
V. Operations on topologies,
generation formula and applications
Let’s begin by introducing the presheaf Ω
of sieves on objects of an essentially small category:

Definition. – Let C be an essentially small category.
We denote Ω the presheaf

Cop −→ Set ,
X 7−→ Ω(X ) = set of sieves of C on X,

(X ′ x−→ X ) 7−→ {
x∗ : Ω(X ) → Ω(X ′) ,

C 7→ x∗C = {U u−→ X ′ | x ◦ u ∈ C} .

Remark. – The presheaf Ω is called the
“subobject classifier” of Ĉ because, for any presheaf P, the map

(P χ−−→ Ω) 7−→ (Pχ : X 7→ {p ∈ P(X ) | χ(p) = maximal sieve on X })
defines a bijection

Hom(P,Ω)
∼−−→ {set of subobjects P ′ ↪→ P}

whose reverse bijection is
(P ′ ↪→ P) 7−→(

χ : P → Ω,

{
p ∈ P(X ) seen as a

morphism Hom(•,X )→ P

}
7−→ sieve Hom(•,X )×P P ′

)
.
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Subobjects of the subobject classifier:

We still consider the topos Ĉ of presheaves
on an essentially small category C.
The endomorphisms of its subobject classifier Ω −→ Ω

correspond to subobjects D � � // Ω.

Lemma. – The subobjects D � � // Ω

are the maps X 7−→ D(X ) = subset of Ω(X )

which satisfy the axiom of “stability”:
For any morphism X ′ x−−→ X of C, the map

x∗ : Ω(X )→ Ω(X ′) sends D(X ) into D(X ′).

Remark. – Such a subobject D ↪→ Ω is a topology on C
if it additionally satisfies both axioms:
• Maximality: the maximal sieve on any object X of C

is an element of the subset D(X ) ⊆ Ω(X ).
• Transitivity: the endomorphism which corresponds to D
χ : Ω −→ Ω is idempotent, i.e. χ ◦ χ = χ.
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The sieve closing operation defined by a topology:

Lemma. – For any subobject D ↪→ Ω, the corresponding endomorphism

χ : Ω −→ Ω

associates with any sieve C on an object X the sieve on X

C = {U u−−→ X | u∗C ∈ D(U)} .

Remarks. –
• If D ↪→ Ω satisfies the axiom of maximality, we always have C ⊆ C .
• In this case, D is a topology J if and only if

=

C = C for any sieve C .

• If D is a topology J, a sieve C over X is called “J-closed” if C = C
i.e. if an arrow U u−−→ X
is in C as soon as it is locally in C .

• In this case, for any sieve C, we call J-closure of C the sieve

C = {U u−−→ X | u is locally in C} .
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Intersections, unions and generated topologies:
The set of subobjects D ↪→ Ω
is endowed with the order relation defined by inclusion.
Any family of subobjects has an intersection and a union.

Lemma. – For any family of topologies Ji , i ∈ I, on C,
seen as subobjects Ji ↪→ Ω,
their intersection is still a topology denoted

∧
i∈I

Ji .

Remark. –
On the other hand, a union of topologies is not in general a topology.

Corollary. –
(i) For any subobject D ↪→ Ω,

there is a smallest topology JD over C which contains D.
It is called the topology generated by D.

(ii) In particular, for any family of topologies Ji , i ∈ I, on C,
there is a smallest topology

∨
i∈I

Ji

which contains all topologies Ji , i ∈ I.
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Intersections and unions of theories:
Let T0 be a geometric theory which admits Ĉ for classifying topos.
Then the topologies J on C correspond to the quotient theories of T0

T considered up to equivalence.

Reminder. – The order relation between topologies on C
corresponds to the order relation T1 ≤ T2, defined by requiring that
any geometric property which is T1-provable is T2-provable.

