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Abstract. In this paper, we prove an automorphic variant of the Deligne
conjecture on critical values for Rankin-Selberg L-functions over CM fields.
This automorphic variant is known to be equivalent to the original conjecture
for automorphic motives under certain hypotheses.
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Introduction

Deligne’s conjecture is one of the most important and beautiful conjec-
tures in the algebraic theory of L-values. It generalizes the well-known fact
that the special values of the Riemann zeta function satisfy that ζp2nq „
p2πiq2n for all positive integer n where two complex numbers x and y are
equivalent, written as x „ y, if y “ 0, or if y ‰ 0 and x{y is an algebraic
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number.

More precisely, let M be a motive over Q with coefficients in a number
field (c.f. [Del79]). If a condition on the Hodge type of M is satisfied,
Deligne constructed two complex numbers c`pMq et c´pMq, defined as
determinants of certain comparison isomorphisms between the de Rham re-
alizations and the Betti realizations. He also defined two explicit integers
n` and n´ as dimensions of certain cohomological spaces.

Conjecture 0.1. (of Deligne) If an integer m is critical for M, i.e., if
both L8ps,Mq and L8p1´ s,M̌q are holomorphic at s “ m, then

(0.1) Lpm,Mq „ p2πiqmn
ε
cεpMq

where ε is the sign of p´1qm.

The aim of this paper is to prove an automorphic variant of Deligne’s
conjecture [Del79] on critical L-values. In [HGL21], we proved that this au-
tomorphic variant is equivalent to Deligne’s conjecture for certain automor-
phic motives under certain hypotheses (c.f. Conjecture 2.10 and Conjecture
4.15 of the loc. cit). Consequently, we can deduce Deligne’s conjecture in
some cases from our results under these hypotheses.

Let K be a CM field and M be a motive over K. We would like to
study the Deligne conjecture for ResK{QM , a motive over Q. In [Lin17]
and [HL17], we defined the arithmetic automorphic Q-periods for motives
over CM fields and calculated Deligne’s periods c˘pResK{QMq in terms of
these Q-periods. When the motive M is attached to a pair of automorphic
representations, there Q-periods are expected to be related to the arithmetic
automorphic P -periods defined in [Har97], [Lin15b], [GL16] and [HGL21].
Hence we may formulate an automorphic variant of the Deligne conjecture
by replacing the motivic Q-periods in terms of the automorphic P -periods.

More precisely, we have:

Conjecture 0.2. (automorphic variant of the Deligne conjecture)
Let Π (resp. Π1) be a cohomological conjugate self-dual cuspidal automorphic

representation of GnpAKq (resp. Gn1pAKq). Let s0 P Z ` n`n1

2 be a critical
point of Lps,ΠˆΠ1q, and let S be a fixed finite set of places of F , containing
all infinite places. Then the critical value
(0.2)

LSps0,ΠbΠ1q „EpΠqEpΠ1q p2πiq
nn1s0

ź

ıPΣ

r
ź

0ďiďn

P piqpΠ, ıqsppi,Π;Π1,ıq
ź

0ďjďn1

P pjqpΠ1, ıqsppj,Π
1;Π,ıqs.

Besides the basic case where n1 “ 1 proved in [Har97] and [GL16], this
automorphic variant is proved when n ‰ n1pmod2q under certain hypotheses
and relatively stronger regularity condition in [HGL21]. In this paper, we
prove the other half of this automorphic variant where n ” n1pmod2q with-
out these hypotheses. We also weaken significantly the regularity condition.
If the pair pΠ,Π1q satisfies an interlacing property, called piano in Definition
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1.6), we can remove the regularity condition completely.

In the contest, we first treat the piano case, and then the general case.
The idea is to construct auxiliary representations and calculate critical val-
ues for representations of larger groups. The main ideas are the same for
the two cases, but we need different constructions.

There are three ingredients in the proof:

(1) Conjecture 0.2 for the case n1 “ 1 proved in [Har97] and [GL16];
(2) Theorem 5.2 of [GL21] which says that if Π is a cuspidal repre-

sentation of GLN pAKq and Π5 is an Eisenstein representation of

GLN´1pAKq such that pΠ,Π5q is piano, then the critical values for

ΠˆΠ5 is related to the Whittaker periods, defined as ratios of certain
algebraic models;

(3) An calculation of the Whittaker period of an Eisenstein represen-
tation which involves the near central L-values (Theorem 2.5 of
[GL21]).

We now sketch the main idea of the proof for the two cases.

In the piano case, necessarily we have n ą n1. We extend Π1 to an Eisen-
stein representation Π5 of GLn´1 by adding some Hecke characters. The
critical values for Π ˆ Π1 is then a ratio of critical values of Π ˆ Π5 and
critical values of Π twisted by Hecke characters. The former is known by
the second ingredient, and the latter is known by the first ingredient.

In the general case, we consider the Eisenstein representation Π# :“
Π
À

Π1c. The near central value of Π b Π1 is critical and appears in the

Whittaker period of Π5 by the last ingredient. We then construct a cuspidal
representation of GLn`n1`1, called Π#, by automorphic induction of a Hecke
character over a large CM field, such that pΠ#,Π5q is piano (we need a mild

regularity condition here). The Whittaker period of Π5 is then related to

the critical values of Π# ˆ Π5 by the second ingredient. Note that the rep-
resentation Π# is constructed from a Hecke character. The L-function for
Π# ˆ Π5 is then decomposed as L-functions of Π and Π1 twisted by char-
acters which are again known by the first ingredient. We can finally pass
from the near central value to the other critical values thanks to a result of
Raghuram ([Rag21]) on the ratio of adjacent critical L-values.

We finally remark that all the calculations are local and can be done at
each individual place. So in the contest, we will only consider the case where
K is quadratic imaginary.

Acknowledgements. We thank Michael Harris, Harald Grobner, A. Raghuram for

helpful discussions.

1. Preliminaries

1.1. Basic notation. We fix an algebraic closure Q of Q in C. Let K be
a quadratic imaginary field. We fix an embedding of K in Q and hence
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consider K as a subfield of Q. We denote by ι the complex conjugation of
the fixed embedding K ãÑ Q.

Let S be a finite set of places of K which contains the infinite place and
all the ramified places for any date appeared in this paper.

We denote by c the complex conjugation on C. Via the fixed embedding
Q ãÑ C, it can be considered as an element in GalpQ{Qq.

Throughout the text, let φ be an algebraic Hecke character of K with
infinity type z1z0 such that φφc “ || ¨ ||AK (see Lemma 4.1.4 of [CHT08]

for its existence). It is easy to see that the restriction of || ¨ ||
´ 1

2
AKφ to AˆQ is

the quadratic character associated to the extension K{Q by the class field

theory. In particular, the Hecke character || ¨ ||
´ 1

2
AKφ is similar to the Hecke

character η constructed in section 2.1.1 of [GH15].

Let χ be a Hecke character of K. We define qχ :“ χ´1,c and rχ :“ χ{χc

two Hecke characters of K.
Let n and n1 be two positive integers. We may assume that n ě n1.
Let Π be an automorphic representation of GLnpAKq. We denote the

infinity type of Π by tzaiza
1
iu1ďiďn. We may assume that a1 ě a2 ě ¨ ¨ ¨ ě an.

We denote by Π_ the contragredient representation of Π.

Definition 1.1. Let N be an integer. Let G8 be the group of real points of
ResK{QGLn. The representation Π will be called:

(1) pure of weight ωpΠq if ai ` a
1
i “ ´ωpΠq for all 1 ď i ď n;

(2) algebraic if ai, a
1
i P Z`

n´1
2 for all 1 ď i ď n;

(3) cohomological if there exists W an irreducible algebraic finite di-
mensional representation of GLnpFbQRq such that H˚pg8,K8; Πb
W q ‰ 0 where g8 “ LiepG8q and K8 is the product of a maximal
compact group of G8 and the center of G8.

(4) regular if it is pure and ai ´ ai`1 ě 1 for all 1 ď i ď n´ 1.
(5) N-regular if it is pure and ai ´ ai`1 ě N for all 1 ď i ď n´ 1.

We recall a definition from [GL21] (c.f. Definition 1.16 of loc.cit).

Definition 1.2. Let E be a number field. Let x “ txpσquσPAutpCq and y “
typσquσPAutpCq be two families of complex numbers. We say x „E y (and
this relation) is equivariant under AutpC{Kq, if either ypσq “ 0 for all σ P
AutpCq, or if ypσq ‰ 0 for all σ P AutpCq and the following two conditions
are verified:

(1)
xpσq

ypσq
P σpEq for all σ P AutpCq;

(2) σ

ˆ

xpτq

ypτq

˙

“
xpστq

ypστq
for all σ P AutpC{Kq and all τ P AutpCq.

It is easy to see that this relation is symmetric but not transitive unless some
non-zero condition is guaranteed.

Remark 1.1. We assume that E Ą K and the families ypσq ‰ 0 for all σ
in the previous definition. We assume moreover that the numbers xpσq and
ypσq depend only on the restriction of σ to E.
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(1) Then the second condition of Definition 1.2 implies the first one. We
refer to Lemma 1.18 of [GL21] for the proof.

(2) Let JE be the set of complex embeddings of E in C. We identify
the two algebras E bQ C and CJE by sending e b z to pρpeqzqρPJE
where e P E and z P C. By the assumption, we may define xpρq
for ρ P JE as xpσq where σ is any lifting of ρ in AutC. We may
consider x “ pxpρqqρPJE as an element in E bQ C. Similarly, we
may consider y as an inversible element in E bQ C. In this sense,
it is easy to see that x „E y (and this relation) is equivariant under
AutpC{Kq if and only if xy´1 P E bQ K Ă E bQ C. In particular,
our definition is compatible with that in page 2 of [Lin17].

