and product being the total tensor product ⊗L = ⊗L

A (the A-biprojectivity of U -projectives is needed for
example to have [W, Lemma 10.6.2]).

Together with the shift functor T : D−(U) → D−(U), (TC)n = Cn+1, D−(U) becomes what in
[Sua] is called a suspended monoidal category. This just means that for all C,D ∈ D−(U), the canonical
isomorphisms

TC ⊗L D ' T (C ⊗L D) ' C ⊗L TD

given by the obvious renumbering make the diagrams

A⊗L TC

��

// TC

yytttttttttt

T (A⊗L C)

TC ⊗L A

��

// TC

yytttttttttt

T (C ⊗L A)

commutative, whilst making the diagram

TC ⊗L TD

��

// T (C ⊗L TD)

��
T (TC ⊗L D) // T 2(C ⊗L D)

anti-commutative (commutative up to a sign −1).

7.2.2 The Products ` and ◦
As a special case of the constructions from [Sua], for anyA-biprojective leftA-bialgebroid U and L,M,N ∈
U -Mod we define the cup product

` : ExtmU (A,M)× ExtnU (A,N)→ Extm+n
U (A,M ⊗N)

and the classical Yoneda product

◦ : ExtmU (N,M)× ExtnU (L,N)→ Extm+n
U (L,M).

The latter is just the composition of morphisms in D−(U) if one identifies

ExtnU (L,N) ' HomD−(U)(L, T
nN),

and
ExtmU (N,M) ' HomD−(U)(N,T

mM) ' HomD−(U)(T
nN,Tm+nM).
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The former is obtained as follows: given

ϕ ∈ ExtmU (A,M) ' HomD−(U)(A, T
mM),

ψ ∈ ExtnU (A,N) ' HomD−(U)(A, T
nN),

one defines ϕ ` ψ as the composition

A ' A⊗A
ϕ⊗ψ // TmM ⊗L TnN ' Tm(M ⊗L TnN) ' Tm+n(M ⊗L N)

// Tm+n(M ⊗N),

where the last map is the augmentation M ⊗L N → H0(M ⊗L N) ' TorA0 (M,N) ' M ⊗ N , or rather
Tm+n applied to this morphism in D−(U).

A straightforward extension of Theorem 1.7 from [Sua] now gives:

7.2.1 Theorem If U is an A-biprojective left A-bialgebroid, then we have

ψ ◦ ϕ = ϕ ` ψ = (−1)mnψ ` ϕ, ϕ ∈ ExtmU (A,A), ψ ∈ ExtnU (A,M)

as elements of Extm+n
U (A,M) ' Extm+n

U (A,A⊗M) ' Extm+n
U (A,M ⊗A).

In particular, through either of the products ExtU (A,A) becomes a graded commutative algebra over the
commutative subring HomU (A,A).

PROOF: This is proven exactly as in [Sua]. For the reader’s convenience we include one of the diagrams
involved. The unlabeled arrows are canonical maps coming from the suspended monoidal structure.

A

ϕ

��

// A⊗A

id⊗ϕ

��

ψ⊗id

((PPPPPPPPPPPPPPPPPPP

TmA

&&NNNNNNNNNNNNNNNNN
//

id

��

A⊗ TmA

��

ψ⊗id

((PPPPPPPPPPPPPPPPPPP TnM ⊗L A

id⊗ϕ

��
Tm(A⊗A)

xxqqqqqqqqqqqqqqqqq

Tm(ψ⊗id)

��

TnM ⊗L TmA

��wwnnnnnnnnnnnnnnnnnn

TmA

Tm(ψ)

��

Tm(TnM ⊗L A)

xxqqqqqqqqqqqqqqqqq

��

Tn(M ⊗L TmA)

wwnnnnnnnnnnnnnnnnnn

Tm+nM Tm+n(M ⊗L A)oo

The morphism ψ ◦ ϕ ∈ HomD−(U)(A, T
m+nM) is the path going straight down from A to Tm+nM , and

ψ ` ϕ is the one which goes clockwise round the whole diagram. All faces of the diagram commute except
the lower right square, which introduces a sign (−1)mn, so we get ψ ◦ ϕ = (−1)mnψ ` ϕ. The other
identity is shown with a similar diagram. 2

