SPECIAL VALUES OF RANKIN-SELBERG L-FUNCTIONS

OVER CM FIELDS

JIE LIN

Abstract. In this paper, we prove an automorphic variant of the Deligne
conjecture on critical values for Rankin-Selberg L-functions over CM fields.
This automorphic variant is known to be equivalent to the original conjecture
for automorphic motives under certain hypotheses.
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Deligne’s conjecture is one of the most important and beautiful conjec-
tures in the algebraic theory of L-values. It generalizes the well-known fact
that the special values of the Riemann zeta function satisfy that ((2n) ~
(27i)?" for all positive integer n where two complex numbers z and y are
equivalent, written as x ~ y, if y = 0, or if y # 0 and z/y is an algebraic
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number.

More precisely, let M be a motive over Q with coefficients in a number
field (c.f. [ ). If a condition on the Hodge type of M is satisfied,
Deligne constructed two complex numbers ¢t (M) et ¢ (M), defined as
determinants of certain comparison isomorphisms between the de Rham re-
alizations and the Betti realizations. He also defined two explicit integers
n* and n~ as dimensions of certain cohomological spaces.

Conjecture 0.1. (of Deligne) If an integer m is critical for M, i.e., if
both Ly (s, M) and Ly (1 — s, M) are holomorphic at s = m, then

(0.1) L(m, M) ~ (2m8)™ (M)
where € is the sign of (—1)™.

The aim of this paper is to prove an automorphic variant of Deligne’s
conjecture | | on critical L-values. In [ ], we proved that this au-
tomorphic variant is equivalent to Deligne’s conjecture for certain automor-
phic motives under certain hypotheses (c.f. Conjecture 2.10 and Conjecture
4.15 of the loc. cit). Consequently, we can deduce Deligne’s conjecture in
some cases from our results under these hypotheses.

Let K be a CM field and M be a motive over K. We would like to
study the Deligne conjecture for ResygM, a motive over Q. In | ]
and | |, we defined the arithmetic automorphic Q-periods for motives
over CM fields and calculated Deligne’s periods c*(Res Kx/oM) in terms of
these Q-periods. When the motive M is attached to a pair of automorphic
representations, there Q-periods are expected to be related to the arithmetic
automorphic P-periods defined in [ I, [ I, [ ] and | ].
Hence we may formulate an automorphic variant of the Deligne conjecture
by replacing the motivic Q-periods in terms of the automorphic P-periods.

More precisely, we have:

Conjecture 0.2. (automorphic variant of the Deligne conjecture)
Let 11 (resp. I') be a cohomological conjugate self-dual cuspidal automorphic
representation of Gn(Ak) (resp. Gp(AKk)). Let so € Z + ”E"/ be a critical
point of L(s, 11 xII'), and let S be a fized finite set of places of F, containing
all infinite places. Then the critical value

(0.2)

LS(SO,H@)H’) ~ B B(T) (27Tl)nn S0 H H P H Z sp(zHH H P

1€X 0<isn o<i<n/

Besides the basic case where n’ = 1 proved in | ] and | ], this
automorphic variant is proved when n # n/(mod2) under certain hypotheses
and relatively stronger regularity condition in | |. In this paper, we
prove the other half of this automorphic variant where n = n’(mod2) with-
out these hypotheses. We also weaken significantly the regularity condition.
If the pair (II, II') satisfies an interlacing property, called piano in Definition

/

sp(J 1, Z)]



SPECIAL VALUES OF RANKIN-SELBERG L-FUNCTIONS OVER CM FIELDS 3

1.6), we can remove the regularity condition completely.

In the contest, we first treat the piano case, and then the general case.
The idea is to construct auxiliary representations and calculate critical val-
ues for representations of larger groups. The main ideas are the same for
the two cases, but we need different constructions.

There are three ingredients in the proof:

(1) Conjecture 0.2 for the case n’ = 1 proved in | | and [ l;

(2) Theorem 5.2 of | | which says that if II is a cuspidal repre-
sentation of GLy(Ag) and II” is an Eisenstein representation of
GLy_1(Ag) such that (II, II°) is piano, then the critical values for
IIx IT” is related to the Whittaker periods, defined as ratios of certain
algebraic models;

(3) An calculation of the Whittaker period of an Eisenstein represen-
tation which involves the near central L-values (Theorem 2.5 of

[GL21]).

We now sketch the main idea of the proof for the two cases.

In the piano case, necessarily we have n > n/. We extend II' to an Eisen-
stein representation I’ of GL,_1 by adding some Hecke characters. The
critical values for IT x II’ is then a ratio of critical values of IT x II” and
critical values of II twisted by Hecke characters. The former is known by
the second ingredient, and the latter is known by the first ingredient.

In the general case, we consider the Eisenstein representation II# :=
IIEP I, The near central value of II ® IT’ is critical and appears in the
Whittaker period of II” by the last ingredient. We then construct a cuspidal
representation of GL,, 4.1, called II# | by automorphic induction of a Hecke
character over a large CM field, such that (II#, II") is piano (we need a mild
regularity condition here). The Whittaker period of II” is then related to
the critical values of II# x II” by the second ingredient. Note that the rep-
resentation IT# is constructed from a Hecke character. The L-function for
II# x II” is then decomposed as L-functions of II and I’ twisted by char-
acters which are again known by the first ingredient. We can finally pass
from the near central value to the other critical values thanks to a result of
Raghuram ([ ]) on the ratio of adjacent critical L-values.

We finally remark that all the calculations are local and can be done at
each individual place. So in the contest, we will only consider the case where
K is quadratic imaginary.

Acknowledgements. We thank Michael Harris, Harald Grobner, A. Raghuram for
helpful discussions.
1. PRELIMINARIES

1.1. Basic notation. We fix an algebraic closure Q of Q in C. Let K be
a quadratic imaginary field. We fix an embedding of K in Q and hence
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consider K as a subfield of Q. We denote by ¢ the complex conjugation of
the fixed embedding K — Q.

Let S be a finite set of places of K which contains the infinite place and
all the ramified places for any date appeared in this paper.

We denote by ¢ the complex conjugation on C. Via the fixed embedding
Q = C, it can be considered as an element in Gal(Q/Q).

Throughout the text, let ¢ be an algebraic Hecke character of K with
infinity type 2'z° such that ¢¢¢ = || - |[ax (see Lemma 4.1.4 of | ]

1

for its existence). It is easy to see that the restriction of || - [[, 2¢ to Ag is
the quadratic character associated to the extension K /Q by the class field
1

theory. In particular, the Hecke character || - Hgiqﬁ is similar to the Hecke
character n constructed in section 2.1.1 of | ]

Let x be a Hecke character of K. We define Y := x~5¢ and ¥ := x/x°
two Hecke characters of K.

Let n and n’ be two positive integers. We may assume that n > n’.

Let II be an automorphic representation of GL,(Ag). We denote the
infinity type of II by {Zaiza;}lgign. We may assume that a; > as > - = an.
We denote by IIV the contragredient representation of II.

Definition 1.1. Let N be an integer. Let G be the group of real points of
Resg oG Ly. The representation 11 will be called:

(1) pure of weight w(Il) if a; + a; = —w(II) for all 1 < i < n;

(2) algebraic if a;,a), € Z + ";1 forall 1 <i < ny

(3) cohomological if there exists W an irreducible algebraic finite di-
mensional representation of GLy(F®qR) such that H* (g, Koo; 1I®
W) # 0 where goo = Lie(Gy) and Ky, is the product of a mazimal
compact group of G and the center of Gy.

(4) regular if it is pure and a; — a;11 =1 for all1 <i<n—1.