1.2. Split index and piano-condition for automorphic pairs. Through-
out the paper, let Π be a cuspidal cohomological representation of GLnpAKq
with infinity type tzaiza

1
iu1ďiďn such that a1 ą a2 ą ¨ ¨ ¨ ą an. In particular,

Π is algebraic and hence ai, a
1
i P Z ` n´1

2 . Moreover, Lemma 4.9 of [Clo90]
implies that Π is pure. In other words, there exists an integer ωpΠq such
that ai ` a1i “ ´ωpΠq for all i. We say Π is very regular if ai ´ ai`1 ě 3
for all i.

Similarly, let Π1 be a cuspidal cohomological representation of GLn1pAKq
with infinity type tzbjzb

1
ju1ďjďn such that b1 ą b2 ą ¨ ¨ ¨ ą bn1 . We have

bj , b
1
j P Z ` n1´1

2 for all j, and there exists an integer ωpΠ1q such that

bj ` b
1
j “ ωpΠ1q for all j.

We assume that

(1.1) for all 1 ď i ď n, 1 ď j ď n1, ai ` bj ‰ ´
ωpΠq ` ωpΠ1q

2

Definition 1.3. (Split Index)
We split the sequence pa1 ą a2 ą ¨ ¨ ¨ ą anq with the numbers

´
ωpΠq ` ωpΠ1q

2
´bn1 ą ´

ωpΠq ` ωpΠ1q

2
´bn1´1 ą ¨ ¨ ¨ ą ´

ωpΠq ` ωpΠ1q

2
´b1.

The sequence is split into n1 ` 1 parts. We denote the length of each part
by

spp0,Π1; Πq, spp1,Π1; Πq, ¨ ¨ ¨ , sppn1,Π1; Πq,

and call them the split indices.

Remark 1.2. It is easy to see that sppi,Π; Π1, vq is equal to the cardinal of

the set t1 ď j ď n1 | ´ωpΠq`ωpΠ1q
2 ´an`1´i ą bj ą ´

ωpΠq`ωpΠ1q
2 ´an´iu. Here

we put av,0 “ `8 and av,n`1 “ ´8.

Lemma 1.1. Let η be an algebraic Hecke character. The split indices have
the following properties:

(1)
n1
ř

i“0
sppi,Π1; Πq “ n.

(2) For any 0 ď j ď n1, sppj,Π1; Πq “ sppn1 ´ j,Π1c; Πcq “ sppn1 ´
j,Π1_; Π_q.

(3) For any t, s P Z, sppj,Π1 b || ¨ ||tAK ; Πq “ sppj,Π1; Π b || ¨ ||sAK q “

sppj,Π1; Πq .
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(4) For any 0 ď j ď n1, sppj,Π1b η; Πq “ sppj,Π1; Πb ηq and sppj,Π1b
ηc; Πq “ sppj,Π1bη´1; Πq. Similarly, sppj,Π1; Πbηcq “ sppj,Π1; Πb
η´1q.

The first two points of the above lemma are direct. For the remaining, we
only need to notice that calculating the split index is nothing but comparing

ai ` bj with ´ωpΠq`ωpΠ1q
2 .

Definition 1.4. If n ą n1, we say that the pair pΠ,Π1q is piano if the
following equivalent conditions are verified:

(1) The n1 numbers

´
ωpΠq ` ωpΠ1q

2
´bn1 ą ´

ωpΠq ` ωpΠ1q

2
´bn1´1 ą ¨ ¨ ¨ ą ´

ωpΠq ` ωpΠ1q

2
´b1.

lie in different gaps between the n numbers a1 ą a2 ą ¨ ¨ ¨ ą an.
(2) For all 0 ď j ď n1, we have sppj,Π1; Πq ‰ 0.
(3) For all 0 ď i ď n, we have sppi,Π; Π1q ď 1 and moreover spp0,Π; Π1q “

sppn,Π; Π1q “ 1.

Remark 1.3. The condition ”piano” was called ”good position” in my thesis.
M. Harris first used the name ”piano” in a talk at CIRM in spring 2016

since the numbers ωpΠq`ωpΠ1q
2 ´ bj, 1 ď j ď n1 insert into the gaps between

the numbers ai, 1 ď i ď n, like the black keys insert into the gaps between
the white keys of a piano.

Definition 1.5. Let m P Z ` n`n1´2
2 . We say m is critical for the pair

pΠ,Π1q if
(1.2)

1´min
i,j
t|ai`bj`

ωpΠq ` ωpΠ1q

2
|u ď m´

ωpΠq ` ωpΠ1q

2
ď min

i,j
t|ai`bj`

ωpΠq ` ωpΠ1q

2
|u.

This definition is compatible with section 1.7.1 of [GL21], also see equa-
tions (2.33) and (2.34) of [Rag16] .

Remark 1.4. For 1 ď i ď n, if there exists an number ´ωpΠq`ωpΠ1q
2 ´ bj

between ai and ai`1, then we have ai ´ ai`1 ě 2m ´ ωpΠq ´ ωpΠ1q if m ą
ωpΠq`ωpΠ1q

2 , and ai ´ ai`1 ě 2´ 2m` ωpΠq ` ωpΠ1q if m ď
ωpΠq`ωpΠ1q

2 .

The following hypothesis will be made for our main theorem in the piano
case:

Hypothesis 1.1. (regular hypothesis) If m ą
ωpΠq`ωpΠ1q

2 then Π is 2m ´

ωpΠq ´ ωpΠ1q regular; If m ď
ωpΠq`ωpΠ1q

2 then Π is 1´ 2m` ωpΠq ` ωpΠ1q-
regular.

1.3. Rationality field and automorphic periods. In this section, we
shall introduce three types of automorphic periods. We will see that they
are all related to special values of automorphic L-functions.

Recall that Πf is an admissible irreducible representation of GLnpAK,f q.
For any σ P AutpCq, we define σΠf as Πf bC,σ´1 C. It is the finite part of
an algebraic cuspidal representation σΠ of GLnpAKq (c.f. Théorème 3.13 of
[Clo90]). We define QpΠf q, the rationality field of Πf , by the subfield of
C fixed by the automorphisms σ such that σΠf – Πf .
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Let V be a representation over C of a general group G. Let E be a subfield
of C. We say that an E-vector space VE Ă V is an E-rational structure
of V if VE is stable by G and VE bE C – V as G-module.

1.3.1. Whittaker periods. Since Π is cohomological and hence algebraic and
regular, Théorème 3.13 of [Clo90] implies that QpΠf q is a number field and
moreover, Πf has a QpΠf q-rational structure given by the Lie algebra coho-
mology.

On the other hand, since Π is cuspidal and hence generic, its Whittaker
period also provides a QpΠf q-rational structure. The two rational struc-
tures differ by a non-zero ratio ppΠq, called the the Whittaker period.
It is well defined up to multiplication by a number in QpΠf q

ˆ. We refer to
Definition/Proposition 3.3 of [RS08] for detailed definition when the repre-
sentation is cuspidal.

The definition has been generalized to a large family of non-cuspidal rep-
resentations: fully-induced isobaric sums of distinct unitary cuspidal repre-
sentations (c.f. Proposition 3.1 of [GH15] and Corollary 1.12 of [GL21]).

Proposition 1.1. (Proposition 1.4, Lemma 1.6, Lemma 1.8.3 of [Har93])
Let χ1, χ2 be two algebraic Hecke characters of K. We have:

ppχ1χ2, 1q „Epχ1qEpχ2q ppχ1, 1qppχ2, 1q

ppχ1, ιq „Epχ1q ppχc1, 1q

pp|| ¨ ||, 1q „K p2πiq´1

and are all equivariant under the action of AutpC{Kq.

1.3.2. CM periods. Let χ be an algebraic Hecke character of K. We may
associate two non-zero complex numbers ppχ, 1q and ppχ, ιq where 1 indicates
the fixed embedding K ãÑ C. They are defined as ratios of different rational
structures for cohomology spaces associated to CM Shimura varieties and
are well-defined up to multiplication by elements in a number field Epχq.
We refer to appendix of [HK91] and section 1 of [Har93] for more details.

1.3.3. Arithmetic automorphic periods. For each integer 0 ď s ď n, let Us
be a unitary group over Q with respect to the quadratic extension K{Q of
infinity sign pn ´ s, sq. If n is odd, or n is even and s ” n{2 mod 2, we
may assume that Us is quasi-split at each finite places. In this case, if Π is
conjugate self-dual, then Π descends to a cohomological representation of
UspAQq by base change.

If n is even and s ı n{2 mod 2, we may assume that the unitary group
Us is quasi-split outside one finite space which is split in K. We assume
moreover that Π is a discrete series representation at this split place and
hence descends to a cohomological representation of UspAQq by base change.
For base change of cohomological representations, we refer to [Clo91], [HL04]
and [KMSW14] for more details.

We can then define an arithmetic automorphic period P psqpΠq as in
equation (4.28) of [GH15]. It is defined as Petersson inner product of a
holomorphic automorphic form related to the descending of Π to Us. We
also refer to [Har97] for original constructions.
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We say Π is essentially conjugate self-dual if there exists an algebraic
Hecke character χ such that Π b χ is conjugate self-dual. We assume that
Πbχ is a discrete series representation at a split place if n is even. We can
then define the generalized arithmetic automorphic period P spΠq :“

P psqpΠb χqppqχ, 1q´sppqχ, ιq´n`s. In this case (where Π is cuspidal, cohomo-
logical, essentially conjugate self-dual and discrete series at a split place),
we say that Π has definable arithmetic automorphic periods.