Corollary. –
(i) The intersection of topologies corresponds to the operation(Ti)i∈I 7→ ∧

i∈I
Ti

defined by requiring that a geometric property be
provable in

∧
i∈I

Ti

if and only if it is provable in each Ti , i ∈ I.
(ii) The join of topologies corresponds to the operation (Ti)i∈I 7→ ∨

i∈I
Ti

defined by requiring that
∨
i∈I
Ti be the smallest theory

in which a property is provable
if it is provable in at least one of the theories Ti , i ∈ I.
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The implication operation between topologies:
Proposition. – For any topology J on C, the intersection functor with J

J ∧ • : K 7−→ J ∧ K
has a right adjoint

J ′ 7−→ (J ⇒ J ′) ,
characterized by the property that, for any topology K , we have

K ≤ (J ⇒ J ′)
if and only if

J ∧ K ≤ J ′ .

Remark. – In other words, if T0 is a theory classified by the topos Ĉ,
the intersection functor with any theory T quotient of T0

T∧ •
has a right adjoint

T ′ 7−→ (T⇒ T ′)
characterized by the property that, for any quotient theory T ′′ of T0,
we have T ′′ ≤ (T⇒ T ′)
if and only if

T∧ T ′′ ≤ T ′ .
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Distributivity of intersections and joins:
Corollary. –
(i) For any topologies J and Ji , i ∈ I, on C, we have

J ∧
∨
i∈I

Ji =
∨
i∈I
(J ∧ Ji) .

(ii) For any topologies J and J1, · · · , Jn on C, we have

J ∨ (J1 ∧ · · ·∧ Jn) = (J ∨ J1)∧ · · ·∧ (J ∨ Jn) .

Remark. – These properties carry over to the ordered set
of quotient theories of a theory T0 classified by the topos Ĉ.

Proof. –
(i) The functor J ∧ • admits a right adjoint

so it respects colimits
∨
i∈I

.

(ii) It suffices to consider the case n = 2. Then

(J ∨ J1)∧ (J ∨ J2) = (J ∧ J)∨ (J1 ∧ J)∨ (J ∧ J2)∨ (J1 ∧ J2)
= J ∨ (J1 ∧ J2) .
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Beginning of the construction of the adjoint: a necessary condition

Lemma. – Let J, J ′ and K be three topologies on C such that

J ∧ K ≤ J ′ .
Consider

X an object of C,
C a sieve on X which belongs to K (X ),
(U u−→ X ) a morphism,
C ′ a sieve on U element of J(U), J ′-closed and such that

u∗C ⊆ C ′ .
Then the sieve C ′ on U is maximal.

Proof. –
The sieve C ′ over U is J-covering.
It is also K -covering since it contains u∗(C).
As J ∧ K ≤ J ′, this implies that C ′ is J ′-covering.
As it is J ′-closed, it contains U id−−→ U, that is to say is maximal.
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Verification that the necessary condition defines a topology:

Proposition. – Let J and J ′ be two topologies on C.
For any object X of C, let D(X ) ⊆ Ω(X )
be the set of sieves C on X such that,
for any morphism U u−→ X and any sieve C ′ on U, the conditions

C ′ is J-covering,
C ′ is J ′-closed,
C ′ contains u∗(C)

imply that C ′ is the maximal sieve.
Then D is a topology on C.

Proof. –
• As the definition makes appear a quantification

on all morphisms U u−→ X of target X ,
D satisfies the axiom of stability, i.e. is a subobject D ↪→ Ω.

• D satisfies the axiom of maximality
because, if C is the maximal sieve on X ,
its pull-back u∗(C) by any U u−→ X
is the maximal sieve of U.
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Verification of the transitivity axiom:
• We consider a sieve C on an object X of C

and a sieve C ′ on X , element of D(X ),

such that for any element U ′ u ′−→ X of C ′, we have u ′∗(C) ∈ D(U ′).
• It must be shown that this implies C ∈ D(X ).

• Let us therefore consider a morphism U u−→ X and a sieve S on U which
is J-covering,
is J ′-closed,
contains u∗(C).

