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Abstract

Résumé
Michael HARRIS a défini les périodes arithmétiques automorphes pour certaines représen-

tations cuspidales de GLn sur corps quadratiques imaginaires en 1997. Il a aussi montré
que les valeurs critiques de fonctions L automorphes pour GLn ˆGL1 peuvent être inter-
prétées en termes de ces périodes. Dans la thèse, ses travaux sont généralisés sous deux
aspects. D’abord, les périodes arithmétiques automorphes ont été définies pour tous corps
CM. On montre aussi que ces périodes factorisent comme produits des périodes locales sur
les places infinies. De plus, on montre que les valeurs critiques de fonctions L automorphes
pour GLn ˆ GLn1 peuvent être interprétées en termes de ces périodes dans beaucoup de
cas. Par conséquent on montre que les périodes sont fonctorielles pour l’induction auto-
morphe et changement de base cyclique.

On aussi définit des périodes motiviques si le motif est restreint d’un corps CM au
corps des nombres rationnels. On peut calculer la période de Deligne pour le produit
tensoriel de deux tels motifs. On voit directement que nos résultats automorphes sont
compatibles avec la conjecture de Deligne pour les motifs.

Mots-clefs

fonction L automorphe, fonctorialité de Langlands, la conjecture de Deligne, périodes
automorphes, périodes motiviques
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Abstract
Michael HARRIS defined the arithmetic automorphic periods for certain cuspidal rep-

resentations of GLn over quadratic imaginary fields in his Crelle paper 1997. He also
showed that critical values of automorphic L-functions for GLn ˆGL1 can be interpreted
in terms of these arithmetic automorphic periods. In the thesis, we generalize his results
in two ways. Firstly, the arithmetic automorphic periods have been defined over general
CM fields. We also prove that these periods factorize as products of local periods over
infinity places. Secondly, we show that critical values of automorphic L functions for
GLnˆGLn1 can be interpreted in terms of these automorphic periods in many situations.
Consequently we show that the automorphic periods are functorial for automorphic in-
duction and cyclic base change.

We also define certain motivic periods if the motive is restricted from a CM field to
the field of rational numbers. We can calculate Deligne’s period for tensor product of two
such motives. We see directly that our automorphic results are compatible with Deligne’s
conjecture for motives.

Keywords

automorphic L-function, Langlands functoriality, Deligne conjecture, automorphic pe-
riods, motivic periods
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Introduction

Special values of L-functions play an important role in the Langlands program. Nu-
merous conjectures predict that special values of L-functions reflect arithmetic properties
of geometric objects. Most of these conjectures are still open and difficult to attack.

At the same time, concrete results on the special values of L-functions appear more
and more in automorphic settings. For example, in [13], M. Harris constructed com-
plex invariants called arithmetic automorphic periods and showed that the special values
of automorphic L-function for GLn˚GL1 could be interpreted in terms of these invariants.

We generalize his results in two ways. Firstly, the arithmetic automorphic periods have
been defined over general CM fields. Secondly, we show that special values of arithmetic
automorphic periods for GLn ˚ GLn1 can be interpreted in terms of these arithmetic au-
tomorphic periods in many situations. In fact, we have found a concise formula for such
critical values. This is our first main automorphic result. One possible application is to
construct p-adic L-functions.

We remark that we have not finished the proof for GLn ˚GL1 over general CM fields
in the current article. We shall do it later. We have assumed Conjecture 5.1.1 throughout
the text. This is one important ingredient for automorphic results over general CM fields.

The results over quadratic imaginary field follow from the ideas in [8] and some tech-
nical calculation. Over general CM fields, one can still follow such arguments and get
formulas for critical values in terms of arithmetic automorphic periods. But these formu-
las are ugly and complicated. In fact, we don’t know how to write down a formula adapted
to most cases. However, if one can show that the arithmetic automorphic periods can be
factorized as products of local periods over infinite places, then the generalization to CM
fields is straight forward.

The factorization of arithmetic automorphic periods was actually a conjecture of
Shimura (c.f. [28], [29]). One possible way to show this is to define local periods geo-
metrically and prove that special values of L-functions can be interpreted in terms of local
periods. This was done by M. Harris for Hilbert modular forms in [11]. But it is extremely
difficult to generalize his arguments to GLn. Instead, we show that there are relations
between arithmetic automorphic periods. These relations lead to a factorization which is
our second main automorphic result.

