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Lecture I.1

Grothendieck topologies,

sheaves, toposes

and points
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The notion of site as a formalisation
of the idea of “geometric shape”:

For us in this presentation,
a “geometric shape”
will be a “site”:

Definition. –
A “site” is a pair (C, J) consisting of
• a category C

assumed to be “small” or “essentially small”,

• a “Grothendieck topology” J
on the category C.

L. Lafforgue Grothendieck topologies, I January 2022 3 / 113



The notion of category:
Definition. – A category C consists in a triple datum of

• a collection Ob(C) whose elements are called the objects of C,

• for any pair of objects X ,Y, a collection Hom(X ,Y )
whose elements f are called the morphisms f : X → Y from X to Y ,

• for any triplet of objects X ,Y ,Z a law of composition of morphisms

Hom(X ,Y )× Hom(Y ,Z ) −→ Hom(X ,Z ) ,
(f ,g) 7−→ g ◦ f ,

verifying:

• this law is associative, in the sense that for any sequence of morphisms
X f−→ Y

g−−→ Z h−−→ T , we have h ◦ (g ◦ f ) = (h ◦ g) ◦ f ,

• every object X is associated with a morphism “identity” idX : X → X,
such that, for any morphism f : X → Y [resp. g : Y → X],
we have f ◦ idX = f [resp. idX ◦ g = g].
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Remarks. –

(i) A category C is said to be “locally small”
if, for all objects X ,Y of C,
Hom(X ,Y ) is a set.

(ii) A category C is said to be “small”
if it is locally small
and if its objects form a set Ob(C).

(iii) In a category C,
a morphism f : X → Y is an “isomorphism”
if there is a morphism (necessarily unique)

f−1 : Y −→ X

such that
f−1 ◦ f = idX and f ◦ f−1 = idY .
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Categories as a mathematical environment:
• As a general rule, mathematical objects of a certain kind

and the transformations of these objects respecting this common nature
form a category.

• First example: the category Set
of sets (= objects)

and of applications (= morphisms).

• From this example,
an infinite variety of derived examples:
Any “structure type” T defines
a “category of set-based models of T”

T-mod(Set)
of which
− the objects are the sets endowed with a structure of type T,
− the morphisms are the maps

which respect structures of type T.
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Categories of transitions from one environment to another:
Definition. – Any pair of categories C,D defines a category

[C,D]
of which
• the objects are the “functors”

F : C −→ D
i.e. applications{

Ob(C) 3 X 7−→ F (X ) ∈ Ob(D) ,
Hom(X ,Y ) 3 f 7−→ F (f ) ∈ Hom(F (X ),F (Y )) ,

such that {
F (idX ) = idF(X) for any X ∈ Ob(C) ,
F (g ◦ f ) = F (g) ◦ F (f ) for any X f−→ Y

g−−→ Z ,

• the morphisms F → G are the “natural transformations”
from a functor F to a functor G, i.e. the applications

Ob(C) 3 X 7−→ (αX : F (X )→ G(X ) ∈ Hom(F (X ),G(Y ))

such that, for any morphism f : X → Y of C,
αY ◦ F (f ) = G(F ) ◦ αX .
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Remarks. –

(i) Every category C has an “identity functor”

idC : C −→ C
which is {

X 7−→ X ,
(X f−→ Y ) 7−→ (X f−→ Y ) .

(ii) The small categories and the functors between them
form a locally small category denoted

Cat .

(iii) A functor F : C → D is called an “equivalence of categories”
if there exists a functor G : D → C such that{

G ◦ F ∼= idC in [C, C] ,
F ◦G ∼= idD in [D,D] .

(iv) A category is said to be “essentially small”
if it is equivalent to a small category.
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Opposite categories and contravariant functors:

Definition. – Any category C defines an “opposite category” Cop by

• Ob(Cop) = Ob(C) ,
• HomCop(X ,Y ) = HomC(Y ,X ) ,

•


g ◦ f ←→ f ◦ g for(

X f−→ Y
g−→ Z

in Cop

) ←→ (
X f←− Y

g←− Z
in C

)
.

Note. – We always have (Cop)op = C.

Definition. – For all categories C,D, we define:
(i) A “contravariant functor” from C to D is a functor

Cop −→ D .
(ii) The category of contravariant functors from C to D is

[Cop,D] .

Note. – We always have [C,Dop] = [Cop,D]op.
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The Yoneda embedding and presheaves:

Yoneda’s lemma. –
(i) If C is a locally small category,

we have the “Yoneda functor”

y : C −→ [Cop,Set] = Ĉ ,

X 7−→ Hom(•,X ) =

{
Y 7→ Hom(Y ,X ) ,

(Y1
f−→ Y2) 7→ [Hom(Y2,X )

•◦f−−→ Hom(Y1,X )] .

(ii) This functor is “fully faithful”
in the sense that, for all objects X ,X ′, the application
y : HomC(X ,X ′)→ HomĈ(y(X ), y(X ′)) is one-to-one.

Definition. – If C is a small (or essentially small) category:
(i) Contravariant functors

Cop −→ Set

are called the “presheaves” on C.

(ii) The category Ĉ is called the “topos of presheaves” on C.
L. Lafforgue Grothendieck topologies, I January 2022 10 / 113



Combinatorial generation of categories:

Observation. – Any category C can be presented as generated by

• a collection Ob(C) of objects X ,
• a collection F of arrows X f−→ Y,
• a collection of equality relations

fn ◦ · · · ◦ f1 = f ′n ′ ◦ · · · ◦ f ′1

between formal composites of arrow strings of F
X = X0

f1−−→ X1 · · ·
fn−−→ Xn = Y

and

X = X ′0
f ′1−−→ X ′1 · · ·

f ′n ′−−→ X ′n ′ = Y .

Note. – Any such relationship fn ◦ · · · ◦ f1 = f ′n ′ ◦ · · · ◦ f ′1
generates others by composition on the left or on the right.

Note. – Any small category is a filtering colimit (= inductive limit)
of categories which are “finitely presented”
(i.e. generated by finite sets of objects, arrows and relations).
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An important remark for us:
The transition to a combinatorial representation of a category
is generally impractical.

• Suppose for example that
C = T-mod(Set)

is the category of sets endowed with a type of algebraic structure T.
Then :

- Any object of C can be defined in terms of generators and relations
(and it is a filtering colimit of objects defined
in terms of finite families of generators and relations).

- On the other hand, the morphisms between such objects

X −→ Y
consist of structure-preserving applications of type T.
Knowing them comes down to solving equations.
It is generally not possible.

Ex: If T is the “commutative ring” structure type,

Hom(Z[T1, · · · ,Tn]/{Pi(T1, · · · ,Tn), 1 ≤ i ≤ k)},A)
= {(a1, · · · , an) ∈ An | Pi(a1, · · · , an) = 0, 1 ≤ i ≤ k }.
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The notion of Grothendieck topology:
We can give two definitions

- in terms of sieves,
- in terms of covering families of morphisms.

Definition. –
(i) Let X be an object of a category C.

A “sieve” over X is a collection C of morphisms to target X

U u−−→ X
such that:{

For any element U u−−→ X of C and any morphism V v−−→ U of C,
the composite u ◦ v : V → U → X is an element of C.

(ii) The inverse image by a morphism X ′ x−→ X of C of a sieve C on X

is the sieve on X ′ x∗C = {U ′ u−−→ X ′ | x ◦ u ∈ C}.

Remarks. –
• Any category equivalence F : C → D

identifies sieves on an object X of C to sieves on the object F (X ) of D.
• If C is small or essentially small, the sieves on an object X of C form a set.
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Definition 1. –
A “Grothendieck topology” J on a category C is an application

Ob(C) 3 X 7−→ J(X ) = collection of sieves over X

which satisfies the following three axioms:

(Maximality) For any object X of C,
its “maximal sieve”
(consisting of all morphisms to target X)
is an element of J(X ).

(Stability) For any morphism X ′ x−−→ X of C
and any C ∈ J(X ),
then x∗C ∈ J(X ′).

(Transitivity) For all sieves C,C ′ on an object X of C
such that C ∈ J(X )

and u∗C ′ ∈ J(U) , ∀ (U u−−→ X ) ∈ C,
then C ′ ∈ J(X ).
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Ordering on topologies and generated topologies:
Lemma. – Let C be an essentially small category. Then :

(i) Grothendieck topologies J of C
form a set ordered by the inclusion relation.

(ii) For any family of topologies Ji , i ∈ I, on C, their intersection∧
i∈I

Ji

is a topology on C.
(iii) For any family of sieves Ci on objects Xi of C, there exists

a smallest topology J on C which contains all the sieves Ci .
This is the topology generated by Ci , i ∈ I.

Remarks. –
• A union of topologies Ji , i ∈ I, is not a topology

(it satisfies stability but not transitivity).
But it generates a topology

∨
i∈I

Ji .

• One can show that for all topologies J and Ji , i ∈ I, on C, we have
J ∧ (

∨
i∈I

Ji) =
∨
i∈I

(J ∧ Ji) .
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Definition 2. – A Grothendieck topology J on C (essentially small)
is a property (called “property to be J-covering”)
of families of morphisms with the same target

(Ui
ui−−→ X )i∈I ,

which satisfies the following three axioms:

(Maximality) All morphisms X
idX−−−→ X are J-covering.