7.2.3 Tensoring Projectives
This paragraph is a small excursus about the projectivity of the tensor product of two projective objects of a
monoidal category. For example, U ⊗U ∈ U -Mod is not necessarily projective even for a bialgebra U over
a field A = k (so the A-projectivity of U or the exactness of ⊗ does not help). Here is a simple example (for
a detailed study of examples of categories of Mackey functors see [Lew]):
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7.2.2 Example Consider the bialgebra U = C[a, b, c] over A = k = C, with

∆(a) = a⊗ a, ∆(b) = a⊗ b+ b⊗ c, ∆(c) = c⊗ c,

ε(a) = 1, ε(b) = 0, ε(c) = 1.

Geometrically, this is the coordinate ring of the complex algebraic semigroup G of upper triangular 2 × 2-
matrices, and ∆ and ε are dual to the semigroup law G ×G → G and the embedding of the identity matrix
into G.

We prove that U⊗U ∈ U -Mod is not projective by considering the fibres of the semigroup lawG×G→
G. The fibre over a generic and hence invertible element is 3-dimensional, but over 0 it is 4-dimensional, and
this will imply our claim. We can use for example [Mat, Theorem 19 on p. 79]:

7.2.3 Theorem Let U ⊂ V be a flat extension of commutative Noetherian rings, p ⊂ V a prime ideal, and
q := U ∩ p. Then

dim(Vp) = dim(Uq) + dim(Vp ⊗U U(q)),

where dim denotes the Krull dimension of a ring, Vp is the localisation of V at p and U(q) := Uq/qUq is the
residue field of the localisation Uq.

Apply this to our example U ' ∆(U) ⊂ V := U ⊗ U : let p be the ideal of V generated by a ⊗C 1,
1⊗C a, b⊗C 1, 1⊗C b, c⊗C 1, 1⊗C c. Geometrically, V is the coordinate ring of C6 and Vp is the local ring in
0, so dim(Vp) = 6. Since 1 /∈ p, q = U ∩ p is proper, and it contains the ideal generated by ∆(a) = a⊗C a,
∆(b) = a⊗C b+ b⊗C c, ∆(c) = c⊗C c, which is maximal in U , so q ⊂ U is the ideal generated by a, b, c,
and Uq is the local ring of C3 at 0 with dim(Uq) = 3. The field U(q) is obviously C, and we can write
Vp ⊗U U(q) also as Vp/∆(q)Vp. Since ∆(q)Vp is contained in the ideal r generated in Vp by the elements
a ⊗C 1, 1 ⊗C c, we have dim(Vp/∆(q)Vp) ≥ dim(Vp/r). Now Vp/r is the local ring of C4 ⊂ C6 at 0 and
hence dim(Vp/r) = 4. In total, we obtain the strict inequality 3 + dim(Vp/∆(q)Vp) ≥ 3 + 4 = 7 > 6, and
hence V is not flat over U and in particular not projective.

For left Hopf algebroids the situation is, however, much simpler: notice that for any left A-bialgebroid U
and M ∈ U -Mod

IU ⊗Aop M � := U ⊗kM/span{a Iu⊗k m− u⊗k m � a |u ∈ U, a ∈ A,m ∈M}

is a left U -module by left multiplication on the first factor. Just as for M = U , there is a Galois map

βM : IU ⊗Aop M� → U ⊗M, u⊗Aop m 7→ u(1) ⊗A u(2)m,

and we have:

7.2.4 Lemma For any left A-bialgebroid U , the generalised Galois map βM is a morphism of U -modules.
If U is a left Hopf algebroid over A, then βM is bijective.

PROOF: The U -linearity of βM immediately follows from the fact that ∆ : U → U ×A U ⊂ U ⊗A U is
a homomorphism of algebras over Ae. Furthermore, if β is a bijection, then so is βM since we can identify
βM with β ⊗U idM , and then the inverse is simply given by β−1

M (u⊗A m) = u+ ⊗Aop u−m. 2

Using this one now obtains:

7.2.5 Theorem If U is a left Hopf algebroid over A and U� ∈ Aop-Mod is projective, then P ⊗ Q ∈
U -Mod is projective for all projectives P,Q ∈ U -Mod.

