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I. From arithmetic to algebra and geometry

Basic definition of arithmetic:
Study of

N ⊂ Z ⊂ Q
endowed with their natural structures{
• addition,
• multiplication,

⇒ {• Z is a commutative ring,
• Q is the fraction field of Z,

• induced notion of prime number,

• order relation,

• induction principle which isany subset of N which contains 0
and is stable by the map n 7→ n + 1
is equal to N.
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Z in the context of commutative rings:
Z is an object of the category consisting in

objects = commutative rings,
morphisms = homomorphisms of commutative rings,
composition law = composition of maps.

Reminder. – A category C consists in

• a collection Ob(C) of objects,
• for any pair of objects X ,Y, a set Hom(X ,Y )

whose elements are called “morphisms” or “arrows”
X u−−→ Y or u : X −→ Y ,

• for any triple of objects, a composition law{
Hom(X ,Y )× Hom(Y ,Z ) −→ Hom(X ,Z ) ,

(X f−→ Y ,Y
g−−→ Z ) 7−→ (X

g◦f−−−→ Z )

such that
• h ◦ (g ◦ f ) = (h ◦ g) ◦ f for any X f−→ Y

g−−→ Z h−−→W,

• any object X has a “identity morphism” X idX−−−→ X verifying
idX ◦ f = f , ∀ f : Y → X, and g ◦ idX = g, ∀g : X → Y.
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A characterization of Z in the category of commutative rings:
Z is an “initial” object of the category of commutative rings.
Reminder. –
• An initial object [resp. terminal object] of a category C

is an object ∅ [resp. 1] of C such that,
for any object X of C, there exists a unique morphism

∅ −→ X [resp. X → 1] .
• If a category C has an initial object [resp. terminal object],

it is unique up to unique “isomorphism”.
• An isomorphism in a category C is a morphism

f : X −→ Y
such that there exists a (unique) reverse morphism

g = f−1 : Y −→ X
verifying g ◦ f = idX and f ◦ g = idY .

Remark. – (N,0, •+ 1) is an initial object of the category of
sets N endowed with an element 0 ∈ N and a map S : N → N.
This is the induction principle.
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Commutative rings of finite presentation:

Definition. –
A commutative ring A is called “finitely presentable”
if it can be defined by a finite family
of generators and relations:

A ∼= Z[T1, · · · ,Tk ]/(P1, · · · ,Pr )

‖
ideal generated by r polynomials

Lemma. –
Any commutative ring can be written
as a filtering colimit
of finitely presentable commutative rings.
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Basic definition of algebraic number theory:

Study of
• finitely presentable commutative rings,

• the morphisms between such rings.

Remark. –
For any commutative ring A, a morphism

Z[T1, · · · ,Tk ]/(P1, · · · ,Pr ) −→ A

is a family of elements
a1, · · · ,ak ∈ A

verifying the equations P1(a1, · · · ,ak ) = 0 ,
· · · · · ·

Pr (a1, · · · ,ak ) = 0 .
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A key remark relating arithmetic and geometry:

The category of commutative rings contains

• not only Z and finitely presentable Z[T1, · · · ,Tk ]/(P1, · · · ,Pr ),
• but also rings of the form

C[T1, · · · ,Tk ]/(P1, · · · ,Pr )
which can be understood as the
rings of polynomial functions on affine complex algebraic varieties

V ↪→ Ck

defined by polynomial equations
Pi(T1, · · · ,Tk ) = 0 , 1 ≤ i ≤ r .

Remark. –
A (C-valued) point of such a variety is
a morphism C[T1, · · · ,Tk ]/(P1, · · · ,Pr )→ C.

On the other hand:
A point of a set V can be seen as a map

{•} −→ V .
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Algebraic Gelfand duality:
Definition. – The category of affine complex algebraic varieties is defined by
• objects VA = commutative rings A endowed with a structure morphism

C −→ A
which makes A “finitely presentable” over C,

• morphisms of varieties VA −→ VB = morphisms of commutative rings

B −→ A
which respect the structure morphisms:

B // A

C

__ ??

Remark. – In particular

• VC = point variety,
• points of a variety VA are morphisms

VC −→ VA .
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The category of affine schemes:

Reminder. – The “opposite” Cop of a category C is defined as
• Ob(Cop) = Ob(C),
• for any objects X ,Y,

HomCop(X ,Y ) = HomC(Y ,X )

(X f op

−−→ Y )← [ (Y f−→ X )

• for any morphisms (Z
g−−→ Y f−→ X ) of C,

(f ◦ g)op = gop ◦ f op .

Definition. – The opposite of the category of commutative rings
is the category Aff of “affine schemes”.

Any commutative ring A
corresponds by definition to an affine scheme Spec(A)
which represents a “geometric way” to think about A.
Spec(Z) in particular
is the “geometric representation” of Z.
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Notions of points:
Points in a category:

Definition. – If X ,V are objects of a category C,
a V -valued point of X is a morphism of C

V −→ X .
The set of V -valued points of X can be denoted

X (V ) = Hom(V ,X ) .

Remarks. –
• Any morphism X → Y induces a map

X (V ) −→ Y (V ) .

• Any morphism V ′ → V induces a map
X (V ) −→ X (V ′) .

Meaningful examples. – If C is a “geometric” category
(ex: smooth manifolds, analytic varieties, algebraic varieties),
an S-valued point of a geometric object X

S −→ X is a “S-parametrized” point.
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Determination of objects by their points:

Yoneda’s lemma. –
Let C = category,
Ĉ = category of “presheaves”

P :



X object of C 7−→ P(X ) = set,

(X u−→ Y ) morphism of C 7−→ (P(Y )
P(u)−−−→ P(X )) = map,

such that
P(v ◦ u) = P(u) ◦ P(v), ∀u, v ,
P(idX ) = idP(X), ∀X ,

y = “Yoneda functor” defined by

X 7−→ y(X ) = presheaf of points of X{
V 7−→ y(X )(V ) = X (V ) ,
(V ′ → V ) 7−→ (X (V )→ X (V ′)) .

Then
y : C −→ Ĉ

is “fully faithful”, meaning that for any X ,Y = objects of C
HomC(X ,Y )

∼−−→ HomĈ(y(X ), y(Y )) .
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Corollary. –
In an arbitrary category C,
any object X is determined
by the functor of its points

y(X ) =

{
V 7−→ X (V ) ,
(V ′ → V ) 7−→ (X (V )→ X (V ′)) .

up to unique isomorphism of C.

Definition. –
If C = category,
an object P of Ĉ, i.e. a presheaf,
is called “representable”
if it is isomorphic to some y(X ), X ∈ Ob(C).

Consequence of Yoneda’s lemma:
If P is “representable”,
its “representing object” X in C
is determined up to unique isomorphism of C.
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Categorical points of affine schemes:

• If X = Spec(A)
and V = Spec(B),
a V -valued point of X is a ring homomorphism

A −→ B .

• In particular, if
A = Z[T1, · · · ,Tk ]/(P1, · · · ,Pr ) ,

a V -valued point of X is a solution

(b1, · · · ,bk ) ∈ Bk

of the family of polynomial equations

Pi(b1, · · · ,bk ) = 0 , 1 ≤ i ≤ r .