It must be shown that S is necessarily the maximal sieve.

• For any element U ′ u ′−→ U of u∗(C ′), we have
(u ◦ u ′)∗(C) ∈ D(U ′) since u ◦ u ′ ∈ C ′.

We also have that
{

u ′∗(S) is J-covering and J ′-closed,
it contains (u ◦ u ′)∗(C),

so u ′∗(S) is the maximal sieve on U ′ which means that u ′ ∈ S.
• So S is J-covering and J ′-closed and it contains the sieve u∗(C ′).
• This implies as intended that S is the maximal sieve over U.
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Joyal’s “left” and “right” operators:
Definition. – In the context of a topos of presheaves Ĉ,
we associate with any subobject D ↪→ Ω

the subobjects D` ↪→ Ω and Dr ↪→ Ω defined by the formulas:
(i) For any object X of C,

D`(X ) =

C = sieve on X

∣∣∣∣∣∣
for any U u−→ X and any C ′ ∈ D(U)
such that u∗(C) ⊆ C ′,
C ′ is necessarily the maximal sieve

 .
(ii) For any object X of C,

Dr (X ) =

C = sieve on X

∣∣∣∣∣∣
for any U u−→ X and any C ′ ∈ D(U)
such that C ′ ⊆ u∗(C),
we necessarily have u ∈ C

 .
Remarks. –

(i) D` and Dr satisfy the “stability” axiom
because D`(X ) and Dr (X ) are defined by a condition
which includes quantization over all U u−→ X .

(ii) If D1 ≤ D2, we necessarily have D`2 ≤ D`1 and Dr
2 ≤ Dr

1.
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Note on references:
• Joyal didn’t publish himself

his theory of operators D 7→ D` and D 7→ Dr .
• It is exposed in P. Johnstone’s book

“Sketches of an Elephant: a topos theory compendium”.
• The definitions of these operators and their study are formulated by

Johnstone within the framework and in the language of
“elementary toposes”, considered as a type of algebraic structure.

• This implies that, in this book, Joyal operators are defined
by algebraic type formulas, which are written

D` = ∀π1(π
∗
2(D)⇒ θ)

Dr = ∀π2(π
∗
1(D)⇒ θ)

where π1, π2 are the two projections Ω×Ω⇒ Ω,

and θ ↪→ Ω×Ω is the equalizer of Ω×Ω
π2

⇒⇒ Ω.

• The explanation of these definitions in terms of sieves,
in the context of presheaf toposes,
is given in chapter IV of the book of O. Caramello

“Theories, Sites, Toposes”.
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A formula for calculating generated topologies:

Theorem. – For any subobject D ↪→ Ω i.e. any application

X 7−→ D(X )
‖ ‖

object of C family of sieves on X
which satisfies the stability axiom,
the Grothendieck topology JD of C generated by D
is given by the formula

JD = (Dr )` .

Remarks:
• The Joyal theory presented by Johnstone

includes a characterization of the operator D 7−→ (Dr )`

in the framework of “elementary toposes”.

• A proof of the equality JD = (Dr )`

within the framework of presheaf toposes
is given in chapter IV of Caramello’s book.

L. Lafforgue Grothendieck topologies, V May 2022 13 / 41



The main ingredients of the proof:

• We already know that the operators

D 7−→ D` and D 7−→ Dr

reverse order relation,
therefore we have for any D1 ≤ D2 the order relation

(Dr
1)
` ≤ (Dr

2)
` .

• To prove the formula, it suffices to prove
the three following properties:

(1) For any subobject D ↪→ Ω, we have the order relation D ≤ (Dr )`.

(2) For any subobject D ↪→ Ω, the subobject D` ↪→ Ω
is a topology.