PROOF: By assumption, any projective module over U is also projective over Aop, and if ϕ : R→ S is any
ring map, then S ⊗R · : R-Mod→ S-Mod maps projectives to projectives. This shows that IU ⊗Aop U�

and hence (Lemma 7.2.4) U ⊗ U is projective. Since ⊗ = ⊗A commutes with arbitrary direct sums, P ⊗Q
is projective for all projectives P,Q. 2

7.2.6 Corollary If U is as in Theorem 7.2.5 and P ∈ D−(U) is a projective resolution of A ∈ U -Mod,
then so is P ⊗ P := Tot(P• ⊗ P•) = P ⊗L P .
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This leads to the traditional construction of `, given for A = k in [CarE, Chapter XI]: one fixes a
projective resolution P of A, and by the above, ExtU (A,M ⊗ N) is the total (co)homology of the double
(cochain) complex

C2
mn := HomU (Pm ⊗ Pn,M ⊗N).

Then ` is given as the composition of the canonical map⊕
m+n=p

ExtmU (A,M)⊗k ExtnU (A,N)

'
⊕

m+n=p
Hm(HomA(P•,M))⊗k Hn(HomA(P•, N))

→ Hp(
⊕

m+n=•
HomA(Pm,M)⊗k HomA(Pn, N)) = Hp(Tot(C1

••)),

where C1
mn := HomU (Pm,M)⊗k HomU (Pn, N), with the map

H(Tot(C1
••))→ H(Tot(C2

••)) ' ExtU (A,M ⊗N)

that is induced by the morphism of double complexes

C1
mn 3 ϕ⊗k ψ 7→ {x⊗ y 7→ ϕ(x)⊗ ψ(y)} ∈ C2

mn.

For the sake of completeness, let us finally remark that—as for A = k—one can in particular use the bar
complex to obtain a canonical resolution (cf. Theorem 6.2.3, where this is formulated for the case of a Hopf
algebroid):

7.2.7 Lemma (the bar complex revisited) For any left A-bialgebroid U , the complex of left U -modules

Barn U := ( IU� )⊗Aopn+1, v(u0 ⊗Aop · · · ⊗Aop un) := vu0 ⊗Aop · · · ⊗Aop un,

whose boundary map is given by

b′ : u0 ⊗Aop · · · ⊗Aop un 7→
n−1∑
i=0

(−1)iu0 ⊗Aop · · · ⊗Aop uiui+1 ⊗Aop · · · ⊗Aop un

+(−1)nu0 ⊗Aop · · · ⊗Aop ε(un) Iun−1,

is a contractible resolution of A ∈ U -Mod, with augmentation

ε : Bar0 U = U → A =: Bar−1 U.

If U� ∈ Aop-Mod is projective, then Barn U ∈ U -Mod is projective.

PROOF: All claims are straightforward: there is a contracting homotopy

s : Barn U → Barn+1 U, u0 ⊗Aop · · · ⊗Aop un 7→ 1⊗Aop u0 ⊗Aop · · · ⊗Aop un, n ≥ 0,

s : A = Bar−1 U → U = Bar0 U, a 7→ η(a⊗ 1),

and the projectivity of Barn U follows as in the proof of Theorem 7.2.5. 2

7.2.4 The Functor ⊗ : U -Mod× Uop-Mod→ Uop-Mod

Now we introduce the functor ⊗ mentioned in Theorem 7.1.1.

7.2.8 Lemma Let U be a left Hopf algebroid over A and let M ∈ U -Mod, P ∈ Uop-Mod be left and right
U -modules, respectively. Then the formula

(m⊗A p)u := u−m⊗A pu+ u ∈ U, m ∈M,p ∈ P, (7.2.1)

defines a right U -module structure on the tensor product

M ⊗A P := M ⊗k P/span{m � a⊗k p−m⊗k a I p | a ∈ A}. (7.2.2)
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If N is any other (left) U -module, then the canonical isomorphism

(M ⊗N)⊗A P 'M ⊗A (N ⊗A P ) (7.2.3)

of A-bimodules is also an isomorphism in Uop-Mod. Finally, the tensor flip

(M ⊗A P )⊗U N → P ⊗U (N ⊗AM), m⊗A p⊗U n 7→ p⊗U n⊗A m

is an isomorphism of k-modules.