(5) N-regular if it is pure and a; — a;41 = N for all1 <i<n—1.

We recall a definition from | ] (c.f. Definition 1.16 of loc.cit).

Definition 1.2. Let E be a number field. Let © = {x(0)}seaut(c) and y =
{y(0)}oerut(c) be two families of complex numbers. We say v ~p y (and
this relation) is equivariant under Aut(C/K), if either y(o) = 0 for all o €
Aut(C), orif y(o) # 0 for all o € Aut(C) and the following two conditions
are verified:

(1) 2(0) € o(E) for all 0 € Aut(C);

y(o)
:U(T)) z(oT)
2) o = for all 0 € Aut(C/K) and all 7 € Aut(C).
o (5) = e ) ©
It is easy to see that this relation is symmetric but not transitive unless some
non-zero condition is guaranteed.

Remark 1.1. We assume that E > K and the families y(o) # 0 for all o
in the previous definition. We assume moreover that the numbers x(o) and
y(o) depend only on the restriction of o to E.
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(1) Then the second condition of Definition 1.2 implies the first one. We
refer to Lemma 1.18 of | | for the proof.

(2) Let Jg be the set of complex embeddings of E in C. We identify
the two algebras E @y C and C’E by sending e ® z to (p(€)z)pesy
where e € E and z € C. By the assumption, we may define x(p)
for p € Jp as x(o) where o is any lifting of p in AutC. We may
consider v = (x(p))pes, as an element in E ®q C. Similarly, we
may consider y as an inversible element in E ®g C. In this sense,
it 1s easy to see that x ~p y (and this relation) is equivariant under
Aut(C/K) if and only if zy~™' € E®g K < E®q C. In particular,
our definition is compatible with that in page 2 of | ].

1.2. Split index and piano-condition for automorphic pairs. Through-
out the paper, let IT be a cuspidal cohomological representation of G L, (A k)
with infinity type {Zaiga;}]_gign such that a; > as > -+ > a,. In particular,
Il is algebraic and hence a;,a} € Z + 5. Moreover, Lemma 4.9 of | ]
implies that II is pure. In other words, there exists an integer w(Il) such

that a; + o} = —w(II) for all i. We say II is very regular if a; — a;41 > 3
for all 4.

Similarly, let IT" be a cuspidal cohomological representation of GL,/(Ak)
with infinity type {ijzb;}lgjgn such that by > by > .-+ > b,. We have

bj, by € Z + % for all j, and there exists an integer w(Il') such that
bj + b = w(Il’) for all j.

We assume that

1I Ir

(1.1) forall1<i<n,1<j<n’,ai+bj;ew();w()
Definition 1.3. (Split Index)

We split the sequence (a1 > ag > -+ > a,) with the numbers

1I Ir 1I T 1I Ir
e el) | eD4er) w4 w(r)
2 2 2

The sequence is split into n’ + 1 parts. We denote the length of each part

by

—b;.

Sp(oa H/; H)a Sp(]-aH/;H)v o ,sp(n', H,a H)a

and call them the split indices.

Remark 1.2. It is easy to see that sp(i, IL; I, v) is equal to the cardinal of
the set {1 < j<n'| —M—anﬂ,i > b; > —M—an,i}. Here
we put ay o = +00 and Gy pi1 = —0.

Lemma 1.1. Let n be an algebraic Hecke character. The split indices have
the following properties:

n/

(1) Z 3p<i7H/;H) =n.
=0

(2) For any 0 < j < n', sp(j,1I;1I) = sp(n’ — j, 1'% 1) = sp(n’ —
7, 15 11Y).

(3) For any t,s € Z, sp(j, I ® || - [[4,.; 1) = sp(i, A || - [|3,.) =
sp(j, I3 0)
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(4) For any 0 < j <n', sp(j, ' @n;IT) = sp(j, I'; TI®@n) and sp(j, ' ®
1% ) = sp(j, W®@n~ 15 ). Similarly, sp(j, 1U; TI®nN°) = sp(j, I; TIQ
nt).

The first two points of the above lemma are direct. For the remaining, we
only need to notice that calculating the split index is nothing but comparing
a; + b; with —7W(H)ZW(H/).

Definition 1.4. If n > n/, we say that the pair (II,1I') is piano if the
following equivalent conditions are verified:
(1) The n' numbers
- w(I) + w(IT) . ~ w(Il) + w(Il) I ~w(Il) + w(Il')
2 2 2
lie in different gaps between the n numbers ay > ag > -+ > ay.
(2) For all 0 < j < n/, we have sp(j,11';II) # 0.
(8) For all0 < i < n, we have sp(i, IL; II') < 1 and moreover sp(0,1;11") =
sp(n, ILIT) = 1.

—by.

Remark 1.3. The condition "piano” was called “good position” in my thesis.
M. Harris first used the name “piano” in a talk at CIRM in spring 2016
since the numbers M —bj, 1 < j < n insert into the gaps between
the numbers a;, 1 <t < n, like the black keys insert into the gaps between

the white keys of a piano.

Definition 1.5. Let m € Z + %/_2 We say m is eritical for the pair

(IL, I of

(1.2)

w(IT) + w(IT') w(I) + w(IT')
2 2 2

This definition is compatible with section 1.7.1 of | ], also see equa-
tions (2.33) and (2.34) of | ].

1—min{|a;+b;+ |} <m— < min{|a;+bj+
1,) 7

Remark 1.4. For 1 < i < n, if there exists an number —%W(H,) — bj

between a; and a;y1, then we have a; — aj+1 = 2m — w(ll) — w(IT') if m >
M, and a; — a;41 =2 —2m + w(Il) + w(Il') if m < M

The following hypothesis will be made for our main theorem in the piano
case:

Hypothesis 1.1. (regular hypothesis) If m > %‘”(H/) then II is 2m —

w(Il) — w(Il') regular; If m < M then II is 1 — 2m + w(II) + w(IT')-
regular.

1.3. Rationality field and automorphic periods. In this section, we
shall introduce three types of automorphic periods. We will see that they
are all related to special values of automorphic L-functions.

Recall that IT¢ is an admissible irreducible representation of GL,(Ak, ).
For any o € Aut(C), we define “II; as IIf ®c ,—1 C. It is the finite part of
an algebraic cuspidal representation °II of GL,(Ag) (c.f. Théoréme 3.13 of
[ ]). We define Q(IIf), the rationality field of II, by the subfield of
C fixed by the automorphisms o such that “II; = II.

(ID) + w (')

[}
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Let V be a representation over C of a general group G. Let E be a subfield
of C. We say that an F-vector space Vg < V is an E-rational structure
of V if Vg is stable by G and Vg ® C = V' as G-module.

1.3.1. Whittaker periods. Since II is cohomological and hence algebraic and
regular, Théoreme 3.13 of [ ] implies that Q(IIy) is a number field and
moreover, IT¢ has a Q(ILy)-rational structure given by the Lie algebra coho-
mology.

On the other hand, since II is cuspidal and hence generic, its Whittaker
period also provides a Q(IIf)-rational structure. The two rational struc-
tures differ by a non-zero ratio p(II), called the the Whittaker period.
It is well defined up to multiplication by a number in Q(IIf)*. We refer to
Definition/Proposition 3.3 of | | for detailed definition when the repre-
sentation is cuspidal.

The definition has been generalized to a large family of non-cuspidal rep-
resentations: fully-induced isobaric sums of distinct unitary cuspidal repre-
sentations (c.f. Proposition 3.1 of | | and Corollary 1.12 of | D-

Proposition 1.1. (Proposition 1.4, Lemma 1.6, Lemma 1.8.3 of | 1)
Let x1, x2 be two algebraic Hecke characters of K. We have:

p(x1x2:1) ~EpEKNe) PO, Dp(x2, 1)
pixi,t)  ~eeay PXT1)
p(l-11,1) ~K (2mi) ™
and are all equivariant under the action of Aut(C/K).