The arithmetic automorphic periods are well defined up to multiplication
by elements in a number field EpΠq and does not depend on the choice of χ
by Theorem 1.1. For simplicity, we assume that EpΠq and Epχq contain K.

We remark that if Π is conjugate self-dual, one can show from construction
of automorphic periods that P p0qpΠqP pnqpΠq „EpΠq 1 and is equivariant
under the action of AutpC{Kq. We refer to Lemma 5.2.1 of [Lin15b] for
more details.

1.4. Special values of automorphic L-functions: theorems revisited.
We emphasize that whenever we talk about periods or L-values in the fol-
lowing, we consider them as AutpCq-families. For example, when we talk
about LSps,Πq, we consider it as the family pLSps, σΠqqσPAutpCq.

All the periods in the previous section can be chosen in aAutpCq-equivariant
way such that the following theorems hold.

Theorem 1.1. (Theorem 3.5.13 of [Har97] or Theorem 4.29 of [GH15])
Let Π be a conjugate self-dual of GLnpAKq which has definable arithmetic
automorphic periods. We write its infinity type as tzaiz´aiu1ďiďn where
a1 ą a2 ą ¨ ¨ ¨ ą an.

Let χ be an algebraic Hecke character of K with infinity type zaz̄b such
that χ ˚ χc “ || ¨ ||a`b. We assume that a ´ b ` 2ai ‰ 0 for any i. Write s
for the integer s “ spΠ, ηq :“ #ti | a´ b` 2ai ă 0u.

If m P Z` n´1
2 is critical for the pair pΠ, χq, then

LSpm,Πb χq „EpΠqEpχq p2πiq
mnP psqpΠqppqχ, 1qsppqχ, ιqn´s

and is equivariant under the action of AutpC{Kq.

Remark 1.5. (1) We didn’t state the CM periods as in Theorem 3.5.13
of [Har97]. Instead, the current form appears in middle steps of the
proof for Theorem 3.5.13 (c.f. equation p2.9.12q or the third line in
page 138 of the loc.cit). We refer to Corollary 4.1 of [Lin15a] for
detailed calculation.

(2) In the original theorem, there is a term on the Gauss sum of the
quadratic character associated to K{Q by the class field theory which
is an element in K. We can remove it since we have assumed EpΠq
and Epχq contain K.

(3) The original theorem was stated for the critical values larger or equal
to 1´a´b

2 . We add the condition χ ˚ χc “ || ¨ ||a`b and then the other
critical values can be deduced easily from the functional equation.
More precisely, let m ă 1´a´b

2 be a critical value, then by the func-
tional equation, we get (c.f. [Cog])

Lpm,Πb χq „EpΠqEpχq p2πiq
2m`a`b´1Lp1´m,Π_ b χ´1q.
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Since Π is conjugate self-dual, we have

Lp1´m,Π_ b χ´1q “ Lp1´m,Πc b χ´1q “ Lp1´ a´ b´m,Πb χ´1,cq

“ Lp1´m,Πb χ|| ¨ ||´a´bq “ Lp1´ a´ b´m,Πb χq.

Then the theorem for m ă 1´a´b
2 follows from that for 1´a´b´m ě

1´a´b
2 .

Theorem 1.2. (Theorem 1.9 of [Gro17], Theorem 5.2 of [GL21]) Let Π
be a conjugate self-dual cohomological cuspidal representation of GLnpAKq.
Let Π# be a conjugate self-dual cohomological automorphic representation of
GLn´1pAKq which is fully induced from different conjugate self-dual cuspidal
representations. We assume that the pair pΠ,Π#q is piano. Then if m P Z
such that m ` 1

2 is critical for pΠ,Π#q, then there exists an archimedean

factor ppm,Π8,Π
#
8q P Cˆ such that

LSpm`
1

2
,ΠˆΠ#q „EpΠqEpΠ#q ppm,Π8,Π

#
8qppΠqppΠ

#q.

Moreover, if m ‰ 0, or if m “ 0 and certain central values do not vanish,
then

ppm,Π8,Π
#
8q „ p2πiq

mnpn´1q´ 1
2
pn´1qpn´2q.

All the relations above are equivariant under the action of AutpC{Kq.

Remark 1.6. (1) Since Π# is conjugate self-dual, we can remove the
Gauss sum in Theorem 1.9 of [Gro17] by Remark 1.31 of [GL21].

(2) The piano condition is defined by highest weight in [GL21]. By the
relation of the highest weight and the infinity type given in section
1.4.1 of the loc.cit, one can show easily that our definition here is
equivalent to that in [GL21].

Theorem 1.3. (Theorem 6.7 of [GH15]) If Π is 3-regular, conjugate self-
dual and has definable arithmetic automorphic period, then there exists a
non-zero complex number ZpΠ8q such that

ppΠq „EpΠq ZpΠ8q
n´1
ź

i“1

P piqpΠq

and is equivariant under the action of AutpC{Kq.

Theorem 1.4. (Corollary 5.7 of [GH15], Corollary 2.12 of [GL21]) Let
Π# “ Π1‘Π2‘¨ ¨ ¨Πk be the fully induced isobaric sum of different conjugate

self-dual cuspidal representation Πi of GLnipAKq. For each i, if n ”
k
ř

i“1
ni

mod 2 then let Πalg
i :“ Πi; otherwise let Πalg

i :“ Πi b φ|| ¨ ||´1{2. We

assume that Πalg
i is cohomological for each i. This implies that Π# is also

cohomological. We have:

ppΠ#q „EpΠ#qEpφq

ź

1ďiďk

ppΠalg
i q

ź

1ďiăjďk

LSp1,Πi ˆΠ_j q

and is equivariant under the action of AutpC{Kq.
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Theorem 1.5. (of Balsius, stated as Prop. 1.8.1 of [Har93] (and the at-
tached erratum [Har97], p. 82)) Let χ be an algebraic Hecke character
of K with infinity type zazb such that a ‰ b. Let m P Z be a critical
point for χ. If a ă b, then Lpm,χq „ p2πiqmppqχ, 1q. If a ą b, then
Lpm,χq „ p2πiqmppqχ, ιq.

In both cases the relation is equivalent under the action of AutpC{Kq.

1.5. An automorphic version of a conjecture of Deligne. We now
state the conjecture and claim our results.

Conjecture 1.1. (c.f. Conjecture 2.2 of [Lin17]) Let Π and Π1 be cuspidal
representations of GLnpAKq and GLn1pAKq respectively which have definable

arithmetic automorphic periods. Let m P Z` n`n1´2
2 be critical for Πb Π1.

We assume that their infinity types satisfy equation (1.1). We predict that:

LSpm,ΠˆΠ1q „EpΠqEpΠ1q p2πiq
nn1m

n
ź

u“0

P puqpΠqsppu,Π;Π1q
n1
ź

v“0

P pvqpΠ1qsppv,Π
1;Πq.

and is equivariant under the action of GalpQ{Kq.

Remark 1.7. If n1 “ 1, the above conjecture is known by Theorem 1.1.

We shall prove the conjecture in the following two cases:

Theorem 1.6. (piano case)
Let n ą n1 and the pair pΠ,Π1q be piano (see Definition 1.4). If n ı n1

mod 2, we assume that Π, Π1 are conjugate self-dual. Otherwise we assume
that Π and Π1 b φ´1 are conjugate self-dual, then Conjecture 1.1 is true.

Theorem 1.7. (general case)
Let pΠ,Π1q be very regular.
If n ” n1 mod 2, we assume that Π1 and Π2 are conjugate self-dual. In

this case, the integer 1 is critical and Conjecture 1.1 is true for any critical
values.

If n ı n1 mod 2, we assume that Π1 and Π2 b φ´1 are conjugate self-
dual. In this case, the half integer 1

2 is critical and Conjecture 1.1 is true

for m “ 1
2 . If this central value is moreover non-vanishing, then Conjecture

1.1 is true for any critical values.

Remark 1.8. In [Rag21], Raghuram determined the ratio of adjacent crit-
ical values explicitly. Note that the set of critical values form an interval,
we only need to prove the previous theorem for m “ 1 if n ” n1 mod 2, and
m “ 1{2 if n ı n1 mod 2.

2. Proof for the main result: the piano case

2.1. The simplest case. Let Π and Π1 be as in Theorem 1.6.
We assume n is even and n1 is odd at first. In this case, both Π and Π1

are conjugate self-dual and hence ωpΠq “ ωpΠ1q “ 0. Moreover, the critical
point m is a half integer, the numbers ai, 1 ď i ď n are half integers and the
numbers bj , 1 ď j ď n1 are integers.

There are n´ 1 gaps between the numbers ai, 1 ď i ď n. Since the pair
pΠ,Π1q is piano, the n1 numbers ´bj , 1 ď j ď n1 lie in n1 different gaps. Let
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l “ n ´ n1 ´ 1 and ´kl ą ´kl`1 ą ¨ ¨ ¨ ą ´k1 be integers lie in the other l
gaps between the half integers ai, 1 ď i ď i. For each 1 ď t ď l, let χt be a
conjugate self-dual algebraic Hecke character with infinity type zktz´kt (see
Lemma 4.1.4 of [CHT08] for its existence).

Recall that Π satisfies the regular hypothesis, namely, ai ´ ai`1 ě 2m if
m ą 0 and ai ´ ai`1 ě 2´ 2m if m ě 0. For fixed t, we may choose kt such
that for any i, 1 ´ |ai ` kt| ď m ď |ai ` kt|. In particular, the half integer
m is critical for Πb χt.