PROOF: To show firstly that (7.2.1) is well-defined over A, we compute(
m⊗A (a I p)

)
u = u−m⊗A pη(1⊗ a)u+ = u−m⊗A p(u+ � a)

= (a Iu−)m⊗A pu+ = u−
(
η(1⊗ a)m

)
⊗A pu+

=
(
(m � a)⊗A p

)
u,

where (2.2.6) and the action properties were used. Together with (7.2.2) this also proves well-definedness of
(7.2.1) with respect to the presentation of u+ ⊗Aop u−. With the help of (2.2.9), one immediately sees that
for u, v ∈ U we have(

m⊗A p
)
(uv) = (uv)−m⊗A p(uv)+ = v−u−m⊗A pu+v+ =

(
(m⊗A p)u

)
v,

since P and M were right and left U -modules, respectively. As a conclusion, M ⊗A P ∈ Uop-Mod.
Equation (7.2.3) is a direct consequence of the associativity of the tensor product of A-bimodules and of
(2.2.8).

For the last part one has to check that the flip is well-defined: we have

η(1⊗ a)m⊗A p⊗U n 7→ p⊗U n⊗A η(1⊗ a)m = p⊗U η(1⊗ a)(n⊗A m)

= pη(1⊗ a)⊗U (n⊗A m),

which is what m⊗A pη(1⊗ a)⊗U n is mapped to. Secondly, we have

m⊗A p⊗U un 7→ p⊗U un⊗A m = p⊗U u+(1)n⊗A u+(2)u−m

= p⊗U u+(n⊗A u−m) = pu+ ⊗U n⊗A u−m,

which is what u−m⊗A pu+ ⊗U n = (m⊗A p)u⊗U n is mapped to. 2

7.2.9 Definition We denote the Uop-module constructed above by M ⊗ P .

Thus an unadorned ⊗ refers from now on either to the monoidal product on U -Mod or to the action of
U -Mod on Uop-Mod just defined. For example, (7.2.3) would now simply be written as (M ⊗N)⊗ P '
M ⊗ (N ⊗ P ).

7.2.10 Example Let (A,L) be a Lie-Rinehart algebra, M a left and N a right V L-module, respectively (or,
in the terminology of [Hue1, Hue3], left and right (A,L)-modules, see 4.2.5). Using (4.2.4), one obtains the
right V L-module structure on M ⊗A N from formula (2.4) in [Hue3, p. 112]:

(m⊗A n)X = m⊗A nX −Xm⊗A n, m ∈M, n ∈ N, X ∈ L.

If we again assume that U isA-biprojective, then the above results extend directly to the derived category
D−(Uop): we obtain a functor

⊗L = ⊗L
A : D−(U)×D−(Uop)→ D−(Uop),

and for all M,N ∈ D−(U), P ∈ D−(Uop) we have canonical isomorphisms

(M ⊗L N)⊗L P 'M ⊗L (N ⊗L P ), (M ⊗L P )⊗L
U N ' P ⊗L

U (N ⊗L M). (7.2.4)
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7.2.5 The Products a and •
These products are dual to ` and ◦. There is a Yoneda one

• : ExtmU (L,M)× TorUn (N,L)→ TorUn−m(N,M)

which exists for any ring U and L,M ∈ U -Mod, N ∈ Uop-Mod: an element

ϕ ∈ ExtmU (L,M) ' HomD−(U)(L, T
mM)

defines a morphism in D−(Z),

N ⊗L
U L→ N ⊗L

U T
mM, x⊗U y 7→ x⊗U ϕ(y),

and ϕ • · is the induced map in (co)homology

TorUn (N,L) ' H−n(N ⊗L
U L)

H−n(id⊗ϕ)−−−−−−−→ H−n(N ⊗L
U T

mM) ' Hm−n(N ⊗L
U M) ' TorUn−m(N,M).

