IV. Quotients of presheaf type theories

Reminder on presheaf type theories:

 A first-order geometric theory T is said to be "presheaf type" if its classifying topos C_T admits a presentation

$$\widehat{\mathcal{C}} \xrightarrow{\sim} \mathcal{E}_{\mathbb{T}}$$

as the topos of presheaves on an essentially small category

 $\mathcal{C} \stackrel{\ell}{\longrightarrow} \mathcal{E}_{\mathbb{T}} \, .$

• If C and D are two essentially small categories, the category of equivalences

$$\widehat{\mathcal{D}} \xrightarrow{\sim} \widehat{\mathcal{C}}$$

is equivalent to that of equivalences

$$\operatorname{Kar}(\mathcal{D}) \longrightarrow \operatorname{Kar}(\mathcal{C}).$$

• In particular, if ${\mathcal C}$ and ${\mathcal D}$ are Karoubi-complete, equivalences

$$\widehat{\mathcal{D}} \xrightarrow{\sim} \widehat{\mathcal{C}}$$

correspond to equivalences

$$\mathcal{D} \xrightarrow{\sim} \mathcal{C}$$
 .

Reminder of semantic and syntactic presentations of classifying toposes of presheaf type theories:

If T is a presheaf type theory, the two categories

 $\left\{ \begin{array}{ll} \mathcal{M} = \mathbb{T}\text{-mod}(\operatorname{Set})_{\operatorname{fp}}\,, \\ \mathcal{C}_{\mathbb{T}}^{\operatorname{ir}} = \text{full subcategory of } \underline{\text{``irreducible'' formulas}} \\ & \text{in } \mathcal{C}_{\mathbb{T}} = \text{geometric syntactic category of } \mathbb{T}, \end{array} \right.$

are essentially small and Karoubi-complete.

We have two canonical presentations

$$egin{array}{ccc} \widehat{\mathcal{M}}^{\mathrm{op}} & \stackrel{\sim}{\longrightarrow} & \mathcal{E}_{\mathbb{T}} \,, \ \widehat{\mathcal{C}}_{\mathbb{T}}^{\mathrm{ir}} & \stackrel{\sim}{\longrightarrow} & \mathcal{E}_{\mathbb{T}} \,. \end{array}$$

The induced equivalence

$$\mathcal{M}^{op} \xrightarrow{\sim} \mathcal{C}_{\mathbb{T}}^{ir}$$

associates with any finitely presentable model an irreducible formula which presents this model, and the reverse equivalence

$$\mathcal{C}_{\mathbb{T}}^{ir} \xrightarrow{\sim} \mathcal{M}^{op}$$

associates with any irreducible geometric formula a model defined by this formula.

The special case of Cartesian theories:

• If \mathbb{T} is a <u>Cartesian theory</u> (in particular, if \mathbb{T} is an empty theory, or <u>algebraic</u> or <u>"Horn</u>"), we have a presentation $\widehat{\mathcal{C}_{\mathbb{T}}^{car}} \xrightarrow{\sim} \mathcal{E}_{\mathbb{T}}$

as the topos of presheaves on $\mathcal{C}_{\mathbb{T}}^{car} = \overline{Cartesian \ syntactic \ theory} \ of \ \mathbb{T}$ (consisting of \mathbb{T} -Cartesian formulas).

• The category $\mathcal{C}_{\mathbb{T}}^{car}$ is <u>Cartesian</u>, so <u>Karoubi-complete</u>.

Corollary. -

If $\mathbb T$ is a Cartesian theory, we have:

- (i) The geometric T-<u>Cartesian</u> formulas in the signature Σ of T are the <u>irreducible</u> geometric formulas.
- (ii) There is identity of the two categories

$$\mathcal{C}_{\mathbb{T}}^{car}=\mathcal{C}_{\mathbb{T}}^{ir}$$

The correspondence between quotient theories and topologies:

• We consider a theory T of presheaf type, endowed with a presentation

$$\widehat{\mathcal{C}} \xrightarrow{\sim} \mathcal{E}_{\mathbb{T}}$$
.

The induced functor

$$\ell:\mathcal{C}\longrightarrow\mathcal{E}_{\mathbb{T}}$$

factorizes into

Hence a fully faithful functor

$$\mathcal{C} \longrightarrow \mathcal{C}^{\mathrm{ir}}_{\mathbb{T}}$$

and

any object X of C defines an irreducible formula φ_X , any irreducible formula comes from an idempotent of an object of C.

• The morphisms between two objects X and Y of C

$$X \xrightarrow{u} Y$$

correspond to $\ensuremath{\mathbb{T}}\xspace$ -provably functional formulas

$$\theta_u(\vec{x}, \vec{y}) : \varphi_X(\vec{x}) \longrightarrow \varphi_Y(\vec{y}).$$

From topologies to quotient theories:

Proposition. -

Consider a presentation $\widehat{\mathcal{C}} \xrightarrow{\sim} \mathcal{E}_{\mathbb{T}}$ with the induced fully faithful functor

$$\begin{cases} \mathcal{C} & \longleftrightarrow & \mathcal{C}_{\mathbb{T}}^{\mathrm{ir}}, \\ X & \longmapsto & \varphi_X, \\ (X \xrightarrow{u} Y) & \longmapsto & (\theta_u : \varphi_X \to \varphi_Y). \end{cases}$$

Consider a topology J over \mathcal{C}

generated by some covering families of the form

$$(X_i \xrightarrow{u_i} X)_{i \in I}$$
.

Then adding to the axioms of \mathbb{T} the <u>axioms</u>

$$\varphi_X(\vec{x}) \vdash_{\vec{x}} \bigvee_{i \in I} (\exists \vec{x}_i) \, \theta_{u_i}(\vec{x}_i, \vec{x})$$

defines a quotient theory \mathbb{T}_J of \mathbb{T}

such that the equivalence $\widehat{\mathcal{C}} \xrightarrow{\sim} \mathcal{E}_{\mathbb{T}}$ induces an equivalence

$$\widehat{\mathcal{C}}_J \xrightarrow{\sim} \mathcal{E}_{\mathbb{T}_J}$$

From quotient theories to topologies:

Proposition. – Consider a presentation $\widehat{\mathcal{C}} \xrightarrow{\sim} \mathcal{E}_{\mathbb{T}}$ with the induced fully faithful functor

 $\begin{array}{rcl} X & \longmapsto & \varphi_X \\ \text{whose image is } \underline{dense} \text{ for the topology } J_{\mathbb{T}} \text{ of } \mathcal{C}_{\mathbb{T}}. \\ \text{Consider a } \underline{quotient theory } \mathbb{T}' \text{ of } \mathbb{T} \\ \text{defined by } \underline{adjoining to the axioms of } \mathbb{T} \text{ some } \underline{axioms} & \varphi \vdash_{\vec{x}} \psi \,. \\ \text{For each such } \underline{additional axiom } \varphi \vdash_{\vec{x}} \psi, \text{ proceed as follows:} \end{array}$