1.3.2. CM periods. Let x be an algebraic Hecke character of K. We may
associate two non-zero complex numbers p(y, 1) and p(x, ¢) where 1 indicates
the fixed embedding K < C. They are defined as ratios of different rational
structures for cohomology spaces associated to CM Shimura varieties and
are well-defined up to multiplication by elements in a number field E(x).
We refer to appendix of | ] and section 1 of | ] for more details.

1.3.3. Arithmetic automorphic periods. For each integer 0 < s < n, let Us
be a unitary group over Q with respect to the quadratic extension K/Q of
infinity sign (n — s,s). If n is odd, or n is even and s = n/2 mod 2, we
may assume that U, is quasi-split at each finite places. In this case, if II is
conjugate self-dual, then II descends to a cohomological representation of
Us(Ag) by base change.

If n is even and s # n/2 mod 2, we may assume that the unitary group
Us is quasi-split outside one finite space which is split in K. We assume
moreover that II is a discrete series representation at this split place and
hence descends to a cohomological representation of Us(Ag) by base change.
For base change of cohomological representations, we refer to | Nl ]
and | ] for more details.

We can then define an arithmetic automorphic period P*)(II) as in
equation (4.28) of | ]. It is defined as Petersson inner product of a
holomorphic automorphic form related to the descending of II to U;. We
also refer to | | for original constructions.
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We say Il is essentially conjugate self-dual if there exists an algebraic
Hecke character x such that II ® x is conjugate self-dual. We assume that
II® x is a discrete series representation at a split place if n is even. We can
then define the generalized arithmetic automorphic period P5(II) :=
PO ®x)p(X,1)~*p(X, )"+, In this case (where II is cuspidal, cohomo-
logical, essentially conjugate self-dual and discrete series at a split place),
we say that II has definable arithmetic automorphic periods.

The arithmetic automorphic periods are well defined up to multiplication
by elements in a number field E(II) and does not depend on the choice of x
by Theorem 1.1. For simplicity, we assume that E(II) and E(y) contain K.

We remark that if IT is conjugate self-dual, one can show from construction
of automorphic periods that PO (II)P"™)(IT) ~ g 1 and is equivariant
under the action of Aut(C/K). We refer to Lemma 5.2.1 of | ] for
more details.

1.4. Special values of automorphic L-functions: theorems revisited.
We emphasize that whenever we talk about periods or L-values in the fol-
lowing, we consider them as Aut(C)-families. For example, when we talk
about L(s,II), we consider it as the family (L°(s, 7)) ge Aut(C)-

All the periods in the previous section can be chosen in a Aut(C)-equivariant
way such that the following theorems hold.

Theorem 1.1. (Theorem 3.5.13 of | | or Theorem 4.29 of | 1)
Let II be a conjugate self-dual of GL,(Ak) which has definable arithmetic
automorphic periods. We write its infinity type as {z%Z %}1<i<n where
ap > ag > -+ > ay.

Let x be an algebraic Hecke character of K with infinity type 2z°Z° such
that x = x¢ = || - ||***. We assume that a — b + 2a; # 0 for any i. Write s
for the integer s = s(Il,n) := #{i | a — b + 2a; < 0}.

IfmeZ+ "T_l is critical for the pair (I1, x), then

L¥(m,TT® X) ~pm ey (2m)"" P ()p(X, 1)°p(X. )"~
and is equivariant under the action of Aut(C/K).

Remark 1.5. (1) We didn’t state the CM periods as in Theorem 3.5.13
of | |. Instead, the current form appears in middle steps of the
proof for Theorem 3.5.13 (c.f. equation (2.9.12) or the third line in
page 138 of the loc.cit). We refer to Corollary 4.1 of | | for
detailed calculation.

(2) In the original theorem, there is a term on the Gauss sum of the
quadratic character associated to K/Q by the class field theory which
is an element in K. We can remove it since we have assumed E(IT)
and E(x) contain K.

(8) The original theorem was stated for the critical values larger or equal
to 1_5_1). We add the condition x * x¢ = || - ||**® and then the other
critical values can be deduced easily from the functional equation.
More precisely, let m < 1=a=b pe o critical value, then by the func-
tional equation, we get (c.f. [Cog])

L(m,II® X) ~pamp(g (200" L1 - m, 1Y @ x ).
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Since 11 is conjugate self-dual, we have
L(1 —m,IIY ®X_1) = L(1 —m,HC®X_1) =L(l—a-— b—m,H@X_I’C)
= L-mIx| ") =Ll-a-b-—mITQx).
Then the theorem for m < 1%“4’ follows from that for 1—a—b—m >

l—a—b
—5 -

Theorem 1.2. (Theorem 1.9 of | |, Theorem 5.2 of | 1) Let 11
be a conjugate self-dual cohomological cuspidal representation of G Ly, (Ak).
Let IT# be a conjugate self-dual cohomological automorphic representation of
GLy—1(Ag) which is fully induced from different conjugate self-dual cuspidal
representations. We assume that the pair (I1,1I7) is piano. Then if m € Z
such that m + % is critical for (I1,TI#), then there exists an archimedean

factor p(m, Hw,ﬂi) e C* such that
1
L(m + §,H x %) ~ gy gy P(m, oo, T ) p(I)p(IT7).

Moreover, if m # 0, or if m = 0 and certain central values do not vanish,
then

p(m, Mo, TI) ~ (2i) (=15 (n=1)(n=2),

All the relations above are equivariant under the action of Aut(C/K).

Remark 1.6. (1) Since TI# is conjugate self-dual, we can remove the
Gauss sum in Theorem 1.9 of | | by Remark 1.31 of | ].
(2) The piano condition is defined by highest weight in | |. By the

relation of the highest weight and the infinity type given in section
1.4.1 of the loc.cit, one can show easily that our definition here is
equivalent to that in | ].

Theorem 1.3. (Theorem 6.7 of | 1) If 11 is 3-regular, conjugate self-
dual and has definable arithmetic automorphic period, then there exists a
non-zero complex number Z () such that

n—1
p(I0) ~pany Z(0y) | [ P (I0)
=1

and is equivariant under the action of Aut(C/K).

Theorem 1.4. (Corollary 5.7 of | |, Corollary 2.12 of | |) Let
I# = I, BIE- - - I} be the fully induced isobaric sum of different conjugate
k

self-dual cuspidal representation II; of GLy,(Ak). For each i, if n= Y n;

i=1
mod 2 then let H?lg = II;; otherwise let H?lg =1L ® ¢l - |72 We
assume that H?lg is cohomological for each i. This implies that II* is also
cohomological. We have:

l
() ~pamype | PO [ LP(1LTL > 101)
1<i<k 1<i<j<k

and is equivariant under the action of Aut(C/K).
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Theorem 1.5. (of Balsius, stated as Prop. 1.8.1 of | | (and the at-
tached erratum | I, p. 82)) Let x be an algebraic Hecke character
of K with infinity type 2°Z° such that a # b. Let m € Z be a critical
point for x. If a < b, then L(m,x) ~ (2mi)"p(X,1). If a > b, then
L(m7X) ~ (27ri)mp(5€7 L)'

In both cases the relation is equivalent under the action of Aut(C/K).

1.5. An automorphic version of a conjecture of Deligne. We now
state the conjecture and claim our results.

Conjecture 1.1. (c.f. Conjecture 2.2 of | |) Let II and II' be cuspidal

representations of GLy(Ak) and GL,/(Ak) respectively which have definable

arithmetic automorphic periods. Let m € Z + %ﬁ be critical for ITQII'.