For M ∈ U -Mod, N ∈ Uop-Mod as before, the cap product

a : ExtmU (A,M)× TorUn (N,A)→ TorUn−m(M ⊗N,A)

involves the functor ⊗ from the previous paragraph, so for this we want U to be an A-biprojective left Hopf
algebroid over A again. Similarly as for •,

ϕ ∈ ExtmU (A,M) ' HomD−(U)(A, T
mM)

defines a morphism in D−(k),

N ⊗L
U A ' N ⊗L

U (A⊗A)
id⊗id⊗ϕ−−−−−→ N ⊗L

U (A⊗L TmM) ' N ⊗L
U (TmA⊗L M) ' (M ⊗L N)⊗L

U T
mA

−−−−−→ (M ⊗N)⊗L
U T

mA,

where the last ' in the second line is induced by the tensor flip as in the derived version (7.2.4) of
Lemma 7.2.8, and the morphism from the second to the third line is similarly as in the definition of `
induced by the morphism M ⊗L N → M ⊗N in D−(Uop) that takes zeroth cohomology. Passing now to
cohomology, we obtain ϕ a · : TorUn (N,A)→ Torn−m(M ⊗N,A).

More explicitly, if P ∈ D−(U) is a projective resolution of A, then a is induced by the morphism

B1
ij 3 n⊗U (x⊗A y) 7→ {ϕ 7→ (ϕ(y)⊗A n)⊗U x} ∈ B2

ij

from the double complex
B1
ij := N ⊗U (Pi ⊗A Pj),

whose total homology is TorU (N,A), to the double complex

B2
ij := Homk(HomU (Pj ,M), (M ⊗N)⊗U Pi),

whose homology has a natural map to Homk(ExtU (A,M),TorU (M ⊗N,A)).
In direct analogy with Theorem 7.2.1 we obtain:

7.2.11 Theorem If U is an A-biprojective left Hopf algebroid over A, then we have

ϕ • (x⊗U y) = ϕ a (x⊗U y), ϕ ∈ ExtmU (A,A), x⊗U y ∈ N ⊗L
U A

as elements of N ⊗L
U A ' (A⊗N)⊗L

U A.
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7.3 Duality and the Proof of Theorem 7.1.1

7.3.1 The Underived Case
In the special case that A is finitely generated projective itself, Theorem 7.1.1 reduces to standard linear
algebra. We go through this case first since it is both instructive and will be used in the proof of the general
case. For the reader’s convenience we include full proofs.

7.3.1 Lemma Let U be a ring, A ∈ U -Mod be finitely generated projective, and let A∗ be HomU (A,U)
with its canonical Uop-module structure.

1. A∗ is finitely generated projective, and if e1, . . . , en are generators of A, then there exist generators
e1, . . . , en ∈ A∗ with ∑

i

ei(a)ei = a,
∑
i

eiα(ei) = α

for all a ∈ A and α ∈ A∗. The element

ω :=
∑
i

ei ⊗ ei ∈ A∗ ⊗U A

is independent of the choice of the generators ei, ej .

2. For all Uop-modules M , the assignment

δ(m⊗ a)(α) := mα(a), m ∈M,a ∈ A,α ∈ A∗

uniquely extends to an isomorphism of abelian groups

δ : M ⊗U A→ HomUop(A∗,M).

3. One has (A∗)∗ ' A and A∗ ⊗U M ' HomU (A,M) for M ∈ U -Mod.

4. The mapˆ : HomU (A,A) → HomUop(A∗, A∗), ϕ̂(α) := α ◦ ϕ is a ring anti-isomorphism (with
respect to the composition ◦).

PROOF: Since A is projective, there is a splitting ι : A→ Un of

π : Un → A, (u1, . . . , un) 7→
∑
i

uiei.