 $\mathcal{C}_{\mathbb{T}}$,

$$\left\{ \begin{array}{ll} \bullet & Consider \ the \ \underline{monomorphism} \ of \ \mathcal{C}_{\mathbb{T}} \\ \hline & (\phi \land \psi)(\vec{x}) & \hookrightarrow & \phi(\vec{x}) \,. \\ \bullet & \underline{Cover} \ \phi(\vec{x}) \ by \ a \ J_{\mathbb{T}} \ -covering \ family \ of \ images \ of \ objects \ of \ \mathcal{C} \\ \hline & \varphi_{X_i} \longrightarrow \phi(\vec{x}) \,, \quad i \in I \,. \\ \bullet & Cover \ each \ \underline{fiber \ product} \ in \ \mathcal{C}_{\mathbb{T}} \\ \hline & (\phi \land \psi) \times_{\phi} \ \phi_{X_i} \\ by \ a \ J_{\mathbb{T}} \ -\underline{covering} \ family \ of \ images \ of \ objects \ of \ \mathcal{C} \\ \hline & \varphi_{X_{i,k}} \longrightarrow (\phi \land \psi) \times_{\phi} \ \phi_{X_i} , \quad k \in K_i \,. \\ \hline & Then \ the \ topology \ J' \ of \ \mathcal{C} \ which \ corresponds \ to \ \mathbb{T}' \\ is \ generated \ by \ the \ covering \ families \qquad (X_{i,k} \longrightarrow X_i)_{k \in K_i} . \end{array} \right.$$

The special case of expressing axioms in irreducible terms:

Lemma. – Let \mathbb{T} be a geometric theory of presheaf type. Then any implication relation between geometric formulas is \mathbb{T} -provably equivalent to a family of <u>axioms of the form</u>

 $\varphi \vdash_{\vec{x}} \psi$

$$\varphi_i \vdash_{\vec{x}_i} \bigvee_{k \in K_i} (\exists \vec{x}_k) \, \theta_{i,k}(\vec{x}_k, \vec{x}_i)$$

where

• each
$$\varphi_i = \varphi_i(\vec{x}_i)$$
 is an irreducible formula,

Proof. – This is the special case $C = C_{\mathbb{T}}^{ir}$ of the previous proposition. We choose a $J_{\mathbb{T}}$ -covering of φ by <u>irreducible formulas</u>

 $\varphi_i = \varphi_i(\vec{x}_i)$

 $(\phi \land \psi) \times_{\omega} \phi_i$

then a $J_{\mathbb{T}}$ -covering of each fiber product in $\mathcal{C}_{\mathbb{T}}$

by irreducible formulas

$$\varphi_{i,k}=\varphi_{i,k}(\vec{x}_k).$$

The syntactic expression of the correspondence between quotient theories and topologies:

Corollary. -

Let \mathbb{T} be a geometric theory of presheaf type, with the induced representation of its classifying topos

$$\widehat{\mathcal{C}}_{\mathbb{T}}^{\mathrm{ir}} \xrightarrow{\sim} \mathcal{E}_{\mathbb{T}}$$
 .

Let \mathbb{T}' be a quotient theory of \mathbb{T}

defined by adjoining to the axioms of \mathbb{T} some axioms of the form

$$\varphi \vdash_{\vec{x}} \bigvee_{k \in K} (\exists \vec{x}_k) \, \theta_k(\vec{x}_k, \vec{x})$$

where the

$$\theta_k: \varphi_k = \varphi_k(\vec{x}_k) \longrightarrow \varphi(\vec{x}) = \varphi$$

are morphisms of $C_{\mathbb{T}}^{ir}$. Then the topology J' of $C_{\mathbb{T}}^{ir}$ which corresponds to \mathbb{T}' is generated by the covering families

$$(\varphi_k \xrightarrow{\theta_k} \varphi)_{k \in K}.$$

Characterization of models of quotient theories:

Corollary. – Consider a presentation $\widehat{\mathcal{C}} \xrightarrow{\sim} \mathcal{E}_{\mathbb{T}}$ with the induced fully faithful functor

$$\begin{cases} \mathcal{C} & \overleftarrow{\subset} & \mathcal{C}_{\mathbb{T}}^{\mathrm{ir}}, \\ X & \longmapsto & \varphi_X, \\ (X \xrightarrow{u} Y) & \longmapsto & (\theta_u : \varphi_X \to \varphi_Y). \end{cases}$$

Consider a topology J of \mathcal{C} generated by covering families of the form

 $(X_i \xrightarrow{u_i} X)_{i \in I},$

and the quotient theory \mathbb{T}_J of \mathbb{T} which corresponds to J. Then a <u>model M of \mathbb{T} in a topos \mathcal{E} </u>

is a <u>model</u> of \mathbb{T}_J if and only if, for any such covering family

$$(X_i \xrightarrow{u_i} X)_{i \in I},$$

the associated morphism of $\ensuremath{\mathcal{E}}$

$$\coprod_{i\in I} M\varphi_{X_i} \xrightarrow{\coprod_{i\in I} M\Theta_{u_i}} M\varphi_X$$

is an epimorphism.

Interpretations of formulas and model morphisms:

Theorem. –

Let ${\mathbb T}$ be a presheaf type theory, with the induced presentation

 $\widehat{\mathcal{M}^{\mathrm{op}}} \xrightarrow{\sim} \mathcal{E}_{\mathbb{T}} \qquad \textit{for } \mathcal{M} = \mathbb{T}\text{-}\mathrm{mod}(\mathrm{Set})_{\mathrm{fp}}.$

Let *M* be an object of *M* presented by an irreducible formula φ . Then for any model *N* of $\overline{\mathbb{T}}$ in a topos \mathcal{E} , we can write

 $N\varphi = \mathcal{H}om(p^*M, N)$

where

- $N\phi$ is the object of \mathcal{E} which interprets the formula ϕ in the model N,
- p^*M is the model of \mathbb{T} in \mathcal{E} deduced from M by the topos morphism

 $\boldsymbol{\rho} = (\boldsymbol{\rho}^*, \boldsymbol{\rho}_*) : \mathcal{E} \longrightarrow \operatorname{Set},$

 Hom(p*M, N) is the object of E characterized by the property that, for any object E of E

 $\operatorname{Hom}(\boldsymbol{E}, \mathcal{H}om(\boldsymbol{p}^*\boldsymbol{M}, \boldsymbol{N})) = \operatorname{Hom}(\boldsymbol{p}_{\boldsymbol{F}}^*\boldsymbol{p}^*\boldsymbol{M}, \boldsymbol{p}_{\boldsymbol{F}}^*\boldsymbol{N})$

if p_E* denotes the pull-back component

of the canonical morphism of toposes

$$p_E: \mathcal{E}/E \longrightarrow \mathcal{E}$$
.