Let Π# be the isobaric sum of Π1 and χt, 1 ď t ď l. It is then a cohomo-
logical and conjugate self-dual automorphic representation of GLn´1pAKq.
The isobaric sum is fully induced at non-archimedean places since each sum-
mand is tempered (for the temperedness of Π1, see [Clo12] and [Car12]) and
hence the fully induced representation is already irreducible. It is fully in-
duced at the archimedean place since the isobaric summands have disjoint
Langlands parameters.

Moreover, the pair pΠ,Π#q is trivially piano by the construction. We may
then apply Theorem 1.2 to this pair and get:

(2.1) LSpm,ΠˆΠ#q „EpΠqEpΠ#q ppm´
1
2 ,Π8,Π

#
8qppΠqppΠ

#q.

2.1.1. Calculate the left hand side of equation (2.1). The left hand side is
equal to LSpm,ΠˆΠ1q ˆ

ś

1ďtďk

LSpm,Πb χtq.

By Theorem 1.1, we have:

LSpm,Πb χtq „EpΠqEpχtq p2πiq
mnP pspΠ,χtqqpp qχt, 1q

spΠ,χtqpp qχt, ιq
n´spΠ,χtq.

Hence the left hand side of equation (2.1) is equivalent to:
(2.2)

LSpm,ΠˆΠ1q ˆ p2πiqmnl
ź

1ďtďl

”

P pspΠ,χtqqpp qχt, 1q
spΠ,χtqpp qχt, ιq

n´spΠ,χtq
ı

.

2.1.2. Calculate the right hand side of equation (2.1). By Theorem 1.4, we
know:

ppΠ#q „EpΠ#qEpφq ppΠ
1q

ź

1ďtďl

LSp1,Π1 b χ´1
t q

ź

1ďtăsďl

LSp1, χtχ
´1
s q.

We have used the fact that ppχtq is equivalent to the Gauss sum of χt and
hence the Gauss sum of χt |AQ (c.f. Remark 1.3.1 of [GL21]). Since χt is
algebraic and conjugate self-dual, it is easy to show that χt |AQ is trivial.
Hence we may remove the terms ppχtq, 1 ď t ď l in the above equation.

Let E be the compositum of Epχtq, 1 ď t ď l. By Theorem 1.1 and
Proposition 1.1, we know

LSp1,Π1 b χ´1
t q „EpΠ1qE p2πiqn

1

P pspΠ
1,χ´1

t qqppχct , 1q
spΠ1,χ´1

t qppχct , ιq
n1´spΠ1,χ´1

t q

„EpΠ1qE p2πiqn
1

P pspΠ
1,χ´1

t qqppχt, 1q
n1´spΠ1,χ´1

t qppχt, ιq
spΠ1,χ´1

t q

The infinity type of χtχ
´1
s “ χtχ

c
s is zkt´ksz´kt`ks . Since s ă t, we have

kt ´ ks ą 0. By Theorem 1.5 and Proposition 1.1, we know

LSp1, χtχ
´1
s q „E p2πiqppχtχ

c
s, ιq „E p2πiqppχt, ιqppχs, 1q.

Hence
ś

1ďtăsďl

LSp1, χtχ
´1
s q „E

ś

1ďtďl

ppχt, 1q
t´1ppχt, ιq

l´t.
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We deduce that the right hand side of equation (2.1) is equivalent to:
(2.3)

p2πiqn
1l` lpl´1q

2 ppm´1
2 ,Π8,Π

#
8qppΠqppΠ

1q
ź

1ďtďl

”

P pspΠ
1,χ´1

t qqppχt, 1q
n1´spΠ1,χ´1

t q`t´1ppχt, ιq
spΠ1,χ´1

t q`l´t
ı

2.1.3. Compare both sides of equation (2.1).

Lemma 2.1. For each t, we have spΠ, χtq “ n1 ´ spΠ1, χ´1
t q ` t and hence

n´ spΠ, χtq “ n´ n1 ` spΠ1, χ´1
t q ´ t “ spΠ1, χ´1

t q ` l ´ t` 1.

Proof. By definition we have spΠ, χtq “ #ti | kt ă ´aiu and spΠ1, χ´1
t q “

#tj | kt ą bju. Moreover, we know l ´ t “ #ts | kt ą ksu. Recall that the
n´1 numbers ks, 1 ď s ď l, bj , 1 ď j ď n1 lie in different gaps between ´ai,
1 ď i ď n by construction. It is easy to see that #ti | kt ă ´aiu`#tj | kt ą
bju`#ts | kt ą ksu “ n´1. Therefore spΠ, χtq “ n´1´spΠ1, χ´1

t q´ l`t “

n1 ´ spΠ1, χ´1
t q ` t.

l

By the above lemma, we deduce that:

ź

1ďtďl

”

ppχt, 1q
n1´spΠ1,χ´1

t q`t´1ppχt, ιq
spΠ1,χ´1

t q`l´t
ı

“
ź

1ďtďl

”

ppχt, 1q
spΠ,χtq´1ppχt, ιq

n´spΠ,χtq´1
ı

“
ź

1ďtďl

”

ppχt, 1q
spΠ,χtqppχt, ιq

n´spΠ,χtq
ı

(2.4)

where the last equation is due to the fact that ppχt, 1qppχt, ιq „E ppχt, 1qppχ
c
t , 1q „E

ppχtχ
c
t , 1q „E 1 by Proposition 1.1 and the fact that χt is conjugate self-dual.

We compare equations (2.2), (2.3) and (2.4), we obtain that:

Lpm,ΠˆΠ1q ˆ p2πiqmnl
ś

1ďtďl

P pspΠ,χtqq(2.5)

„EpΠqEpΠ1q p2πiqn
1l` lpl´1q

2 ppm´ 1
2 ,Π8,Π

#
8qppΠqppΠ

1q
ś

1ďtďl

P pspΠ
1,χ´1

t qq .

We have dropped the number field E since both sides are well defined up
to pEpΠqEpΠ1qqˆ (see Remark 1.1).

By Theorem 1.3 and the fact that P p0qpΠ1qP pn
1qpΠ1q „EpΠ1q 1, we know

ppΠq „EpΠq ZpΠ8q
ś

1ďiďn´1
P piqpΠq and ppΠ1q „EpΠ1q ZpΠ

1
8q

ś

0ďjďn1
P pjqpΠ1q.

We can then interpret Lpm,Π ˆ Π1q in terms of archimedean factors and
arithmetic automorphic periods. We now prove that the power for each
arithmetic automorphic period is indeed the split index.

Lemma 2.2. Let 0 ď u ď n and 0 ď v ď n1.

(1) If u “ 0 or n, then sppu,Π; Π1q “ 0 “ ´#tt | spΠ, χtq “ uu.
(2) If u ‰ 0, n, then sppu,Π; Π1q “ 1´#tt | spΠ, χtq “ uu.
(3) For all v, we have sppv,Π1; Πq “ #tt | spΠ1, χ´1

t qu ` 1.
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Proof.

(1) If u “ 0 or n, since pΠ,Π1q is piano, it is easy to see that sppu,Π; Π1q “
0.

Recall that spΠ, χtq “ #ti | kt ă ´aiu. Since ´an ą kt ą ´a0,
this number is neither 0 or n.

(2) Let u ‰ 0, n. We first observe that spΠ, χtq “ #ti | kt ă ´aiu “ u
if and only if ´an`1´u ą kt ą ´an´u. If there is a number among
bj 1 ď j ď n1 lying in the gap between ´an`1´u and ´an´u, then
sppu,Π; Π1q “ #tj | ´an`1´u ą bj ą ´an´uu “ 1. Moreover, there
is no t such that kt is in this gap. Hence #tt | spΠ, χtq “ uu “ 0.

If there is no number among bj 1 ď j ď n1 lying in the gap between
´an`1´u and ´an´u, then there is exact one t such that kt is in this
gap. Hence sppu,Π; Π1q “ 0 and #tt | spΠ, χtq “ uu “ 1.

(3) We denote b0 “ `8 and bn1`1 “ ´8. For each 0 ď v ď n1, tt |
spΠ1, χtq “ vu “ tt | ´bn1´v ă kt ă ´bn1´v`1u. It is clear that #tt |
´bn1´v ă kt ă ´bn1´v`1u ` 1 “ #ti | ´bn1´v ă ai ă ´bn1´v`1u “

sppv,Π1; Πq.

l

Let apm,Π8,Π
1
8q :“ p2πiqn

1l` lpl´1q
2
´mnlppm´ 1

2 ,Π8,Π
1#
8 qZpΠ8qZpΠ

1
8q.

Equation 2.5 and Lemma 2.2 then imply that:

LSpm,ΠˆΠ1q „EpΠqEpΠ1q apm,Π8,Π
1
8q

n
ź

u“0

P puqpΠqsppu,Π;Π1q
n1
ź

v“0

P pvqpΠ1qsppv,Π
1;Πq.

All the relations above are equivariant under the action of AutpC{Kq.

2.2. Settings, the general cases. Let n ą r be arbitrary integers. We
still want to apply the previous strategy to get special values of L-function
for Π ˆ Π1. But if we take Π# to be Langlands sum of Π1 and some al-
gebraic Hecke characters, it may be no longer algebraic. For example,
if n ´ 1 ı n1pmod 2q, we know the Langlands parameters of Π1 are in

Z ` n1´1
2 . But the Langlands parameters of an algebraic representation of

GLn´1 should be in Z` n´1
2 “ Z` n1

2 . In order to fix this, we will tensor the

character ||¨||
´ 1

2
AKφ, a Hecke character of infinity type p1

2 ,´
1
2q, when necessary.