(Stability) For any morphism X ′ x−−→ X of C
and any J-covering family (Ui

ui−−→ X )i∈I of X,

there is a J-covering family (U ′j
u ′j−−→ X ′)j∈I ′ of X ′

such as each composite U ′j
u ′j−−→ X ′ x−−→ X

factors through at least one Ui
ui−−→ X.

(Transitivity) If (Ui
ui−−→ X )i∈I is J-covering, then:

• Any family (Wk
wk−−→ X ) through which

the Ui
ui−−→ X factorize is J-covering.

• If for all i ∈ I, (Vi,j
vi,j−−−→ Ui)j∈Ji is a J-covering family,

the family of composites

(Vi,j
vi,j−−−→ Ui

ui−−→ X )i∈I,j∈Ji

is J-covering.
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Relationship between the two definitions:

Observation. – In a category C,
any family of morphisms with the same target X

(Ui
ui−−→ X )i∈I

generates a sieve over X which is

{U u−−→ X | ∃ i ∈ I,∃ (U u ′−−→ Ui),u = ui ◦ u ′} .

Lemma. – On an essentially small category C,
the two definitions of topologies correspond by:

(i) A Grothendieck topology J : X 7→ J(X ) of C
defines a notion of J-covering family

(Ui
ui−−→ X )i∈I

= family whose generated sieve is an element of J(X ).

(ii) A notion of J-covering family (Ui
ui−−→ X )i∈I

defines a Grothendieck topology J
of which the sieves are those generated by J-covering families.
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Combinatorial generation of topologies:
Consider an essentially small category C.
We start from an arbitrary application

Ob(C) 3 X 7−→ J0(X ) = set of sieves over X .

Problem. – Construct the topology J on C generated by J0.

• Step 1: Replace X 7→ J0(X ) by
X 7−→ J1(X ) = J0(X ) ∪ {maximal sieve over X } .

• Step 2: Replace X 7→ J1(X ) by
X 7−→ J2(X ) =

⋃
S∈Ob(C)

⋃
(X

s−→S)
∈Hom(X,S)

{s∗C | C ∈ J1(S)} .

• Step 3:
J(X ) is the set of sieves that contain a family of composites

Uk
uk−−→ Uk−1

uk−1−−−−→ Uk−2 −→ · · · −→ U1
u1−−→ U0 = X

where, for each fixed i , 0 ≤ i < k , and each fixed Ui , the morphisms
Ui+1

ui+1−−−→ Ui

generate a sieve over Ui which is an element of J2(Ui).
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Proof that J is a Grothendieck topology:
• Maximality: J(X ) ⊇ J2(X ) ⊇ J1(X ) 3 maximal sieve over X .
• Transitivity: A composite of “multicomposites” (of the form of step 3) of

lengths k and k ′ is a “multicomposite” of length k + k ′.
• Stability: We consider a morphism x : X ′ → X

and a sieve C of J(X ) which contains a family of composites
Uk

uk−−→ Uk−1 −→ · · · −→ U1
u1−−→ U0 = X

as in step 3. Then we construct by induction on i , 0 ≤ i < k , families of
morphisms

U ′i+1
u ′i+1−−−→ U ′i with

− U ′0 = X ′ ,
− for fixed i and U ′i , the sieve generated by the U ′i+1 → U ′i

is in J2(U ′i ),
− each U ′i+1 → U ′i fits in a commutative square of the form:

U ′i+1

��

u ′i+1 // U ′i

��
Ui+1

ui+1 // Ui
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Remarks on the generation of Grothendieck topologies:
On the spawning process:
• We therefore start from a family of subsets

J(X ) ⊂ Ω(X ) = {set of sieves over X } , X ∈ Ob(C) .
• Step 1 of adding maximal sieves is trivial.
• Step 2 is to make the family “symmetric”

in the sense of stable by applications
f ∗ : Ω(Y )→ Ω(X ), (X f−→ Y ) = morphism of C.

• Step 3 consists in making the family “stable by composition”.
What is remarkable is that the family remains symmetric.

On the importance of this process:
We will see later that there is an equivalence between
• the general problem of provability

of any “geometric” assertion
in any “first-order geometric” theory,

• the general problem of determining whether
a sieve C over an object X of a small site (C, J)
belongs or not to the topology of C generated
by J and a family of sieves Ci over objects Xi of C.
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Looking for algorithms:

Problem. – Under what conditions is there an algorithm
which determines whether a sieve C over an object X of a small category C
belongs to the topology generated by a topology J of C
and a family of sieves Ci , i ∈ I, over objects Xi of C?

Remarks. –
• The category C can be

- defined by a list of generators and relations,
- defined as the “syntactic geometric category”

(or “coherent”, or “regular”, or “Cartesian”) of a theory T,
introduced later. As we will see,

its objects are the “geometric” formulas
(or “coherent”, “regular”, “Cartesian”) written in the language of T,
its morphisms are the relations between these formulas
which satisfy the property of being “T-provably functional”.

• The topology J on C can be
- defined as the family of sieves which satisfy certain properties,
- defined as the family of sieves that contain

a family of morphisms which satisfies certain properties.
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The notion of sheaf on a site:
Definition. –
Let be a site (C, J) =

{
(essentially) small category C,
Grothendieck topology J on C.

(i) A sheaf on (C, J) is a presheaf

F : Cop −→ Set
such that, for any object X of C and any sieve C ∈ J(X ), the map
F (X ) −→ lim←−

(U
u−−→X)∈C

F (U)

=

(su ∈ F (U))
(U

u−→X)∈C

∣∣∣∣su ′ = F (v)(su), ∀

U ′ v−→ U
u ′↘ ↙u

X


is a bijection.

(ii) A sheaf morphism on (C, J)
F1 −→ F2

is a presheaf morphism,
that is, a morphism of the category

Ĉ = [Cop,Set] .
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The notion of sheaf topos:

Definition. –
Consider a site (C, J).
We call sheaf topos on (C, J)
the full subcategory

ĈJ
� � // Ĉ

consisting
• of sheaves on (C, J),

• of their morphisms (as presheaves).

Note. –
Just like Ĉ,
the category ĈJ is locally small.
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The sheafification functor:
Proposition. – Let (C, J) be a site. The embedding functor

j∗ : ĈJ
� � // Ĉ

admits a “left adjoint”

j∗ : Ĉ −→ ĈJ (= functor of sheafification)
which respects{
• not only arbitrary colimits,
• but also finite limits.

Remarks. –
(i) Thus, there is a natural transformation

idĈ −→ j∗ ◦ j∗

of functors Ĉ → Ĉ, such that for any presheaf P and any sheaf F ,
the induced application

HomĈJ
(j∗P,F )

∼−−→ HomĈ (j∗ ◦ j∗P, j∗F )→ HomĈJ
(P, j∗F )

is one-to-one.
(ii) We also have a natural isomorphism of functor ĈJ → ĈJ

j∗ ◦ j∗
∼−−→ idĈJ

.
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Construction of the sheafification functor:

Lemma. –
Consider a site (C, J).
The sheafification functor

j∗ : Ĉ −→ ĈJ

is constructed as the composite functor

P 7−→ j∗P = (P+)+

where
P 7−→ P+

is the functor that associates with any presheaf P
the presheaf P+ defined by

X 7−→ P+(X ) = lim−→
C∈J(X)

lim←−
(U

u−→X)∈C

P(U) .

‖ ‖
filtering colimit on
the ordered set of
sieves C ∈ J(X )

(projective) limit on
the elements of C
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Sheafification and Grothendieck topologies:
Observation. – In a locally small category C,
the sieves C over an object X are the sub-presheaves

C � � // Hom(•,X ) = y(X ) in Ĉ .

Theorem. – Consider a full subcategory

E �
� j∗ // Ĉ

such that j∗ admits a left adjoint

j∗ : Ĉ −→ E
which respects arbitrary colimits and finite limits. For any object X of C, let

JE(X )
be the set of sieves C on X such that

j∗C � � // j∗Hom(•,X ) is an isomorphism of E .
Then :
(i) JE is a Grothendieck topology.

(ii) j∗ : E ↪→ Ĉ factors into an equivalence

E ∼−−→ ĈJE .
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Subtoposes and Grothendieck topologies:
Definition. – Let C be an (essentially) small category.
We call subtoposes of Ĉ
the equivalence classes of full subcategories

E �
� j∗ // Ĉ

such that j∗ admits a left adjoint j∗ : Ĉ → E
which respects arbitrary colimits and finite limits.

Corollary. – The two maps

J 7−→ (Ĉ j∗−→ ĈJ , ĈJ
� � j∗ // Ĉ) ,

(Ĉ j∗−→ E , E � � j∗ // Ĉ) 7−→ JE
define two inverse bijections (which reverse the order relations)
between{• the ordered set of Grothendieck topologies J on C,
• the subtoposes of Ĉ.

Note. – In particular, the subtoposes of Ĉ form a set.
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Canonical functor and sheaf representation:
Definition. – Consider a site (C, J).
We call “canonical functor” the composite functor

` : C y−−−→ Ĉ j∗−−−→ ĈJ .‖ ‖
Yoneda sheafification

Lemma. – Any object F of ĈJ is written as the colimit
F = lim←−

(X ,x)∈
∫

F

`(X )

indexed by the “elements category of F”∫
F

of which
• the objects are (X , x), X ∈ Ob(C), x ∈ F (X ),
• the morphisms (X , x)→ (Y , y) are the morphisms of C

X f−→ Y
such that x = F (f )(y).