Hence Un ' A⊕A⊥ for some A⊥ ∈ U -Mod. Dually, this gives A∗ ⊕ (A⊥)∗ = (Un)∗ ' Un, whence A∗

is finitely generated projective. The ei can be defined as the composition of ι with the projection of Un on
the i-th summand. This proves the first parts of 1. For 2. just note that

HomUop(A∗,M) 3 ϕ 7→
∑
i

ϕ(ei)⊗ ei ∈M ⊗U A

inverts δ. Since ω = δ−1(idA∗), it does indeed not depend on the choice of generators. 3. now follows from
1. and 2. For 4., we note that

ϕ̂(α) = α ◦ ϕ =
∑
i

eiα(ϕ(ei)) = δ(
∑
i

ei ⊗ ϕ(ei))(α),

that is, we have ϕ̂ = δ(
∑
i e
i ⊗ ϕ(ei)). Thusˆ is the composition of the isomorphism HomU (A,A) →

A∗ ⊗U A from 3. with the isomorphism δ. Finally, we have (ϕ̂ ◦ ψ)(α) = α ◦ ϕ ◦ ψ = ψ̂(α ◦ ϕ) =

ψ̂(ϕ̂(α)) = (ψ̂ ◦ ϕ̂)(α). 2

As in the introduction, let us abbreviate in the situation of this theorem

H0(M) := HomU (A,M), H0(N) := N ⊗U A

for M ∈ U -Mod, N ∈ Uop-Mod, and call ω ∈ H0(A∗) the fundamental class of (U,A). Then, for
M = A, claim 3. says that we have an isomorphism

· • ω : H0(A)→ H0(A∗), ϕ 7→
∑
i

ei ⊗ ϕ(ei). (7.3.1)

Using Lemma 7.2.8 we can upgrade this to the underived case of Theorem 7.1.1:
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7.3.2 Lemma Let U be a left Hopf algebroid over A and assume A is finitely generated projective as a
U -module. Then the cap product with the fundamental class ω ∈ H0(A∗) = A∗ ⊗U A defines for all
M ∈ U -Mod an isomorphism

· a ω : H0(M)→ H0(M ⊗A∗).

PROOF: We have ϕ a ω =
∑
i(ϕ(1)⊗A ei)⊗U ei, and Lemma 7.2.8 identifies

H0(M ⊗A∗) = (M ⊗A∗)⊗U A ' A∗ ⊗U (A⊗M) ' A∗ ⊗U M.

In this chain of identifications, ϕ a ω is mapped to

ϕ a ω 7→
∑
i

ei ⊗U (ei ⊗A ϕ(1)) 7→
∑
i

ei ⊗U (eiϕ(1)) =
∑
i

ei ⊗U ϕ(ei)

which is identified with ϕ under the isomorphism HomU (A,M) ' A∗⊗UM given by ϕ 7→
∑
i e
i⊗U ϕ(ei),

as in (7.3.1). The claim follows. 2

7.3.2 The Derived Case
It remains to throw in some homological algebra to obtain Theorem 7.1.1 in general. To shorten the presen-
tation, we define:

7.3.3 Definition A module A over a ring U is perfect if it admits a finite resolution by finitely generated
projectives. We call such a module a duality module if there exists d ≥ 0 such that ExtnU (A,U) = 0 for all
n 6= d. In this case we abbreviate A∗ := ExtdU (A,U) and call d the dimension of A.

The main remaining step is to prove a derived version of Lemma 7.3.1. One could use a result of Neeman
by which A ∈ U -Mod is perfect if and only if HomU (A, ·) commutes with direct sums [Ke, N], or the
Ischebeck spectral sequence, which degenerates at E2 if A is a duality module [Isch, Kr, Sk]. However, we
include a more elementary and self-contained proof.

7.3.4 Theorem Let A ∈ U -Mod be a duality module of dimension d.

1. The projective dimension of A ∈ U -Mod is d.

2. A∗ is a duality module of the same dimension d.

3. If P• → A is a finitely generated projective resolution of length d, then P ∗d−• = HomU (Pd−•, U) is a
finitely generated projective resolution of A∗ and for all Uop-modules M the canonical isomorphism

δ : M ⊗U Pi → HomU (P ∗i ,M), m⊗U p 7→ {α 7→ mα(p)}

induces a canonical isomorphism

TorUi (M,A)→ Extd−iUop(A∗,M).