• Interpretation:
In this context, “Yoneda’s lemma” yields
some kind of duality between
systems of equations and systems of solutions.
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Algebraic and geometric points of affine schemes:

Definition. –
An algebraic point of an affine scheme X = Spec(A)
is a categorical point

Spec(K ) −→ X = Spec(A)

valued in a field K .

Definition. –
A geometric point of X = Spec(A) is an algebraic point

Spec(K ) −→ X = Spec(A)

valued in a field K
which is algebraically closed.
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Topological points of (affine) schemes:

• From schemes to toposes:

− To any (affine) scheme X
one associates its “Zariski topos”

Ô(X )Zar.

− To any morphism of (affine) schemes X f−→ Y ,
one associates a “morphism of toposes”

Ô(X )Zar −→ Ô(Y )Zar.

• Points of toposes:

− For any topos E ,
one can define the category of its “points”

pt(E) .
− Any morphism of toposes E ′ −→ E

defines a “functor” between categories of points
pt(E ′) −→ pt(E) .
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Characterization of topological points of affine schemes:

Proposition. –

(i) Let X = Spec(A) be an affine scheme.
Then the category pt(X )
of points of its Zariski topos is{

objects = prime ideals p ⊂ A,
morphisms (p → q) = inclusion relations q ⊆ p.

(ii) For any morphism of affine schemes

X = Spec(A) −→ Y = Spec(B)
corresponding to a ring homomorphism

B u−−→ A ,
the associated functor

pt(X ) −→ pt(Y )
is defined by

p 7−→ u−1(p)
‖ ‖

prime ideal of A prime ideal of B.
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Algebraic and topological points:

• Any algebraic point of X = Spec(A)

Spec(K ) −→ Spec(A)
defines a topological point

p = Ker(A −→ K ) .

• Any topological point of X = Spec(A)

p ⊂ A
defines an algebraic point

Spec(κp) −→ X = Spec(A)
where

κp = Frac(A/p) = “residue field” at p.

Most important example: The points of Spec(Z) are

• prime integers p, with residue fields

Fp = Z/pZ ,
• the ideal (0), with residue field

Q .
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The notion of dimension of a scheme:

Definition. – The dimension d of a scheme X
is the maximum length of a sequence of morphisms

p0 −→ p1 −→ · · · −→ pd

in the category of its topological points pt(X ).

Remark. –
If X = Spec(A), p0 −→ p1 −→ · · · −→ pd
is a decreasing sequence of prime ideals of A

p0 ⊃ p1 ⊃ · · · ⊃ pd .

Key examples. –

• If K is a field,
dim(Spec(K [T1, · · · ,Td ])) = d .

• One has dim(Spec(Z)) = 1 ,
which means that Spec(Z) is a curve!

• More generally,
dim(Spec(Z[T1, · · · ,Td ])) = d + 1 .
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Families of scheme morphisms: open and closed morphisms

Definition. – A morphism of affine schemes

Spec(B) −→ Spec(A)
is called “open” if B is deduced from A
by formally inverting some element f ∈ A

A[X ]/(f · X − 1) ∼−−→ B .

Remark. – In that case, there is an induced bijection

{primes ideals of B}
∼−−→ { prime ideals of A

which do not contain f

}
.

Definition. – A morphism of affine schemes

Spec(B) −→ Spec(A)
is called “closed” if B is a quotient of A

A/I ∼−−→ B
by some ideal I ⊆ A.
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Families of scheme morphisms: finite morphisms

Definition. –
A morphism of affine schemes

Spec(B) −→ Spec(A)
is called “finite”
if B, considered as a module over A,
is finitely generated.

Remarks. –
• Any “closed” morphism is “finite”.
• For any finite morphism

Spec(B)
p−−→ Spec(A) ,

its fiber
p−1(x)

over any topological, geometric or algebraic point
x of Spec(A)

is finite.
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Families of scheme morphisms: flat morphisms

Definition. –
A module M over a commutative ring A
is called “flat” if, for any morphism of A-modules

N1
u−−→ N2 ,

the induced morphism

M ⊗A Ker(u) −→ Ker(M ⊗A N1 −→ M ⊗A N2)

is an isomorphism.

Definition. –
A morphism of affine schemes

Spec(B) −→ Spec(A)
is called “flat”
if B, considered as a module over A, is flat.

Example. –
Any open morphism is flat.
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Families of scheme morphisms: smooth and étale morphisms

Definition. – A morphism of affine schemes

Spec(B) −→ Spec(A)
is called “smooth of relative dimension d” if
(1) it is flat,
(2) it is finitely presentable

A[T1, · · · ,Tk ]/(P1, · · · ,Pr )
∼−−→ B ,

(3) considering the matrix of partial derivatives(
∂Pi

∂Tj

)
1≤i≤r
1≤j≤k

,

its (k − d + 1)× (k − d + 1)-minors are 0 in A[T1, · · · ,Tk ]/(P1, · · · ,Pr ),
and its (k − d)× (k − d)-minors generate the maximal ideal (1).

Definition. – A morphism is “étale” if it is smooth of dimension 0.

Example. – A morphism Spec(A[X ]/P(X ))→ Spec(A)
is “étale” if and only if

(P,P ′) = A[X ] .
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Quick reminder on categories of sheaves:
Reminder. –
(i) Any “Grothendieck topology” J on a category C

defines a full subcategory of J-sheaves

ĈJ ↪→ Ĉ =


category of presheaves P
Ob(C) 3 X 7→ set P(X )

(X u−→ Y ) 7→ map P(Y )→ P(X )

 .
(ii) The embedding functor j∗ : ĈJ ↪→ Ĉ

has a “left-adjoint” called the “sheafification functor”

j∗ : Ĉ −→ ĈJ

verifying j∗ ◦ j∗(F )
∼−→ F for any J-sheaf F .

Remarks. –
• There is an associated “canonical functor”
` = j∗ ◦ y : C Yoneda−−−−→ Ĉ sheafification−−−−−−−→ ĈJ .

• If C y−→ Ĉ factorises as C `−→ ĈJ
� � j∗ // Ĉ, J is called “subcanonical”.

• If K is a topology finer than J, we have ĈK ↪→ ĈJ ↪→ Ĉ.
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Topologies on the category of schemes:

Definition. –
The Zariski [resp. étale, resp. flat] topology
on the category of affine schemes

Aff

is defined by calling a sieve on an object X
a “covering sieve”

if it contains a finite family of morphisms

Xi −→ X , 1 ≤ i ≤ k
such that
(1) each Xi → X is open [resp. étale, resp. flat].
(2) any topological point of X is an image

of a topological point of at least one Xi .

Remark. –
We have the refinement ordering of topologies

Zariski ⊂ étale ⊂ flat.
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Sheaf properties of representables:
Proposition. –
The Grothendieck topologies on Aff

Zariski, étale, flat
are “subcanonical”, so that

y : Aff �
� Yoneda // Âff

factorises as

Aff �
� ` // (̂Aff)flat

� � // (̂Aff)étale
� � // (̂Aff)Zariski

� � // Âff .