We remark that the factorization is not unique. We show that there is a natural way
to factorize such that the local periods are functorial for automorphic induction and base
change. This is our third main automorphic result. We believe that local periods are also



12 Introduction

functorial for endoscopic transfer. We will try to prove this in the near future.

Although our local periods are not defined geometrically, they must have geometric
meanings. This may be done by defining certain geometric invariants and show that they
are related to our local periods with the help of special values of L-functions. It is likely
to show that our local periods are equal to the geometric invariants defined in [11] for
Hilbert modular forms in this way.

On the other hand, Deligne’s conjecture related critical values for motives over Q and
Deligne’s period (c.f. [7]). When the motive is the restriction to Q of the tensor product
of two motives over a CM field, we may calculate Deligne’s period in terms of motivic
periods defined in [16]. The formula was first given in [16] when the motives are self-dual.
We have dropped the self-dual condition here.

If the two motives are associated to automorphic representations of GLn and GLn1

respectively, we may define motivic periods which are analogues of the arithmetic auto-
morphic periods. We get a formula of Deligne’s period in terms of these motivic periods.
Our main motivic result says that our formula for automorphic L-functions are at least
formally compatible with Deligne’s conjecture.

Theorems:

Let K be a quadratic imaginary field and F Ą K be a CM field of degree d over K.
We fix an embedding K ãÑ C. Let ΣF ;K be the set of embeddings σ : F ãÑ C such that
σ |K is the fixed embedding.

Let E be a number field. Let tapσquσPAutpC{Kq, tbpσquσPAutpC{Kq be two families of
complex numbers. Roughly speaking, we say a „E;K b if a “ b up to multiplication by
elements in Eˆ and equivariant under GK-action.

Let Π be a cuspidal cohomological representation of GLnpAF q which has definable
arithmetic automorphic periods (c.f. Definition 5.3.2). In particular, we know that Πf

is defined over a number field EpΠq. For any I : ΣF ;K Ñ t0, 1, ¨ ¨ ¨ , nu, we may define
the arithmetic automorphic periods P pIqpΠq as the Petersson inner product of a rational
vector in a certain cohomology space associated to a unitary group of infinity sign I. It is
a non zero complex number well defined up to multiplication by elements in EpΠqˆ.

We assume that Conjecture 5.1.1 is true. Our second main automorphic result men-
tioned above is as follows (c.f. Theorem 7.6.1):

Theorem 0.0.1. If conditions in Theorem 7.5.1 are satisfied, in particular, if Π is regular
enough, then there exists some complex numbers P psqpΠ, σq unique up to multiplication by
elements in pEpΠqqˆ such that the following two conditions are satisfied:

1. P pIqpΠq „EpΠq;K
ś

σPΣF ;K

P pIpσqqpΠ, σq for all I “ pIpσqqσPΣF ;K P t0, 1, ¨ ¨ ¨ , nuΣF ;K

2. and P p0qpΠ, σq „EpΠq;K pp|ξΠ, σq
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where ξΠ is the central character of Π, |ξΠ :“ ξ´1,c
Π and pp|ξΠ, σq is the CM period (c.f.

Section 4.1).

We now introduce our first main automorphic result. Let Π1 be a cuspidal cohomo-
logical representation of GLn1pAF q which has definable arithmetic automorphic periods.
For any σ P ΣF ;K , we may define the split indices sppj,Π; Π1, σq and sppk,Π1; Π, σq for
0 ď j ď n and 0 ď k ď n1 (c.f. Definition 1.2.1). Roughly speaking, we have:

Theorem 0.0.2. If m P Z` n`n1

2 is critical for ΠˆΠ1 then

Lpm,ΠˆΠ1q „EpΠqEpΠ1q;K p2πiqnn
1md

ź

σPΣF ;K

p

n
ź

j“0
P pjqpΠ, σqsppj,Π;Π1,σq

n1
ź

k“0
P pkqpΠ1, σqsppk,Π1;Π,σqq

in the following cases:

1. n1 “ 1 and m is bigger than the central value.