We assume that their infinity types satisfy equation (1.1). We predict that:

LS(m, HXH/) ~ B E(T) (27rz-)nn’m H P(u) (H)sp(u,H;H’) H P(v) (H/)sp('u,l_[/;l_[).
u=0 v=0

and is equivariant under the action of Gal(Q/K).

Remark 1.7. If n’ = 1, the above conjecture is known by Theorem 1.1.
We shall prove the conjecture in the following two cases:

Theorem 1.6. (piano case)

Let n > n' and the pair (IL,1I') be piano (see Definition 1.4). If n # n'
mod 2, we assume that I, II' are conjugate self-dual. Otherwise we assume
that I1 and II' ® ¢~ are conjugate self-dual, then Conjecture 1.1 is true.

Theorem 1.7. (general case)

Let (II,IT') be very regular.

If n =n' mod 2, we assume that I1; and 11y are conjugate self-dual. In
this case, the integer 1 is critical and Conjecture 1.1 is true for any critical
values.

If n # 7' mod 2, we assume that II; and Il ® ¢~ are conjugate self-
dual. In this case, the half integer % is critical and Conjecture 1.1 is true
form = % If this central value is moreover non-vanishing, then Conjecture
1.1 is true for any critical values.

Remark 1.8. In | |, Raghuram determined the ratio of adjacent crit-
ical values explicitly. Note that the set of critical values form an interval,
we only need to prove the previous theorem form =1 if n =n' mod 2, and
m=1/2ifn#n" mod 2.

2. PROOF FOR THE MAIN RESULT: THE PIANO CASE

2.1. The simplest case. Let II and II’ be as in Theorem 1.6.

We assume n is even and n’ is odd at first. In this case, both II and IT’
are conjugate self-dual and hence w(Il) = w(I") = 0. Moreover, the critical
point m is a half integer, the numbers a;,1 < i < n are half integers and the
numbers bj, 1 < j < n' are integers.

There are n — 1 gaps between the numbers a;, 1 < i < n. Since the pair
(IL,IT') is piano, the n’ numbers —b;, 1 < j < n' lie in n’ different gaps. Let
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l=n-n"—1and —k; > —k;;1 > --- > —ky be integers lie in the other [
gaps between the half integers a;, 1 < i <. For each 1 <t <, let x; be a
conjugate self-dual algebraic Hecke character with infinity type z¥Z " (see
Lemma 4.1.4 of | | for its existence).

Recall that II satisfies the regular hypothesis, namely, a; — a;41 = 2m if
m >0 and a; — a;+1 = 2 —2m if m > 0. For fixed ¢, we may choose k; such
that for any ¢, 1 — |a; + k| < m < |a; + k¢|. In particular, the half integer
m is critical for 1T ® x;.

Let II# be the isobaric sum of I’ and y¢, 1 < ¢t <. It is then a cohomo-
logical and conjugate self-dual automorphic representation of GL,—1(Af).
The isobaric sum is fully induced at non-archimedean places since each sum-
mand is tempered (for the temperedness of II', see | | and | ]) and
hence the fully induced representation is already irreducible. It is fully in-
duced at the archimedean place since the isobaric summands have disjoint
Langlands parameters.

Moreover, the pair (I, II#) is trivially piano by the construction. We may
then apply Theorem 1.2 to this pair and get:

(2.1) LS(m,H X H#) ~ E(I) E(TT#) p(m — %7 Hoo,Hi)p(H)P(H#)-

2.1.1. Calculate the left hand side of equation (2.1). The left hand side is
equal to L¥(m, I x I') x [ L%(m,TI® x¢).
1<t<k

By Theorem 1.1, we have:
L¥(m, IL® Xi) ~pmys(y) (2m8)"" PCIXDp(x, 1) Tx0p (i, ) =s ),
Hence the left hand side of equation (2.1) is equivalent to:
(2.2)
L¥(m, I x IT') x (2ms)™™ H [p(S(H»Xt))p(%t, 1)S(H,Xt)p(>a7L)n—s(H,Xt)] '
1<t<l

2.1.2. Calculate the right hand side of equation (2.1). By Theorem 1.4, we
know:

p(IT%) ~ p#)E(g) PAT) H L1, ®@x; ") H L1, xix5 ).
1<t<i 1<t<s<l

We have used the fact that p(x;) is equivalent to the Gauss sum of y; and
hence the Gauss sum of x; |5, (c.f. Remark 1.3.1 of | ]). Since x; is
algebraic and conjugate self-dual, it is easy to show that x; | Ag Is trivial.
Hence we may remove the terms p(x;), 1 <t <[ in the above equation.

Let E be the compositum of F(x:), 1 < t < [. By Theorem 1.1 and
Proposition 1.1, we know

LPAIT@x;") ~pane (2mi)"
~E(V)E (2mi)" PO D p(y,, 1) =30 D p ()30

/

p(S(H’,X?l))p(Xg7 1)3(H/’X;1)p(xf, L)n’—S(H’vxil)

The infinity type of x¢x5! = x¢x$ is 2Ft~Fsz=kt+ks Since s < t, we have

ki — ks > 0. By Theorem 1.5 and Proposition 1.1, we know
L5(1xaxs ") ~8 @i)p(xexs: ¢) ~5 (270)p(xt, )p(xs, 1)-
Hence [T L%(Lxexs") ~ I1 pOa, 1) 'plxe )"

1<t<s<l 1<t<l
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We deduce that the right hand side of equation (2.1) is equivalent to:
(2.3)

(2mi)"™ L

p( H(X)7 H# H/ H |:P vXt (Xt? 1)nlis(H/7X;1)+t71p(Xt’ L)S(H/7X;1)+l7t:|

1<t<l

2.1.3. Compare both sides of equation (2.1).

Lemma 2.1. For each t, we have s(II, x) = n’ — s(I', x; ') + t and hence
n_S(Hvxt) = n_n/+s(H/7X1t_1) —t= S(H/>Xt_1) +l—t+1

Proof. By definition we have s(IT, x;) = #{i | k < —a;} and s(I', x; ') =
#{j | kt > bj}. Moreover, we know | —t = #{s | k; > ks}. Recall that the
n—1 numbers ks, 1 <s <1, bj,1<j<n'liein different gaps between —a;,
1 < i < n by construction. It is easy to see that #{i | k < —a;}+#{j | k+ >
b} +#{s | k‘t > ks} = n—1. Therefore s(II, x;) = n—1—s(I',x; ') =1+t =
n' —s(I', x; ) +t.

O]

By the above lemma, we deduce that:

[T [, 1 =0 =ty s ]
1<t<l
= H _p(Xta l)s(Hvxt)—lp(Xt’ L)TL—S(H,Xt)—l]
1<t<l -
(2.4) = H p(xt, 1)s(H,><t)p(Xt7 L)n—s(H,Xt)]
1<t<l -

where the last equation is due to the fact that p(x¢, 1)p(x¢,¢) ~g p(xe, Dp(x§, 1) ~g
p(xtx§,1) ~g 1 by Proposition 1.1 and the fact that y; is conjugate self-dual.
We compare equations (2.2), (2.3) and (2.4), we obtain that:

(2:5) L(m, T x TT') x (2ri)™m ] Pex0)
1<t<l
l(l 1)

p(m — 3, T, T )p(I)p(I1) [T PEIx)

~pmear)  (2m)""
1<t<l

We have dropped the number field E since both sides are well defined up
to (E(I)E(IT))* (see Remark 1.1).