Remark. –
As a consequence, a presheaf

P =

{
X = Spec(A) 7−→ set P(X ) ,

(X u−→ Y ) 7−→ map P(Y )
P(u)−−−→ P(X ) ,

can be representable only if it is a sheaf
for the flat, and a fortiori étale and Zariski, topology.
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The general notion of scheme:
Definition. – A scheme is an object of

(̂Aff)flat
� � // (̂Aff)étale

� � // (̂Aff)Zariski
� � // Âff

which can be written as a colimit of a diagram

lim−→
D

y(Xd )

of representable objects y(Xd ), Xd = Spec(Ad ),
whose transition morphisms

Xd ′ −→ Xd
are open morphisms.

Proposition. –
Finite products X1 × · · · × Xn
and fiber products X ×S Y
are well-defined in the category of schemes

Sch

as well as in the category of affine schemes

Aff .
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Projective schemes:

Lemma. –
For any integer d ≥ 0, the sheafification of the presheaf

X = Spec(A) 7−→ (Ad+1 − {0})/A×

for the Zariski (or, equivalently, étale or flat) topology
is a scheme

Pd

called the projective space of dimension d.

Definition. –
A morphism of schemes

X −→ S

is called “projective” if it can be factorized as

X � � // S × Pd −→ S
for some d ≥ 0 and some closed morphism

X � � // S × Pd .
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“Meaningful” functions in algebraic geometry:

• Is it natural to consider some numerical functions
in algebraic geometry?

Yes, if they are defined from geometry.

• What could be their domains?→ Possible answer: sets of points s of some schemes S.

• How could we imagine to associate numerical values
to the points s of some scheme S?→ Possible answer: consider the fibers

X ×S s

of some schemes X → S,
and associate numbers to these fibers.
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Counting functions for finitely presentable schemes:
Lemma. –

(i) If S is a scheme finitely presentable over Z,
closed topological points of S
are topological points s whose residue field κs is finite.

(ii) If X → S is projective (or more generally finitely presentable),
then for any closed point s of S with κs = Fqs , the set

(X ×S s)(Fqs)

is finite, as well as more generally the sets

(X ×S s)(Fqn
s
)

(where Fqn
s
= unique finite extension of Fqs of dimension n).

Consequence. –
One can consider as “meaningful functions”

s 7−→ cardinality #(X ×S s)(Fqs)

‖ or the formal power series
closed point of S 1 +

∑
n≥1

# (X ×S s)(Fqn
s
) · Z n .
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A general loose but very deep question:
Do “meaningful functions” in algebraic geometry have special properties?

• Some properties have been predicted by André Weil
(and later proved by Dwork, Grothendieck, Deligne).
His first conjecture was that all formal power series

1 +
∑
n≥1

(X ×S s)(Fqn
s
) · Z n

are rational functions of the form

Ps(Z )/Qs(Z )

for Ps,Qs = polynomials in Z with constant coefficient 1.
• Robert Langlands has predicted

that these functions
can all be related to “automorphic representations”
which are objects of harmonic analysis
over “reductive groups”
with coefficients in some “arithmetic rings”.
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Grothendieck’s theory of étale fundamental groups:
Definition. – For an arbitrary scheme X, let

CovX
be the category of schemes over X

X ′
p−−→ X

whose structure morphism p is étale and finite.

Theorem. –
Suppose X is connected.
Let x be a geometric point of X .
Consider the fiber functor

CovX −→ {finite sets} ,
(X ′

p−→ X ) 7−→ p−1(x) = X ′ ×X x .
Then:
(i) The symmetries of the fiber functor form a

profinite (topological) group π1(X , x).
(ii) The fiber functor induces an equivalence of categories

CovX
∼−→ {finite sets endowed with a continuous action of π1(X , x)}.
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Relation with Galois theory:

Observation. –
If X = Spec(K ) for a field K
and x = Spec(K )
for an algebraically closed field K containing K ,
we have:
(i) Grothendieck’s group

π1(X , x)

is the automorphism group
of the algebraic closure of K in K .

(ii) The equivalence of categories

CovX
∼−−→ {finite sets + continuous action of π1(X , x)}

is a reformulation of Galois theory.
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Relation with Poincaré theory:
Theorem. –
If X is a complex algebraic variety,
the functor

(X ′ → X ) 7−→ (X ′(C)→ X (C))

CovX −→


category of finite
locally trivial covers of X (C)

in the topological sense


in an equivalence of categories.

Corollary. –
If x ∈ X (C), the Grothendieck group

π1(X , x)

identifies with the profinite completion
of the Poincaré fundamental group

π1(X (C), x) .
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Galois groups of finite fields:
Theorem. –
Let Fq = finite field and Fqn = finite extension of degree n of Fq .
Then:
(i) The Frobenius map

Frq : Fqn −→ Fqn

a 7−→ aq

is an automorphism of Fqn over Fq .
(ii) It generates the group of all automorphisms,

so that we get an isomorphism
Z/nZ ∼−−→ Aut(Fqn/Fq) ,

k 7−→ Frk
q .

Corollary. – If Fq = algebraic closure of Fq , the element

Frq ∈ Aut(Fq/Fq)
generates an isomorphism

lim←−
n

Z/nZ = Ẑ ∼−−→ Aut(Fq/Fq) = π1(Fq ,Fq) .
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The central question of agebraic number theory
and arithmetic algebraic geometry:

What can be known about

π1(Q,Q)?

→ Hint:

Langlands predicted that
irreducible linear representations of the group

π1(Q,Q)

can be related to some
“automorphic” representations

of reductive groups with coefficients
in some arithmetic rings.
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II. From arithmetic geometry to algebraic topology
Reminder of the central question we have met:
What can be known about the Galois group

Aut(Q/Q) = π1(Q,Q) = π1(Q,C)
if Q is the field of algebraic complex numbers

Q ⊂ Q ⊂ C ?
Reminder of Galois’ equivalence:

(X → Spec(Q)) 7−→ Hom(Spec(Q),X ) = Hom(Spec(C),X )

CovSpec(Q)
∼−−→


category of finite sets

endowed with a continuous
action of π1, (Q,Q)


‖

category of finite
étale covers of Spec(Q)

which induces
category of

“number fields” E
‖

finite field extensions of Q


op

∼−−→


category of finite sets
endowed with a continuous
transitive action of π1(Q,Q)
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Basic principle to get information about Galois groups:

• Consider a field E
(for instance E = Q or E = number field)
and an algebraic closure E of E .

• Consider algebraic varieties X over E

X −→ Spec(E) ,
and their “geometrizations”

X = X ×Spec(E) Spec(E) = X ⊗E E .

• Then the Galois group
Aut(E/E)

naturally acts on X
and on “algebraic invariants”
that can be associated to X .→ Hope: Get information on Aut(E/E)
through its natural actions
on “refined enough” algebraic invariants of X
for “well chosen” algebraic varieties X over E .
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The first fundamental example of “algebraic invariant”
of algebraic varieties:

• One can associate to any scheme S
the category of finite étale covers of S

CovS .