2. n ą n1 and m ě 1{2, both Π and Π1 are conjugate self-dual and the pair pΠ,Π1q is
in good position (c.f. Definition 1.2.2).

3. m “ 1, both Π and Π1 are conjugate self-dual and the pair pΠ,Π1q is regular enough.

Our third main automorphic result says that the periods are functorial for automorphic
induction and base change. Roughly speaking, we have:

Theorem 0.0.3. (a) Let F{F be a cyclic extension of CM fields of degree l and ΠF be a
cuspidal representation of GLnpAF q. We write AIpΠF q for the automorphic induction of
ΠF . We assume both AIpΠF q and ΠF have definable arithmetic automorphic periods.

Let IF P t0, 1, ¨ ¨ ¨ , nluΣF ;K . We may define IF P t0, 1, ¨ ¨ ¨ , nuΣF;K as in Lemma 8.2.1.
Or locally let 0 ď s ď nl be an integer and sp¨q be as in Definition 8.3.1. We have:

P pIF qpAIpΠF qq „EpΠF q;K P pIF qpΠF q

or locally P psqpAIpΠF , τq „EpΠF q;K
ź

σ|τ

P pspσqqpΠF , σq.

(b) Let πF be a cuspidal representation of GLnpAF q. We write BCpπF q for its strong base
change to F . We assume that both πF and BCpπF q have definable arithmetic automorphic
periods.

Let IF P t0, 1, ¨ ¨ ¨ , nuΣF ;K . We write IF the composition of IF and the restriction of
complex embeddings of F to F .

We then have:

P pIF qpBCpπF qq „EpπF q;K pIF pπF q
l

or locally P psqpBCpπF q, σq
l „EpπF q;K P psqpπF , σ |F q

l.

Consequently, we know

P psqpBCpπF q, σq „EpπF q λ
psqpπF , σqP

psqpπF , σ |F q.

where λpsqpπF , σq is an algebraic number whose l-th power is in EpπF qˆ.
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We now introduce the motivic results. Let M , M 1 be motives over F with coefficients
in E and E1 of rank n and n1 respectively. We assume thatMbM 1 has no pω{2, ω{2q-class.
We may define motivic periods QptqpM,σq for 0 ď t ď n and σ P ΣF ;K . We can calculate
Deligne’s period of ResF {QpM bM 1q in terms of these periods. If M and M 1 are motives
associated to Π and Π1, Deligne’s conjecture is equivalent to the following conjecture:

Conjecture 0.0.1. If m P Z` n`n1

2 is critical for ΠˆΠ1 then

Lpm,ΠˆΠ1q “ Lpm` n`n1´2
2 ,M bM 1q

„EpΠqEpΠ1q;K p2πiqmnn
1d

ś

σPΣF ;K

p
n
ś

j“0
QpjqpM,σqsppj,Π;Π1,σq

n1
ś

k“0
QpkqpM 1, σqsppk,Π

1;Π,σqq

We see that it is compatible with Theorem 0.0.2. The main point of the proof is to fix
proper basis. Deligne’s period is defined by rational basis. The basis that we have fixed
are not rational. But they are rational up to unipotent transformation matrices. We can
still use such basis to calculate determinant.

Idea of the proof for automorphic results:
Blasius has shown that special values of L-functions for Hecke character are related

to CM periods. The proof of our automorphic results involve this fact and the following
three main ingredients:

Ingredient A is Theorem 5.2.1. If follows from Conjecture 5.1.1. It says that if χ is a
Hecke characters then critical values Lpm,Πbχq can be written in terms of the arithmetic
automorphic periods of Π and CM periods of χ.

Ingredient B is Theorem 3.9 of [8]. It says that if Π# is a certain automorphic represen-
tation of GLn´1pAF q such that pΠ,Π#q is in good position then critical values Lpm,ΠbΠ1q
are products of the Whittaker period ppΠq, ppΠ#q and an archimedean factor. The ad-
vantage of the results in [8] is that we don’t need Π# to be cuspidal. This gives us large
freedom to choose Π#.