By Theorem 1.3 and the fact that P (IT) P(")(IT") ~pary 1, we know
p() ~pay Z(Me) T PO and p(IV) ~pary Z(I,) [ PYIT).

1<i<n—1 o<j<n/

We can then interpret L(m,II x IT') in terms of archimedean factors and
arithmetic automorphic periods. We now prove that the power for each
arithmetic automorphic period is indeed the split index.

Lemma 2.2. Let 0 <u<nand 0 <v <n.

(1) If u = 0 or n, then sp(u, ILT) = 0 = —#{t | s(II, x¢) = u}.
(2) If u # 0,n, then sp(u, ILIT) = 1 — #{¢t | s(IL, x¢) = u}.
(8) For all v, we have sp(v, TI';T1) = #{t | s(I', x; )} + 1.
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Proof.

(1) Ifu = 0 or n, since (I, II') is piano, it is easy to see that sp(u, II;IT") =
0.

Recall that s(IT,x;) = #{i | kt < —a;}. Since —a, > ky > —ay,
this number is neither 0 or n.

(2) Let u # 0,n. We first observe that s(IL, x¢) = #{i | kt < —a;} = u
if and only if —a,4+1-+4 > ki > —ayn—,. If there is a number among
bj 1 < j < n' lying in the gap between —ay, 41—y and —a,—,, then
sp(u, ILIT) = #{j | —ant1-u > bj > —a,—y} = 1. Moreover, there
is no ¢ such that k; is in this gap. Hence #{t | s(IL, x¢) = u} = 0.

If there is no number among b; 1 < j < n/ lying in the gap between
—Qpt1—y and —a,—,q, then there is exact one ¢ such that k; is in this
gap. Hence sp(u, II; I1') = 0 and #{t | s(IL, x¢) = u} = 1.

(3) We denote by = +o0 and b,,1 = —o0. For each 0 < v < n/, {t |
s(IV, x¢) = v} = {t | =bp—y < kt < —byy_yy1}. It is clear that #{¢ |
_bn’—v <k < _bn’—v+1} +1= #{7' | _bn’—v <a; < _bn’—v+1} =
sp(v, IT'; I1).

(]
Let a(m, o, 1) := (2md)" "2 —™p(m — L T, TIE) Z(110) Z(I,).
Equation 2.5 and Lemma 2.2 then imply that:

1(1 1)

n /

L9 (m, TIXTT) ~ pan sy alm, T, T, H )sp(dtil) T plo)(rr)sp(ean,
= v=0

All the relations above are equivariant under the action of Aut(C/K).
2.2. Settings, the general cases. Let n > r be arbitrary integers. We
still want to apply the previous strategy to get special values of L-function
for II x II'. But if we take IT# to be Langlands sum of II' and some al-
gebraic Hecke characters, it may be no longer algebraic. For example,
if n — 1 # n/(mod 2), we know the Langlands parameters of II' are in
Z + _1. But the Langlands parameters of an algebraic representation of
GLn_l should be in Z+ 251 = Z+ %, In order to fix this, we will tensor the

1
character ||-|[, > ¢, a Hecke character of infinity type (3,—3), when necessary.

When n — 1 = r(mod 2), we write 71 = 0 and we will expand II' to an
algebraic representation of GL,,_; as previously. When n—1 # r(mod 2), we

_1
write 7} = 3 and we will expand II' x ||| A, ® to an algebraic representation
of GL,,—1. In both cases, we assume the pair (II,II) is piano, namely,

each b; + T; are included in one of the intervals | — aj41, —a;[,1 <j<n-—1

aifdl @pch such interval contains at most one b;.
Let w(1) > w(2) > --- > w(n) be the integers such that
(2.7) — Apg1-w(i) > bwsi—i T 11> —ap ()

foralll1 <i<n'.
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Let x1, X2, - ,x: be conjugate self-dual algebraic Hecke characters of
Ak of infinity type 217751 zk2z=k2 ... 2kiz=F yespectively. These charac-

1
ters will help us expand Il or I'®|| - ||, 2 ¢ to an algebraic representation of

1
GLy—1. Similarly, we will tensor them by || - |[, 2¢ if n # 0(mod 2) to settle
the parity issue. We write Tp = % in this case and 0 otherwise.

We assume that k1 + 15 > ko + 15 > --- > k; + Ty and lie in different
intervals | — a;41, —a;[ which doesn’t contain any of b; + T7.

More precisely, we have

ki+T5 > ko +To > --- >kw(n/),1+TQ > bhi+T
> kw(n’) + 15 > kw(n’)+1 + Ty > .- > kw(n’—l)—? +T5> b +1T)

kwmsa—iy—ite + To > kymrvo—iy—iq3 + T2 > > kyp1-9—i + 12> bi+Th

kw(2)—n’+2 + 15 > kw(Z)—n’+3 + Ty > - kw(l)—n' +To > by +T
(2.8) kw(l)—n’+1 + 15 > kw(l)—n’+2 + Ty > >k +1Ts
and the above [ + k = n — 1 numbers lie in the gaps between the n numbers
n
—a, > —ap—1 > --- > —a1. Note the above n — 1 numbers are in Z + 5
n—1

forall 1 <i<n.

There are four cases:

(A) n is even and n' is odd, then 73 = 0 and T = 0. We set II# =
II'H x1 Hx2H---EHyy as in previous subsections.

(B) n is even and n’ is even, then T} = % and Tp = 0. We set IT# =

_1

|| [ly ¢) Bx1Ex2 B -Hxi-

(C) n is odd and n' is even, then 77 = 0 and Ty = % We set II#* =

_1 _1 _1

B ) B OB BOa®|l -l 9)-

(D) n is odd and n’ is odd, then 7} = 3 and Tb = 5. We set II# =

_1

I'Ex1Ex2 B Bx) @] [, ¢-

In all cases, IT# is a generic cohomological conjugate self-dual automorphic

when a; € Z +

representation of GL,_1(Ag) and Theorem 5.2 of | | gives us that if
m + % is critical for IT x IT#, then

1
(2.9) L® (5 +m, I x ) ~ gy parey PN )p(m, o, TTE).

Again, we shall simplify both sides of this equation.

2.3. Simplify the left hand side, general cases.
For the left hand side of equation (2.9), we know by construction that:

1 l
(A) L5+ m T I#) = LS5+ m T ) [T 253+ m, 1@ ;)

J

Vv
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1 1 l
L5 +m, I x I#) = LS(§+m,H x (I -[1420) [T L (5 +m, I ®x;)
j=1

B) !
= Lm,Ix (I @9)) [T L5(5 +m, 1))
=
1 ! -3
LI+ m, T x I#) - = L8(5 4+ m, Tx IT) [T L85+ m, 11 (3 ® |- [[,,09))
(C) 1 o
= LS(z+m I xIT) nL (m, II® (x; ® ¢))

1

(D) L5(} +m, I x 1) = LS(Q,Hx<H'®¢>>1j 5(m, 18 (1, ® 6)

Weset sj =#{1<i<n|kj+To<—-a}=j+#{1<i<n' |b;+T1 >
kj+To} and t; = #{1 <i<n'| (b;+T1)— (kj + T2) < 0} as before. Recall
that s; +t; =n'+jforall 1 <j <Ll

If n is even (case (A) and (B)), we have for all 1 < j <

. e
L (5 + m @ ;) ~ sy (2m0) 2" PO (Ip(G, 1)

If n is odd (case (C) and (D)), we have for all 1 < j <:

L5 (m, ®(x;)®6) ~ps(y,) (2m)™" P (Mp(R, 1)*"p(8,1)*p(, )" .
Therefore for cases (A) and (B), we have