• If a group G acts on S, it yields a group morphism

G −→ {group of self-equivalences CovS
∼−→ CovS} .

Lemma. – If S is connected, and s is a geometric point of S, the equivalence

CovS
∼−−→ {finite continuous actions of π1(S, s)}

yields an isomorphism
group of

self-equivalences
of CovS

 ∼−−→ Out(π1(S, s))

= Aut(π1(S, s))/
{

subgroup of
inner automorphisms

}
.

• If G acts on S, there is an induced morphism G→ Out(π1(S, s)).
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Application to “geometric” algebraic varieties:

• Let X be an algebraic variety over a field E ,

X = X ⊗E E and x ∈ X (E) .

Corollary. – If X = X ⊗E E is connected, there is a canonical morphism

Aut(E/E) −→ Out(π1(X , x)) .

Remark. – If E ⊂ C, π1(X , x) is the profinite completion
of the Poincaré fundamental group π1(X (C), x).
So the group

Out(π1(X , x))

only depends on the topology of X (C),
while the group Aut(E/E) is an arithmetic object.

Question. – If E = Q, are there algebraic varieties X over Q such that
Aut(Q/Q) −→ Out(π1(X , x)) is injective?

Answer (consequence of Belyi’s theorem):
It already works for X = P1 − {0,1,∞} !
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Bringing morphisms into the picture:

• Any morphism of schemes
X1

u−−→ X2

induces a functor

(X ′2 → X2) 7−→ (X ′1 = X ′2 ×X2 X1 → X1)

CovX2

u∗−−→ CovX1 .

• If a group G acts on X1 and X2
and respects u in the sense that u ◦ g = g ◦ u, ∀g ∈ G,
the induced homomorphism

G −→ {self-equivalences
of CovX1

}
×
{

self-equivalences
of CovX2

}
factorizes through the subgroup of pairs of self-equivalences

(CovX1

ρ1
∼−−−→ CovX1 ,CovX2

ρ2
∼−−−→ CovX2)

which are compatible with u∗ : CovX2 → CovX1 in the sense that

u∗ ◦ ρ2 ∼= ρ1 ◦ u∗ .
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Application to diagrams of algebraic varieties:

• Let D be a diagram consisting in{
algebraic varieties Xd defined over a field E ,
morphisms Xd

uα−−−→ Xd ′ defined over E .

• Let E be an algebraic closure of E ,
X d = Xd ⊗E E with xd ∈ Xd (E) .

Proposition. – The natural homomorphism

Aut(E/E) −→∏
d

{
self-equivalences

of CovX d

}
=
∏

d

Out(π1(X d , xd ))

factorizes through the subgroup of families of self-equivalences
which are compatible with all functors

u∗α : CovXd ′
−→ CovXd .

Question. – Are there diagrams D such that
Aut(E/E)

∼−−→ {subgroup of compatible self-equivalences} ?→ Grothendieck proposed a suggestion when E = Q.→ This would provide a purely topological characterization of Aut(Q/Q) !
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Finite étale covers as objects of toposes:
• So far, we have considered the invariants of schemes

X 7−→ CovX ,

(X u−→ Y ) 7−→ (u∗ : CovY → CovX ) .
They can be interpreted in terms of toposes:

Proposition. –
(i) For any scheme X, the category of its finite étale covers CovX

identifies with the full subcategory of{
• FlX = (small) fppf (“faithfully flat of finite presentation”) topos,
• or EtX = (small) “étale” topos of X

consisting in objects which are “locally constant and finite”,
i.e. locally isomorphic to finite sums of copies of X

• ∼=
∐

I = finite set

`(X ) (where ` = canonical functor).

(ii) For any scheme morphism X u−→ Y, the induced functor
u∗ : CovY −→ CovX

is induced by the topos morphism
(u∗,u∗) : FlX −→ FlY ,

or EtX −→ EtY .
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A few words on the definition of étale and flat toposes:
Definition. – The (small) fppf [resp. étale] topos of a scheme X
is the category of sheaves on the site defined in the following way:

• The objects of the underlying category
are finitely presentable morphisms from affine schemes

X ′ = Spec(A ′) −→ X
which are flat [resp. étale].

• The morphisms of the underlying category are commutative triangles

X ′2 = Spec(A ′2)

&&

// X ′1 = Spec(A ′1)

xx
X

of flat [resp. étale] morphisms.
• Covering sieves on an object (X ′ → X )

are sieves which contain a finite family of morphisms

X ′i −→ X ′ , 1 ≤ i ≤ k ,
such that any topological point of X ′ is an image of a point of at least one X ′i .
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Linearization of group actions or sheaves:

• Consider a finite étale cover X ′
p−−→ X .

If X is connected and x is a geometric point, (X ′
p−−→ X ) corresponds to

a finite set I endowed with an action of π1(X , x).
• The decomposition of I into orbits,

corresponds to the decomposition of X into connected components.
In particular, there is an equivalence

X ′ connected⇔ the action of π1(X , x) on I is transitive.

In that case, X ′ or I can be called an “atom”.
• Choose a finite field or ring

Λ = F` = Z/`Z or Λ = Z/`mZ (` = prime number).

The free Λ-space or Λ-module on I,
⊕
i∈I
Λ,

is endowed with an induced action of π1(X , x).
It corresponds to a Λ-linear object of the category CovX
which is the push-forward

P∗Λ by X ′
p−−→ X

of the constant sheaf Λ on X ′.
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Breaking atoms after linearization:

• Even if a finite étale cover

(X ′
p−−→ X )←→ I + action of π1(X , x)

is an “atom”,
and Λ is a finite field, its linearization

p∗Λ←→ (⊕
i∈I

Λ

)
+ action of π1(X , x)

will break as direct sums (or non trivial extensions)
of smaller linear components.

• The smallest components
(which cannot be broken further)
can be called the “irreducible components” of

p∗Λ←→ (⊕
i∈I

Λ

)
+ action of π1(X , x) .
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Linear invariants of toposes: categories of linear sheaves
• A topos is by definition a category E which is equivalent

E ∼−−→ ĈJ
to the category ĈJ of “sheaves” on some site

(C, J) =
{
C = underlying category,
J = Grothendieck topology on C.

• A morphism of toposes E ′ f−→ E is by definition a pair of adjoint functors

(E f∗−−→ E ′, E ′ f∗−−→ E)
such that{

f∗ respects arbitrary limits,
f ∗ respects arbitrary colimits and finite limits.

Definition. – For any ring Λ, one can associate:
(i) To any topos E , the Λ-linear category

ModΛ(E) of Λ-linear objects of E (= sheaves of Λ-modules),
which is abelian (kernels and cokernels are well-defined).

(ii) To any morphism E ′ f−→ E of toposes, Λ-linear functors
f ∗ : ModΛ(E) −→ ModΛ(E ′)
f∗ : ModΛ(E ′) −→ ModΛ(E) .
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Linear invariants of toposes: cohomology:
Proposition. – Let Λ be a ring and (E ′ f−→ E) a topos morphism.