Ingredient C is a calculation of Whittaker period ppΠ#q when Π# is the Langlands
sum of cuspidal representations Π1, ¨ ¨ ¨ ,Πl. Following the idea in [23] and [8], we know
ppΠ#q equals to product of ppΠiq and the value at identity of a certain Whittaker function.
Shahidi’s calculation in [27] shows that the latter is related to

ś

1ďiăjďl
Lp1,Πi ˆΠc

jq.

The proof of the case (a) in Theorem 0.0.3 is relatively simple. It is enough to take
suitable algebraic Hecke character η of F and calculate Lpm,AIpΠF q b ηq “ Lpm,ΠF b
η ˝NAˆF {A

ˆ
F
q by ingredient A.

The idea for the case (b) is similar. But we have to show that the arithmetic automor-
phic periods of BCpπF q are GalF{F -invariant. This is due to the fact that BCpπF q itself
is GalF{F -invariant.

We now explain the proof for Theorem 0.0.1 and Theorem 0.0.2.

Step 0: determine when a function can factorize through each factor.
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For example, let X, Y be two sets and f be a map from X ˆ Y to Cˆ. Then there
exists functions g : X Ñ Cˆ and h : Y Ñ Cˆ such that fpx, yq “ gpxqhpyq for any x P X
and y P Y if and only if fpx, yqfpx1, y1q “ fpx, y1qfpx1, yq for any x, x1 P X and y, y1 P Y .
Therefore, to show that the arithmetic automorphic periods factorize is equivalent to show
that there are certain relations between these periods.

Step 1: interpret ppΠq in terms of arithmetic automorphic periods.

The idea is the same as in [8]. We take Π# to be the Langlands sum of Hecke characters
χ1, ¨ ¨ ¨ , χn´1. We have Lpm,ΠˆΠ#q “

ś

1ďiďn´1
Lpm,Πb χiq.

Ingredient B says that the left hand side equals to the product of ppΠq, ppΠ#q and an
archimedean factor. Ingredient C tells us that ppΠ#q is almost

ś

1ďiăjďl
Lp1, χiˆχcjq which

equals to product of CM periods by Blasius’s result. Therefore, the left hand side equals
to product of ppΠq, the CM periods of χi and an archimedean factor.

We may calculate the right hand side by Ingredient A. We get that the right hand
side equals to product of the arithmetic automorphic periods of Π, the CM periods of χi
and a power of 2πi.

Comparing both sides, we will see unsurprisingly that the CM periods of χi in two
sides coincide. We will get a formula for ppΠq in terms of arithmetic automorphic periods.
Varying the Hecke characters χi, we get different formulas for ppΠq in terms of arithmetic
automorphic periods. We then deduce relations between arithmetic automorphic periods.
The factorization property then follows.

We remark that the above procedure can only treat the case when Ipσq ‰ 0 or n for
all σ. The proof for general case is more tricky (see section 7.5).

Step 2: repeat step 1 with suitable Π#.
For example, if n ą n1 and the pair pΠ,Π1q is in good position, we may take Π# to be

the Langlands sum of Π1 and some Hecke characters χ1, χ2, ¨ ¨ ¨ , χl where l “ n´n1´1 such
that pΠ,Π#q is in good position. We have Lpm,ΠˆΠ#q “ Lpm,ΠˆΠ1q

ś

1ďiďl
LpΠb χiq.

Again, we calculate the left hand side by ingredient B and ingredient C. We apply step
1 to ppΠq and ppΠ1q and we will get that the left hand side equals to product of arithmetic
automorphic periods for Π and Π1 and CM periods of χi.

We then apply ingredient A to LpΠ b χiq and compare both sides. We will get a
formula for Lpm,ΠˆΠ1q.

For the case where m “ 1, we may take Π# to be the Langlands sum of Π and Π1c.
We know that Lp1,ΠˆΠ1q then appears in the calculation of ppΠ#q by ingredient C.

Step 3: Simplify the archimedean factors.
Once we get a formula of Lpm,Π ˆ Π1q in terms of arithmetic automorphic periods,

we may replace Π and Π1 by representations which are automorphic inductions of Hecke
characters. Blasius’s result says that Lpm,ΠˆΠ1q is equivalent to the product of a power
of 2πi and some CM periods. On the other hand, the arithmetic automorphic periods of
Π are related to CM periods by Theorem 0.0.3. We shall deduce that the archimedean
factor is equivalent to a power of 2πi if Π and Π1 are induced from Hecke characters. We
can finish the proof by noticing that such representations can have any infinity type.
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Plan for the text:

In chapter 1 we introduce our basic notation, in particular, the split index.