4. There is a canonical isomorphism (A∗)∗ ' A.

PROOF: Let P• → A be a finitely generated projective resolution of finite lengthm ≥ 0 (which exists since
A is perfect). Then the (co)homology of

0→ P ∗0 → . . .→ P ∗m → 0, P ∗n = HomU (Pn, U)

is Ext•U (A,U), so by assumption we have m ≥ d, and the above complex is exact except at P ∗d where the
homology is A∗ = ExtdU (A,U). Furthermore, all the P ∗n are finitely generated projective since the Pn are
(Lemma 7.3.1).

Let πi be the map P ∗i → P ∗i+1 and put K := kerπd+1. By construction,

0→ K → P ∗d+1 → . . .→ P ∗m → 0 (7.3.2)

is exact. If one compares this exact sequence with the sequence

. . .→ 0→ 0→ P ∗m → P ∗m → 0
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using Schanuel’s lemma (see [McCRob, 7.1.2]), one obtains that K is projective.
The exactness of P ∗• at P ∗d+1 gives K = imπd, and by the projectivity of K, the map πd : P ∗d → K ⊂

P ∗d+1 splits so that P ∗d ' K ⊕K⊥, K⊥ := kerπd. In particular, both K and K⊥ are finitely generated.
It follows from all this that the complex

0→ P ∗0 → . . .→ P ∗d−1 → K⊥ → 0 (7.3.3)

is a finitely generated projective resolution of A∗: since imπd−1 ⊂ P ∗d is contained in kerπd = K⊥, it is
still exact at P ∗d−1, and the homology at K⊥ is the homology of P ∗• at P ∗d , that is, A∗.

Since (7.3.2) is a finitely generated projective resolution of 0 and as a complex P ∗d−• is a direct sum of
(7.3.3) and (a shift of) (7.3.2), we also know that Ext•Uop(A∗,M) is the (co)homology of HomU (P ∗d−•,M)
for any M ∈ Uop-Mod. By Lemma 7.3.1, this is isomorphic to M ⊗U Pd−• as a chain complex via the
isomorphism given in 3., and the homology of this complex is TorUd−•(M,A). This proves 3. The special
case M = U implies the remaining claims. 2

Finally, assume that in the situation of the above theorem, U is anA-biprojective left Hopf algebroid over
A. Since P is a projective resolution, we haveM⊗UP 'M⊗L

UP and HomU (P ∗,M) ' RHomU (P ∗,M),
and δ gives an isomorphism between the two. The fundamental class is defined to be

ω := δ−1(idA∗) ∈ A∗ ⊗L
U A ' P ∗ ⊗U A ' A∗ ⊗U P,

and Theorem 7.3.4 immediately gives:

7.3.5 Corollary If e1, . . . , en and ẽ1, . . . ẽn are generators of A and of A∗, respectively, then there are
e1, . . . , en ∈ P ∗0 and ẽ1, . . . , ẽn ∈ Pd such that

ω =
∑
i

ei ⊗U ei =
∑
i

ẽi ⊗U ẽi,

and δ is given by the Yoneda product · • ω.

Theorem 7.1.1 follows now as in the underived case (Lemma 7.3.2), working with RHomU (A,M) and
(M ⊗L A∗) ⊗L

U A instead of H0(M) = HomU (A,M) and H0(M ⊗ A∗) = (M ⊗ A∗) ⊗U A: using
Theorem 7.2.11 and (7.2.4) one gets

(M ⊗L A∗)⊗L
U A ' A∗ ⊗L

U (A⊗L M) ' A∗ ⊗L
U M

' P ∗ ⊗L
U M ' RHomU (P,M)

' RHomU (A,M),

where we hide the reindexing of the complexes for the sake of better readability (so P ∗ stands for P ∗d−•,
and both RHomU (P,M) and RHomU (A,M) are reindexed in the same way). This leads to a convergent
spectral sequence

TorUp (TorAq (M,A∗), A)⇒ Extd−p−qU (A,M),

and under the last assumption of Theorem 7.1.1 (i.e., TorAq (M,A∗) = 0 for q > 0) this spectral sequence
degenerates to the claimed isomorphism.





Appendix

This appendix contains a collection of well-known facts repeatedly used throughout the text.