Note. – Thus, ĈJ appears as a sort of “completion” of C.
Hence the notation ĈJ .
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Subcanonical topologies:
Proposition. – Consider a site (C, J).
The following properties are equivalent:

(1) The canonical functor
` : C y−−→ Ĉ j∗−−→ ĈJ

is “fully faithful”, which means that the applications

Hom(X ,Y ) −→ Hom(`(X ), `(Y ))
are bijections.

(2) For any object X of C, the presheaf

y(X ) = Hom(•,X ) is a J-sheaf.
(3) One has

J ⊆ Jc

where Jc is the “canonical topology” of C
for which a sieve C over an object X is in Jc(X ) if
• for any morphism X ′ x−−→ X and any object Y , the map

Hom(X ′,Y ) −→ lim←−
(U ′→X ′)∈x∗C

Hom(U ′,Y )

is a bijection.
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The intrinsic notion of topos:

Definition. –
A category E is called a topos
if it admits an equivalence
with the category of sheaves on a site (C, J)

ĈJ
∼−−→ E .

Note. –
For any topos E ,
there is an infinite collection
(so big that it’s not even a set)
of different sites (C, J) and equivalences

ĈJ
∼−−→ E .
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Generating representations of a topos:

Grothendieck’s comparison lemma. –
Consider a site (C, J).
Let C ′ be a full subcategory of C
which is “dense” in the sense that{
• any object of C admits a J-cover

consisting in objects of C ′.

Let J ′ be the topology of C ′ induced by the topology J of C.
Then the functor of presheaf restriction

Ĉ −→ Ĉ ′ ,
(P : Cop → Set) 7−→ (C ′op ↪→ Cop P−→ Set)

induces an equivalence of categories

ĈJ
∼−−→ Ĉ ′J ′ .
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Toposes as “pastiches” (Grothendieck)
of the category of sets:

Theorem. –
A category E is a topos
if and only if it shares
the following properties of the category of sets:

(0) E is locally small.
(1) E admits arbitrary (projective) limits, in particular

• a terminal object 1E = 1,
• products

∏
i∈I

Ei ,

• fiber products X ×S Y of diagrams
Y↓y

X
x−→ S

characterized by the property that, for any object Z ,

Hom(Z ,X ×S Y ) =

set of commutative squares
Z → Y↓ ↓y

X
x−→ S

 .
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(2) E admits arbitrary colimits (= inductive limits), in particular,

• an initial object ∅E = ∅,
• sums

∐
i∈I

Ei ,

• amalgamated sums X
∐

Z Y of diagrams
Z

y−→ Y
x ↓
X

characterized by the property that, for any object S,

Hom(X
∐

Z Y ,S) =

set of commutative squares
Z

y−→ Y
x ↓ ↓
X → S

 .
(3) For any morphism X→S of E , the fiber product functor with X over S

X ×S •
respects arbitrary colimits.

(4) In E , the functors of filtering colimits respect finite limits.
(5) For all objects X and Y of E , their sum

X
∐

Y
is disjoint in the sense that

X ×X
∐

Y Y = ∅ .
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(6) For a morphism of E
X u−−→ Y

to be a isomorphism, it suffices that it be both

• a “monomorphism”
(in the sense that, for any object Z ,
Hom(Z ,X )

u◦•−−−→ Hom(Z ,Y ) is injective),

• and an “epimorphism”
(in the sense that, for any object Z ,
Hom(Y ,Z )

•◦u−−−→ Hom(X ,Z ) is injective).

(7) For any object X of E , its “subobjects”
(= equivalence classes of monomorphisms X ′ ↪→ X)
form a set.

(8) For any object X of E ,
its “quotients” (= equivalence classes of epimorphisms X � X ′)
form a set.
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(9) For any object X of E , the two applications

(X � X ′) 7−→ R = X ×X ′ X ,
(R ↪→ X × X ) 7−→ X

∐
R X

define two inverse bijections between

• the set of quotients of X ,

• the set of equivalence relations on X,
i.e. subobjects

R ↪→ X × X
such that, for any object Z of E , the subset

Hom(Z ,R) ↪→ Hom(Z ,X )× Hom(Z ,X )
is an equivalence relation on Hom(Z ,X ).

Moreover, any morphism X u−→ Y has an image

X � Im(u) ↪→ Y
defined as the quotient of X by the equivalence relation

R = X ×Y X ↪→ X × X .
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(10) There are families of objects in E

(Xi)i∈I

which are “separating” in the sense that,
for all objects X and Y of E ,
the composition map

Hom(X ,Y ) −→∏
i∈I

∏
u∈Hom(Xi ,X)

Hom(Xi ,Y )

is injective.
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Representation of toposes as sheaf categories:

Theorem (Giraud). – Consider a topos E .
Let a small full subcategory C of E
whose objects form a separating family of E .
Let J be the Grothendieck topology of C
for which a family of morphisms

(Xi −→ X )i∈I

is covering if and only if the morphism of E∐
i∈I

Xi −→ X
is an epimorphism.
Then the two functors

E 7−→ (Hom(•,E) : Cop −→ Set) ,
E −→ Ĉ ,

and
ĈJ −→ E ,
F 7−→ lim−→

(X ,x)∈
∫

F

X (= colimit calculated in E)

define two inverse equivalences between E and ĈJ .
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Towards the notion of point of a topos:
Associate to any topological space X
• the category OX of its open subsets,
• the canonical topology JX on OX ,
• the topos EX of sheaves on the site (OX , JX ).

Then:
Proposition. –
(i) Any element x ∈ X defines a pair of adjoint functors

(EX
x∗−−→ Set,Set x∗−−→ EX )

such that x∗ respects finite limits.

(ii) More generally, any continuous application T x−→ X
defines a pair of adjoint functors

(EX
x∗−−→ ET , ET

x∗−−→ EX )

such that x∗ respects finite limits.

(iii) In the special case where T �
� x // X is a subspace,

the induced functor
x∗ : ET

� � // EX
is fully faithful.
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The notion of point of a topos:
Definition. – Let E be a topos.
(i) We call point of E any pair of adjoint functors

(E p∗−−→ Set,Set
p∗−−→ E)

such that p∗ respects finite limits.
(ii) More generally, we call

point of E with values in a topos E ′ (or topos morphism E ′ f−→ E)
any pair of adjoint functors

f = (E f∗−−→ E ′, E ′ f∗−−→ E)
such that f ∗ respects finite limits.

(iii) Such a morphism of toposes E ′ → E
f = (E f∗−−→ E ′, E ′ f∗−−→ E)

is called an “embedding” if its push-forward component

f∗ : E ′ −→ E
is fully faithful.
A subtopos of E is an equivalence class of embeddings

E ′ �
� // E .
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The categories of points of a topos:
Definition. – Let E be a topos.
(i) Given two points of E with values in a topos E ′

f = (f ∗, f∗) and g = (g∗,g∗) ,
we call morphism from f to g

f −→ g
the datum of a natural transformation

f ∗ −→ g∗

or, which amounts to the same by adjunction,

g∗ −→ f∗ .
(ii) For any topos E ′, we denote

[E ′, E ]T
the category of points of E with values in E ′.
If E ′ = Set, it is also denoted

pt(E)
and called the point category of E .
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Topological points and topos-theoretic points:

Proposition. –
Let X be a topological space which is “sober”.

(i) The map
X −→ pt(EX ) ,

x 7−→ (EX
x∗−−→ Set,Set x∗−−→ EX )

is a bijection from X
to the isomorphism classes of points of EX .

(ii) More generally, for any topological space T , the map

(T x−−→ X ) 7−→ (EX
x∗−−→ ET , ET

x∗−−→ EX )

is a bijection
from the set of continuous maps T → X
to isomorphism classes of topos morphisms

ET −→ EX .
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Duality of presentations and evaluations of objects in a topos :

Let E be a topos.

Presentations. – Any site (C, J) with an equivalence

ĈJ
∼−−→ E

which extends a functor ` : C → E ,
allows to present any object E of E in the form

E = lim−→
(S,s)∈

∫
F

`(S)

where F is the J-sheaf on C
F = Hom(`(•),E) .

Evaluations. –
For any point (x∗, x∗) of E [resp. any point with values in a topos E ′],
the functor

x∗ : E −→ Set [resp. x∗ : E −→ E ′ ]

transforms objects of E into sets [resp. into objects of E ′]
and respects all structures that are expressed in terms of
arbitrary colimits and finite limits.
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A nonlinear analogue of the Fourier transform
and wavelet decompositions?