When n ´ 1 ” rpmod 2q, we write T1 “ 0 and we will expand Π1 to an
algebraic representation of GLn´1 as previously. When n´1 ı rpmod 2q, we

write T1 “
1
2 and we will expand Π1ˆ|| ¨ ||

´ 1
2

AKφ to an algebraic representation

of GLn´1. In both cases, we assume the pair pΠ,Π1q is piano, namely,

each bi ` T1 are included in one of the intervals s ´ aj`1,´ajr, 1 ď j ď n´ 1

and each such interval contains at most one bi.(2.6)

Let wp1q ą wp2q ą ¨ ¨ ¨ ą wpnq be the integers such that

(2.7) ´ an`1´wpiq ą bn1`1´i ` T1 ą ´an´wpiq

for all 1 ď i ď n1.
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Let χ1, χ2, ¨ ¨ ¨ , χl be conjugate self-dual algebraic Hecke characters of
AK of infinity type zk1z´k1 , zk2z´k2 , ¨ ¨ ¨ zklz´kl respectively. These charac-

ters will help us expand Π1 or Π1b|| ¨ ||
´ 1

2
AKφ to an algebraic representation of

GLn´1. Similarly, we will tensor them by || ¨ ||
´ 1

2
AKφ if n ı 0pmod 2q to settle

the parity issue. We write T2 “
1
2 in this case and 0 otherwise.

We assume that k1 ` T2 ą k2 ` T2 ą ¨ ¨ ¨ ą kl ` T2 and lie in different
intervals s ´ aj`1,´ajr which doesn’t contain any of bi ` T1.

More precisely, we have

k1 ` T2 ą k2 ` T2 ą ¨ ¨ ¨ ą kwpn1q´1 ` T2 ą b1 ` T1 ą

ą kwpn1q ` T2 ą kwpn1q`1 ` T2 ą ¨ ¨ ¨ ą kwpn1´1q´2 ` T2 ą b2 ` T1 ą

¨ ¨ ¨

kwpn1`2´iq´i`2 ` T2 ą kwpn1`2´iq´i`3 ` T2 ą ¨ ¨ ¨ ą kwpn1`1´iq´i ` T2 ą bi ` T1 ą

¨ ¨ ¨

kwp2q´n1`2 ` T2 ą kwp2q´n1`3 ` T2 ą ¨ ¨ ¨ kwp1q´n1 ` T2 ą bn1 ` T1 ą

kwp1q´n1`1 ` T2 ą kwp1q´n1`2 ` T2 ą ¨ ¨ ¨ ą kl ` T2(2.8)

and the above l` k “ n´ 1 numbers lie in the gaps between the n numbers

´an ą ´an´1 ą ¨ ¨ ¨ ą ´a1. Note the above n ´ 1 numbers are in Z `
n

2

when ai P Z`
n´ 1

2
for all 1 ď i ď n.

There are four cases:

(A) n is even and n1 is odd, then T1 “ 0 and T2 “ 0. We set Π# “

Π1 ‘ χ1 ‘ χ2 ‘ ¨ ¨ ¨‘ χl as in previous subsections.
(B) n is even and n1 is even, then T1 “

1
2 and T2 “ 0. We set Π# “

pΠ1 b || ¨ ||
´ 1

2
AKφq‘ χ1 ‘ χ2 ‘ ¨ ¨ ¨‘ χl.

(C) n is odd and n1 is even, then T1 “ 0 and T2 “
1
2 . We set Π# “

Π1 ‘ pχ1 b || ¨ ||
´ 1

2
AKφq‘ pχ2 b || ¨ ||

´ 1
2

AKφq‘ ¨ ¨ ¨‘ pχl b || ¨ ||
´ 1

2
AKφq.

(D) n is odd and n1 is odd, then T1 “
1
2 and T2 “

1
2 . We set Π# “

pΠ1 ‘ χ1 ‘ χ2 ‘ ¨ ¨ ¨‘ χlq b || ¨ ||
´ 1

2
AKφ.

In all cases, Π# is a generic cohomological conjugate self-dual automorphic
representation of GLn´1pAKq and Theorem 5.2 of [GL21] gives us that if
m` 1

2 is critical for ΠˆΠ#, then

(2.9) LSp
1

2
`m,ΠˆΠ#q „EpΠqEpΠ#q ppΠqppΠ

#qppm,Π8,Π
#
8q.

Again, we shall simplify both sides of this equation.

2.3. Simplify the left hand side, general cases.
For the left hand side of equation (2.9), we know by construction that:

(A) LSp1
2 `m,ΠˆΠ#q “ LSp

1

2
`m,ΠˆΠ1q

l
ś

j“1
LSp1

2 `m,Πb χjq
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(B)

LSp1
2 `m,ΠˆΠ#q “ LSp

1

2
`m,Πˆ pΠ1 b || ¨ ||

´ 1
2

AKφqq
l
ś

j“1
LSp1

2 `m,Πb χjq

“ LSpm,Πˆ pΠ1 b φqq
l
ś

j“1
LSp1

2 `m,Πb χjq

(C)

LSp1
2 `m,ΠˆΠ#q “ LSp

1

2
`m,ΠˆΠ1q

l
ś

j“1
LSp1

2 `m,Πb pχj b || ¨ ||
´ 1

2
AKφqq

“ LSp
1

2
`m,ΠˆΠ1q

l
ś

j“1
LSpm,Πb pχj b φqq

(D) LSp1
2 `m,ΠˆΠ#q “ LSp

1

2
,Πˆ pΠ1 b φqq

l
ś

j“1
LSpm,Πb pχj b φqq

We set sj “ #t1 ď i ď n | kj ` T2 ă ´aiu “ j `#t1 ď i ď n1 | bi ` T1 ą

kj ` T2u and tj “ #t1 ď i ď n1 | pbi` T1q ´ pkj ` T2q ă 0u as before. Recall
that sj ` tj “ n1 ` j for all 1 ď j ď l.

If n is even (case (A) and (B)), we have for all 1 ď j ď l:

LSp
1

2
`m,Πb χjq „EpΠqEpχjq p2πiq

pm` 1
2
qnP psjqpΠqpp|χj , 1q

2sj´n.

If n is odd (case (C) and (D)), we have for all 1 ď j ď l:

LSpm,Πbpχjqbφq „EpΠqEpχjq p2πiq
mnP psjqpΠqpp|χj , 1q

2sj´nppqφ, 1qsjppqφ, ιqn´sj .

Therefore for cases (A) and (B), we have

l
ź

j“1

LSp
1

2
`m,Πb χjq „EpΠqE p2πiq

pm` 1
2
qnl

n´1
ź

k“1

P pkqpΠq
n1
ź

k“1

P pwpkqqpΠq´1
l
ź

j“1

pp|χj , 1q
2sj´n.

For cases (C) and (D), we put s :“
l
ř

j“1
sj and then we have:

l
ś

j“1
LSpm,Πb pχj b φqq „EpΠqEEpφq

p2πiqmnl ˆ
n´1
ś

k“1

P pkqpΠq
n1
ś

k“1

P pwpkqqpΠq´1
l
ś

j“1
pp|χj , 1q

2sj´nppqφ, 1qsppqφ, ιqnl´s

2.4. Simplify the right hand side, general cases.
Calculate ppΠ#q: Apply Theorem 2.6 of [GL21] we get

(A) ppΠ#q „EpΠ#q ΩpΠ#
8qppΠ

1qΩpΠ18q
´1

ś

1ďjďl

LSp1,Π1bχcjq
ś

1ďiăjďl

LSp1, χib

χcjq

(B) ppΠ#q „EpΠ#q ΩpΠ#
8qppΠ

1qΩpΠ18q
´1

ś

1ďjďl

LSp1, pΠ1 b || ¨ ||
´ 1

2
AKφq b

χcjq
ś

1ďiăjďl

LSp1, χi b χ
c
jq

(C) ppΠ#q „EpΠ#q ΩpΠ#
8qppΠ

1qΩpΠ18q
´1

ś

1ďjďl

LSp1,Π1bpχjb||¨||
´ 1

2
AKφq

cq
ś

1ďiăjďl

LSp1, χib

χcjq
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(D) ppΠ#q „EpΠ#q ΩpΠ#
8qppΠ

1qΩpΠ18q
´1

ś

1ďjďl

LSp1,Π1bχcjq
ś

1ďiăjďl

LSp1, χib

χcjq

Here we have used that:

Lemma 2.3. If η is a conjugate self-dual Hecke character then:

ppΠ1 b ηq

ΩppΠ1 b ηq8q
„EpΠ1qEpηq

ppΠ1q

ΩpΠ18q
.

Proof. By Theorem 2.6 of [GL21], we have:

(2.10) ppΠ1 b ηq „EpΠ1qEpηq ZppΠ
1 b ηq8q

ź

1ďiďn1´1

P piqpΠ1 b ηq.

By the definition of arithmetic automorphic period, we know P piqpΠ1 b
ηq „EpΠ1qEpηq ppqη, 1q

ippqη, ιqn´i. The latter is equivalent to ppqη, 1q2i´n since
η is conjugate self-dual.

We see that:
(2.11)
ź

1ďiďn

P piqpΠ1bηq „EpΠ1qEpηq
ź

1ďiďn

rP piqpΠ1qppqη, 1q2i´ns „EpΠ1qEpηq
ź

1ďiďn

P piqpΠ1q.

By Theorem 2.6 of [GL21], This will imply that:

ppΠ1 b ηq

ZppΠ1 b ηq8q
„EpΠ1qEpηq

ppΠ1q

ZpΠ18q
.