(i) The pull-back functor
f ∗ : ModΛ(E) −→ ModΛ(E ′)

respects all kernels and cokernels.
(ii) The push-forward functor

f∗ : ModΛ(E ′) −→ Mod(E)
respects all kernels, but not cokernels.
It has well-defined cohomology functors

R i f∗ : ModΛ(E ′) −→ Mod(E) , i ≥ 1 ,
completing R0f∗ = f∗.

Remarks. –
• Any topos E has a unique topos morphism E p−→ Set,

so it has the Λ-modules invariants
R ip∗p∗Λ = H i(E , Λ) , i ≥ 0 .

• Any topos morphism E ′ f−→ E induces Λ-linear maps
f ∗ : H i(E , Λ) −→ H i(E ′, Λ) .
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The étale topos of fields:
Proposition. –
Consider a field E,

an algebraic closure E of E, defining a geometric point x of Spec(E).
Then the fiber functor

x∗ : EtE = EtSpec(E) −→ Set
induces an equivalence of the étale topos of E

EtE
∼−−→ {sets + continuous action of π1(E ,E) = Aut(E/E)}.

Corollary. – Let Λ be a ring.
(i) Any algebraic variety (X

p−→ Spec(E)) over E
has well-defined Λ-linear cohomology invariants

R ip∗Λ = H i
ét(X , Λ)

which are Λ-modules endowed with a continuous action of Aut(E/E).

(ii) Any morphism of algebraic varieties (X f−→ Y ) over E
induces Λ-linear morphisms

f ∗ : H i
ét(Y , Λ) −→ H i

ét(X , Λ)

which respect the actions of Aut(E/E).
L. Lafforgue Introduction Langlands programme July 18-22, 2022 48 / 85



From étale to `-adic cohomology:
• Basic fact: As Galois groups Aut(E/E) are profinite,

cohomology invariants of algebraic varieties X over E
H i

ét(X , Λ)
are non trivial and interesting only when Λ is finite.

• More refined fact: The study of the case of curves over E shows that the
H i

ét(X , Λ)
are well-behaved only when Q ⊆ E
or Fp = Z/p Z ⊆ E and p is invertible in Λ.

Definition. – Choose a prime number ` which is invertible in E.
We associate to any algebraic variety X over E
its `-adic cohomology invariants

H i(X ,Q`) = Q` ⊗Z` lim←−
m

H i
ét(X ,Z/`mZ)

which are finite-dimensional Q`-spaces
endowed with a continuous action of Aut(E/E).

Remark. – Any morphism X f−→ Y of algebraic varieties over E
induces Q`-linear maps which respect the actions of Aut(E/E)

H i(Y ,Q`) −→ H i(X ,Q`).
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Compatibility with fiber formation :
Theorem. – Consider a projective scheme over a base scheme S

X
p−−→ S .

Suppose S → Spec(Z) factorises through Spec(Z[ 1
`
]) for some prime `.

Then for any m ≥ 1, any i ≥ 0, and any algebraic point

s = Spec(k) −→ S ,
the fiber at s of the Z/`mZ-linear cohomology sheaf

s∗R ip∗Z/`mZ
identifies with the cohomology invariants

H i(X s,Z/`mZ)
of the fiber Xs = X ×S s of X

p−−→ S over s = Spec(k).

Remarks. –
• The fibers s∗R ip∗Z/`mZ = H i(X i ,Z/`mZ)

are finite Z/`mZ-module endowed with an action of Aut(k/k).
• If k = Fq is finite, Aut(Fq/Fq) is generated by Frq

and identifies with Ẑ.
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More in the case of smooth projective morphisms:

Theorem. – Consider as before a projective morphism of schemes

X
p−−→ S over some Spec(Z[ 1

`
]) .

Suppose the morphism p is also smooth.
Then all cohomology sheaves

R ip∗Z/`mZ
are Z/`mZ-linear objects of CovS
which are locally free over Z/`mZ.
If S is connected and s is a geometric point of S,
they can be viewed as free Z/`mZ-modules
endowed with a continuous action of π1(S, s).

Remark. – As a consequence, the `-adic cohomology sheaves

Q` ⊗Z` lim←−
m≥1

R ip∗Z/`mZ

can be viewed as finite-dimensional Q`-vector spaces
endowed with a continuous action of π1(S, s).
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Poincaré duality:
Theorem. – Consider an algebraic variety over a field K

X −→ Spec(K )
and a prime ` invertible in K . Then:

(i) If dim(X ) ≤ d, all cohomology invariants

H i(X ,Z/`mZ)
are 0 in degrees i > 2d.

(ii) If X = X ⊗K K is connected of dimension d, all

H2d (X ,Z/`mZ)
are free of rank 1 over Z/`mZ.

(iii) If furthermore X is projective and smooth over K ,
there are perfect pairings

H i(X ,Z/`mZ)× H2d−i(X ,Z/`mZ) −→ H2d (X ,Z/`mZ) .

Remark. – As a consequence, all of this also applies to the H i(X ,Q`) .
In particular, the Q`-linear representations of Aut(K ,K )

H i(X ,Q`) and H2d−i(X ,Q`)
are dual to each other.
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Action of correspondences

• If a monoid M acts by endomorphisms
on an algebraic variety over a field K ,
then Mop acts on the H i(X ,Z/`mZ) and H i(X ,Q`).

Proposition. –
Suppose X is an algebraic variety over a field K
and ` a prime invertible in K .
Suppose C is a “correspondence”,
i.e. a formal linear combination of schemes Γ → X × X
whose first projection pr1 : Γ → X is finite and étale.
Then C acts on all

H i(X ,Z/`mZ) and H i(X ,Q`) .

Moreover, these actions are compatible with composition.
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Intertwining Galois actions and correspondences:

Corollary. – Suppose an algebraic variety X over a field K (with ` 6= 0 in K )
is endowed with an algebra homomorphism

H −→ {algebra of correspondences on X }.
Then all cohomology invariants

H i(X ,Z/`mZ) and H i(X ,Q`)
are endowed with{
• a continuous action of Aut(K ,K ),
• an action of the algebra H,

that commute with each other.

Consequence. – All irreducible components of the H i(X ,Q`) have the form:
σ ⊗ π
‖ ‖

irreducible irreducible
representation representation
of Aut(K/K ) of H
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Correspondences of irreducible representations:

• Any action by correspondences
of an algebra H
on an algebraic variety over a field K
generates a family of pairs of irreducible representations

(σ, π) of Aut(K/K ) and H .

Natural questions:
• Are there algebraic varieties X

endowed with actions of an algebra H
which generate meaningful intertwinings
of irreducible representations of Aut(K/K ) and H?

• If yes,
how to express and study these intertwinings?

• Can such intertwinings
give information on Galois groups
of some fields, in particular Q?
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The Grothendieck-Lefschetz point formula:

Theorem. –
Let X be a projective algebraic variety over a finite field k = Fq .
Let ` be a prime such that ` 6= 0 in Fq .
Then:

(i) For any n ≥ 1,

# X (Fqn) = # {fixed points of Frn
q acting on X = X ⊗Fq Fq}

=
∑
i≥0

(−1)i · Tr(Frn
q ,H i(X ,Q`)) .