E = topos ←→ E = function space
of X = R,Rn, · · ·

(x∗, x∗) = point of E ←→ point x of X
(x∗, x∗) = point of E

with values in a topos E ′
} ←→ {

parameter point of X
t : T → X

functor of evaluation
x∗ : E → Set

or E ′

} ←→ {evaluation of functions
f 7→ f (x)

or f ◦ t
choice of a presentation

by a site (C, J)
ĈJ

∼−→ E
} ←→ {choice of an orthogonal basis

(ex: Fourier characters,
wavelet basis)

transform of E object of E
into F = Hom(`(•),E) object of ĈJ

} ←→ {
Fourier transform

or wavelet transform
formula of presentation

E = lim−→
(S,s)∈

∫
F

`(S)

} ←→ {
Fourier decomposition

or decomposition into wavelets

L. Lafforgue Grothendieck topologies, I January 2022 43 / 113



Possible applications to nonlinear signals and codes?

• Can we interpret
- the objects E of a topos E as signals?
- the presentations of a topos E by small sites (C, J)

ĈJ
∼−−→ E

as codes?
- the associated representations of the objects E of E

E = lim−→
(S,s)∈

∫
Hom(`(•),E)

`(S)

as encodings?

• If so, can we define conditions ensuring that a code
ĈJ

∼−−→ E
is effective?

Note. – The more a topology J on a small category C
moves away from the “discrete” topology
(for which the only covering sieves are the maximal sieves),
the more the representations

E = lim−→
(S,s)∈

∫
Hom(`(•),E)

`(S)

are redundant.
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Lecture I.2

Linguistic descriptions of points

and first-order geometric theories
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The notion of classifying space:

Naive definition. –
A space (topological, differential, analytic, algebraic . . .) X
is said to be “classifying”
if its points parameterize mathematical structures of a certain type.

Examples. –

• Projective spaces Pn:
points↔ lines of the standard linear space of dimension n + 1.

• Hilbert spaces Hilb(n):
points↔ closed subschemes of the projective space Pn.

• Modular varietiesMg :
points↔ algebraic (smooth projective) curves of genus g.

• Jacobian variety JacX of a curve X :
points↔ invertible vector bundles of degree 0 on X .

• Modular varieties Ag :
points↔ abelian varieties (principally polarized) of dimension g.
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Announcement: All toposes are classifying.

Theorem. – Any presentation of a topos E by a small site (C, J)
ĈJ

∼−−→ E
defines a “first-order (geometric) theory”

T = TC,J
and equivalences of categories

pt(E) ∼−−−→ T-mod(Set) = category of
set-based models of T,

[E ′, E ]T
∼−−−→ T-mod(E ′)

‖ ‖
category of points category of models of T

of E with values in E ′ in the topos E ′.

Note. – We shall see that the language of T = TC,J consists of{
“sorts” = list of objects of C,
“function symbols” = list of morphisms of C.
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Reverse announcement:
Any “geometric” theory is classified by a topos.

Theorem. – Any “first-order geometric” theory T defines:
(i) a “functor of models” of T in toposes E

E 7−→ category T-mod (E) ,
(E ′ f−→ E) 7−→ functor f ∗ : T-mod (E) −→ T-mod (E ′),

(ii) a “classifying topos” ET characterized up to equivalence
by a system of equivalences of categories

[E , ET]T
∼−−→ T-mod(E) .

Note. – Thus, any topos E admits
– an infinite variety of “geometric” presentations

ĈJ
∼−−→ E ,

– an infinite variety of “linguistic descriptions”

E ∼−−→ ET .
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Diaconescu’s equivalence:
Proposition. – Consider a site (C, J). For any topos E , the functor

[E , ĈJ ]T −→ [C, E ] ,
x = (ĈJ

x∗−−→ E , E x∗−−→ ĈJ) 7−→ (C ρ−→ E) = (C `−→ ĈJ
x∗−−→ E)

is an equivalence from the category of topos morphisms

x : E −→ ĈJto the category of functors
ρ : C −→ E

which are
(A) “flat” in the sense that the induced functor

ρ̂ : Ĉ −→ E ,
P 7−→ lim−→

(S,s)∈
∫

P

ρ(S)

respects finite limits,
(B) “J-continuous” in the sense that any J-covering family of C

(Xi −→ X )i∈I

is transformed by ρ into an epimorphism of E∐
i∈I
ρ(Xi) −→ ρ(X ) .
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Proof sketch:

• For any functor ρ : C → E , the functor

ρ̂ : Ĉ −→ E ,
P 7−→ lim−→

(S,s)∈
∫

P

ρ(S)

is the unique extension of ρ which respects arbitrary colimits.

• If x∗ : ĈJ → E respects colimits and

ρ = x∗ ◦ ` : C `−→ ĈJ
x∗−−→ E ,

then
ρ̂ ∼= x∗ ◦ j∗ : Ĉ j∗−→ ĈJ

x∗−−→ E .
• In this case, x∗ respects finite limits

if and only if ρ̂ respects finite limits.
• For any functor ρ : C → E , the functor

ρ̂ : Ĉ → E factors through Ĉ j∗−→ ĈJ
if and only if ρ is J-continuous.

• A functor ĈJ −→ E admits a right adjoint
if and only if it respects arbitrary colimits.
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The theory of flat and J-continuous functors:

Observation. –
Let C be a small category.
To consider a flat and J-continuous functor
with values in a topos E
is equivalent to consider a structure consisting
• of objects MA of E indexed by the objects A of C,
• of morphisms MA Mf−−→ MB of E

indexed by the morphisms f : A→ B of C,

and which satisfies• the axioms ensuring that it is a functor,
• the axioms ensuring that this functor is flat,
• the axioms ensuring that this functor is J-continuous.

We shall formalise these axioms,
which will introduce the notion of “first-order geometric theory”.
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The language of diagrams:

Definition. –
Let C be a small category (or more generally a quiver).
The language of C-diagrams
is the “signature” (or “first-order language”) ΣC
consisting of
• “sorts” A which correspond to the objects of C,
• “function symbols” f : A→ B

which correspond to the arrows A f−→ B of C.
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Definition. –
The category of ΣC-structures of a topos E

ΣC-str(E)

has for objects the applications

M =

{
sort A (= object of C) 7−→ MA = object of E ,

symbol (A→ B) 7−→ (MA Mf−−→ MB) = morphism of E ,

and for morphisms M → N the maps
u : sort A 7−→ morphism (MA uA−−→ NA) of E
such that all the following squares commute:

MA

Mf
��

uA // NA

Nf
��

NB
uB // NB
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Functor theory:

Definition. –
Let C be a small category.
The theory TC of functors on C
consists of the language ΣC completed by the axioms
> `xA idA(xA) = xA for any sort A of ΣC ,
> `xA (g ◦ f )(xA) = g(f (xA)) for all function symbols

A f−→ B and B
g−→ C of ΣC .

Lemma. – For any topos E , the category of functors

C −→ E
identifies with the category of models of TC in E

TC-mod(E) ,
defined as the full subcategory of

ΣC-str(E)
consisting of ΣC-structures M in E which satisfy the axioms of TC .
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Interpretation of axioms:
• Each xA is a formal variable assigned to a sort A.
• Each symbol `xA

has the meaning of an implication
ϕ `xA ψ

between formulas ϕ,ψ in the variable xA.
• Each formula ϕ or ψ in the variable xA

defines for any structure M in a topos E
a subobject Mϕ or Mψ of the object MA.
Such a structure M satisfies an axiom of the form

ϕ `xA ψ

if the two subobjects Mϕ and Mψ of MA verify
Mϕ ⊆ Mψ .

• The symbol > stands for “truth”.
In a variable xA, it defines for any structure M
the total subobject M> = MA of MA.
A structure M satisfies an axiom of the form

> `xA ϕ

if the subobject Mϕ of MA is equal to MA.
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• For any function symbol f : A→ B, the formula

f (xA)

is interpreted in a structure M as the morphism
MA Mf−−→ MB .

• For all function symbols f : A→ B and g : B → C,
the term obtained by substitution of a function with a variable

g(f (xA))

is interpreted in a structure M as the composite morphism

MA Mf−−→ MB
Mg−−−→ MC .

• Thus, a structure M satisfies the axiom
> `xA idA(xA) = xA

if and only if M idA = idMA.

• Similarly, a structure M satisfies the axiom
> `xA (g ◦ f )(xA) = g(f (xA))

if and only if M(g ◦ f ) = Mg ◦Mf .
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Flat functor theory:
Definition. – Let C be a small category.
The theory Tp

C of flat functors on C
consists in the theory TC of functors on C
supplemented with the following axioms:
(A1) Axiom without free variable

> `
∨

A = sort

(∃ xA)>(xA) .

(A2) The family of axioms indexed by pairs of sorts A,B

> `xA,yB

∨
Z = sort =object of C

(f , g) ∈ Hom(Z ,A)× Hom(Z ,B)

(∃ zZ )(xA = f (zZ )∧ yB = g(zZ )) .

(A3)The family of axioms indexed by pairs of morphisms A //f

g
//B of C

f (xA) = g(xA) `xA

∨
Z = sort

h ∈ Hom(Z ,A)
such that f ◦ h = g ◦ h

(∃ zZ )(xA = h(zZ )) .

L. Lafforgue Grothendieck topologies, I January 2022 57 / 113



Theorem. –
For any topos E , the category of flat functors

C −→ E
identifies with the category of models of Tp

C in E

Tp
C-mod(E)

defined as the full subcategory of

TC-mod(E)

made up of models M of TC in E
which satisfy the complementary axioms
(A1), (A2) and (A3) of Tp

C .