Application to a semantic characterization of quotient theories:

Corollary. –

Let ${\mathbb T}$ be a presheaf type theory, with the induced presentation

 $\widehat{\mathcal{M}^{\mathrm{op}}} \xrightarrow{\sim} \mathcal{E}_{\mathbb{T}} \,.$

Let J be a topology over $\mathcal{M}^{\mathrm{op}}$ which defines a quotient theory \mathbb{T}_J of \mathbb{T} . Let \mathcal{E} be a topos endowed with the morphism $p = (p^*, p_*) : \mathcal{E} \longrightarrow \mathrm{Set}$.

Then a <u>model</u> N of \mathbb{T} in \mathcal{E} is a <u>model</u> of \mathbb{T}_J if and only if it is

"J-homogeneous"

in the sense that, for any J-covering family of $\mathcal{M}^{\mathrm{op}}$

$$(M_i \longrightarrow M)_{i \in I}$$
,

the induced morphism of \mathcal{E}

$$\coprod_{i\in I} \mathcal{H}om\left(p^*M_i,N\right) \longrightarrow \mathcal{H}om\left(p^*M,N\right)$$

is an epimorphism.

Remark. – It suffices to consider a family of *J*-covering families $(M_i \longrightarrow M)_{i \in I}$ which generates the topology *J* of \mathcal{M}^{op} .

L. Lafforgue

Grothendieck topologies, IV

To prove the theorem: relative toposes

Proposition. – Let *E* be an object of a topos \mathcal{E} . Then:

- (i) The relative category \mathcal{E}/E whose
 - objects are the morphisms $E' \to E$ of \mathcal{E} ,
 - morphisms are the commutative triangles of *E*

 $\longrightarrow E'_2$

F

is a topos.

(ii) The functor

$$egin{array}{rcl} \mathcal{D}^*_{E} & : & \mathcal{E} & \longrightarrow & \mathcal{E}/E\,, \ & E' & \longmapsto & E' imes E \end{array}$$

is the pull-back component of a topos morphism

$$p_E: \mathcal{E}/E \longrightarrow \mathcal{E}$$
.

Sketch of proof:

(i) If \mathcal{E} is the topos of sheaves on a site (\mathcal{C}, J) ,

 \mathcal{E}/E is identified with the topos of sheaves on the "category of elements" of E

 $\int E = C/E$ endowed with the topology induced by *J*.

(ii) Indeed, p_E^* respects both arbitrary colimits and (arbitrary) limits.

To prove the theorem: sheaves of functor morphisms

Proposition. – Let C be a small category. Consider two functors with values in a topos \mathcal{E}

$$F_1, F_2: \mathcal{C} \Longrightarrow \mathcal{E}$$
.

Then the contravariant functor

$$\begin{array}{rcl} \mathcal{E}^{\mathrm{op}} & \longrightarrow & \mathrm{Set} \,, \\ \mathcal{E} & \longmapsto & \mathrm{Hom}(\mathcal{p}_{\mathcal{E}}^* \circ \mathcal{F}_1, \mathcal{p}_{\mathcal{E}}^* \circ \mathcal{F}_2) \end{array}$$

is representable by an object of \mathcal{E} denoted $\mathcal{H}om(F_1, F_2)$.

Proof sketch:

• For any objects E_1, E_2 of \mathcal{E} , the <u>contravariant functor</u>

 $E \longmapsto \operatorname{Hom}(p_E^*E_1, p_E^*E_2) = \operatorname{Hom}_{\mathcal{E}}(E_1 \times E, E_2)$

is representable by an object of \mathcal{E} $\mathcal{H}om(E_1, E_2)$.

• The functor under consideration is representable by a subobject of

$$\prod_{\mathcal{C} \in Ob(\mathcal{C})} \mathcal{H}om(F_1(X), F_2(X))$$

because the conditions that define functors with values in ${\cal E}$ are local for the canonical topology of ${\cal E}.$

To prove the theorem: sheaves of model morphisms

Corollary. – Let \mathbb{T} be a first-order geometric theory. Let M_1, M_2 be two <u>models</u> of \mathbb{T} in a topos \mathcal{E} . Then the contravariant functor

$$\begin{array}{rcl} \mathcal{E}^{\mathrm{op}} & \longrightarrow & \mathrm{Set} \,, \\ \mathcal{E} & \longmapsto & \mathrm{Hom}(\boldsymbol{p}_{E}^{*}\boldsymbol{M}_{1}, \boldsymbol{p}_{E}^{*}\boldsymbol{M}_{2}) \end{array}$$

is representable by an object of \mathcal{E} denoted

 $\mathcal{H}om(M_1, M_2)$.

Proof. – Let's choose a presentation

 $\widehat{\mathcal{C}}_J \xrightarrow{\sim} \mathcal{E}_{\mathbb{T}}$.

Then the category of models of \mathbb{T} in a topos \mathcal{E} is related to that of functors from \mathcal{C} to \mathcal{E} by a fully faithful functor

 $\mathbb{T}\text{-}\mathrm{mod}(\mathcal{E}) \ \ \ \, \longrightarrow \ \ \, [\mathcal{C},\mathcal{E}]$

whose image is made up of <u>flat</u> and *J*-<u>continuous</u> functors.

To prove the theorem: a topos-theoretic Yoneda lemma

Lemma. – Consider a contravariant functor from a small category C to a topos \mathcal{E}

$$F: \mathcal{C}^{\mathrm{op}} \longrightarrow \mathcal{E}$$
.

Let $p = (p^*, p_*) : \mathcal{E} \to \text{Set}$ be the canonical morphism of toposes. Then we have for any object X of \mathcal{C} , of associated presheaf

 $y(X) = \operatorname{Hom}(\bullet, X) : \mathcal{C}^{\operatorname{op}} \longrightarrow \operatorname{Set},$

a canonical isomorphism in ${\mathcal E}$

$$\mathcal{H}om(p^* \circ y(X), F) \xrightarrow{\sim} F(X).$$

Proof. -

It suffices to show that there exists a canonical bijection

$$\operatorname{Hom}(\boldsymbol{\rho}^* \circ \boldsymbol{y}(\boldsymbol{X}), \boldsymbol{\mathcal{F}}) \xrightarrow{\sim} \operatorname{Hom}(\mathbf{1}_{\mathcal{E}}, \boldsymbol{\mathcal{F}}(\boldsymbol{X})).$$

• As $1_{\mathcal{E}} = p^* 1_{\text{Ens}}$ and p^* admits the right-adjoint $p_* : \mathcal{E} \to \text{Set}$, we are reduced to showing that there exists a <u>canonical bijection</u> $\operatorname{Hom}(y(X), p_* \circ F) \xrightarrow{\sim} \operatorname{Hom}(1_{\text{Ens}}, (p_* \circ F)(X)) = p_* \circ F(X)$.