(ii) For any correspondence Γ → X × X and any n ≥ 1,

# {fixed points of Γ ◦ Frn
q acting on X = X ⊗Fq Fq}

=
∑
i≥0

(−1)i · Tr(Γ ◦ Frn
q ,H i(X ,Q`)) .
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Application to the determination of irreducible components:
Corollary. – Let K be the field of (rational) functions
on some integral base scheme of finite presentation

S −→ Spec(Z[ 1
`
]) −→ Spec(Z) .

Consider a smooth projective scheme over S

X
p−−→ S

(extending its “generic fiber” XK = X ×S Spec(K )).
Suppose an algebra H acts by correspondences

Γ −→ X ×S X (such that pr1 : Γ → X is finite étale).
Then, for

any element h ∈ H,
any closed point s = Spec(Fqs) of S,
any n ≥ 1 ,

we have # {fixed points of h ◦ Frn
s acting on X s = Xs ⊗Fqs

Fqs }

=
∑
i≥0

(−1)i · Tr(h ◦ Frs,H i(X K ,Q`)) .

Remark. – The Frs define conjugacy classes in π1(S,Spec(K )).
They are dense.
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Getting knowledge on Galois representations through geometry:

• In the previous situation of a smooth projective scheme
X −→ S

over a finitely presentable base scheme

S −→ Spec(Z[ 1
`
]) −→ Spec(Z)

with function field K ,
and an action of an algebra H by correspondences

Γ −→ X ×S X ,
the irreducible components of the

H i(X K ,Q`)
as representations of Aut(K/K )×H
are entirely determined by the geometric information

# {fixed points of h ◦ Frn
s acting on X s = Xs ⊗Fqs

Fqs }
for{

h = element of H,
s = Spec(Fqs) = closed point of S.
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III. From arithmetic algebraic geometry to harmonic analysis

The central question of algebraic number theory
and arithmetic algebraic geometry:

• What can be known about
Aut(Q/Q) ?

• More generally, what can be known about

Aut(K/K )

for fields K of “arithmetic nature”?
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Fields of “arithmetic nature”:

• A field can be called “of arithmetic nature” if

(1) it can be written as a fraction field
K = Frac(A)

of some “integral domains”
(= commutative rings without zero divisors)
which are finitely presentable

A ∼= Z[T1, · · · ,Tk ]/(P1, · · · ,Pr ) ,
(2) equivalently, it can be written as the

“function field”
= “field of rational functions”
= residue field at the “generic point”
(= topological point whose closure is everything)
of an integral finitely presentable scheme S.

Definition. – The dimension of such an “arithmetic field”

K = Frac(A) = function field of S
is defined as dim(Spec(A)) = dim(S).
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Arithmetic fields of dimension 0:

Proposition. –
The only arithmetic fields of dimension 0
are finite fields

Fq .

Their Galois groups are fully known:

Theorem. –
For any finite field Fq ,
there is a canonical isomorphism

lim←−
n≥1

Z/nZ = Ẑ ∼−−→ Aut(Fq/Fq) ,

1 ←→ Frq .
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Arithmetic fields of dimension 1:

Proposition. –
The only “arithmetic fields” of dimension 1 are
“global fields” consisting in the two families:

(1) “Number fields”• Q ,
• “finite extensions” of Q

= finite-dimensional algebraic extensions of Q.
(2) “Functions fields”

= finite extensions of some Fq(>)
= fields of rational functions K
on some “curve” X over a finite field Fq .

Remark. –
For any “function field” K ,
there are a unique finite field Fq and a unique curve S over Fq such that
• K is the field of rational functions on S,
• S is projective and smooth over Fq ,
• S = S ⊗Fq Fq is connected.

L. Lafforgue Introduction Langlands programme July 18-22, 2022 62 / 85



The “class field” isomorphisms:
• Recall that any (topological) group G has a biggest abelian quotient:

Gab = G/[G,G]
‖

invariant subgroup generated by commutators g k g−1k−1

• Most of algebraic number theory from Euler to the early 1930’s
can be summarized by the “class field isomorphism” theorem:

Theorem. –
Let K be a “global field” (= arithmetic field of dimension 1).
Then one can construct a canonical isomorphism

Aut(K/K )ab ∼−−→ profinite completion of A×K /K
×

where{
AK = topological ring of “adèles” of K ,
A×K = topological group of invertible elements of AK .

Remark. – The proof constructs an explicit equivalence
finite sets endowed

with a transitive
continuous action of A×K /K

×

 ∼−−→


finite Galois extensions
K ⊆ L

whose Galois group Aut(L/K )
is abelian

 .
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Adèle rings:

Definition. –
(i) If K is a “number field” canonically written as

K = Frac(AK )
for AK = finite normal extension of Z,

its adèle ring is the topological ring
AK = Af

K × A∞
K with

A∞
K = K ⊗Q R ,

Af
K =

(
lim←−

I = non zero ideal
AK/I

)
⊗AK K .

(ii) If K is a “function field” canonically written as
K = function field of SK
for SK = smooth projective curve over some Fq ,

its adèle ring is the topological ring

lim−→
UK =Spec(AK )

= open affine subscheme of SK

(
lim←−

I = non zero ideal

AK/I
)
⊗AK K
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Basic properties of adèle rings:
Proposition. –
Let K be a global field.

(i) The canonical morphism
K −→ AK

is an embedding. Furthermore,{
• K is a discrete subring of the topological ring AK ,
• the quotient AK/K is compact.

(ii) The induced embedding

K× �
� // A×K

makes K× a discrete subgroup of the topological group A×K .
The quotient is naturally endowed with a surjective morphism{
A×K /K

× deg−−−→ R if K is a number field,

A×K /K
× deg−−−→ Z if K is a function field

whose kernel
A×0

K /K×

is compact.
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Back to the central question:

If K is a global field,
how to get knowledge on the Galois group

Aut(K/K )
besides its abelian part?

Grothendieck’s direct geometric approach:
In the case K = Q,
Grothendieck proposed to get information on
(and possibly determine?) Aut(Q/Q)
by studying its actions on categories of finite étale covers

CovX ( ∼−→ category of finite topological covers of X (C))
of “natural” algebraic varieties

X over Q ,
and exploiting the fact that they have to respect the pull-back functors

u∗ : CovY −→ CovX

defined by morphisms X u−−→ Y of algebraic varieties over Q.
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The indirect approach through linear representations:
• Introduce “natural” algebraic varieties over global fields K

XK −→ Spec(K )
or more generally “natural” schemes over a base scheme S

X
p−−→ S ,

endowed with natural actions by algebras of correspondences
H ,

so that their `-adic cohomology spaces or sheaves
H i(X K ,Q`) or R ip∗Q`

can be seen as linear representations of
Aut(K/K ) or π1(S, s)

endowed with an action of H.
• Study, using in particular the Grothendieck fixed points theorem,

the pairs (σ, π) consisting in{
σ = irreducible representation of Aut(K/K ) or π1(S, s),
π = irreducible representation of H,

such that σ⊗ π appears as an irreducible component of some
H i(X K ,Q`) or R ip∗Q` .
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How to define “natural” algebraic varieties or schemes?
Grothendieck’s general principle: start from “moduli” problems.
• Consider a base scheme S (in general, a finitely presentable integral

scheme whose function field may be for instance a global field)
and the category Sch/S of finitely presentable schemes over S

(S ′ −→ S) .