Note. –
The theory Tp

C has the same language ΣC as TC
but has more axioms.
We say that Tp

C is a quotient theory of TC .
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Interpretation of axioms:
• The “free variables” of a formula

are those on which no quantifier applies.
So the formula (∃ xA)>(xA)
has no free variable, and the formula

(∃ zZ ) (xA = h(zZ ))
has xA for unique free variable.

• Each formula ϕ or ψ without free variable
defines for any structure M in a topos E
a subobject Mϕ or Mψ of the terminal object 1 = 1E of E .
Such a structure M satisfies an axiom of the form

ϕ ` ψ
if the two subobjects Mϕ and Mψ of 1 = 1E verify

Mϕ ⊆ Mψ .
• In particular, if ϕ is a formula without free variable,

a structure M satisfies the axiom
> ` ϕ

if the subobject Mϕ of 1 = 1E is equal to 1 = 1E .
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• The existential quantifier ∃ in one or more variables
has the meaning of an image by the projection
defined by forgetting this or these variables.
If for example ϕ is a formula
into free variables xA, (xA, zZ ) or (xA, yB, zC),
interpreted in a structure M of a topos E as a subobject

Mϕ ↪→ MA , Mϕ ↪→ MA×MZ , or Mϕ ↪→ MA×MB ×MZ ,

then the formula (∃ xA)Mϕ or (∃ zZ )Mϕ is interpreted
as the image subobject of Mϕ in

1 = 1E , MA or MA×MB

by the canonical projection morphism

MA→ 1 , MA×MZ → MA or MA×MB ×MZ → MA×MB .
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• The symbol ∧ has the meaning of a finite conjunction
and is interpreted as a finite intersection of subobjects.
If for example ϕ and ψ are two formulas
in free variables (xA, yB, zZ ),
interpreted in a structure M of a topos E as two subobjects

Mϕ ↪→ MA×MB ×MZ , and Mψ ↪→ MA×MB ×MZ ,
the formula ϕ∧ψ is interpreted as
their intersection, i.e. their fiber product.

• The symbol ∨ or
∨

has the meaning of a finite or infinite disjunction
and is interpreted as an arbitrary union of subobjects.
If for example the ϕi , i ∈ I, are formulas
in variables (xA, yB), xA or without free variable,
interpreted in a structure M of a topos E as subobjects

Mϕi ↪→ MA×MB , Mϕi ↪→ MA or Mϕi ↪→ 1 = 1E ,
the formula

∨
i∈I
ϕi is interpreted as

their union, i.e. the image of the morphism∐
i∈I

Mϕi → MA×MB ,
∐
i∈I

Mϕi → MA or
∐
i∈I

Mϕi → 1 .
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• Ultimately, a structure M satisfies axiom (A1)
> `

∨
A = sort

(∃ xA)>(xA)

if 1 = 1E is the union of images of the morphisms

MA −→ 1 .
• It satisfies the axioms of (A2)

> `xA,yB
∨

Z = sort
(f , g) ∈ Hom(Z ,A)× Hom(Z ,B)

(∃ zZ )(xA = f (zZ )∧ yB = g(zZ ))

if MA×MB is the union of images of the morphisms

MZ
Mf×Mg−−−−−→ MA×MB

indexed by diagrams A f←− Z
g−→ B of C.

• For any pair A //f

g
// B , it satisfies the axiom of (A3)

f (xA) = g(xA) `xA
∨

Z = sort

(Z h−→ A) such that f ◦ h = g ◦ h

(∃ zZ )(xA = h(zZ ))

if the subobject of MA defined by the equation Mf = Mg

is the union of images of the morphisms MZ Mh−−→ MA
indexed by morphisms h : Z → A of C such that f ◦ h = g ◦ h.
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The theory of flat and J-continuous functors:

Definition. –
Let (C, J) be a small site.
The theory TC,J of flat and J-continuous functors on C
consists in the theory Tp

C of flat functors on C
completed with the following family of axioms:

(B) For any J-covering family of morphisms of C

Ai
fi−−→ A , i ∈ I ,

the axiom
> `xA

∨
i∈I

(∃ xAi
i )(xA = fi(x

Ai
i )) .
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Corollary (of the previous theorem). –
For any topos E , the category of flat and J-continuous functors

C −→ E
identifies with the category of models of TC,J in E

TC,J -mod(E)

defined as the full subcategory of

Tp
C-mod(E)

made up of models M of Tp
C in E

which satisfy the complementary axioms (B) of TC,J .

Note. –
The theory TC,J has the same language ΣC as TC or Tp

C

but has more axioms.
So TC,J is a quotient theory of TC or Tp

C .
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Interpretation of axioms:

• Consider a flat functor from C to a topos E ,
i.e. a model M in E of the theory Tp

C .
For a J-covering family of morphisms of C

(Ai
fi−−→ A)i∈I ,

to say that M satisfies the axiom

> `xA

∨
i∈I

(∃ xAi
i )(xA = fi(x

Ai
i ))

means that MA is the union of the images of the morphisms

MAi
Mfi−−−→ MA , i ∈ I ,

in other words that the morphism∐
i∈I

MAi −→ MA

is an epimorphism.
• This means exactly that this flat functor

C −→ E
is J-continuous.
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The general notion of first-order language:

Definition. –
A “signature” (or “first-order language”) Σ consists of
• a (finite or infinite) family

of “sorts” (i.e. of “object names”)

A,B,C, · · ·
• a (finite or infinite) family

of “function symbols”

f : A1 · · ·An −→ B (with n ≥ 0)
which go from a finite sequence of sorts A1 · · ·An
to a sort B,

• a (finite or infinite) family
of “relation symbols”

R � A1 · · ·An (with n ≥ 0)
between finite sequences of sorts A1 · · ·An.
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The notion of Σ-structure:

Definition. –
Let Σ be a signature.
A Σ-structure in a topos E is a triple mapping
which associates

• to any sort A of Σ
an object MA of E ,

• to any function symbol f : A1 · · ·An → B of Σ
a morphism of E of the form

Mf : MA1 × · · · ×MAn −→ MB

(and Mf : 1 = 1E −→ MB if n = 0),

• to any relation symbol R � A1 · · ·An of Σ
a subobject in E of the form

MR � � // MA1 × · · · ×MAn

(and MR � � // 1 = 1E if n = 0).
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The notion of morphism of Σ-structures:

Definition. – Let Σ be a signature.
A morphism between two Σ-structures M,N in a topos E

u : M −→ N
is a mapping

sort A 7→morphism uA : MA→ NA of E , such that:
• for all function symbol f : A1 · · ·An → B of Σ, the square

MA1 × · · · ×MAn

uA1×···×uAn

��

// MB

uB

��
NA1 × · · · × NAn // NB

is commutative,
• for all relation symbol R � A1 · · ·An of Σ,

we have a commutative square:

MR

��

� � // MA1 × · · · ×MAn

uA1×···×uAn

��
NR �

� // NA1 × · · · × NAn
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Functors of Σ-structures:

Lemma. – Let Σ be a signature.

(i) For any topos E ,
the Σ-structures in E and their morphisms
constitute a (locally small) category

Σ-str(E) .

(ii) Any topos morphism E ′ → E
f = (E f∗−−→ E ′, E ′ f∗−−→ E)

induces a pair of adjoint functors

f ∗ : Σ-str(E) −→ Σ-str(E ′)
and

f∗ : Σ-str(E ′) −→ Σ-str(E) .

Proof. –
Indeed, f ∗ and f∗ respect finite limits,
in particular finite products and monomorphisms.
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The constituent elements of geometric formulas:

Definition. –
Consider a signature Σ.
The constituent elements of the “geometric formulas” of Σ are:
• the sorts, the function symbols and the relation symbols of Σ,

• formal variables xA, yB, · · ·
each of which is assigned to a sort A,B, · · · of Σ,

• the equality relation =,
• the symbol > (“truth”)

and the symbol for finite conjunction ∧,
• the existential quantifier ∃,
• the symbol ⊥ (“falsity”)

and the symbols of finitary disjunction ∨ or infinitary disjunction
∨

.

Note. – A variable xA of a formula is said{
• “tied” if subject to a quantifier ∃,
• “free” otherwise.
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Contexts and interpretations of geometric formulas:

Definition. –
Let ϕ be a geometric formula of a signature Σ.
A “context” of ϕ is a finite family of variables

~x = xA1
1 · · · x

An
n

which contains all free variables of ϕ
(which are therefore in finite number).

Interpretation of formulas:

A geometric formula ϕ of signature Σ in a context

~x = xA1
1 · · · x

An
n

is meant to define,
for any Σ-structure M in a topos E ,
a subobject

Mϕ = Mϕ(xA1
1 · · · x

An
n )
� � // MA1 × · · · ×MAn .
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Geometric theories and their models:

Definition. – A “first-order geometric theory” T consists of
• a signature Σ,
• a family of implications between geometric formulas of Σ

ϕ `~x ψ in contexts ~x = xA1
1 · · · x

An
n ,

called the “axioms” of Σ.

Definition. – Consider a geometric theory T of signature Σ.

(i) A “model” of T in a topos E is a Σ-structure M of E such that,
for any axiom of T

ϕ `~x ψ in a context ~x = xA1
1 · · · x

An
n ,

we have
Mϕ ⊆ Mψ

as subobjects of MA1 × · · · ×MAn.