(3) For any topology J ↪→ Ω,

we have the fixed point property (J r )` = J .
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Explicitation of the composite operator of Joyal:

Combining the two defining formulas of the operators

D 7−→ D` and D 7−→ Dr ,
we obtain :

Lemma. –
For any subobject D ↪→ Ω
and any object X of C,
(Dr )`(X ) is the set of sieves C over X
such that, for any morphism u : U → X,
a sieve C ′ over U is the maximal sieve if
• it contains u∗(C),
• for any morphism u ′ : U ′ → U

we have u ′ ∈ C ′

if u ′∗(C ′) contains at least one sieve on U ′

which is an element of D(U ′).
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Verification of inequality (1):
Lemma. – For any subobject D ↪→ Ω, we have the order relation

D ≤ (Dr )` .

Proof. –
• We have to show that,

for any object X of C, any sieve C ∈ D(X ),
and any morphism u : U → X ,
a sieve C ′ on U is the maximal sieve if
− it contains u∗(C)
− for any morphism u ′ : U ′ → U

we have u ′ ∈ C ′

if u ′∗(C ′) contains at least one sieve on U ′

which is an element of D(U ′).
• Indeed, for any sieve C ′ on U which satisfies these two conditions,

we have for any morphism u ′ : U ′ → U

u ′∗(C ′) ≥ u ′∗ ◦ u∗(C) ∈ D(U ′)
hence u ′ ∈ C ′.

• As intended, this means that C ′ is the maximal sieve.
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Verification of property (2): each D` is a topology

Proposition. – For any subobject D ↪→ Ω , the subobject

D` �
� // Ω

is a topology.

Proof. –
• For any object X of C, D`(X ) is by definition

the set of sieves C of X
such that for any U u−→ X and any C ′ ∈ D(U)

verifying u∗(C) ≤ C ′,
C ′ is necessarily the maximal sieve.

• D` satisfies the axiom of “maximality”:
Indeed, if C is the maximal sieve over X
the order relation u∗(C) ≤ C ′ for U u−→ X
implies that C ′ is the maximal sieve over U.
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Verification that D` satisfies the transitivity axiom:

• Consider a sieve C on an object X of C and a sieve C ′ ∈ D`(X )

such that, for any (U u−−→ X ) ∈ C ′, we have
u∗(C) ∈ D`(U) .

• Prove that C ∈ D`(X )
that is, for any morphism u : U → X
and any sieve S ∈ D(U), the order relation

u∗(C) ≤ S
implies that S is the maximal sieve of U.

• We have u∗(C ′) ∈ D`(U).

For any morphism (U ′ u ′−−→ U) ∈ u∗(C ′), we have
u ◦ u ′ ∈ C ′ with u ′∗(S) ∈ D(U ′) and (u ◦ u ′)∗(C) ≤ u ′∗(S).

• We deduce that u ′∗(S) is the maximal sieve of U ′, i.e. u ′ ∈ S.
• In other words, we have u∗(C ′) ≤ S.
• As we also have by hypothesis S ∈ D(U),

we conclude as desired that S is the maximal sieve on U.
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Verification of property (3) of fixity of topologies:

Proposition. – For any Grothendieck topology J on C
seen as a subobject J ↪→ Ω,
we have the fixed point property

J = (J r )` .

Proof. –
• We already know that J ≤ (J r )`.
• We are reduced to showing that for any object X of C

and any sieve C ∈ (J r )`(X ),
we necessarily have C ∈ J(X ).

• The hypothesis C ∈ (J r )`(X )
means that, for any morphism u : U → X ,
a sieve C ′ on U is the maximal sieve if
• it contains u∗(C),
• it contains any morphism u ′ : U ′ → U

such that the sieve u ′∗(C ′) on U ′ is J-covering.
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End of the proof:

• In other words,
the hypothesis C ∈ (J r )`(X )
means that, for any morphism u : U → X ,
a sieve C ′ over U is the maximal sieve if{
• it contains u∗(C),
• it is J-closed.

• This also means that, for any u : U → X ,
the sieve

u∗(C) on U

is J-covering.
• So we have as announced

C ∈ J(X ) .