A.1.1 Reminder on the Behaviour of the Functors Hom and ⊗ on Bimodules The material in this para-
graph is standard (confer e.g. [CarE, M]) but still may be of some help to maintain a certain overview in
the abundance of module structures in the preceding chapters. Compare the conventions at the end of the
Introduction (page 9) for notation.

Let R,S, T be any three rings.

(i ) If two left R-modules RM,RN also happen to additionally carry S-actions and T -actions from left
or right, respectively, the space Hom(R,−)(M,N) carries the following explicit (bi)module structures.
For any f ∈ Hom(R,−)(M,N), m ∈M, s ∈ S, t ∈ T one has:

(RMS ,RNT ) =⇒ S[Hom(R,−)(M,N)]T , (sft)(m) := [f(ms)]t
(R−SM,R−TN ) =⇒ T[Hom(R,−)(M,N)]S , (tfs)(m) := t[f(sm)].

(ii ) For the situation MR, NR of two right R-modules that are also equipped with additional left or
right S-actions and T -actions, respectively, the space Hom(−,R)(M,N) carries the following explicit
(bi)module structures. For each g ∈ Hom(−,R)(M,N), m ∈M, s ∈ S, t ∈ T one has:

(SMR, TNR) =⇒ T[Hom(−,R)(M,N)]S , (tgs)(m) := t[g(sm)]
(MR−S , NR−T ) =⇒ S[Hom(−,R)(M,N)]T , (sgt)(m) := [f(ms)]t.

On tensor products of bimodules, one has the following bimodule structures:

(SMR,RNT ) =⇒ S[M ⊗R N ]T , s(m⊗ n)t := sm⊗ nt, (A.1.4)

which may be generalised to n modules M1, . . . ,Mn by

(SM
1
R , . . . ,RM

n
T ) =⇒ S[M

1 ⊗R . . .⊗RMn]T , s(m1 ⊗ . . .⊗mn)t := sm1 ⊗ . . .⊗mnt.

A.1.2 The Dual Basis Lemma Unlike a free module, a projective module may not have a basis, but it always
has a ‘projective coordinate system’ with similar properties. (see e.g. [AnFu]).

A.1.3 Definition Let R be any ring, P an R-module, and I an index set. A pair of indexed sets {ei}i∈I ∈ P
and {ei}i∈I ∈ HomR(P,R) is called a dual basis for P in case for all x ∈ P

(i ) ei(x) = 0 for almost all i ∈ I ,

(ii ) x =
∑
I e

i(x)ei.

A.1.4 Lemma (i ) P is projective over R iff it has a dual basis.

(ii ) P is finitely generated projective iff there exist e1, . . . , en ∈ P (a generating set) and e1, . . . , en ∈
HomR(P,R) such that for each x ∈ P

x =

n∑
i=1

ei(x)ei.
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Soc., Zürich, 2006, pp. 151–190.

[KhR1] Masoud Khalkhali and Bahram Rangipour, A new cyclic module for Hopf algebras, K-Theory 27 (2002), no. 2,
111–131.

[KhR2] , Cyclic cohomology of (extended) Hopf algebras, Noncommutative geometry and quantum groups
(Warsaw, 2001), Banach Center Publ., vol. 61, Polish Acad. Sci., Warsaw, 2003, pp. 59–89.

[KhR2] , Invariant cyclic homology, K-Theory 28 (2003), no. 2, 183–205.

[KhR3] , Para-Hopf algebroids and their cyclic cohomology, Lett. Math. Phys. 70 (2004), no. 3, 259–272.

[KhR4] , A note on cyclic duality and Hopf algebras, Comm. Algebra 33 (2005), no. 3, 763–773.

[Kos] Yvette Kosmann-Schwarzbach, Exact Gerstenhaber algebras and Lie bialgebroids, Acta Appl. Math. 41 (1995),
no. 1-3, 153–165, Geometric and algebraic structures in differential equations.

[KowKr] Niels Kowalzig and Ulrich Krähmer, Duality and products in algebraic (co)homology theories, (2008), preprint
arXiv:0812.4312.

[KowPo] Niels Kowalzig and Hessel Posthuma, The cyclic theory of Hopf algebroids, (2009), preprint
arXiv:0904.4736.



142 BIBLIOGRAPHY
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