This is Yoneda's lemma.

End of the proof of the theorem:

• We consider a theory ${\mathbb T}$ of presheaf type, with the presentation

$$\widehat{\mathcal{M}^{op}} \longrightarrow \mathcal{E}_{\mathbb{T}}$$

and the canonical equivalence

$$\mathcal{C}^{\mathrm{ir}}_{\mathbb{T}} \xrightarrow{\sim} \mathcal{M}^{\mathrm{op}}$$

which associates to any irreducible formula φ a model M_{φ} that it presents.

• The models *N* of \mathbb{T} in a topos \mathcal{E} endowed with $p = (p^*, p_*) : \mathcal{E} \to \text{Set}$ can be seen as the <u>flat functors</u>

$$\begin{array}{rcl} \mathsf{V} & : & \mathcal{C}_{\mathbb{T}}^{\operatorname{ir}} \xrightarrow{\sim} \mathcal{M}^{\operatorname{op}} & \longrightarrow & \mathcal{E} \,, \\ & & (\varphi \leftrightarrow M_{\varphi}) & \longmapsto & N\varphi \,. \end{array}$$

- We deduce from the "topos-theoretic Yoneda lemma" that there exists, for any such flat functor $N : \mathcal{C}_{\mathbb{T}}^{\mathrm{ir}} \xrightarrow{\sim} \mathcal{M}^{\mathrm{op}} \to \mathcal{E}$ and any object $(\varphi \leftrightarrow M_{\varphi})$ of $\mathcal{C}_{\mathbb{T}}^{\mathrm{ir}} \xrightarrow{\sim} \mathcal{M}^{\mathrm{op}}$, a canonical isomorphism of \mathcal{E} $\mathcal{H}om(p^* \circ M_{\varphi}, N) \xrightarrow{\sim} N\varphi$.
- In other words, if an object *M* of *M* is defined by a formula φ, the interpretation of φ in a model *N* of T in *E* identifies with

 $\mathcal{H}om(p^*M, N)$.

L. Lafforgue

Grothendieck topologies, IV

Three examples of quotient theories of the theory of commutative rings:

Program:

- Introduce the algebraic theory of commutative rings.
- Present its classifying topos.
- · Introduce the three quotient theories that are
 - the theory of local rings,
 - the theory of integral domains,
 - the theory of commutative fields.
- Calculate the presentations of the classifying toposes of these theories <u>derived</u> from that of the classifying topos of commutative ring theory.

 Compute another presentation of the classifying topos of the theory of commutative fields, <u>derived</u> from its presentation as a <u>quotient theory</u> of another algebraic theory, the theory of Von Neumann regular commutative rings.

Commutative ring theory:

Definition. -

(i) The signature Σ_a of commutative ring theory consists of

- a <u>sort</u> A,
- five function symbols

+	:	AA	\longrightarrow	Α	(addition),
•	:	AA	\longrightarrow	Α	(multiplication),
0	:		\longrightarrow	Α	(unit element of addition),
1	:		\longrightarrow	Α	(unit element of multiplication),
_	:	Α	\longrightarrow	Α	(switch to the opposite).

(ii) The theory \mathbb{T}_a of commutative rings is defined in the signature Σ_a by the following <u>axioms</u>:

- <u>Associativity</u>: $\top \vdash (a_1 + a_2) + a_3 = a_1 + (a_2 + a_3)$ $\top \vdash (a_1 \cdot a_2) \cdot a_3 = a_1 \cdot (a_2 \cdot a_3)$
- Commutativity: $\top \vdash a_1 + a_2 = a_2 + a_1$
 - $\top \vdash a_1 \cdot a_2 = a_2 \cdot a_1$
- <u>Neutrality</u>: $\top \vdash 0 + a = a$ $\top \vdash 1 \cdot a = a$
- Opposition: $\top \vdash a + (-a) = 0$

The classifying topos of commutative ring theory:

Observation. – The theory \mathbb{T}_a of <u>commutative rings</u> is an <u>algebraic</u> theory.

Corollary. – The classifying topos $\mathcal{E}_{\mathbb{T}_a}$ of \mathbb{T}_a takes the form

$$egin{pmatrix} \widetilde{\mathcal{M}^{\mathrm{op}}} & \stackrel{\sim}{\longrightarrow} & \mathcal{E}_{\mathbb{T}_a}\,, \ \widehat{\mathrm{Sch}_{\mathrm{apf}}} & \stackrel{\sim}{\longrightarrow} & \mathcal{E}_{\mathbb{T}_a}\,, \ \widehat{\mathcal{C}_{\mathbb{T}_a}^{\mathrm{ir}}} & \stackrel{\sim}{\longrightarrow} & \mathcal{E}_{\mathbb{T}_a}\,, \ \widehat{\mathcal{C}_{\mathbb{T}_a}^{\mathrm{car}}} & \stackrel{\sim}{\longrightarrow} & \mathcal{E}_{\mathbb{T}_a}\,, \ \end{array}$$

where

- $\mathcal{M} = \mathbb{T}_{a}$ -mod(Set)_{pf} is the category of commutative rings of finite presentation,
- $\mathcal{M}^{op} = Sch_{apf}$ is the category of affine schemes of finite presentation,
- $C_{\mathbb{T}_a}^{\mathrm{ir}} \hookrightarrow C_{\mathbb{T}_a} = C_{\mathbb{T}_a}^{\mathrm{geo}}$ is the full subcategory of the geometric syntactic category $C_{\mathbb{T}_a}$ made up of irreducible formulas,
- $C_{\mathbb{T}_a}^{car}$ is the <u>Cartesian syntactic category</u> of \mathbb{T}_a , equivalent to $C_{\mathbb{T}_a}^{ir}$.

Local ring theory:

Definition. – The theory of local rings \mathbb{T}_{ℓ} is the <u>quotient theory</u> of that of <u>commutative rings</u> \mathbb{T}_{a} defined by adding the coherent axiom

$$(\exists b)(b \cdot (a_1 + a_2) = 1) \vdash_{a_1, a_2} (\exists b_1)(b_1 \cdot a_1 = 1) \lor (\exists b_2)(b_2 \cdot a_2 = 1).$$

Observation. -

The three formulas

$$\begin{array}{l} (\exists b) (b \cdot (a_1 + a_2) = 1), \\ (\exists b_1) (b_1 \cdot a_1 = 1), \\ (\exists b_2) (b_2 \cdot a_2 = 1) \end{array}$$

are Cartesian, hence irreducible.