• This completes the proof of the proposition,
therefore also of the theorem.
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The case of joins of topologies:
• We consider a family of topologies

Ji , i ∈ I ,
on a small category C.

• Posing for any object X of C

D(X ) =
⋃
i∈I

Ji(X ) ⊆ Ω(X ) ,

we define a subobject
D � � // Ω

which can be denoted simply
D =

⋃
i∈I

Ji .

• We know from the previous theorem that∨
i∈I

Ji = (Dr )` .

• We are going to make explicit Dr and then (Dr )` if

D =
⋃
i∈I

Ji .
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Closed sieves with respect to a family of topologies:

Lemma. – Suppose D =
⋃
i∈I

Ji

for topologies Ji on C.
Then, for any object X of C,

Dr (X )

is the set of sieves C on X
which are closed with respect to each topology Ji , i ∈ I.

Proof. –
• By definition,

Dr (X ) is the set of sieves C over X
such that, for any morphism U u−→ X , we have

u ∈ C
if there exists i ∈ I and C ′ ∈ Ji(U) verifying

C ′ ⊆ u∗C ,
i.e. u ◦ u ′ ∈ C, ∀ (U ′ u ′−−→ U) ∈ C ′.

• This amounts to requiring that C is Ji -closed, for any i ∈ I.
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Closing a sieve with respect to a family of topologies:

Proposition. – Consider a family of topologies Ji , i ∈ I, on C. Then:
(i) For any sieve C on an object X of C there exists a smallest sieve

C, called the closure of C relative to all Ji , which{
• contains C,
• is closed relative to each Ji , i ∈ I.

(ii) For any morphism U u−−→ X of C
and any sieve C on X, we have

u∗(C) = u∗(C) .

Proof. –
(i) Any intersection of Ji -closed sieves is Ji -closed.
(ii) The sieve u∗(C) contains u∗(C)

and it is closed relatively to each Ji , i ∈ I. So we have

u∗(C) ⊆ u∗(C) .

The reverse inclusion results from the following description:
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Description of the closure of a sieve:
Lemma. – Consider a family of topologies Ji , i ∈ I, on C.
Consider a sieve C on an object X of C.
Then the closure of C relative to all Ji , i ∈ I,

C
consists of the morphisms

U u−−→ X
such that there exists a multicomposite family

Uk
uk−−→ Uk−1

uk−1−−−−→ · · · −→ U1
u1−−→ U0 = U

verifying the following properties:

• For any subscript `, 1 ≤ ` < k, and any partial composite
U`

u`−−→ U`−1
u`−1−−−−→ · · · −→ U1

u1−−→ U0 ,
the family of the morphisms

U`+1
u`+1−−−−→ U`

is Ji -covering for at least one topology Ji , i ∈ I.
• All composites

Uk
uk−−→ Uk−1

uk−1−−−−→ · · · −→ U1
u1−−→ U0 = U u−−→ X

are elements of C.
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Description of a union of topologies:
Corollary. – Consider a family of topologies Ji , i ∈ I, on C. Let

C 7−→ C
be the sieve closing operation with respect to all Ji , i ∈ I.
Then, for any object X of C, (∨

i∈I
Ji

)
(X )

is the set of sieves C over X such that
C is the maximal sieve over X.

Proof. –
• Denoting D =

⋃
i∈I

Ji , it follows from the theorem that(∨
i∈I

Ji

)
(X ) = (Dr )`(X )

is the set of sieves C on X
such that, for any morphism U u−→ X ,

u∗(C) is the maximal sieve of U.
• The conclusion follows from the formula u∗(C) = u∗(C).
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The example of product categories:

• Consider small categories C1, · · · , Ck

endowed with topologies J1, · · · , Jk .

• We have the product category C1 × · · · × Ck

whose objects are the families of objects of C1, · · · , Ck

(X1, · · · ,Xk )and whose morphisms
(U1, · · · ,Uk ) −→ (X1, · · · ,Xk )

are the families of morphisms of C1, · · · , Ck

(U1
u1−−→ X1, · · · ,Uk

uk−−→ Xk ) .