Since ZpΠ18q „EpΠ18;Kq p2πiq
n1pn1´1q

2 ΩpΠ18q and a similar formula for pΠ1b
ηq8, we get the lemma.

l

By the known case n1 “ 1 of Conjecture 0.2, for all 1 ď j ď l, we have

LSp1,Π1 b χcjq „EpΠ1qEpχjq p2πiq
n1P ptjqpΠ1qpp|χj , 1q

n1´2tj .

Similarly, we have

LSp1, pΠ1 b || ¨ ||
´ 1

2
AKφq b χ

c
jq “ LSp

1

2
,Π1 b pφχcjqq

„EpΠ1qEpχjqEpφq p2πiq
n1

2 P ptjqpΠ1qpp|χj , 1q
n1´2tjppqφ, 1qtjppqφ, ιqn

1´tj ;

and LSp1,Π1 b pχi b || ¨ ||
´ 1

2
AKφq

cq “ LSp
1

2
,Π1 b pχi b φq

cq

„EpΠ1qEpχjqEpφq p2πiq
n1

2 P ptjqpΠ1qpp|χj , 1q
n1´2tjppqφ, 1qn

1´tjppqφ, ιqtj .

Along with equation (??), we get

(A) and (D): ppΠ#q „EpΠ1qEEpφq ΩpΠ#
8qppΠ

1qΩpΠ18q
´1p2πiqn

1l` lpl´1q
2 ˆ

l
ź

j“1

P ptjqpΠ1q
l
ź

j“1

pp|χj , 1q
2sj´n
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(B) : ppΠ#q „EpΠ1qEEpφq ΩpΠ#
8qppΠ

1qΩpΠ18q
´1p2πiq

n1l
2
`
lpl´1q

2 ˆ

l
ź

j“1

P ptjqpΠ1q
l
ź

j“1

pp|χj , 1q
2sj´nppqφ, 1qtppqφ, ιqn

1l´t

(C) : ppΠ#q „EpΠ1qEEpφq ΩpΠ#
8qppΠ

1qΩpΠ18q
´1p2πiq

n1l
2
`
lpl´1q

2 ˆ

l
ź

j“1

P ptjqpΠ1q
l
ź

j“1

pp|χj , 1q
2sj´nppqφ, 1qn

1l´tppqφ, ιqt

where t “
l
ř

j“1
tj “

l
ř

j“1
pn1 ` j ´ sjq “ n1l `

lpl ` 1q

2
´ s.

We then apply equations (??), (??) and Lemma ??, Corollary ?? to get:

(A) ppΠqppΠ#qppm,Π8,Π
#
8q „EpΠqEpΠ1qE p2πiq

npn´1qpm` 1
2
qˆ

l
ź

j“1

pp|χj , 1q
2sj´n

n´1
ź

i“1

P piqpΠq
n1
ź

k“0

P pkqpΠ1qsppk,Π
1;Πq.

(B) ppΠqppΠ#qppm,Π8,Π
#
8q „EpΠqEpΠ1qEEpφq p2πiq

npn´1qpm` 1
2
q´n1l

2 ˆ

l
ź

j“1

pp|χj , 1q
2sj´nppqφ, 1qtppqφ, ιqn

1l´t
n´1
ź

i“1

P piqpΠq
n1
ź

k“0

P pkqpΠ1qsppk,Π
1bφ;Πq.

(C) ppΠqppΠ#qppm,Π8,Π
#
8q „EpΠqEpΠ1qEEpφq p2πiq

npn´1qpm` 1
2
q´n1l

2 ˆ

l
ź

j“1

pp|χj , 1q
2sj´nppqφ, 1qn

1l´tppqφ, ιqt
n´1
ź

i“1

P piqpΠq
n1
ź

k“0

P pkqpΠ1qsppk,Π
1bφ;Πq.

(D) ppΠqppΠ#qppm,Π8,Π
#
8q „EpΠqEpΠ1qEEpφq p2πiq

npn´1qpm` 1
2
qˆ

l
ź

j“1

pp|χj , 1q
2sj´n

n´1
ź

i“1

P piqpΠq
n1
ź

k“0

P pkqpΠ1qsppk,Π
1;Πq.

2.5. Compare both sides, general cases. At first, observe that

ppqφ, 1qppqφ, ιq „Epφq ppqφ, 1qpp qφc, 1q „Epφq pp}φφc, 1q „Epφq pp||¨||
´1
AK , 1q „Epφq 2πi.

We can then conclude:

(A) LSp
1

2
`m,ΠˆΠ1q „EpΠqEpΠ1q

p2πiqpm`
1
2
qnn1

n1
ź

k“1

P pwpkqqpΠq
n1
ź

k“0

P pkqpΠ1qsppk,Π
1;Πq
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(B) Since npn´1qpm` 1
2q´

n1l
2 ´pm`

1
2qnl “ pm`

1
2qnpn´1´ lq´ n1l

2 “

pm` 1
2qnn

1 ´ n1l
2 “ mnn1 ` nn1

2 ´ n1l
2 , we have

LSpm,Πˆ pΠ1 b φqq „EpΠqEpΠ1qEpφq p2πiq
mnn1`nn1

2
´n1l

2 ˆ(2.12)

n1
ź

k“1

P pwpkqqpΠq
n1
ź

k“0

P pkqpΠ1qsppk,Π
1bφ;Πqppqφ, 1qtppqφ, ιqn

1l´t

Since p2πiq
nn1

2
´n1l

2 „Epφq ppqφ, 1q
nn1

2
´n1l

2 ppqφ, ιq
nn1

2
´n1l

2 , and

nn1

2
´
n1l

2
` t “

nn1

2
´
n1l

2
` pn1l `

lpl ` 1q

2
´ sq “

nn1

2
`
n1l

2
`
lpl ` 1q

2
´ s

“
nn1

2
`
pn1 ` l ` 1ql

2
´ s “

nn1

2
`
nl

2
´ s

“
npn1 ` lq

2
´ s “

npn´ 1q

2
´ s;

nn1

2
´
n1l

2
` n1l ´ t “

nn1

2
´
n1l

2
` n1l ´ pn1l `

lpl ` 1q

2
´ sq “ s`

nn1

2
´
pn1 ` l ` 1ql

2

“ s` nn1 ´
nn1

2
´
nl

2
“ s` nn1 ´

npn´ 1q

2

We get LSpm,Πˆ pΠ1 b φqq „EpΠqEpΠ1qEpφq p2πiq
mnn1ˆ

n1
ź

k“1

P pwpkqqpΠq
n1
ź

k“0

P pkqpΠ1qsppk,Π
1;Πqppqφ, 1q

npn´1q
2

´sppqφ, ιqs`nn
1´

npn´1q
2

(C) Since npn´ 1qpm` 1
2q ´

n1l
2 ´mnl “ npn´ 1qpm` 1

2q ´
n1l
2 ´ pm`

1
2qnl `

nl
2 “ pm`

1
2qnn

1 ` nl
2 ´

n1l
2 , we have

LSp
1

2
`m,ΠˆΠ1q „EpΠqEpΠ1qEpφq p2πiq

pm` 1
2
qnn1`nl

2
´n1l

2 ˆ(2.13)

n1
ź

k“1

P pwpkqqpΠq
n1
ź

k“0

P pkqpΠ1qsppk,Π
1;Πqppqφ, 1qn

1l´t´sppqφ, ιqt`s´nl

Moreover, we know t`s “ n1l` lpl`1q
2 , we have 2pt`sq “ 2n1l`pl`

1ql “ n1l`pn1` l`1ql “ n1l`nl. Thus n1l´ t´s “ t`s´nl “ n1l
2 ´

nl
2 . We then get ppqφ, 1qn

1l´t´sppqφ, ιqt`s´nl “ pp­φb φc, 1q
n1l
2
´nl

2 “

p2πiq
n1l
2
´nl

2 .
Therefore:

LSp
1

2
`m,ΠˆΠ1q „EpΠqEpΠ1q p2πiq

pm` 1
2
qnn1

n1
ź

k“1

P pwpkqqpΠq
n1
ź

k“0

P pkqpΠ1qsppk,Π
1;Πq.
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(D) Similarly, since npn´1qpm` 1
2q´mnl “ npn´1qm` npn´1q

2 ´mnl “

mnn1 ` npn´1q
2 , we have

LSpm,Πˆ pΠ1 b φqq „EpΠqEpΠ1qEpφq p2πiq
mnn1 ˆ(2.14)

n1
ź

k“1

P pwpkqqpΠq
n1
ź

k“0

P pkqpΠ1qsppk,Π
1bφ;Πqppqφ, 1q

npn´1q
2

´sppqφ, ιqs`nn
1´

npn´1q
2 .

It is easy to verify that s´nl` npn´1q
2 “ s´nl`npn´1q´ npn´1q

2 “

s` nn1 ´ npn´1q
2 .

2.6. Final conclusion: general cases. Before concluding, we notice that
in case (B) or (D),

s “
ÿ

1ďjďn´1

sj “
n´1
ÿ

j“1

j ´
n1
ÿ

j“1

wpjq “
npn´ 1q

2
´

n1
ÿ

j“1

wpjq.

Recall that wpjq “
n1
ř

k“j

sppk,Π1bφ; Πq for all 1 ď k ď n1 by (??). Therefore:

npn´ 1q

2
´ s “

n1
ÿ

j“1

wpjq “

n1
ÿ

j“1

ÿ

jďkďn1

sppj,Π1 b φ; Πq “
n1
ÿ

k“1

k ˚ sppk,Π1 b φ; Πq

“

n1
ÿ

k“0

k ˚ sppk,Π1 b φ; Πq;(2.15)

and s` nn1 ´
npn´ 1q

2
“ nn1 ´

n1
ÿ

k“0

k ˚ sppk,Π1 b φ; Πq

“ r
n1
ÿ

k“0

sppk,Π1 b φ; Πq ´
n1
ÿ

k“0

j ˚ sppk,Π1 b φ; Πq

“

n1
ÿ

k“0

pn1 ´ kqsppk,Π1 b φ; Πq

by Lemma 1.1 which says that
n1
ř

k“0

sppk,Π1 b φ; Πq “ n.