(ii) The models of T in a topos E form a full subcategory

T-mod(E) of Σ-str(E) .
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First step in the development of geometric formulas:
the terms
Definition. – A “term” in a signature Σ is an entry of the form

yB (variable of sort B)
or t(xA1

1 · · · x
An
n ) (with values of sort B) which is deduced from yB

by a finite succession of variable substitutions

xAi
i

by expressions f (yA ′1
1 · · · y

A ′m
m ) formed from{

(f : A ′1 · · ·A ′m → Ai) = function symbol of Σ,
yA ′1

1 · · · y
A ′m
m = new variables.

Interpretation in a Σ-structure M of a topos E:

• A term t(xA1
1 · · · x

An
n ) with values of a sort B

interprets as a morphism Mt : MAn × · · · ×MAn −→ MB.

• The variable yB is interpreted as id : MB → MB.

• The substitution of a variable xAi
i by f (yA ′1

1 · · · y
A ′m
m )

is interpreted as composition with Mf : MA ′1 × · · · ×MA ′m → MAi .
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Second step for creating geometric formulas:
the atomic formulas
Definition. – An “atomic formula” of signature Σ is
(1) a relation formula R(xA1

1 · · · x
An
n )

for a relation symbol R � A1 · · ·An of Σ,
(2) an equality formula xB = yB for a sort B of Σ,
(3) a formula derived from (1) or (2)

by substitution of certain variables by terms.

Interpretation in a Σ-structure M of a topos E:
(1) is interpreted as the relational subobject

MR � � // MA1 × · · · ×MAn .

(2) is interpreted as the diagonal subobject

MB � � // MB ×MB .

(3) The substitution of a variable xAi
i by a term t(yA ′1

1 · · · y
A ′m
m )

is interpreted as the pull-back (= fiber product)
of subobjects by the morphism Mt : MA ′1 × · · · ×MA ′m → MAi .
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Third step in the development of geometric formulas:
Horn formulas

Definition. – A “Horn formula” of signature Σ is of the form
(1) >(~x) (“truth” in a context ~x = xA1

1 · · · x
An
n ) ,

(2) ϕ1 ∧ · · ·∧ϕk

for atomic formulas ϕ1, · · · , ϕk in the same context ~x = xA1
1 · · · x

An
n .

Interpretation in a Σ-structure M of a topos E:

(1) The formula >(~x) in a context ~x = xA1
1 · · · x

An
n

interprets as the total subobject

MA1 × · · · ×MAn of MA1 × · · · ×MAn .

(2) A conjunction ϕ1 ∧ · · ·∧ϕk
is interpreted as the intersection

M(ϕ1 ∧ · · ·∧ϕk ) = Mϕ1 ∩ · · · ∩Mϕk

of the subobjects Mϕ1, · · · ,Mϕk of MA1 × · · · ×MAn.
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Fourth step in the development of geometric formulas:
regular formulas

Definition. – A “regular formula” of signature Σ is
(1) a Horn formula,
(2) a formula in a context ~x = (xA1

1 · · · x
An
n ) of the form

ϕ(~x) = (∃~y)ψ(~x ,~y)
for a Horn formula ψ in a context (~x ,~y) = (xA1

1 · · · x
An
n yB1

1 · · · y
Bk
k ).

Interpretation in a Σ-structure M of a topos E:
A formula of the form (2)

ϕ(~x) = (∃~y)ψ(~x ,~y)
interprets as the subobject

Mϕ �
� // MA1 × · · · ×MAn

which is the image of the subobject
Mψ �

� // MA1 × · · · ×MAn ×MB1 × · · · ×MBk
by the projection morphism

MA1 × · · · ×MAn ×MB1 × · · · ×MBk −→ MA1 × · · · ×MAn .
L. Lafforgue Grothendieck topologies, I January 2022 76 / 113



Fifth step in the development of geometric formulas:
coherent or geometric formulas
Definition. – A “coherent [resp.“geometric”] formula” of signature Σ is

(1) ⊥ (~x) (“falsity” in a context ~x = xA1
1 · · · x

An
n ) ,

(2) a finite [resp. infinite] disjunction
ϕ1 ∨ · · ·∨ϕk [resp.

∨
i∈I
ϕi ]

of regular formulas ϕi in the same context ~x = xA1
1 · · · x

An
n .

Interpretation in a Σ-structure M of a topos E:
(1) The formula ⊥ (~x) in a context ~x = xA1

1 · · · x
An
n

is interpreted as the initial subobject i.e. empty subobject
∅ �
� // MA1 × · · · ×MAn .

(2) A finite or infinite disjunction of
regular formulas ϕi in a context ~x = xA1

1 · · · x
An
n

is interpreted as the finite or infinite union of subobjects
Mϕi

� � // MA1 × · · · ×MAn
i.e. as the image of the morphism∐

i
Mϕi −→ MA1 × · · · ×MAn .
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A note on the order of elaboration of geometric formulas:

Fact. – It is part of the “inference rules” of “geometric logic” that:

• For all geometric formulas ϕ of context ~x and ψ of context ~x ,~y,
the formulas of context ~x

ϕ(~x)∧ (∃~y)ψ(~x ,~y) and (∃~y)(ϕ(~x)∧ψ(~x ,~y))
are provably equivalent.

• For all geometric formulas ϕi , i ∈ I, of context ~x ,~y,
the formulas of context ~x∨

i∈I
(∃~y)ϕi(~x ,~y) and (∃~y)(

∨
i∈I
ϕi(~x ,~y))

are provably equivalent.

• For all geometric formulas ϕ and ψi , i ∈ I, of context ~x,
the formulas of context ~x

ϕ∧
∨
i∈I
ψi and

∨
i∈I

(ϕ∧ψi)

are provably equivalent.

Consequence. – This is why, in the definition of geometric formulas,
the symbols ∧, ∃ and

∨
appear in some ordering.
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Fragments of geometric logic:

Definition. – A geometric theory T of signature Σ is called
(i) “algebraic” if

• Σ has no relation symbol,
• all the axioms of T have the form

> ` t1(~x) = t2(~x)
for pairs of terms t1, t2 in the same context ~x,

(ii) “Horn”, “regular” or “coherent”
if all the axioms of T are implications

ϕi ` ψi

between pairs of formulas ϕi , ψi
which are “Horn”, “regular” or “coherent”.

Note. –
A theory without axiom, reduced to its sole signature, is called “empty”.
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The Cartesian fragment:
Definition. – Let T be a geometric theory of signature Σ.

(i) A geometric formula of Σ of context ~x
is said to be “T-Cartesian” if it has the form

(∃~y)ψ(~x ,~y)
for a Horn formula ψ(~x ,~y) of context ~x ,~y such that the implication

ψ(~x ,~y)∧ψ(~x ,~y ′) ` ~y = ~y ′

is provable in the theory T.
(ii) The theory T is said to be “Cartesian” if all its axioms

ϕi ` ψi

are implications between T-Cartesian formulas.

Remarks. –
(i) Any T-Cartesian formula is regular.

So any Cartesian theory is regular.
(ii) Any Horn theory

(and a fortiori any empty theory, or any algebraic theory)
is Cartesian.
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Lecture I.3

Classifying toposes,

toposes as bridges

and the equivalence between

first-order provability

and Grothendieck topologies generation
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Geometric Syntactic Categories:

Definition. – Let T be a geometric theory with signature Σ.
We call “geometric syntactic category” of T, denoted

Cgeo
T ,

the category thus defined:
(i) Its objects are the geometric formulas of Σ

ϕ(~x) in contexts ~x = xA1
1 · · · x

An
n

(considered up to substitution of some variables by other variables).
(ii) The morphisms between two geometric formulas in disjoint contexts

ϕ(~x) −→ ψ(~y)
are the formulas

θ(~x ,~y)
(considered up to T-provable equivalence)
which are “T-provably functional” in the sense that

θ(~x ,~y) ` ϕ(~x) ,
θ(~x ,~y) ` ψ(~y) ,
ϕ(~x) ` (∃~y)θ(~x ,~y) , θ(~x ,~y)∧ θ(~x ,~y ′) ` ~y = ~y ′

are T-provable.
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(iii) The composite of two morphisms

ϕ(~x)
θ1(~x,~y)−−−−−→ ψ(~y)

θ2(~y,~z)−−−−−→ χ(~z)

is defined as the class of the T-provably functional formula

(∃~y)(θ1(~x ,~y)∧ θ2(~y ,~z)) .

Remarks. –

(i) The category Cgeo
T is essentially small.

(ii) It admits arbitrary finite limits.
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Coherent, regular and Cartesian syntactic categories:

Definition. – Let T be a geometric theory of signature Σ which is
coherent [resp. regular, resp. Cartesian].
We call coherent syntactic category of T
[resp. regular, resp. Cartesian syntactic category]

Ccoh
T [resp. Creg

T , resp. Ccart
T ]

the subcategory of Cgeo
T of which

• the objects are the coherent [resp. regular, resp. T-Cartesian] formulas

ϕ(~x)
(up to substitution of variables),

• the morphisms between such formulas in disjoint contexts

ϕ(~x) −→ ψ(~y)

are the equivalence classes of T-provably functional formulas

θ(~x ,~y)
which are coherent [resp. regular, resp. T-Cartesian].
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Remarks. –

(i) The categories Ccoh
T , Creg

T or Ccart
T are small.