• For any i , 1 ≤ i ≤ k , we can endow C1 × · · · × Ck
with the topology still denoted Ji for which a sieve on an object

(X1, · · · ,Xk )

is covering if it contains a family of the form
(idX1 , · · · , idXi−1 ,ui , idXi+1 , · · · , idXk )

where the Ui
ui−−→ Xi form a Ji -covering family of Xi .
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The notion of product topology:

We therefore consider small categories

C1, · · · , Ck

endowed with topologies
J1, · · · , Jk

and the product category
C1 × · · · × Ck

endowed with the induced topologies

J1, · · · , Jk .

Definition. – With these notations, the topology

J1 ∨ · · ·∨ Jk

on C1 × · · · × Ck can be called
the “product topology” of the Ji , 1 ≤ i ≤ k,

and denoted
J1 × · · · × Jk .
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Explicitation of the product topology:
We still consider small categories C1, · · · , Ck
endowed with topologies J1, · · · , Jk
and the induced topologies J1, · · · , Jk on C1 × · · · × Ck .

Corollary. – Let
C 7−→ C

be the operator that associates with any sieve
C on an object (X1, · · · ,Xk ) of C1 × · · · × Ck

the smallest sieve
C containing C

which is closed relative to topologies J1, · · · , Jk .
Then a sieve

C on (X1, · · · ,Xk )

is covering for the product topology J1 × · · · × Jk if and only if

the sieve C
is maximal.
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Relation with products of topological spaces:
• Consider the case where

C1 = O(X1), · · · , Ck = O(Xk )
are the categories of non-empty open subsets
of topological spaces X1, · · · ,Xk .

• Then C1 × · · · × Ck
is the full subcategory of the category

O(X1 × · · · × Xk ) of open subsets of X1 × · · · × Xk

consisting of objects which are products of non-empty open subsets.
• By construction of the topology of the product space

X1 × · · · × Xkthe full subcategory
C1 × · · · × Ck

� � // O(X1 × · · · × Xk )is dense.

Corollary. – The topos of sheaves on the product space X1 × · · · × Xk
identifies with the topos of sheaves on the category

O(X1)× · · · ×O(Xk )

endowed with the topology induced by that of O(X1 × · · · × Xk ).
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Product topological spaces and product topologies:
• We consider topological spaces X1, · · · ,Xk

and their categories of non-empty open subsets O(X1), · · · ,O(Xk )
with their canonical topologies J1, · · · , Jk .

• A sieve on an object
U1 × · · · × Uk of O(X1)× · · · ×O(Xk ) ↪→ O(X1 × · · · × Xk )

is a subset C ⊆ O(U1)× · · · ×O(Uk )
which contains any element of O(U1)× · · · ×O(Uk )
smaller than an element of C.

• Such a sieve C is Ji -closed if it contains any element
U ′1 × · · · × U ′k

such that U ′i is covered by open subsets U ′′i
which verify the property that the

U ′1 × · · · × U ′i−1 × U ′′i × U ′i+1 × · · · × U ′k are elements of C.

• We denote C 7−→ C
the operator that associates with any sieve C on an object U1 × · · · × Uk
the smallest sieve containing C which is Ji -closed for all i , 1 ≤ i ≤ k .
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Comparison of the product topology and the topology of the product:

We still consider topological spaces X1, · · · ,Xk
and the canonical topologies J1, · · · , Jk
on the categories of non-empty open subsets O(X1), · · · ,O(Xk ).

Proposition. –
(i) The product topology J1 × · · · × Jk on

O(X1)× · · · ×O(Xk )
� � // O(X1 × · · · × Xk )

is contained in the topology induced
by that of the product topological space X1 × · · · × Xk .

(ii) They are equal if k − 1 of the k spaces X1, · · · ,Xk
are locally compact.