This is still the case with the two formulas

$$(\exists b)(b \cdot (a_1 + a_2) = 1) \land (\exists b_1)(b_1 \cdot a_1 = 1),$$

$$(\exists b)(b \cdot (a_1 + a_2) = 1) \land (\exists b_2)(b_2 \cdot a_2 = 1).$$

Affine schemes presented by irreducible formulas:

Lemma. – (i) The irreducible formulas $(\exists b_1) (b_1 \cdot a_1 = 1)$ and $(\exists b_2) (b_2 \cdot a_2 = 1)$ present the affine open subscheme $\operatorname{Spec}(\mathbb{Z}[X, X^{-1}])$ complement of point 0 in the affine line $\operatorname{Spec}(\mathbb{Z}[X])$. (ii) The irreducible formula $(\exists b)(b \cdot (a_1 + a_2) = 1)$ presents the affine open subscheme $\operatorname{Spec}(\mathbb{Z}[X, Y][(X + Y)^{-1}])$ complement of the line of equation X + Y = 0 in the affine plane $\operatorname{Spec}(\mathbb{Z}[X, Y])$. (iii) The irreducible formulas $(\exists b)(b \cdot (a_1 + a_2) = 1) \land (\exists b_1)(b_1 \cdot a_1 = 1)$ and $(\exists b)(b \cdot (a_1 + a_2) = 1) \land (\exists b_2)(b_2 \cdot a_2 = 1)$ present the affine open subschemes Spec($\mathbb{Z}[X, Y][X^{-1}][(X + Y)^{-1}]$) and Spec($\mathbb{Z}[X, Y][Y^{-1}][(X + Y)^{-1}]$).

L. Lafforgue

Grothendieck topologies, IV

The classifying topos of local ring theory:

Proposition. -

(i) The classifying topos of the theory \mathbb{T}_{ℓ} of local rings can be presented in the form

$$(\widehat{\operatorname{Sch}_{\operatorname{apf}}})_{J_\ell} \xrightarrow{\sim} \mathcal{E}_{\mathbb{T}_\ell}$$

where J_{ℓ} is the smallest topology of $\mathrm{Sch}_{\mathrm{apf}}$ for which the monomorphisms

$$\operatorname{Spec}(\mathbb{Z}[X, Y][X^{-1}][(X+Y)^{-1}]) \hookrightarrow \operatorname{Spec}(\mathbb{Z}[X, Y][(X+Y)^{-1}])$$

 $\operatorname{Spec}(\mathbb{Z}[X, Y][Y^{-1}][(X + Y)^{-1}]) \hookrightarrow \operatorname{Spec}(\mathbb{Z}[X, Y][(X + Y)^{-1}])$

form a covering.

(ii) This topology J_{ℓ} on

 ${\rm Sch}_{\rm apf}$ (= category of affine schemes of finite presentation) is none other than the Zariski topology.

Note. – According to the "Grothendieck comparison lemma", we have an equivalence

$$\widehat{\operatorname{Sch}_{\operatorname{apf}}}$$

Verification of the generation of the Zariski topology:

- The topology J_l is <u>contained</u> in the Zariski topology.
 We have to prove the inclusion in the reverse direction.
- We recall that for any element *a* of a commutative ring *A*,

$$A_a = A[X]/(a \cdot X - 1)$$

is the ring deduced from A by formally inverting the element a.

• As *J* satisfies the stability axiom, we see that for any elements *a*, *b* of a ring *A*, the two monomorphisms

 $\operatorname{Spec}(A_{(a+b)\cdot a}) \hookrightarrow \operatorname{Spec}(A_{(a+b)})$ and $\operatorname{Spec}(A_{(a+b)\cdot b}) \hookrightarrow \operatorname{Spec}(A_{(a+b)})$ form a covering.

• By stability and transitivity, we deduce that for any elements a_1, \dots, a_n of a ring A, the family of n morphisms $\operatorname{Spec}(A_{(a_1+\dots+a_n)\cdot a_i}) \hookrightarrow \operatorname{Spec}(A_{(a_1+\dots+a_n)}), \ 1 \le i \le n,$

forms a covering.

If there exist elements b₁, · · · , b_n ∈ A such that a₁ · b₁ + · · · + a_n · b_n = 1, the morphisms Spec(A_{a_i·b_i}) → Spec(A) form a covering, so also the

$$\operatorname{Spec}(A_{a_i}) \hookrightarrow \operatorname{Spec}(A)$$
.

L. Lafforgue

Grothendieck topologies, IV

The theory of integral domains:

Definition. – The theory of integral domains \mathbb{T}_i is the <u>quotient</u> theory of that of <u>commutative rings</u> \mathbb{T}_a defined by adding the coherent axiom

$$a \cdot b = 0 \vdash a = 0 \lor b = 0.$$

Observation. -

• The three formulas in the variables a and b

$$egin{array}{rcl} a\cdot b&=&0\,,\ a&=&0\,,\ b&=&0 \end{array}$$

are Cartesian, hence irreducible.

• The reverse implications

$$a = 0 \vdash a \cdot b = 0,$$

 $b = 0 \vdash a \cdot b = 0$

are T_a -provable.

Affine schemes presented by irreducible formulas:

Lemma. – The <u>irreducible formulas</u> in the variables a and b

$$egin{array}{rcl} a\cdot b &=& 0\,,\ a &=& 0\,,\ b &=& 0 \end{array}$$

present the closed affine subschemes

$$\begin{array}{cccc} \operatorname{Spec}(\mathbb{Z}[X,Y]/(X \cdot Y)) & & \hookrightarrow & \operatorname{Spec}(\mathbb{Z}[X,Y])\,, \\ \operatorname{Spec}(\mathbb{Z}[X,Y]/(X)) & & \hookrightarrow & \operatorname{Spec}(\mathbb{Z}[X,Y])\,, \\ \operatorname{Spec}(\mathbb{Z}[X,Y]/(Y)) & & \hookrightarrow & \operatorname{Spec}(\mathbb{Z}[X,Y]) \end{array}$$

of the affine plane

 $\operatorname{Spec}(\mathbb{Z}[X, Y])$.

The classifying topos of the theory of integral domains:

Proposition. –

(i) The classifying topos of the theory \mathbb{T}_i of integral domains can be presented in the form $(\operatorname{Sch}_{\operatorname{apf}})_{I_i} \xrightarrow{\sim} \mathcal{E}_{\mathbb{T}_i}$

where J_i is the smallest topology of Sch_{apf} for which the closed immersions

form a covering.

(ii) A sieve C on an object of Schanf

 $\operatorname{Spec}(A)$

is J_i -covering if and only if there exist elements $a_1, \ldots, a_n \in A$ such that

 $a_1 \cdots a_n = 0$

and that the closed embeddings

 $\operatorname{Spec}(A/(a_i)) \longrightarrow \operatorname{Spec}(A), \quad 1 \le i \le n,$ are elements of the sieve C.