• Define a presheaf M : (Sch/S)op −→ Set
by a“moduli” problem, i.e. a classification problem
of some type of geometric structures over objects of Sch/S

(S ′ → S) 7−→ M(S ′ → S)

=


set of isomorphism classes
of geometric structures over S ′

C ′ → S ′

of some prescribed type

 , S ′2 −→ S ′1↘ ↙
S

 7−→ map [M(S ′1 → S)→ M(S ′2 → S)]

defined by pull-back (C ′ → S ′1) 7→ (C ′ ×S ′1 S ′2 → S ′2).
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Moduli problems and “meaningful” schemes:
Definition. – A moduli problem incarnated as a presheaf

M : (Sch/S)op −→ Set ,
(S ′ → S) 7−→ set M(S ′ → S) , S ′2 −→ S ′1↘ ↙

S

 7−→ map [M(S ′1 → S)→ M(S ′2 → S)]

has a “geometric solution”, if it is representable by a scheme M−→ S .
Remarks : –
• If a moduli problem M has a geometric solutionM,

it is unique up to unique isomorphism.
• In that case, for any (S ′ → S), the set of morphisms S ′ −→ M↘ ↙

S


identifies with the set M(S ′ → S) of isomorphism classes
of geometric structures C ′ → S ′ of the prescribed type.

• Schemes that are solutions to moduli problems
can be considered “meaningful”.
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A key example: the modular schemes classifying curves

Theorem (stated in a simplified almost correct way). –
For any integer g ≥ 0,
there is a finitely presentable scheme

Mg −→ Spec(Z)

such that, for any scheme S,
Mg(S)

identifies with the set of isomorphism classes
of “relative curves” of genus g

C −→ S ,
meaning
• the structure morphism C → S is projective and smooth,
• for any geometric point s of S, the associated fiber

Cs = C ×S s is a connected curve of genus g.
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The derived family of schemes classifying curves with chosen points:
Corollary. –
For any integers g ≥ 0 and n ≥ 0, there is a finitely presentable scheme

Mg,n −→ Spec(Z)
such that, for any scheme S,

Mg,n(S)

identifies with the set of isomorphism classes
of “relative curves” of genus g

C
p−−→ S

endowed with n sections xi

C
p // S
xi

ff

whose images do not meet.

Remarks. –
• For any geometric point s of such S,

Cs = C ×S s
is just a (smooth projective) curve of genus g with n chosen points.

• M0,4 identifies with P1 − {0,1,∞}.
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The geometric diagram of modular schemes of curves:

• The modular schemesMg,n (includingMg,0 =Mg)
are related by morphisms

Mg,n −→Mg,m (for m < n)

defined by forgetting n − m of the chosen points.
• On the other hand, one can prove that

they have natural compactifications

Mg,n
� � // Mg,n

which are also defined as solutions of moduli problems.
• As a consequence of the moduli interpretations, the boundaries

Mg,n −Mg,n

split into boundary strata
∂Mg,n

which are endowed with natural projections

∂Mg,n −→Mg ′,n ′ .
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A question of Grothendieck about the Galois group:
• Consider the algebraic varieties over Q

MQ
g,n , MQ

g,n , ∂MQ
g,n

deduced from the schemesMg,n,Mg,n, ∂Mg,n
as the fibers over Spec(Q)→ Spec(Z).

• The Galois group
Aut(Q/Q)

embeds (thanks to Belyi’s theorem andM0,4 ∼= P1 − {0,1,∞})
into the group of families of self-equivalences of categories
CovX ( ∼−→ category of finite topological covers of X (C))
for X ∈ {MQ

g,n , MQ
g,n , ∂MQ

g,n},
which respect the pull-back functors induced by the natural morphisms

MQ
g,n −→ MQ

g,m ,

MQ
g,n

� � // MQ
g,n , ∂MQ

g,n
� � // MQ

g,n ,

∂MQ
g,n −→ MQ

g ′,n ′ .

Grothendieck’s question. – Is this embedding an isomorphism?
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Picard and Jacobian schemes
This is another natural family of moduli schemes.
Theorem. – Let C → S be a smooth projective morphism of schemes
such that, for any geometric point s of S,

Cs = C ×S s is a connected curve of genus g. Then:
(i) The presheaf

(Sch/S)op −→ Set

(S ′ → S) 7−→ {
set of isomorphism classes

of rank 1 vector bundles on C ×S S ′

}
is representable by a scheme over S

PicC/S =
∐

d∈Z
Picd

C/S

whose components Picd
C/S are projective

and smooth of relative dimension g over S.
(ii) The tensor product of rank 1 vector bundles

defines a commutative group structure on PicC/S
which is compatible with the “degree” morphism

PicC/S =
∐

d∈Z
Picd

C/S −→ Z .

In particular, Pic0
C/S = JacC/S is an “abelian scheme” over S.
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Drinfeld’s moduli of rank 1 “shtukas”:
• Consider a smooth projective curve C over a finite field Fq

such that C = C ⊗Fq Fq is connected.
• For any scheme S over Fq , consider the canonical Frobenius morphism

FrS : S −→ S
which is defined on any affine scheme Spec(A)→ S by

A −→ A ,
a 7−→ aq .

Definition. – Consider a scheme S over Fq and two morphisms 0,∞ : S ⇒ C
whose graphs are denoted Γ0 ↪→ S × C and Γ∞ ↪→ S × C.

(i) A rank 1 “shtuka” over S of zero 0 and pole∞
is a rank 1 vector bundle E on S × C
endowed with an isomorphism well-defined on S × C − (Γ0 ∪ Γ∞)

(FrS × idC)
∗E ∼−−→ E

which has a simple “zero” on Γ0 and a simple “pole” on Γ∞.
(ii) If I ↪→ C is a finite closed subscheme and∞,0 take values in C − I,

a “level I structure” on such a rank 1 shtuka is an isomorphism
E|S×I

∼−−→ trivial rank 1 vector bundle on S × I
which is compatible with (FrS × idI)

∗E|S×I
∼−−→ E|S×I .
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Moduli schemes of rank 1 “shtukas”:
We still consider a smooth projective curve C over Fq .

Theorem. –
(i) The presheaf

(Sch/C × C)op −→ Set

(S
(0,∞)−−−−→ C × C) 7−→

set of isomorphism classes
of rank 1 shtukas over S

of zero 0 and pole∞


is representable by a scheme over C × C

Sht1C =
∐

d∈Z
Sht1,dC −→ C × C

whose components Sht1,dC −→ C × C are finite étale covers.
(ii) Similarly, for any finite closed subscheme I ↪→ C,

the presheaf of rank 1 shtukas endowed with a level I structure
is representable by a scheme over (C − I)× (C − I)

Sht1C,I =
∐

d∈Z
Sht1,dC,I −→ (C − I)× (C − I)

whose components Sht1,dC,I −→ (C − I)× (C − I) are finite étale covers.
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Actions of groups of invertible bundles:
Lemma. –

(i) The tensor product defines an action on Sht1C → C × C of the group

PicC/Fq (Fq)
of rank 1 vector bundles on C.