! o z
H + m, 1@ ;) ~pae (2r) ™2 [T PO [T P = [TpRg, )2
J=1 k=1 j=1

l
For cases (C) and (D), we put s := »; s; and then we have:
i=1

!
HIL (m, I ® (x; ®P)) ~EaEE)
e

n—

miy < T PO [1 PO A 1551027005 1790607

k=1

2.4. Simplify the right hand side, general cases.

Calculate p(II7): Apply Theorem 2.6 of | | we get
(A) p(IT#) ~ sy QL)) ™ [T L9, T1@xS) [ L1, x@®
1<j<l 1<i<j<l
X5)
(B) p(I1#) ~pu) QIL)p(IV)QIL,)~ 1H ILS( LI 420) ®
<]<
x5 TT L°(1L,x®x5)
1<i<j<l
(C) p(IT#) ~ ppey UIE)p()QIL) ™ T L9102 26)9) [T L1, @
1<j<l 1<i<j<l

X5)
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(D) p(IT#) ~ gy QUE)P(IT)QIT,) ™ [T L5, @) [T L5(1,x@®

1<5<l 1<i<j<l
C
Xj)
Here we have used that:

Lemma 2.3. If n is a conjugate self-dual Hecke character then:

prI'®n) p(Il')
QI @n)) T QT )
Proof. By Theorem 2.6 of | |, we have:
(2.10) p(II'®n) ~parye@m Z(IT®n)w) H POIT ®1n).
1<i<n/—1

By the definition of arithmetic automorphic period, we know P(i) (' ®
n) ~eaE@m) P07, 1)'p(7,¢)" " The latter is equivalent to p(7, 1)%—" since
71 is conjugate self-dual.

We see that:
(2.11)

H PU(TT'®n) ~E)E(n) H [PO(I)p(7,1)% ] E(IE(n H POIT).
1<i<n 1<isn 1<z<n

By Theorem 2.6 of [ |, This will imply that:

prI'®n) p(Il')
Z((IW@n)e) M Z(IL)
n/(n/—1)

Since Z(IL5,) ~ (k) (2m0) 2 Q(IT/,)) and a similar formula for (I'®
M), We get the lemma.

O

By the known case n’ = 1 of Conjecture 0.2, for all 1 < j <[, we have
LS (LT @ X5) ~ B e(yy) (28" PU) (I )p(35, 1)™ 2.
Similarly, we have
1 1
L0, 8 -1, 20)®X§) = L(3, U@ (6x5))

~ B EGo B (271) T P (I)p(G,1)" " 9p(6, 1) p(, )"

_1 1
and LLI® 0G|l l[,26)) = Ls(i,ﬂ’@) (xi ® 9)°)

~ By GG B (2m) E PO (IT)p(RG, 1) ~2p(6, 1)™ "p(d, ).
Along with equation (?7), we get

l(l 1)

(A) and (D): p(IT#) ~ gry ey ATE)pIT)QIT, )~ (2mi) ™72 x

l l
[[Poa) [ [z, 1%

j=1 j=1
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1(1—1)

(B) + p(I#) ~ iy () Q) p(IT)Q(IT,) 1 (2mi) 2+ 5

(X]7 )233 n (¢, ) (g,L)n’l t

’:]N

p )(H’)

—_-

<
Il

—_
<.
Il

_

1(1-1)

(€) ¢ PUT#) ~ pawyice) AL )p(IT)IL, )~ (2mi) 5+ 5

l

H X]’ QSj_np(g, 1>n’l—tp((g7 L)t

<.
Il ~
—_
.
-

l l 10+ 1
where t = > t; = Y (0 +j—sj) =n'l + ( )
j=1 j=1 2

We then apply equations (??), (??) and Lemma 7?7, Corollary ?? to get:

(A) p(I)p(II#)p(m, Mo, 1) ~ pnypryp (2m)" D0+ 3)

— S.

l n—1 n'

23-—n 1\ sp(k,11;IT
[[pg 0227 [T PO [ PO ary=ee.
J=1 =1 k=0

n'l
(B) p(I)p(IT#)p(m, Tao, T ) ~ gy ey (20)" D020~

n’

l
[ [»(5, 1) "p(6, 1) (&, )™ tHP“ H (R) (117 sp(k- I @I

j=1 P

n'l

n(n—1)(m+1)—2t
(C) p(I)p(IT#)p(m, Moy, 1) ~ ) BE(s) (2m8)" (DM H2)=75

¢ n—1 n'
[ 1p(G, 0)%57p(6, )™ 'p(@, )" [ [ PO [ | PW (1) plr@eith),
i=1 i=1 k=0

(D) p()p(IT#)p(m, Tap, T ~ gy e () (2m)" D0 2)x

l n—1 n'

1_[ X], 25j_”1_[ 1_[ H/ sp(k,IT';TT )

Jj=1 i=1 k=0

2.5. Compare both sides, general cases. At first, observe that
p(9, 1)p(@, 1) ~E(e) (@ 1)p(6°, 1) ~E(g) P(0¢°, 1) ~E(g) p(H.H;}(, 1) ~g(g) 2mi.
We can then conclude:

1

n’ n’

2771 H k) H H/)sp(k JITIT)

k=1 k=0
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(B) Since n(n—1)(m+ % )—7—(m+ )nl:(m—i-%)n(n—l—l)—%l:
(m + $)nn/ f%l—mnn +——”7l,wehave

n'l

)mnn e /77 X

(2.12) L%(m,II x (' ®
(II)

PN () [T PW )P ®EIE (g, 1) p(6, ™'

})) ~pmyEar)Ee) (27
=1 iy

! nl ~ n' _nl ~ n' _n'l

Since (271) 2 2 ~pg) p(6,1)2 "2 p(d,0)2 ~ 7, and

nn'  n'l nn'  n'l ;o (1 +1) nn'  n/l (14 1)
I B B B A B B
nn' (0 +1+ 1)l nn'  nl
= —4-———— —§5=—+——5
2 2 2 2

_ o'+ o _nm-1)
2 2 ’
nn'  n'l nn'  n'l I(1+1) nn’
M p—t = M ) =sy
5 5 tn 5 5 tn (n'l + )=s+ 5
ol 1
= s—i—nn’—ng—g—s—i-nn’—n(2 )

/

< w - s ’ b "(n n_ s+nn
[ [ P®) ) [ [ PP ar)»®mmp(g, 1) *p(¢,0)**
k=1

k=0

/_n(n—1)
2

(C) Since n(n —1)(m + )—%ll—mnl—n(n—l)(m+%)—"7/l—(m+
Dl + 2 = (m + $)nn’ +——%l,wehave

n'l

1 A (it M/ 40l _n'L
(213) LS(§ + m, ]___[ X H/) NE(H)E(H/)E(d)) (27['2)( +2) + 2 2 X

H P(w k:) 1_[ sp (k,I1%;10) (¢> )n’l—t—sp((g’ L)t+s—nl

Moreover, we know t+s = ’l+l(l+ )| we have 2(t+s) = 2n/l+(l+
Di=nl+(n'+1+1)l =n'l+nl. Thusn'l—t—s=t+s—nl = 7—

- L_Ll
%l. We then get p(¢, 1)V t=sp(, )trs—nl = p(¢®¢c )z "2 =

. n'l  nl

(2mi) 'z ~ 2.
Therefore:

1 1 / L /.
S -\ (m+ 5 )nn | | w(k)) | | sp(k,IT;
L (§+m, HXH,) ~E()E(IT) (2771)( +2) H P( ) H H/ p(

m,
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(D) Similarly, since n(n—1)(m+3)—mnl = n(n— 1)m—i—M mnl =

n(n 1)

mnn' + , we have

(2.14) L¥(m, I x (I ® ) ~ (e e (271)™™" x

n S G )

n(n—1) ~ /_n(n—1)
2 2

sp(¢’ L)s-‘rnn

ey
I
—

It is easy to verify that s—nl+ @ =s—nl+n(n—1)— n(";l) =

n(n—1)
—5-

s+nn —

2.6. Final conclusion: general cases. Before concluding, we notice that
in case (B) or (D),

n—1 n' n’
) . n(n —1)
s = Z sj:Z]—Zw(]):T—Zw
1<j<n—1 j=1  j=1 j=1
Recall that w(j) = Z p(k, II'®¢;II) for all 1 < k < n' by (??). Therefore:
. 1 n’ n’ n'
"(” w(j Z sp(, IV @ ¢ 11) = 3"k # sp(k, I ® ¢ 11)
(2.15) - 2 kx sp(k, I @ ¢; 10);
k=0
-1 n
and s +nn’ — n(nZ) = nn — Z k « sp(k, 1" ® ¢; )
k=0
=T Z sp(k, T @ ¢;11) — > j # sp(k, TT' ® ¢; TT)
=0 k=0
= Z k)sp(k, I ® ¢; 11)
k=0

n/

by Lemma 1.1 which says that )} sp(k,II' ® ¢;1I) = n.
k=0

Therefore, we get

i

3

s ’ ) ~ n(nfl)_s ~ s nn/_n(nfl)
PRI )5 (g, 1) 757 ~5p(¢, 1)+~

k=0

n ot - % kxsp(k @I o %/ (n'—k)sp(k,IT'®@¢;II)
~ E(IT) E(¢) PO(IT)s RO, 1)x=0 p(, 1)k=0

k=0

n o o o\ sk V@)
~E(I)E(¢) (P(k)(ﬂ/)p(ﬁb’ 1)fp(d,0)" k) :

>
Il
o
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Recall that P®)(IT ® ¢) := P& (IT)p(, 1)*p(¢, )" ~* by definition, we
obtain that:

Theorem 2.1. Let n > n’ be two positive integers. Let K be a quadratic
imaginary field. Let 11 and II' be cuspidal representations of GL,, and GL,,
respectively which are very reqular, cohomological, conjugate self-dual and
supercuspidal at at least two finite split places. We assume that (IL,11') is
piano in the sense of Definition 1.4.
(i) If n # n'(mod 2), then for any critical value m + % for H@ I’ such
that m = 1, or m = 0 along with a non-vanishing condition, we
have:

1 . 1 ! n : S TT.TT/ n 1.
LS(§+’ITL, HXH/) ~ B(T) B(T) (27”)(m+2)nn Hp(z) (H)sp(z,H,H) H P(k)(H/)sp(k;,H ,H)‘
i=0 k=0
(i1) If n = n'(mod 2), then for any critical value m for U I such that
m =1, orm = 0 along with a non-vanishing condition, we have:

LS (m, TIx (H/®¢)) ~ B B(I1)E(6) (27_”/)mnn’ H P(l) (H)sp(i,l'[;l'[’®¢ H H/®¢ sp(k,IT'®@¢;11 )
1=0 k=0

3. PROOF FOR THE MAIN RESULT: CENTRAL OR NEAR-CENTRAL CASE

3.1. Settings.

Let 1 and r9 be two positive integers.

Let II; and II5 be two cuspidal representations of GL,, (Ax) and GL,,(Ak)
respectively which has definable arithmetic automorphic periods. We as-
sume they are also conjugate self-dual.

We write the infinity type of IT; (resp. Ils) by (2%z7%)i<j<r, (resp.
(2%FZ7% )1<k<ry). We see that b; € Z + % for all 1 < j < 7 (resp.
cp € L+ 5= Lforall 1 <k < ).

(A) If ry = 7o = 0( mod 2), we write I = II; [ IIS. We define T3 =
Ty = 0.

_1
(B) If ry = 7y = 1( mod 2), we write II* = (I, ® | - ||, 2¢) B (15 ® || -
_1

[s.¢). We define T3 = Ty = 3.

(C) If 1 # ro(mod 2), we may assume that ;1 is even and 72 is odd. We
1

write IT# = (I ® || - ||, 2¢) A 15, We define T3 = § and Ty = 0.

It is easy to see that IT# is an algebraic generic representation of G Ly, 1, (Ax)

with infinity type (2% 1377015 zmatTaga=Ta), . 1 char,.

We assume that IT# is regular, i.e. forany 1 < j <7 and any 1 < k < 7o,
we have b; + T3 # —cp + T4.

Set n =11 +1ry+ 1. Wesee that {b; +T5 | 1 < j <rm}u{—cp +T1u |
1 < k < 7o} are n — 1 different numbers in Z + ”7_2 We take a1 > ag >

->an€Z+ ”7_1 such that the n — 1 numbers above are in different gaps
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between {a; | 1 <i < n}. Let I be a cuspidal conjugate self-dual represen-
tation of GL,(Ak) which has arithmetic automorphic periods and infinity
type (z%z~%).

Our method also requires 11 to be 3-regular. To guarantee this, we assume
that
(3.1) |(bj +T3) — (—c,, + Tu)| =3 forall 1 <j<r,1 <k<ro.

In this case, we say the pair (II1,Ils) is very regular. We can then take a;
as above such that 1 + % is critical for IT®II#. Moreover, results in | ]
show the existence of II as above, such that L%(1 + %, I ®II#) # 0.

We fix such II and m = 1, then m + % is critical for IT x IT# and moreover

1
(3.2) Ls(i‘Fﬂ%IIX]I#)“QHHan#)PUIMKH#5POH,Hw,H§)

with both sides non zero.

In the end of this subsection, let us show some simple facts on the split
index. We can read from the construction of a; that

sp(4, T @ ¢?T3; 1) = sp(4, T ® ¢*13; Ty ® (¢)?™*) + 1 for all 0 < j <1y

and similarly, sp(7, 115 ® ¢2T4; IT) = sp(j, (Il ® (¢C)2T4)C; (I ® ¢2T3)C) +1
= sp(ro — j, My @ (¢9)?T4); I} @ ¢*13) + 1 for all 0 < j < 79

Here we have used Lemma 1.1.

Moreover, for each 1 < i < n — 1, one of sp(i,II;1l; ® (¢°)**) and
sp(i, I TIS ® ¢%74) is 1 and another is 0. We also know that sp(0, IT; T} ®
d)i?) = sp(0,I; 11§ ® ¢?74) = 0 and sp(n,II;11; @ ¢?12) = sp(n, ;11§ ®
¢=73) = 0.