Identification of the generated topology:

- By stability of J_i , we see that for any elements a_1, a_2 of a commutative ring \overline{A} such that $a_1 \cdot a_2 = 0$, the <u>closed immersions</u> $\operatorname{Spec}(A/(a_1)) \hookrightarrow \operatorname{Spec}(A)$ and $\operatorname{Spec}(A/(a_2)) \hookrightarrow \operatorname{Spec}(A)$ form a J_i -covering.
- By transitivity of J_i , we deduce that for any elements a_1, \dots, a_n of a commutative ring A such that $a_1 \dots a_n = 0$, the family of closed embeddings

 $\operatorname{Spec}(A/(a_i)) \hookrightarrow \operatorname{Spec}(A), \quad 1 \le i \le n \quad \text{forms a } J_i$ -covering.

 It remains to prove that the <u>sieves</u> *C* of the objects Spec(*A*) of Sch_{apf} which satisfy the condition of (ii) form a topology. The axioms of <u>maximality</u> and <u>stability</u> are clearly verified. For transitivity, it suffices to note that if elements of a ring *A*

 a_1, \cdots, a_n and $a_{i,j}, 1 \le i \le n, 1 \le j \le k_i$, satisfy the conditions

$$a_1 \cdots a_n = 0$$
 and $\prod_{1 \le j \le k_i} a_{i,j} \in a_1 \cdot A, \ 1 \le i \le n_i$
then one also has

 $\prod_{1\leq i\leq n}\prod_{1\leq j\leq k_i}a_{i,j}=0.$

The theory of commutative fields:

Definition. – The theory of <u>commutative fields</u> \mathbb{T}_c is the <u>quotient theory</u> of that of <u>commutative rings</u> \mathbb{T}_a defined by adding the coherent axiom

$$\top \vdash_a a = \mathbf{0} \lor (\exists b) \cdot (b \cdot a = \mathbf{1}).$$

Observation. -

The two formulas in the variable a

$$a=0$$
,

$$(\exists b)(b \cdot a = 1)$$

are Cartesian, hence irreducible.

Affine schemes presented by irreducible formulas:

Lemma. –

The irreducible formulas in the variable a

a = 0,

$$(\exists b)(a \cdot b = 1)$$

present the <u>closed</u> subscheme

$$0: \operatorname{Spec}(\mathbb{Z}) \hookrightarrow \operatorname{Spec}(\mathbb{Z}[X])$$

and the open subscheme

$$\operatorname{Spec}(\mathbb{Z}[X, X^{-1}]) \hookrightarrow \operatorname{Spec}(\mathbb{Z}[X]),$$

which are the closed point 0 of the affine line and its complementary open subscheme.

The classifying topos of the theory of commutative fields:

Proposition. -

(i) The classifying topos of the theory \mathbb{T}_c of <u>commutative fields</u> can be presented in the form

where J_c is the smallest topology of $\mathrm{Sch}_{\mathrm{apf}}$ for which the two closed and open embeddings

$$0 : \operatorname{Spec}(\mathbb{Z}) \\ \operatorname{Spec}(\mathbb{Z}[X, X^{-1}])$$

$$\frac{1}{\operatorname{Spec}(\mathbb{Z}[X])}$$
$$\frac{1}{\operatorname{Spec}(\mathbb{Z}[X])}$$

form a covering.

$$\operatorname{Spec}(A)$$

 $(\operatorname{Sch}_{\operatorname{apf}})_{I_{\operatorname{c}}} \xrightarrow{\sim} \mathcal{E}_{\mathbb{T}_{c}}$

is J_c -covering if and only if there exist elements $a_1, \dots, a_n \in A$, such that, for any subset $I \subseteq \{1, \dots, n\}$ and if A_i denotes the ring deduced from A by cancelling elements a_i , $i \in I$, and inverting elements a_j , $j \notin I$, the locally closed morphism

$$\operatorname{Spec}(A_I) \hookrightarrow \operatorname{Spec}(A)$$

L. Lafforgue

Grothendieck topologies, IV

Identification of the generated topology:

• By stability of J_c,

we see that for any element a of a commutative ring A, the pair of closed and open embeddings

 $\operatorname{Spec}(A/(a)) \hookrightarrow \operatorname{Spec}(A)$ and $\operatorname{Spec}(A_a) \hookrightarrow \operatorname{Spec}(A)$

forms a J_i -covering.

• By transitivity of J_c , we deduce that for any elements a_1, \dots, a_n of a commutative ring A, the family of associated locally closed embeddings

$$\operatorname{Spec}(A_I) \hookrightarrow \operatorname{Spec}(A), \quad I \subseteq \{1, \cdots, n\},$$

forms a J_c -covering.

It remains to check that the sieves *C* of the objects Spec(*A*) of Sch_{apf} which satisfy the conditions of (ii) form a topology.
 Indeed, the axioms of maximality, stability and transitivity are clearly verified.

A remark on topologies:

Lemma. –

On the category $\mathrm{Sch}_{\mathrm{apf}}$ of affine schemes of finite presentation, one has:

(i) The topology $J_{\ell} = \text{Zar is } \underline{subcanonical}$.

(ii) The topology J_i is <u>not subcanonical</u>.

(iii) A fortiori, the topology $J_c \supseteq J_i$ is <u>not subcanonical</u>.

Proof. -

(i) Indeed, for any Zariski open covering of an affine scheme $U_i \subseteq X$, $1 \le i \le n$,

the datum of an affine scheme morphism $X \to Y$ is equivalent to the datum of a family of morphisms $U_i \to Y$, $1 \le i \le n$, which match on the $U_i \cap U_i$.

(ii) The morphism

$$\operatorname{Spec}(\mathbb{Z}) \hookrightarrow \operatorname{Spec}(\mathbb{Z}[X]/(X^2))$$

forms a J_i -covering but it has no section.

(iii) Indeed, the topology J_c contains the topology J_i .

Looking for an alternative presentation:

Program:

Define a first-order geometric theory \mathbb{T}'_c such that:

 The theory T'_c is "syntactically equivalent" to the theory of commutative fields T_c (in the sense that there exists an equivalence between their geometric syntactic categories

$$\mathcal{C}_{\mathbb{T}'_{c}} \xrightarrow{\sim} \mathcal{C}_{\mathbb{T}_{c}}$$
).

- The theory \mathbb{T}'_c is naturally written as a <u>quotient</u> of a theory \mathbb{T}_r of presheaf type.
- If $\mathcal{M}_r = \mathbb{T}_r \operatorname{-mod}(\operatorname{Set})_{pf}$ with the canonical equivalence

$$\widehat{\mathcal{M}_r^{\mathrm{op}}} \xrightarrow{\sim} \mathcal{E}_{\mathbb{T}_r},$$

the unique topology J_c on $\mathcal{M}_r^{\mathrm{op}}$ such that

$$\widehat{(\mathcal{M}_r^{\mathrm{op}})}_{J_c} \xrightarrow{\sim} \mathcal{E}_{\mathbb{T}_c'}$$

is subcanonical.