(ii) Similarly, for any finite closed subscheme I ↪→ C,
the tensor product defines an action on Sht1C,I −→ (C − I)× (C − I)
of the group

PicC/Fq (Fq)I

of rank 1 vector bundles E on C endowed with an isomorphism
E|I

∼−−→ trivial rank 1 bundle on I.

Remarks. –
• The group PicC/Fq (Fq) acts simply transitively on the geometric fibers of

Sht1C −→ C × C .

• Similarly, the group PicC/Fq (Fq)I
acts simply transitively on the geometric fibers of

Sht1C,I −→ (C − I)× (C − I) .
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Drinfeld’s geometric “meaningful realization”
of abelian fundamental groups of curves:
Let K be the field of rational functions of C
and c = Spec(K ) be a geometric point of C defined by K ⊂ K .

Proposition. –
(i) The morphism defined by the cover Sht1C −→ C × C

π1(C × C, c × c) −→ PicC/Fq (Fq)

canonically factorises through a morphism

π1(C, c)ab × π1(C, c)ab −→ ̂PicC/Fq (Fq) (= profinite completion)

whose two components are related by the isomorphism g 7−→ g−1.
(ii) Similarly, for any finite closed subscheme I ↪→ C

the morphism defined by the cover Sht1C,I −→ (C − I)× (C − I)

π1((C − I)× (C − I), c × c) −→ PicC/Fq (Fq)I

canonically factorises through a morphism

π1(C − I, c)ab × π1(C − I, c)ab −→ ̂PicC/Fq (Fq)I

whose two components are related by g 7→ g−1.
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The class field isomorphism revisited by Drinfeld:
We still denote K the function field of C,
and c is the geometric point defined by an algebraic closure K ⊆ K .

Lemma. – There is a canonical isomorphism

Aut(K/K )
∼−−→ lim←−

I

π1(C − I, c)
and a fortiori

Aut(K/K )ab ∼−−→ lim←−
I

π1(C − I, c)ab .

Lemma (which comes back to André Weil). –
There is canonical isomorphism

A×K /K
× ∼−−→ lim←−

I

PicC/Fq (Fq)I .

Theorem. – The induced morphism
Aut(K/K )ab −→ ̂(A×K /K×)

is an isomorphism.
It is none other than the “class field isomorphism”.
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Drinfeld’s moduli of rank r “shtukas”:

We keep on considering a smooth projective curve C over Fq .

Definition. – Consider a scheme S over Fq and two morphisms 0,∞ : S → C
whose graphs are denoted Γ0 ↪→ S × C and Γ∞ ↪→ S × C.

(i) A rank r “shtuka” over S of zero 0 and pole∞
is a rank r vector bundle E on S × C
endowed with an isomorphism well-defined on S × C − (Γ0 ∪ Γ∞)

(FrS × idC)
∗E ∼−−→ E

which has a simple “zero” on Γ0 and a simple “pole” on Γ∞.
(ii) If I ↪→ C is a finite closed subscheme

and∞,0 take values in C − I,
a “level I structure” on such a rank r shtuka is an isomorphism

E|S×I
∼−−→ trivial rank r vector bundle on S × I

which is compatible with (FrS × idI)
∗E|S×I

∼−−→ E|S×I .
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Moduli schemes of rank r “shtukas”:

Theorem (stated in a simplified essentially correct form). –
(i) The presheaf

(Sch/C × C)op −→ Set,

(S
(0,∞)−−−−→ C × C) 7−→

set of isomorphism classes
of rank r shtukas over S

of zero 0 and pole∞


is representable by a (locally finitely presentable) scheme over C × C

ShtrC −→ C × C

which is smooth of relative dimension 2r .
(ii) Similarly, for any finite closed subscheme I ↪→ C,

the presheaf of rank r shtukas endowed with a level I structure
is representable by a (locally finitely presentable) scheme

ShtrC,I −→ (C − I)× (C − I)

which is smooth of relative dimension 2r .
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Actions of Hecke correspondences:
Proposition. –
For any finite closed subscheme I ↪→ C, the moduli scheme

ShtrC,I −→ (C − I)× (C − I)

is endowed with a natural action by correspondences
of the Hecke algebra

Hr
I

of compactly supported functions

GLr (AK ) −→ Q
which are invariant on both sides
by some compact open subgroup

HI
� � // GLr (AK )

defined by I ↪→ C.

Remark. –
The multiplication law on Hr

I is defined
by convolution relatively to an invariant measure on GLr (AK ).
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Induced actions on `-adic cohomology spaces:

We still consider a geometric point c of C defined by
an algebraic closure K ⊃ K of the function field K of C.

Proposition. –
For any finite closed subscheme I ↪→ C,
the `-adic cohomology spaces

H i(ShtrC,I ×(C−I)×(C−I) (c, c),Q`)

are canonically endowed with commuting actions of

• the square profinite group

π1(C − I, c)× π1(C − I, c) ,

• the Hecke algebra

Hr
I = {compactly supported functions HI\GLr (AK )/HI → Q}
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A cohomological realization of Langland’s correspondence:
Theorem. –
(i) The colimits of cohomology spaces

lim−→
I↪→C

H i(ShtrC,I ×(C−I)×(C−I) (c, c),Q`)

are canonically endowed with commuting actions of

• the square profinite group
Aut(K/K )× Aut(K/K ) ,

• the Hecke algebra

lim−→
I↪→C

Hr
I = Hr =


convolution algebra of

compactly supported locally constant
functions GLr (AK ) → Q

 .

(ii) In middle degree i = 2r ,
there appear irreducible components of the form σ⊗ σ̌⊗ π where

• σ = irreducible `-adic representation of Aut(K/K ) of dimension r ,
• σ̌ = dual representation,
• π = irreducible representation of Hr

which is “automorphic” in the sense that
it can be realized in a space of functions on GLr (AK )/GLr (K ),

• σ and π are related by a precise rule predicted by Langlands.
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Concluding remarks:
• In the case of the function field K of a curve C over Fq ,

the whole geometric and cohomological construction
can be generalized from linear groups GLr
to arbitrary (quasi-split) reductive groups G over K ,
realizing Langland’s correspondence


“irreducible” morphisms

Aut(K/K )→ Ǧ(Q`)
for Ǧ = “dual” group of G

←→


irreducible representations
of the convolution algebra of

G(AK )
which are “automorphic”,

i.e. can be realized in spaces of
functions on G(AK )/G(K )


.

• In the case K ⊇ Q is a number field,
an analoguous geometric and cohomological construction
is possible only for some number fields K
and some reductive groups closely related to Sp2r .
The moduli schemes of Drinfeld shtukas are replaced by

“Shimura varieties”
which classify “abelian varieties”

endowed with different types of extra structures.
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