3.2. Simplify the left hand side. We are going to simply the left hand
side of equation (3.2) now.
(A) In this case we have L(m + 3,11 x I#) = L%(m + 3,11 x II;) x
LS(m + §,11 x I15).
By Theorem 2.1, we know that

1
(3.3) LS(§%-W%IIX]IH ~E()E(I)
(27”-)(m+%)nr1 ﬁ PO (11)sp(1E) ﬁ PO (1101
i=0 Jj=0
. S 1 c
and similarly L (5 +m, I x 1I5) ~ gm Ea,)

(2m’)(m+%)nr2 ﬁ p(i)(H>8p(i,H;H§) ﬁ p(k)(Hg)sp(k,Hg;n)
=0 k=0
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Therefore, since sp(i, II; 111 ) +sp(i, I; II§) = 1 forall 1 <i < n—1,
we obtain that

1
(3.4) Ls(m + 7’1‘[ X H#)
~ E(IT) E(I) E(I1,) (2mi) (™3 3)n(n—1) H P (1)) +5p(iTTIS)
=0
r1 ro
Hp(j)(ﬂ sp(5,111;11 H p(k,TTS;TT)
Jj=0 k=0
1 nl
~payEm B (2m) T2 D TT PO
i=1

1—1[ PO (11, )P 1—2[ PO (15 w5

(B) In this case, we have L%(m + 5,11 x IT#) = L%(m, I x (II; ® ¢)) x
LS (1, 1 x (115 ® 6)).
Applying the second part of Theorem 2.1, we have

(3.5) L5 (m + 5,11 x TI%) ~ gy pan £(11y)

(2mi)mn(n=1) nﬁl PO(II) ﬁ PO (11, )P0 @4:1T) ﬁ P (115) sp (R IERHIT) 5
i=1 =0 k=0

o Z J#sp(7,I11@¢;IT)+ ZQf kxsp(k IIS@IT) L nZ (r1—7)*sp(5, 111 @¢;1T)+ 22 (r2—k)*sp(k,IIS@¢;I)
p(¢,1)7=° k=0 p(¢,1)7=° h=0 :

Lemma 3.1. We have:

71 T2
D i sp(i, T @ ¢ 10) + Y ke w sp(k, T © ¢; 1)

j=0 k=0

= D (=) = sp(j, Th @ ¢ 1) Z ry — k) x sp(k, 115 ® ¢; I1)
j=0 k=0

~ n(n—1)

B 2

Proof. We set w(j,II; ® ¢;1I), 1 < j < 71 (resp. w(k,II§ ® ¢;11),
1 < k < r2) to be the index w(j) for the pair (II,1I; ® ¢) (resp.

(ILTIS ® ¢))) as in (??). We see from (2.15) that le Jxsp(f, 11 ®

T1 T2 71
) = Z (7,11 ®¢; IT) and k:z kxsp(k, II'®¢p; 1) = kZ w(k, I5®
= =0 =1
¢;11).

Recall that w(j, 111 ® ¢;II) (resp. w(k,II§® ¢;1I)) is the position
of the infinity type of II; ® ¢ (resp. IIS®¢) in the gaps of the infinity
type of II. It is easy to see that the n — 1 numbers w(j, II; ® ¢; 1),
w(k, II5®¢;II) for 1 < j <rjandl <k <ryrunsoverl,2,--- ,n—L1.
We then deduce the first formula of the lemma.

The second follows easily from the first one.
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O

From the lemma we see that

1 T2
o S (M@ + L kxsp(k IS )

S (=) esp(G @G+ 3 (ra—k)xsp(k,TIS@TT)
p(3, 1) (3.0
. n(n=1)
(3.6) NE(¢) (271‘1) 2

We thus obtain that

L¥(m + 5,11 x TI#) ~ g1 p(m B(1T,) (2mi) (e )n (=) H @(11)

(3.7) ﬁ PU)(T1 ) sP(@ L @) ﬁ p(k)(Hg)sp(k,Hfg@@H)_
j=0 k=0

(C) In this case, we have L%(m + 5,II x IT#) = L%(m, 11 x (II; ® ¢)) x
L5 (m + &, 11 x II).
Similarly, we get:

Ls(m + %,H X H#) ~ E(IN)E(I1) E(I12) (27Ti)(m+%)n nh- H ( )

’
T1

1 n
. . r . < 2 gxspGIh@) - X (r1—5)*sp(5, 1L @¢;IT)
[ P<J><H1>Sp<f’“1®¢c§>8ﬁ P (IIg) 5, 1) (g T
Jj= =0

3.3. Simplify the right hand side. By Corollary ?? and Corollary 77,
for cases (A) and (B), we have:

p(I#)  ~prey QI )p(I) QI o)~ p(I2) Qo )~ L (1, I x IIy)
~ B(IT#) Q) Z (111,50) QT 0) L Z(TM2,00) QT 00) 1LY (1, Ty x TI) X

ri1—1 ro—1

[[ PV [T PP ()
j=1 k=1

(r1— 1)T1 (ra— 1 m-l a1
+ Q)L x 1) [ [ PO [T P®(115).
7j=1 k=1

~ E(II#) (2mi)
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Therefore, for cases (A) and (B), we obtain that:

pID)p(I¥)p(m, Mg, ITE)

(ri—=1r (rg
~Ba#) @2ri) = 1+7Q(H§)Z(Hw)p(m,ﬂo@,f{§)x

ri—1 ro—1

n—1
L(1H1><H2H HPJ>H1HP

~pare  (2mi)"0 1)(’”*5)*"("2 24 (0 2””+“2 2 LS (1,1 x TT)

—1 ri—1 ro—1

[TPYa [T PYam) ] P®(115)

i=1 7=1 k=1
n—1

~pay  (2r) DD ES (1 T ) [ ] PO(I)

i=1

T1 T2

(3.9) [[P9m) [ ] P (15)
=0 k=0

We have used Lemma ?7, the fact that ( o ) = (n;m) = ( ) + T;) +ryry
and also the fact that PO (I1;) PU) (1)) ~p B L PON(TIS) P ( 2)(115) ~ E(112)
1.

For case (C), we only need to change L5 (1,111 xII5) to L® (1, (II;®@¢) x I15)
in the above formula.

3.4. Final conclusion. Comparing (3.4) and (3.9), we get for case (A):

LS(1;H1 « HQ) ~ B(IL) (1) 27” riT2 1_[ P sp (j,I11;1T)—1 1_[ P HC)sp(k,Hg;H)fl
k=0

T2
~ B BI)  (2m)1 H PO (11,)sP:TiT2) H P®)(11g)sp(k- 1511

71 72
~ppay)  (20)" [ [ PO PO [ presi (qm,)ree- kit
j= k=0

T1 T2
~p) M) (2m)7? [ ] PY ) PO TR TT p (11, Pttt
j=0 k=0

Comparing (3.7) and (3.9), we get for case (B):

Ls(l’ﬂl x 1) ~E(II) E(T12) (2mi)"" H pU )P (4,11 Q¢; T2 ®¢°) H pk )sp(k,H2®¢C;H1®¢)
k=0
T2
~E(IL)E(T12) (2ma)""2 H pU )P (7,M1;102) H pk) (HQ)sp(k,Hzgﬂl)'
k=0

Here we have used that sp(j, I} ® ¢; I ® ¢¢) = sp(j, 1 @ ¢; Mo @) =
sp(j,I1;1I2) by Lemma 1.1.
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Similarly, for case (C), comparing (3.8) and (3.9), we obtain that:

L5(5, (M @) x Th)

T2

~ B(IT) B (1) E(6) (2mi)ir2 H pU Hl sp(4,I11Q@¢;112) H pk) (HQ)SP(IC»HQ;H1®¢) %

k=0

<
-

Z Jx(sp(hIL@GII2)+1) o 3 (ri—i)#(sp(j,Ihi®;2+1))
P, 1)=0 p(,)7=°

T rq(r 1 .
~ B E(L)E() (271_1) 122 ri(r1+1) 1+1 HP J) Hl)sp(]’nl®¢7n2 H P )sp(k,ng,rh@(i)) %

7=0

71 71
3 jrsp(f @)+ LD S () f)wsp(f @) + LD

p(h,1)7=0 p<¢>, 1)7=0

~ B(IL) B (1) E(6) (27i) o HP(J Hl)SP(J T @;112) H pk )Sp(kvnz;ﬂ1®¢>) «

7=0

Z]*SP(J7H1®¢7H2) - Z (r1—7)#sp(3, 111 @¢;112)
(¢a1)f - p(¢,1)=°

Jj=0 =

The last step is deduced by definition of P*)(II; ® ¢).
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