(ii) As the categories Cgeo
T , they have arbitrary finite limits.

Proposition. –
If C is an essentially small category
which has arbitrary finite limits,
a functor in a topos E

C −→ E
is flat
if and only if it respects finite limits.

Consequence. –
This proposition applies to syntactic categories

Cgeo
T , Ccoh

T , Creg
T or Ccart

T .

L. Lafforgue Grothendieck topologies, I January 2022 85 / 113



Subobjects and provability:

Proposition. – Let T be a geometric [resp. coherent,
resp. regular, resp. Cartesian] theory of signature Σ.
Then we have in the syntactic category CT = Cgeo

T , Ccoh
T , Creg

T or Ccart
T :

(i) For any context ~x = (xA1
1 · · · x

An
n ) of Σ, the subobjects of

>(~x)
are the geometric [resp. coherent, regular,
resp. T-cartesian] formulas

ϕ(~x)
considered up to T-provable equivalence.

(ii) Two such formulas considered as subobjects of >(~x)
ϕ(~x) and ψ(~x)

satisfy the inclusion relation
ϕ(~x) ⊆ ψ(~x)

if and only if the implication
ϕ `~x ψ

is T-provable.
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Syntactic topologies:
Definition. – Let T be a theory of signature Σ
which is Cartesian [resp. regular, resp. coherent, resp. geometric] . Let

JT = Jdisc
T [resp. J reg

T , resp. Jcoh
T , resp. Jgeo

T ]
be the “syntactic topology” on CT = Ccart

T [resp. Creg
T , Ccoh

T , or Cgeo
T ]

for which a family of morphisms of CT
θi : ϕi(~xi)

θi(~xi ,~x)−−−−−−→ ϕ(~x) , i ∈ I ,
is covering if and only if:
• in the Cartesian case:

there exists i ∈ I such that id : ϕ(~x)→ ϕ(~x) factors through θi ,
• in the regular case: there exists i ∈ I such that

ϕ(~x) ` (∃~xi)θi(~xi ,~x) is T -provable,
• in the coherent case:

there exists a finite subset {i1, · · · , in} ⊆ I such that

ϕ(~x) ` (∃~xi1)θi1(~xi1 ,~x)∨ · · ·∨ (∃~xin)θin(~xin ,~x) is T-provable ,
• in the geometric case:

ϕ(~x) `
∨
i∈I
(∃~xi)θi(~xi ,~x) is T-provable.
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Models and flat JT-continuous functors:

Theorem. –
Let T be a theory of signature Σ
which is geometric, coherent, regular or Cartesian.
Let CT = Cgeo

T , Ccoh
T , Creg

T or Ccart
T .

Let E be a topos.
Let’s associate to any model M of T in E the functor

FM : CT −→ E
which maps

• any object ϕ(~x) of CT to the object
Mϕ(~x) of E ,

• any morphism of CT
ϕ(~x)

θ(~x,~y)−−−−−→ ψ(~y)
to the morphism of E

Mϕ(~x) −→ Mψ(~y)
whose graph is the subobject

Mθ(~x ,~y) �
� // Mϕ(~x)×Mψ(~y) .
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Then:
(i) The functor

M 7−→ MF

defines an equivalence from the category of models

T-mod(E)
to the category of functors

F : CT −→ E
which are flat and JT-continuous for the syntactic topology JT on CT.

(ii) Its inverse equivalence
F 7−→ MF

transforms any such flat and JT-continuous functor

F : CT −→ E
into the model MF which associates

• to any sort A the object
MF A = F (>(xA)) ,

• to any function symbol f : A1 · · ·An → B the morphism
MF f = F (yB = f (xA1

1 · · · x
An
n )) ,

• to any relation symbol R � A1 · · ·An the subobject
MF R = F (R(xA1

1 · · · x
An
n )) ↪→ F (>(xA1

1 · · · x
An
n )) = MF A1 × · · · ×MF An .
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Corollary. – Let T be a theory of signature Σ
which is geometric, coherent, regular or Cartesian.
Let its syntactic category

CT = Cgeo
T , Ccoh

T , Creg
T or Ccart

T
be endowed with its syntactic topology

JT = Jgeo
T , Jcoh

T , J reg
T or Jdisc

T .

Let ET = (̂CT)JT
be the topos of sheaves on the syntactic site (CT, JT).
Finally, let MT
be the model of T in ET which corresponds to the canonical morphism

` : CT −→ ET .
Then, for any topos E , the functor

(f : E → ET) = (ET
f∗−−→ E , E f∗−→ ET) 7−→ f ∗MT

defines an equivalence of the category of topos morphisms

[E , ET]T
to the category of models of T

T-mod(E) .
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Remarks. –
(i) In particular, we have a canonical equivalence

pt(ET)
∼−−→ T-mod(Set) .

(ii) The topos ET is called the “classifying topos” of T.
It is characterized up to canonical equivalence by the equivalences

[E , ET]
∼−−→ T-mod(E) .

(iii) In particular, if T is coherent, regular or Cartesian,
the topos ET considered up to canonical equivalence,
does not depend on the chosen syntactic site (CT, JT).

(iv) If T is a Cartesian theory
(especially if T is a empty theory, is algebraic or Horn),
we can take

ET = Ĉcart
T .

Thus, T is “of presheaf type” in the sense that its classifying topos
is equivalent to the topos of presheaves

Ĉ
on a small category C.
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Summary of what we already know
on toposes and their multiple presentations:

• Toposes are by definition categories E which are equivalent
to categories of sheaves on sites (C, J)

ĈJ
∼−−→ E .

• Any presentation
ĈJ

∼−−→ E
and any choice of a full and J-dense subcategory

C ′ �
� // C

endowed with the topology J ′ induced by J
defines a new equivalence

Ĉ ′J ′
∼−−→ E .

• Any choice in a topos E
of a small full and separating subcategory

C �
� // E

and of the topology J of C induced by E defines an equivalence

ĈJ
∼−−→ E .
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On the side of theories and their geometric expressions:
• Any “first-order geometric” theory T

admits a “classifying topos” ET endowed with a universal T-model MT,
characterized by the property that, for any topos E , the functor

[E , ET]T −→ T-mod(E) ,
f 7−→ f ∗MT

is an equivalence of categories.

• This classifying topos ET can be constructed
as the topos of sheaves on the site (Cgeo

T , Jgeo
T ) consisting in{

geometric formulas of the signature Σ of T,
and their T-provably functional relations.

• If T is coherent or regular, ET can also be constructed
as the topos of sheaves on the site{
(Ccoh

T , Jcoh
T ) of coherent formulas of Σ,

(Creg
T , J

reg
T ) of regular formulas of Σ.

• Finally, if T is Cartesian, ET can also be constructed
as the topos of presheaves on the category
Ccart
T of T-Cartesian formulas of Σ.
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Regarding the expression of sites in terms of theories:

• Any small category C defines a signature ΣC
− whose sorts are the objects of C,
− whose function symbols are the morphisms of C,
− and which has no relation symbol.

• Any topology J of C defines
a geometric theory TC,J of signature ΣC ,
such that, for any topos E ,

TC,J -mod(E)
is the category of functors

C −→ E
which are flat and J-continuous.

• Thus, the topos of sheaves on the site (C, J)
ĈJ

appears as the classifying topos of the geometric theory TC,J

ĈJ
∼−−→ ETC,J .
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Geometric presentations and linguistic descriptions:

• Thus, we already know that any topos E admits
− an infinite diversity of geometric presentations

ĈJ
∼−−→ E ,

− an infinite diversity of linguistic descriptions
E ∼−−→ ET .

• Each geometric presentation of E
ĈJ

∼−−→ E extending a functor ` : C → E
induces natural expressions of its objects E in the form

E = lim−→
(X ,x)∈

∫
F

`(X ) with F = Hom(`(•),E) .

• Each linguistic description of E

E ∼−−→ ET
induces natural descriptions of its points with values in toposes E ′

[E ′, E ]T
∼−−→ T-mod(E ′) .
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The meanings of the passage to toposes: the geometric side

• For Grothendieck,
the most diverse mathematical situations
give rise to the natural definition of sites
whose associated toposes embody

“the essence of these situations”.

• In particular,
in any geometric situation
or in any situation that the extraordinarily general notion of site
allows to see and study geometrically,
what is really meaningful
is defined from the topos or the toposes
associated with this situation.
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• For example,
the cohomological or homotopic invariants
of topological spaces or manifolds
are invariants of the toposes
associated with these spaces or these manifolds.

• Actually,
the general notion of topos
was first discovered by Grothendieck
as

the most general setting
in which cohomological invariants are defined.

• Similarly, according to Grothendieck and Artin-Mazur,
the π1

and all homotopic invariants

are defined in the general framework of toposes.
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The meanings of the passage to toposes: the linguistic side

• By definition,
for any “first-order geometric theory” T,
its classifying topos ET
represents the functor of its models
in the sense that there exist natural equivalences of categories

[E ′, ET]T
∼−−→ T-mod(E ′)

for any topos E ′.
• This means that the constructions

T 7−→ (CT, JT) 7−→ ET = (̂CT)JT
incarnate mathematically

the passage from syntax to semantics
in the sense of Tarski.