Therefore, we get

n1
ź

k“0

P pkqpΠ1qsppk,Π
1bφ;Πqppqφ, 1q

npn´1q
2

´sppqφ, ιqs`nn
1´

npn´1q
2

„EpΠ1qEpφq

n1
ź

k“0

P pkqpΠ1qsppk,Π
1bφ;Πqppqφ, 1q

n1
ř

k“0

k˚sppk,Π1bφ;Πq
ppqφ, ιq

n1
ř

k“0

pn1´kqsppk,Π1bφ;Πq

„EpΠ1qEpφq

n1
ź

k“0

´

P pkqpΠ1qppqφ, 1qkppqφ, ιqn
1´k

¯sppk,Π1bφ;Πq
.
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Recall that P pkqpΠ1 b φq :“ P pkqpΠ1qppqφ, 1qkppqφ, ιqn
1´k by definition, we

obtain that:

Theorem 2.1. Let n ą n1 be two positive integers. Let K be a quadratic
imaginary field. Let Π and Π1 be cuspidal representations of GLn and GLn1
respectively which are very regular, cohomological, conjugate self-dual and
supercuspidal at at least two finite split places. We assume that pΠ,Π1q is
piano in the sense of Definition 1.4.

(i) If n ı n1pmod 2q, then for any critical value m` 1
2 for ΠbΠ1 such

that m ě 1, or m ě 0 along with a non-vanishing condition, we
have:

LSp
1

2
`m,ΠˆΠ1q „EpΠqEpΠ1q p2πiq

pm` 1
2
qnn1

n
ź

i“0

P piqpΠqsppi,Π;Π1q
n1
ź

k“0

P pkqpΠ1qsppk,Π
1;Πq.

(ii) If n ” n1pmod 2q, then for any critical value m for ΠbΠ1 such that
m ě 1, or m ě 0 along with a non-vanishing condition, we have:

LSpm,ΠˆpΠ1bφqq „EpΠqEpΠ1qEpφq p2πiq
mnn1

n
ź

i“0

P piqpΠqsppi,Π;Π1bφq
n1
ź

k“0

P pkqpΠ1bφqsppk,Π
1bφ;Πq.

3. Proof for the main result: central or near-central case

3.1. Settings.
Let r1 and r2 be two positive integers.
Let Π1 and Π2 be two cuspidal representations ofGLr1pAKq andGLr2pAKq

respectively which has definable arithmetic automorphic periods. We as-
sume they are also conjugate self-dual.

We write the infinity type of Π1 (resp. Π2) by pzbjz´bj q1ďjďr1 (resp.

pzckz´ckq1ďkďr2). We see that bj P Z ` r1´1
2 for all 1 ď j ď r1 (resp.

ck P Z` r2´1
2 for all 1 ď k ď r2).

(A) If r1 ” r2 ” 0p mod 2q, we write Π# “ Π1 ‘ Πc
2. We define T3 “

T4 “ 0.

(B) If r1 ” r2 ” 1p mod 2q, we write Π# “ pΠ1 b || ¨ ||
´ 1

2
AKφq ‘ pΠc

2 b || ¨

||
´ 1

2
AKφq. We define T3 “ T4 “

1
2 .

(C) If r1 ı r2pmod 2q, we may assume that r1 is even and r2 is odd. We

write Π# “ pΠ1 b || ¨ ||
´ 1

2
AKφq‘ Πc

2. We define T3 “
1
2 and T4 “ 0.

It is easy to see that Π# is an algebraic generic representation ofGLr1`r2pAKq
with infinity type pzbj`T3z´bj´T3 , z´ck`T4zck´T4q1ďjďr1,1ďkďr2 .

We assume that Π# is regular, i.e. for any 1 ď j ď r1 and any 1 ď k ď r2,
we have bj ` T3 ‰ ´ck ` T4.

Set n “ r1 ` r2 ` 1. We see that tbj ` T3 | 1 ď j ď r1u Y t´ck ` T4 |

1 ď k ď r2u are n ´ 1 different numbers in Z ` n´2
2 . We take a1 ą a2 ą

¨ ¨ ¨ ą an P Z` n´1
2 such that the n´ 1 numbers above are in different gaps
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between tai | 1 ď i ď nu. Let Π be a cuspidal conjugate self-dual represen-
tation of GLnpAKq which has arithmetic automorphic periods and infinity
type pzaiz´aiq.

Our method also requires Π to be 3-regular. To guarantee this, we assume
that

(3.1) |pbj ` T3q ´ p´ck ` T4q| ě 3 for all 1 ď j ď r1, 1 ď k ď r2.

In this case, we say the pair pΠ1,Π2q is very regular. We can then take ai
as above such that 1` 1

2 is critical for ΠbΠ#. Moreover, results in [Har07]

show the existence of Π as above, such that LSp1` 1
2 ,ΠbΠ#q ‰ 0.

We fix such Π and m “ 1, then m` 1
2 is critical for ΠˆΠ# and moreover

(3.2) LSp
1

2
`m,ΠˆΠ#q „EpΠqEpΠ#q ppΠqppΠ

#qppm,Π8,Π
#
8q

with both sides non zero.

In the end of this subsection, let us show some simple facts on the split
index. We can read from the construction of ai that

sppj,Π1 b φ
2T3 ; Πq “ sppj,Π1 b φ

2T3 ; Π2 b pφq
2T4q ` 1 for all 0 ď j ď r1

and similarly, sppj,Πc
2 b φ

2T4 ; Πq “ sppj, pΠ2 b pφ
cq2T4qc; pΠ1 b φ

2T3qcq ` 1

“ sppr2 ´ j,Π2 b pφ
cq2T4q; Π1 b φ

2T3q ` 1 for all 0 ď j ď r2

Here we have used Lemma 1.1.

Moreover, for each 1 ď i ď n ´ 1, one of sppi,Π; Π1 b pφ
cq2T3q and

sppi,Π; Πc
2 b φ2T4q is 1 and another is 0. We also know that spp0,Π; Π1 b

φ2T3q “ spp0,Π; Πc
2 b φ2T4q “ 0 and sppn,Π; Π1 b φ2T3q “ sppn,Π; Πc

2 b

φ2T3q “ 0.

3.2. Simplify the left hand side. We are going to simply the left hand
side of equation (3.2) now.

(A) In this case we have LSpm ` 1
2 ,Π ˆ Π#q “ LSpm ` 1

2 ,Π ˆ Π1q ˆ

LSpm` 1
2 ,ΠˆΠc

2q.
By Theorem 2.1, we know that

LSp
1

2
`m,ΠˆΠ1q „EpΠqEpΠ1q(3.3)

p2πiqpm`
1
2
qnr1

n
ś

i“0
P piqpΠqsppi,Π;Π1q

r1
ś

j“0
P pjqpΠ1q

sppj,Π1;Πq

and similarly LSp
1

2
`m,ΠˆΠc

2q „EpΠqEpΠ2q

p2πiqpm`
1
2
qnr2

n
ś

i“0
P piqpΠqsppi,Π;Πc2q

r2
ś

k“0

P pkqpΠc
2q
sppk,Πc2;Πq .
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Therefore, since sppi,Π; Π1q`sppi,Π; Πc
2q “ 1 for all 1 ď i ď n´1,

we obtain that

LSpm`
1

2
,ΠˆΠ#q(3.4)

„EpΠqEpΠqEpΠ2q p2πiqpm`
1
2
qnpn´1q

n
ź

i“0

P piqpΠqsppi,Π;Π1q`sppi,Π;Πc2q

r1
ź

j“0

P pjqpΠ1q
sppj,Π1;Πq

r2
ź

k“0

P pkqpΠ2q
sppk,Πc2;Πq

„EpΠqEpΠqEpΠ2q p2πiqpm`
1
2
qnpn´1q

n´1
ź

i“1

P piqpΠq

r1
ź

j“0

P pjqpΠ1q
sppj,Π1;Πq

r2
ź

k“0

P pkqpΠc
2q
sppk,Πc2;Πq.

(B) In this case, we have LSpm` 1
2 ,Πˆ Π#q “ LSpm,Πˆ pΠ1 b φqq ˆ

LSpm,Πˆ pΠc
2 b φqq.

Applying the second part of Theorem 2.1, we have

LSpm` 1
2 ,ΠˆΠ#q „EpΠqEpΠqEpΠ2q(3.5)

p2πiqmnpn´1q
n´1
ś

i“1
P piqpΠq

r1
ś

j“0
P pjqpΠ1q

sppj,Π1bφ;Πq
r2
ś

k“0

P pkqpΠc
2q
sppk,Πc2bφ;Πqˆ

ppqφ, 1q

r1
ř

j“0
j˚sppj,Π1bφ;Πq`

r2
ř

k“0
k˚sppk,Πc2bφ;Πq

ppqφ, ιq

n1
ř

j“0
pr1´jq˚sppj,Π1bφ;Πq`

r2
ř

k“0

pr2´kq˚sppk,Πc2bφ;Πq

.