Syntactic equivalence and semantic equivalence:

We have the two notions of equivalence:

Definition. – Two first-order geometric theories \mathbb{T}_1 and \mathbb{T}_2 are said

(i) "syntactically equivalent" if there exists an equivalence between their geometric syntactic categories

$$\mathcal{C}_{\mathbb{T}_1} \xrightarrow{\sim} \mathcal{C}_{\mathbb{T}_2}$$
,

(ii) "semantically equivalent" (or "Morita-equivalent") if there exists an equivalence between their classifying toposes

$$\mathcal{E}_{\mathbb{T}_1} \xrightarrow{\sim} \mathcal{E}_{\mathbb{T}_2}$$
.

Remarks. -

- Two theories which are syntactically equivalent are a fortiori semantically equivalent.
- Indeed, the syntactic topology J_T of a geometric syntactic category C_T is induced by the categorical structure of C_T: A family of morphisms θ_i : φ_i → φ of C_T is J_T-covering if and only if it is globally epimorphic.

Von Neumann's theory of regular commutative rings:

Definition. -

- (i) The signature Σ_r of the theory of regular commutative rings consists of the signature Σ_a of the theory of commutative rings supplemented by
 - an additional function symbol

 $(\bullet)^+$: $A \rightarrow A$ (switch to pseudo-inverse).

- (ii) The theory T_r of regular commutative rings is defined in the signature Σ_r by the <u>axioms</u> of the theory T_a of <u>commutative rings</u> supplemented by the two <u>additional axioms</u>:
 - <u>Pseudo-inversion</u>: $\top \vdash_a a^+ \cdot a \cdot a = a$
 - <u>Involution</u> : ⊤ ⊢_a (a⁺)⁺ = a

A theory syntactically equivalent to field theory:

Definition. – Let \mathbb{T}'_c be the quotient theory of \mathbb{T}_r defined by the <u>same axiom</u> which defines the theory of <u>commutative fields</u> \mathbb{T}_c as a quotient of that of commutative rings \mathbb{T}_a

 $\top \vdash_a a = 0 \lor (\exists b)(b \cdot a = 1).$

Lemma. – The theories \mathbb{T}_c and \mathbb{T}'_c are syntactically equivalent.

Proof. -

• The <u>formula</u> in the two variables *a* and *b* of sort *A* $(a = 0 \land b = 0) \lor (b \cdot a = 1)$

is \mathbb{T}_c -provably functional from $\top(a)$ to $\top(b)$.

Associating with the T[']_c-provably functional formula of Σ_r

$$(\boldsymbol{b} = \boldsymbol{a}^+) : \top(\boldsymbol{a}) \to \top(\boldsymbol{b})$$

the \mathbb{T}_c -provably functional formula of Σ_a

$$(a = 0 \land b = 0) \lor (b \cdot a = 1) : \top(a) \to \top(b)$$

defines an equivalence of categories

$$\mathcal{C}_{\mathbb{T}'_c} \xrightarrow{\sim} \mathcal{C}_{\mathbb{T}_c}$$
.

The classifying topos of the theory of regular commutative rings:

Observation. -

Von Neumann's theory \mathbb{T}_r of regular commutative rings is an algebraic theory.

Corollary. – The classifying topos $\mathcal{E}_{\mathbb{T}_r}$ of \mathbb{T}_r can be presented in the forms

where

- *M_r* = T_r-mod(Set)_{pf} is the category of regular commutative rings of finite presentation,
- $C_{\mathbb{T}_r}^{\mathrm{ir}} \hookrightarrow C_{\mathbb{T}_r}$ is the full subcategory of the geometric syntactic category $C_{\mathbb{T}_r}$ consisting of <u>irreducible formulas</u>,
- $C_{\mathbb{T}_r}^{car}$ is the Cartesian syntactic category of \mathbb{T}_r , equivalent to $C_{\mathbb{T}_r}^{ir}$.

Regular rings and commutative rings:

L. Lafforgue

Grothendieck topologies, IV

Identification of the structure of regular rings:

<u>Prove</u> (i). For this, consider a regular ring $(A, (\bullet)^+)$.

• For any element *a* of *A*, one has

$$a^{3}a^{+}\cdot a^{2}=a$$

and therefore, for any integer $n \ge 2$,

$$(a^+)^{n-1}\cdot a^n=a.$$

It follows that any nilpotent element of A is zero, and therefore that

$$A \longrightarrow \prod_{p \in \operatorname{Spec}(A)} A/p$$

is an embedding.

For any prime ideal *p* ∈ Spec(*A*) and any element *a* ∈ *A*, the images *ā* and *ā*⁺ of *a* and *a*⁺ in

$$A/p \longrightarrow \operatorname{Frac}(A/p) = \kappa_p$$

satisfy the equations

$$\overline{a}^{+} \cdot \overline{a}^{2} = \overline{a} \quad \text{and} \quad (\overline{a}^{+})^{2} \cdot \overline{a} = \overline{a}^{+}$$

$$\begin{cases} \overline{a}^{+} = 0 & \text{if} \quad \overline{a} = 0, \\ \overline{a}^{+} = \overline{a}^{-1} & \text{if} \quad \overline{a} \neq 0. \end{cases}$$

which imply

Construction of a left-adjoint:

Prove (ii). For this, consider

- a regular commutative ring $(A, (\bullet)^+)$,
- a commutative ring B,
- the smallest subring B^+ of $\prod_{q \in \text{Spec}(B)} \kappa_q$ which

(contains the image of *B* by $B \to \prod \kappa_q$,

(is respected by the product of the involutions $(\bullet)^+ : \kappa_q \to \kappa_q$.

- Any morphism of regular rings B⁺ → (A, (●)⁺) induces a morphism of commutative rings B → A.
- Conversely, let us consider a morphism of commutative rings $u: B \longrightarrow A$.

It induces a map u^{-1} : Spec(A) \longrightarrow Spec(B) and, for any prime ideal $p \in$ Spec(A) sent to $u^{-1}(p) = q \in$ Spec(B), a commutative square: $B/q \longrightarrow A/p$

The pull-back of
$$A \hookrightarrow \prod_{\rho \in \operatorname{Spec}(A)} A/\rho \hookrightarrow \prod_{\rho} \kappa_{\rho}$$
 in the product $\prod_{q \in \operatorname{Spec}(B)} \kappa_q$

is a $(\bullet)^+$ -stable subring which contains the image of *B*, so it contains B^+ .

Full faithfulness of the forgetting functor:

Prove (iii).