Remark. – We recall that a topological space X
is “locally compact” if
any open subset U of X
can be written as a union of open subsets V ⊆ U
whose closures V ⊆ U are compact spaces.
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Application to a “pointless” characterization
of the topology on a product space:

Corollary. – Consider topological spaces X1, · · · ,Xk
which are “locally compact”, except maybe one of them.
Let J be the topology on the product
of categories of non-empty open subsets

O(X1)× · · · ×O(Xk )
� � // O(X1 × · · · × Xk )

which is induced by the canonical topology of X1 × · · · × Xk .
Then a sieve

C on an object U1 × · · · × Uk of O(X1)× · · · ×O(Xk )

is covering if and only if

C =


smallest sieve containing C
which is closed relatively to

the canonical topology Ji of each factor O(Xi)


is the maximal sieve.
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Proof of the identity of the two topologies:
(i) It is obvious that the topology J1 × · · · × Jk on O(X1)× · · · ×O(Xk )

is contained in that induced by the embedding
O(X1)× · · · ×O(Xk )

� � // O(X1 × · · · × Xk ) .

(ii) • For the reverse inclusion, it is enough to consider
the case of a product of two spaces X and Y
such that X is locally compact.

• It suffices to show that if C is a sieve of X × Y
which is covering in the ordinary sense, then C is the maximal sieve.

• Let U be an open subset of X such that U is compact
and y be an element of Y .
For any x ∈ U there exists in C an object Ux × Vx

with x ∈ Ux and y ∈ Vx .
The compact space U is covered by the Ux

hence by a finite family Ux1 , · · · ,Uxn .
Posing Vy = Vx1 ∩ · · · ∩ Vxn , the sieve C contains the Uxi × Vy ,
so the sieve C contains U × Vy .

• So C contains U × Y .
• We conclude that C contains X × Y

since X is a union of open subsets U such that U is compact.
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A deduction theorem in geometric logic:

Let’s give the following application
of the generated topology calculation formula:

Theorem (Caramello). –
Let T be a geometric theory of signature Σ.
Let ϕ and ψ be two geometric formulas
without free variable in the signature Σ.
Suppose that the implication with no free variable

> ` ψ
is provable in the quotient theory of T
defined by adding the axiom

> ` ϕ .
Then the implication

ϕ ` ψ
is provable in the theory T.

Remark. – The converse is obvious.

L. Lafforgue Grothendieck topologies, V May 2022 34 / 41



Geometric translation of the theorem:
• We consider

C = CT = geometric syntactic category of T,
J = JT = syntactic topology of CT,

E = ET = (̂CT)JT = classifying topos of T,
equipped with the canonical functor

` : C y−−→ Ĉ j∗−−→ ĈJ = E
which is fully faithful.

• The formula > defines the terminal object 1 of C
and the formulas without free variable ϕ and ψ
define two subobjects

m � � // 1 and n �
� // 1 .

• The implication
ϕ ` ψ

is provable in T
if and only if the monomorphism

m ∧ n �
� // m

is J-covering.
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Topological form of the deduction theorem:

• Consider an essentially small Cartesian category C
and its terminal object 1.

• For a subobject m ↪→ 1,
denote Jm the topology of C that it generates:
a sieve C on an object X is Jm-covering
if and only if it contains the monomorphism

m ×1 X � � // X .
• We are reduced to proving:

Theorem. – Under the above conditions, consider also
a subobject n ↪→ 1,
and a topology J of C.

Then the monomorphism
m ∧ n �

� // m
is J-covering if (and only if) the monomorphism

n �
� // 1

is covering for the topology generated by J and Jm.
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Implication operators between subobjects in toposes:
In order to prove the previous topological theorem,
we need the implication operators in toposes:

Proposition. – Let E be a topos.
(i) For any subobjects S1 and S2 of an object E of E

there exists a unique subobject

(S1 ⇒ S2)
� � // E

characterized by the property that, for any subobject S ↪→ E, we have

S ≤ (S1 ⇒ S2)
if and only if

S ∧ S1 ≤ S2 .