• Thus, two theories T1 and T2 are “Morita-equivalent” in the sense that
ET1

∼= ET2

if and only if they are “semantically equivalent” in the sense that
their model functors are equivalent.
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• This leads to especially study
the equivalences of Morita

between first-order geometric theories.

• Following Olivia Caramello, this also leads to
study together theories T
whose classifying topos ET is of such or such particular type.

• For example, a theory T
is said to be “presheaf type”
if ET is equivalent to a topos of presheaves Ĉ.→ Presheaf type theories include

algebraic theories, empty theories and Cartesian theories.→ O. Caramello gave several series of
necessary and sufficient criteria
for a theory to be presheaf type.

• Similarly, she characterized
theories T which are “Galois”
in the sense that their topos ET is equivalent
to the topos of continuous actions of a topological group.
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The general notion of topos invariant:

• It can be a property (P)
that can be verified or not by any topos
and which is respected by all topos equivalences

E ′ ∼−−→ E .
• It can also be a

covariant or contravariant functor
from the category of toposes to a category A

H : topos E 7−→ object H(E) of A,

(f : E ′ → E) 7−→ {
f∗ : H(E ′)→ H(E)

or f ∗ : H(E)→ H(E ′)

}
,

‖ ‖
topos morphism of A

morphism

and which transforms
any topos equivalence E ′ ∼−−→ E
into an isomorphism of A.
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Caramello’s “toposes as bridges” technique:
The principles

• Any topos E incarnates some mathematical content.
• Any presentation of E by a site (C, J)

ĈJ
∼−−→ E

represents a geometric point of view on this content.
• Any description of E by a theory T

E ∼−−→ ET
represents a linguistic expression of this content.

• Varying the presentations of a topos E by sites or theories

represents a mathematical incarnation
of the multiplication of geometric or linguistic points of view
on the mathematical content embodied by this topos.
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• Choosing a relevant question
about a mathematical content embodied by a topos E

is realized by considering and studying
an invariant property (P) or an invariant H of toposes
in the specific case of the topos E .

• Expressing an invariant property (P) or an invariant H of toposes
in terms of a geometric presentation by a site (C, J)

or of a linguistic description by a theory T
amounts to bring down this property or this abstract invariant
to concrete data or statements
directly formulated from (C, J) or T.

• Bringing together expressions of an abstract property or an invariant
in terms of different geometric presentations

or language descriptions
embodies mathematically the operation

of confronting diverse points of view.
This causes correspondences and equivalences to appear,

most often unexpected,
between various forms of expression of the same abstract phenomena.
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The “toposes as bridges” technique: Its implementation

• Consider invariant properties (P) or invariants H of toposes
(or classes of such properties or such invariants),
and express them or calculate them in the terms

of different types of presentation sites
or description theories.

• Use already known processes allowing to
display equivalences of toposes,

and enrich the known processes
− by a systematic study of morphisms

between toposes defined by sites or theories,
− by obtaining new criteria

for such morphisms to be equivalences.

• Combine the two to make appear
new correspondences or equivalences.
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• Conversely, consider
classical equivalences or correspondences of mathematics,

and try to lift them to
equivalences of toposes associated with sites or theories

from which they would be deduced by expression or calculation
of some invariants in various presentations.

• In this way, build up and gradually enrich
a library constituted

− of known equivalences
between toposes associated with sites or theories,

− of classes of invariants of toposes
which are interesting in certain types of situations,

− of expressions or of concrete calculations of such invariants
in various types of geometric presentations
or of linguistic descriptions.

• When a classical concrete equivalence is lifted to
an abstract equivalence of toposes,

one can consider other invariants and calculate them to obtain
other concrete “sister” equivalences of the starting equivalence.

L. Lafforgue Grothendieck topologies, I January 2022 104 / 113



Remarks on the “toposes as bridges” program:
• This program is structurally math-wide.
• O. Caramello showed with application examples

that her “technique of toposes as bridges”
generates non-trivial and unexpected results
in various fields of mathematics.→ This is enough to justify that her program
continues to be expanded and deepened
by a new school of mathematics.

Which parts of this program can give rise to algorithms?→ First and foremost, the calculation of some topos invariants classes
in terms of certain classes of geometric presentations

or language descriptions.
(NB: O. Caramello has proved at least one “meta-theorem”
which establishes that certain classes of invariants of toposes are
“computable”.)→ The constitution of “libraries” of topos equivalences

and invariants of toposes?
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The particular case of a basic invariant:
associating to any topos the ordered set of its subtoposes

We recall:
• An embedding of toposes is a topos morphism E ′ → E

j = (E j∗−−→ E ′, E ′ j∗−−→ E)
such that j∗ : E ′ → E is a fully faithful functor.

• Two topos embeddings

j1 : E1
� � // E and j2 : E2

� � // E

are said to be equivalent [resp. ordered in E1 ≤ E2]
if there exists an equivalence [resp. an embedding]

e : E1
∼−−→ E2 [resp. E1

� � // E2 ]

and an isomorphism of topos embeddings

j2 ◦ e ∼= j1 .
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• For any small category C, the two applications

J 7−→ (Ĉ j∗−−→ ĈJ , ĈJ
� � j∗ // Ĉ) ,

‖
topology on C

(Ĉ j∗−−→ E , E � � j∗ // Ĉ) 7−→ JE = topology on C
for which a sieve
C ↪→ Hom(•,X )

is covering if
j∗C → j∗Hom(•,X )
is an isomorphism

are two inverse bijections
reversing the relations of order, between

- the ordered set of topologies on C,

- the subtoposes of Ĉ,
which therefore form a set.
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Corollary. –
(i) For any topos E ,

its subtoposes form an ordered set.
(ii) For any presentation of E by a site (C, J)

ĈJ
∼−−→ E ,

the set of its subtoposes identifies,
modulo reversal of the order relation,
with the ordered set of topologies J ′ on C such that

J ′ ⊇ J .

Remark. – In particular, the ordered set

{J ′ = topology on C | J ′ ⊇ J}

does not depend on the chosen presentation

ĈJ
∼−−→ E

of the topos E .
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Functoriality of subtoposes:
The map

topos E 7−→ ordered set of subtoposes of E
defines a topos invariant which is both covariant and contravariant

(E ′ f−→ E) 7−→ { f∗ : (E ′1 ↪→ E ′) 7→ Im(E ′1 ↪→ E ′ f−→ E) ,
f−1 : (E1 ↪→ E) 7→ (f−1E1 ↪→ E ′)where :

• The image of a topos morphism
f1 : E ′1 −→ E

is the unique subtopos Im(f1) = (E1 ↪→ E)
such that f1 factors into

E ′1
f 1−−→ E1

� � // E
where f 1 is a surjective morphism of toposes
in the sense that f

∗
1 is a faithful functor.

• The pull-back by E ′ f−→ E of a subtopos E1 ↪→ E
is the unique subtopos f−1E1 ↪→ E ′
such as a topos morphism g : E ′′ → E ′
factors through f−1E1 ↪→ E ′ if and only if
f ◦ g factors through E1 ↪→ E .
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A natural question
in the framework of the “toposes as bridges” technique:

Question. –
Let E be a topos.
Consider a description of this topos
as the classifying topos
of a “first-order geometric” theory T of signature Σ

E ∼−−→ ET .
Is it possible to describe the invariant of E

{ordered set of subtoposes of E}

in terms of the theory T?
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Subtoposes and quotient theories:

Theorem (O. Caramello). –
Let T be a geometric theory of signature Σ.
Then there exist two constructive inverse bijections between
− the ordered set of subtoposes of ET,
− the ordered set of quotient theories of T,

modulo equivalence.

Meaning of words:

(i) If T is a geometric theory with signature Σ,
a quotient theory T ′ of T
is a geometric theory with the same signature Σ
such that any axiom of T is provable in T ′.

(ii) Two theories T1 and T2 with the same signature Σ
are said to be equivalent
if each one is a quotient of the other.
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Remarks. –
• Caramello’s thesis (reprinted in her book “Theories, Sites, Toposes”)

gives two constructive proofs
and various applications, in particular to questions of provability.

• The empty theory of signature Σ has for classifying topos

the topos of presheaves ĈΣ
on the Cartesian syntactic category CΣ = Ccart

Σ .
According to the theorem, any theory T of signature Σ
admits a classifying topos of the form

ET = (̂CΣ)JT

for some topology JT of CΣ.
This way of building ET had already been discovered
by Michel Coste and Marie-Françoise Roy
within the framework of “finitary” theories.
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Application to provability problems:
We would like to explore to what extent
the following corollary lends itself to machine computation:

Corollary. – Let T be a geometric theory of signature Σ.
Let (C, J) be a presentation site for the classifying topos of T:

ĈJ
∼−−→ ET .

Let T ′ be a quotient theory of T
defined by an additional axiom of the form

ϕ `~x ψ .
Let J ′ be the unique topology on C containing J such that

ĈJ ′
∼−−→ ET ′ .

Then the axiom
ϕ `~x ψ

is provable in T if and only if
J ′ = J .

Remark. – For this, we look for conditions under which
the topology J ′ is generated over J by sieves
associated constructively with ϕ `~x ψ.
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