Lemma 3.1. We have:
r1
ÿ

j“0

j ˚ sppj,Π1 b φ; Πq `
r2
ÿ

k“0

k ˚ sppk,Πc
2 b φ; Πq

“

n1
ÿ

j“0

pr1 ´ jq ˚ sppj,Π1 b φ; Πq `
r2
ÿ

k“0

pr2 ´ kq ˚ sppk,Π
c
2 b φ; Πq

“
npn´ 1q

2

Proof. We set wpj,Π1 b φ; Πq, 1 ď j ď r1 (resp. wpk,Πc
2 b φ; Πq,

1 ď k ď r2) to be the index wpjq for the pair pΠ,Π1 b φq (resp.

pΠ,Πc
2 b φq)) as in (??). We see from (2.15) that

r1
ř

j“0
j ˚ sppj,Π1 b

φ; Πq “
r1
ř

j“1
wpj,Π1bφ; Πq and

r2
ř

k“0

k˚sppk,Π1bφ; Πq “
r1
ř

k“1

wpk,Πc
2b

φ; Πq.
Recall that wpj,Π1 b φ; Πq (resp. wpk,Πc

2 b φ; Πq) is the position
of the infinity type of Π1bφ (resp. Πc

2bφ) in the gaps of the infinity
type of Π. It is easy to see that the n´ 1 numbers wpj,Π1 b φ; Πq,
wpk,Πc

2bφ; Πq for 1 ď j ď r1 and 1 ď k ď r2 runs over 1, 2, ¨ ¨ ¨ , n´1.
We then deduce the first formula of the lemma.

The second follows easily from the first one.



SPECIAL VALUES OF RANKIN-SELBERG L-FUNCTIONS OVER CM FIELDS 23

l

From the lemma we see that

ppqφ, 1q

r1
ř

j“0
j˚sppj,Π1bφ;Πq`

r2
ř

k“0
k˚sppk,Πc2bφ;Πq

ppqφ, ιq

n1
ř

j“0
pr1´jq˚sppj,Π1bφ;Πq`

r2
ř

k“0
pr2´kq˚sppk,Πc2bφ;Πq

„Epφq p2πiq
npn´1q

2 .(3.6)

We thus obtain that

LSpm` 1
2 ,ΠˆΠ#q „EpΠqEpΠqEpΠ2q p2πiq

pm` 1
2
qnpn´1q

n´1
ś

i“1
P piqpΠq

r1
ś

j“0
P pjqpΠ1q

sppj,Π1bφ;Πq
r2
ś

k“0

P pkqpΠc
2q
sppk,Πc2bφ;Πq.(3.7)

(C) In this case, we have LSpm` 1
2 ,Πˆ Π#q “ LSpm,Πˆ pΠ1 b φqq ˆ

LSpm` 1
2 ,ΠˆΠc

2q.
Similarly, we get:

LSpm` 1
2 ,ΠˆΠ#q „EpΠqEpΠqEpΠ2q p2πiq

pm` 1
2
qnpn´1q´

nr1
2

n´1
ś

i“1
P piqpΠq

r1
ś

j“0
P pjqpΠ1q

sppj,Π1bφ;Πq
r2
ś

k“0

P pkqpΠc
2q
sppk,Πc2;Πqppqφ, 1q

r1
ř

j“0
j˚sppj,Π1bφ;Πq

ppqφ, ιq

n1
ř

j“0
pr1´jq˚sppj,Π1bφ;Πq

.(3.8)

3.3. Simplify the right hand side. By Corollary ?? and Corollary ??,
for cases (A) and (B), we have:

ppΠ#q „EpΠ#q ΩpΠ#
8qppΠ1qΩpΠ1,8q

´1ppΠ2qΩpΠ2,8q
´1LSp1,Π1 ˆΠ2q

„EpΠ#q ΩpΠ#
8qZpΠ1,8qΩpΠ1,8q

´1ZpΠ2,8qΩpΠ2,8q
´1LSp1,Π1 ˆΠ2q ˆ

r1´1
ź

j“1

P pjqpΠ1q

r2´1
ź

k“1

P pkqpΠc
2q

„EpΠ#q p2πiq
pr1´1qr1

2
`
pr2´1qr2

2 ΩpΠ#
8qL

Sp1,Π1 ˆΠ2q

r1´1
ź

j“1

P pjqpΠ1q

r2´1
ź

k“1

P pkqpΠc
2q.
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Therefore, for cases (A) and (B), we obtain that:

ppΠqppΠ#qppm,Π8,Π
#
8q

„EpΠ#q p2πiq
pr1´1qr1

2
`
pr2´1qr2

2 ΩpΠ#
8qZpΠ8qppm,Π8,Π

#
8q ˆ

LSp1,Π1 ˆΠ2q

n´1
ź

i“1

P piqpΠq
r1´1
ź

j“1

P pjqpΠ1q

r2´1
ź

k“1

P pkqpΠc
2q

„EpΠ#q p2πiqnpn´1qpm` 1
2
q´

npn´1q
2

`
pr1´1qr1

2
`
pr2´1qr2

2 LSp1,Π1 ˆΠ2q ˆ

n´1
ź

i“1

P piqpΠq
r1´1
ź

j“1

P pjqpΠ1q

r2´1
ź

k“1

P pkqpΠc
2q

„EpΠ#q p2πiqnpn´1qpm` 1
2
q´r1r2LSp1,Π1 ˆΠ2q

n´1
ź

i“1

P piqpΠq ˆ

r1
ź

j“0

P pjqpΠ1q

r2
ź

k“0

P pkqpΠc
2q(3.9)

We have used Lemma ??, the fact that
`

n´1
2

˘

“
`

r1`r2
2

˘

“
`

r1
2

˘

`
`

r2
2

˘

` r1r2

and also the fact that P p0qpΠ1qP
pr1qpΠ1q „EpΠ1q 1, P p0qpΠc

2qP
pr2qpΠc

2q „EpΠ2q

1.
For case (C), we only need to change LSp1,Π1ˆΠ2q to LSp1

2 , pΠ1bφqˆΠ2q

in the above formula.

3.4. Final conclusion. Comparing (3.4) and (3.9), we get for case (A):

LSp1,Π1 ˆΠ2q „EpΠ1qEpΠ2q p2πiqr1r2
r1
ź

j“0

P pjqpΠ1q
sppj,Π1;Πq´1

r2
ź

k“0

P pkqpΠc
2q
sppk,Πc2;Πq´1

„EpΠ1qEpΠ2q p2πiqr1r2
r1
ź

j“0

P pjqpΠ1q
sppj,Π1;Π2q

r2
ź

k“0

P pkqpΠc
2q
sppk,Πc2;Πc1q

„EpΠ1qEpΠ2q p2πiqr1r2
r1
ź

j“0

P pjqpΠ1q
sppj,Π1;Π2q

r2
ź

k“0

P pr2´kqpΠ2q
sppr2´k,Π2;Π1q

„EpΠ1qEpΠ2q p2πiqr1r2
r1
ź

j“0

P pjqpΠ1q
sppj,Π1;Π2q

r2
ź

k“0

P pkqpΠ2q
sppk,Π2;Π1q.

Comparing (3.7) and (3.9), we get for case (B):

LSp1,Π1 ˆΠ2q „EpΠ1qEpΠ2q p2πiqr1r2
r1
ź

j“0

P pjqpΠ1q
sppj,Π1bφ;Π2bφcq

r2
ź

k“0

P pkqpΠ2q
sppk,Π2bφc;Π1bφq

„EpΠ1qEpΠ2q p2πiqr1r2
r1
ź

j“0

P pjqpΠ1q
sppj,Π1;Π2q

r2
ź

k“0

P pkqpΠ2q
sppk,Π2;Π1q.

Here we have used that sppj,Π1bφ; Π2bφ
cq “ sppj,Π1bφ; Π2bφ

´1q “

sppj,Π1; Π2q by Lemma 1.1.
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Similarly, for case pCq, comparing (3.8) and (3.9), we obtain that:

LSp
1

2
, pΠ1 b φq ˆΠ2q

„EpΠ1qEpΠ2qEpφq p2πiqr1r2´
nr1
2

r1
ź

j“0

P pjqpΠ1q
sppj,Π1bφ;Π2q

r2
ź

k“0

P pkqpΠ2q
sppk,Π2;Π1bφq ˆ

ppqφ, 1q

r1
ř

j“0
j˚psppj,Π1bφ;Π2q`1q

ppqφ, ιq

r1
ř

j“0
pr1´jq˚psppj,Π1bφ;Π2`1qq

„EpΠ1qEpΠ2qEpφq p2πiq
r1r2
2
´
r1pr1`1q

2

r1
ź

j“0

P pjqpΠ1q
sppj,Π1bφ;Π2q

r2
ź

k“0

P pkqpΠ2q
sppk,Π2;Π1bφq ˆ

ppqφ, 1q

r1
ř

j“0
j˚sppj,Π1bφ;Π2q`

r1pr1`1q
2

ppqφ, ιq

r1
ř

j“0
pr1´jq˚sppj,Π1bφ;Π2q`

r1pr1`1q
2

„EpΠ1qEpΠ2qEpφq p2πiq
r1r2
2

r1
ź

j“0

P pjqpΠ1q
sppj,Π1bφ;Π2q

r2
ź

k“0

P pkqpΠ2q
sppk,Π2;Π1bφq ˆ

ppqφ, 1q

r1
ř

j“0
j˚sppj,Π1bφ;Π2q

ppqφ, ιq

r1
ř

j“0
pr1´jq˚sppj,Π1bφ;Π2q

„EpΠ1qEpΠ2qEpφq p2πiq
r1r2
2

r1
ź

j“0

P pjqpΠ1 b φq
sppj,Π1bφ;Π2q

r2
ź

k“0

P pkqpΠ2q
sppk,Π2;Π1bφq.

The last step is deduced by definition of P p˚qpΠ1 b φq.
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