(ii) For any morphism E ′ e−−→ E of E
and for any subobjects S1 and S2 of E, we have

e−1(S1 ⇒ S2) = (e−1S1 ⇒ e−1S2)

denoting e−1 the pull-back functor

(S ↪→ E) 7−→ (S ×E E ′ ↪→ E ′) .
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Proof of the topological theorem:
• Assume that the existence of implication operators⇒ is known

as well as their compatibility with pull-backs.
• Let C be the sieve on the terminal object 1 of C

consisting in morphisms X
p−−→ 1

such that `(p)factors through the subsheaf

(`(m)⇒ `(n)) �
� // `(1) .

• We are going to prove the following properties of the sieve C:
(1) The monomorphism n ↪→ 1 is an element of C.
(2) The sieve C is J-closed.
(3) The sieve C is Jm-closed.

• These properties and the generated topology calculation formula
imply that, if n ↪→ 1 is covering for the topology J ∨ Jm,
then C is the maximal sieve of the object 1 of C.

• In other words, we have
`(m) ≤ `(n)

which means as wanted that
m ∧ n �

� // m is J-covering.
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Verification of the properties of the sieve of implications:
The sieve C on the terminal object 1 of C defined by the subsheaf

(`(m)⇒ `(n)) �
� // `(1)

has the following properties:
(1) It contains the monomorphism n ↪→ 1.

Indeed, we have the inclusion
`(m)∧ `(n) ≤ `(n) .

(2) It is J-closed.
This follows from the fact that it is defined by a sub-presheaf of `(1)
which is a sheaf for the topology J.

(3) It is Jm-closed.
Indeed, for any morphism X

p−−→ 1
such that m ×1 X ↪→ X

p−→ 1 is in C,
`(m ×1 X ) ↪→ `(X ) factorizes through

(`(m ×1 X )⇒ `(n ×1 X ))
� � // `(X )

which means `(m ×1 X ) ≤ `(n ×1 X )

i.e. p∗(`(m)⇒ `(n)) = `(X ) and (X
p−−→ 1) ∈ C.
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Back to implication operators:
• The proof of the deduction theorem

and its topological variant which implies it
will be complete if we prove that:

(i) For any object E of a topos E there exists an implication operator⇒
between subobjects of E .

(ii) This operator is respected by the functor
of pull-backs of subobjects
defined by a morphism e : E ′ → E of E .

• For (i), the intersection functor with a subobject S1 ↪→ E

S 7−→ S ∧ S1admits a right adjoint
S2 7−→ (S1 ⇒ S2)

because it respects colimits.
Indeed, for any subobject S2 ↪→ E
and if we consider the family of subobjects S ′ of E such that

S ′ ∧ S1 ≤ S2 ,

their union (S1 ⇒ S2) still satisfies the inequality
(S1 ⇒ S2)∧ S1 ≤ S2 .
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Implication operators and pull-backs:
• Considering a morphism of a topos E e : E ′ −→ E

and two subobjects S1,S2 of E , we must verify that

e−1(S1 ⇒ S2) = (e−1S1 ⇒ e−1S2) .

• We can assume that E = ĈJ
is the topos of sheaves on a site (C, J),
therefore is written as a subtopos of a topos of presheaves

E = ĈJ
� � (j∗, j∗) // Ĉ .

• As j∗ and j∗ respect finite limits
and j∗ ◦ j∗ identifies with the functor id of ĈJ ,
we have for all subobjects S1,S2 of any object E of E = ĈJ

(S1 ⇒ S2) = j∗(j∗S1 ⇒ j∗S2) .

• This reduces the verification to the case where
E = Ĉ is the topos of presheaves on C.

• If E = Ĉ, we have the formula for any object X of C

(S1 ⇒ S2)(X ) =

{
x ∈ E(X ) | ∀ (U u−→ X ) = morphism of C,

E(u)(x) ∈ S2(U) ∪ (E(U) − S1(U))

}
.
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