For any regular commutative ring $(A, (\bullet)^+)$, the embedding

$$A \longrightarrow \prod_{p \in \operatorname{Spec}(A)} A/p \longrightarrow \prod_{p \in \operatorname{Spec}(A)} \kappa_p$$

identifies A with the smallest subring

$$A^+ \longrightarrow \prod_{p \in \operatorname{Spec}(A)} \kappa_p$$

which

 $\begin{cases} \frac{\text{contains the image}}{\text{is respected by the product of the involutions}} (\bullet)^+ : \kappa_p \to \kappa_p. \end{cases}$

Corollary. – The forgetting functor of the operation $(\bullet)^+$

$$\mathbb{T}_{r}\operatorname{-mod}(\operatorname{Set}) \longrightarrow \mathbb{T}_{a}\operatorname{-mod}(\operatorname{Set}), \\
(A, (\bullet)^{+}) \longmapsto A$$

is fully faithful.

Transport of finitely presented models:

 $\begin{array}{c} \textbf{Corollary.} - \textit{The } \underbrace{\textit{left-adjoint functor}}_{\mathbb{T}_a \text{-mod}(\text{Set})} & \longrightarrow & \mathbb{T}_r \text{-mod}(\text{Set}) \,, \\ B & \longmapsto & B^+ \end{array}$

induces a functor

$$\mathsf{Sch}_{\mathsf{apf}} = \mathbb{T}_{a}\operatorname{-mod}(\mathsf{Set})^{\mathsf{op}}_{\mathsf{pf}} \longrightarrow \mathbb{T}_{r}\operatorname{-mod}(\mathsf{Set})^{\mathsf{op}}_{\mathsf{pf}}$$

which associates to any model of \mathbb{T}_a presented by a \mathbb{T}_a -Cartesian formula ϕ of Σ_a

$$\operatorname{Spec}(B_{\varphi})$$

a <u>model</u> of \mathbb{T}_r presented by φ <u>seen as</u> a \mathbb{T}_r -<u>Cartesian formula</u> of Σ_r .

Proof. – Indeed, for any regular commutative ring $(A, (\bullet)^+)$, the set

$$\operatorname{Hom}(B_{\varphi}^+, (A, (\bullet)^+))$$

identifies by adjunction with

 $\operatorname{Hom}(B_{\varphi}, A)$

and so with the interpretation of the formula ϕ in A

Αφ.

Regular rings presented by irreducible formulas:

Corollary. – The <u>irreducible formulas</u> in the variable a

a = 0, $(\exists b)(a \cdot b = 1)$

present the transforms by the left-adjoint functor

$$\begin{array}{ccc} \mathrm{Sch}_{\mathrm{apf}} = \mathbb{T}_{a} \operatorname{-mod}(\mathrm{Set})_{\mathrm{pf}}^{\mathrm{op}} & \longrightarrow & \mathbb{T}_{r} \operatorname{-mod}(\mathrm{Set})_{\mathrm{pf}}^{\mathrm{op}} = \mathrm{Sch}_{\mathrm{apf}} \\ & \mathrm{Spec}(B) & \longmapsto & \mathrm{Spec}(B^{+}) \end{array}$$

of the closed embedding

 $0: \operatorname{Spec}(\mathbb{Z}) \hookrightarrow \operatorname{Spec}(\mathbb{Z}[X])$

and of the open embedding

$$\operatorname{Spec}(\mathbb{Z}[X, X^{-1}]) \hookrightarrow \operatorname{Spec}(\mathbb{Z}[X]).$$

An alternative presentation of the classifying topos of field theory:

Corollary. -

The classifying topos of the theory \mathbb{T}_c of commutative fields can be presented in the form

$$(\widehat{\operatorname{Sch}}_{\operatorname{arpf}})_{J_c} \xrightarrow{\sim} \mathcal{E}_{\mathbb{T}_c}$$

where J_c is the smallest topology of the full subcategory

$$\mathbb{T}_{r}\operatorname{-mod}(\operatorname{Set})_{\operatorname{pf}}^{\operatorname{op}} = \operatorname{Sch}_{\operatorname{arpf}} \hookrightarrow \operatorname{Sch}_{\operatorname{apf}} = \mathbb{T}_{a}\operatorname{-mod}(\operatorname{Set})_{\operatorname{pf}}^{\operatorname{op}}$$

for which the two morphisms

$$\operatorname{Spec}(\mathbb{Z}^+) \longrightarrow \operatorname{Spec}(\mathbb{Z}[X]^+),$$

$$\operatorname{Spec}(\mathbb{Z}[X, X^{-1}]^+) \longrightarrow \operatorname{Spec}(\mathbb{Z}[X]^+)$$

form a covering.

Identification of the generated topology:

Corollary. – A <u>sieve</u> C on an object

 $(\operatorname{Spec}(A), (\bullet)^+)$

of

$$\operatorname{Sch}_{\operatorname{arpf}} = \mathbb{T}_r \operatorname{-mod}(\operatorname{Set})_{\operatorname{pf}}^{\operatorname{op}}$$

is J_c -<u>covering</u> if and only if there exist elements $a_1, \dots, a_n \in A$ such that, for any subset $I \subseteq \{1, \dots, n\}$ and if A_I denotes the ring deduced from A by <u>cancelling</u> elements a_i , $i \in I$, and <u>inverting</u> elements a_j , $j \notin I$, the morphism induced by adjunction

 $\operatorname{Spec}(A_l^+) \longrightarrow (\operatorname{Spec}(A), (\bullet)^+)$

is an element of C.

Decomposition of regular commutative rings:

Lemma. – For any element a of a regular commutative ring A, one has

- A/aA and $A_a = A[X]/(a \cdot X 1)$ are regular,
- the morphism $A \rightarrow A/aA \times A_a$ is an isomorphism.

Proof. -

For any prime ideal $p \in \text{Spec}(A)$, the image of a in A/p is

 $\begin{cases} \hline 0 & \text{if} \quad p \in \operatorname{Spec}(A/aA), \\ \text{invertible} & \text{if} \quad p \in \operatorname{Spec}(A_a). \end{cases}$ The equations $a^+ \cdot a^2 = a$ and $(a^+)^2 \cdot a = a^+$ then imply that the image of $a^+ \cdot a$ in A/p is

$$\int 0 \quad if \quad p \in \operatorname{Spec}(A/aA),$$

$$\begin{bmatrix} 1 & if \quad p \in \operatorname{Spec}(A_a) \end{bmatrix}$$
.

Hence the conclusion.

Corollary. -

On the category of regular affine schemes of finite presentation

$$\operatorname{Sch}_{\operatorname{arpf}} = \mathbb{T}_r \operatorname{-mod}(\operatorname{Set})_{\operatorname{pf}}^{\operatorname{op}},$$

the topology J_c is <u>subcanonical</u>.