In chapter 2 we introduce the base change theory for similitude unitary groups which
will help us understanding the descending condition in the definition of arithmetic auto-
morphic periods.

We summarize some results on rational structures in Chapter 3. They play an impor-
tant role in the proof. In particular, the ingredients B and C are introduced in the second
half of this chapter.

In chapter 4 we construct the arithmetic automorphic periods. We generalize the con-
struction of [13] to general CM fields.

Chapter 5 contains the details for ingredient A. We remark that we have made a
hypothesis here (c.f. Conjecture 5.1.1). We will prove it in a forthcoming paper.

The motivic results are contained in Chapter 6. This chapter is independent of others.
We show that our main automorphic results are compatible with Deligne’s conjecture for
motives.

We prove the factorization of arithmetic automorphic periods in Chapter 7 (c.f. The-
orem 0.0.1). This result itself is very important. It is also the crucial step to generalize
our results to CM fields.

In chapter 8 we prove that the global and local arithmetic periods are functorial for
automorphic induction and base change (c.f. Theorem 0.0.3). This is a direct corollary of
the ingredient A in chapter 5 and the factorization property in chapter 7.

In chapter 9 we claim our main conjecture which is an automorphic analogue of
Deligne’s conjecture. We also claim our main theorem there, namely, Theorem 0.0.2.
Moreover, in the last section of this chapter, we explain why the generalization from
quadratic imaginary fields to CM fields is direct by the factorization property.

The last two chapters contain the details of the proof for Theorem 0.0.2. The calcula-
tion is not difficult but technique.



Chapter 1

Notation

1.1 Basic notation

We fix an algebraic closure Q ãÑ C of Q and K ãÑ Q a quadratic imaginary field. We
denote by ι the complex conjugation of the fixed embedding K ãÑ Q.

We denote by c the complex conjugation on C. Via the fixed embedding Q ãÑ C, it
can be considered as an element in GalpQ{Qq.

For any number field L, let AL be the adele ring of L and AL,f be the finite part of
AL. We denote by ΣL the set of embeddings from L to Q. If L contains K, we write ΣL;K
for the subset of ΣL consisting of elements which is the fixed embedding K ãÑ Q when
restricted to K.

Throughout the text, we fix ψ an algebraic Hecke character of K with infinity type
z1z0 such that ψψc “ || ¨ ||AK (see Lemma 4.1.4 of [6] for its existence). It is easy to see
that the restriction of || ¨ ||

1
2
AKψ to AˆQ is the quadratic character associated to the extension

K{Q by the class field theory. Consequently our construction is compatible with that in [8].

Let F` be a totally real field of degree d over Q. We define F :“ F`K a CM field.
We take ψF an algebraic Hecke character of F with infinity type z1 at each σ P Σ such
that ψFψcF “ || ¨ ||AF .

For z P C, we write z̄ for its complex conjugation. For σ P ΣF , we define σ̄ :“ σc the
complex conjugation of σ.

Let η be a Hecke character of F . We define qη :“ η´1,c and rη :“ η{ηc two Hecke
characters of F .

Let n be an integer greater or equal to 2.

Definition 1.1.1. Let N be an integer and Π be an automorphic representation of GLnpAF q.
Let σ be an element in ΣF ;K . We denote the infinity type of Π at σ by pzaipσqzaipσq1q1ďiďn.
We may assume that a1pσq ě a2pσq ě ¨ ¨ ¨ ě anpσq for all σ P ΣF ;K . The representation
Π will be called:

1. pure of weight ωpΠq if aipσq ` aipσq1 “ ´ωpΠq for all 1 ď i ď n and all σ;

2. algebraic if aipσq, aipσq1 P Z` n´1
2 for all 1 ď i ď n and all σ;
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3. cohomological if there exists W an irreducible algebraic finite dimensional repre-
sentation of GLnpF bQ Rq such that H˚pg8, F8; Π bW q ‰ 0 (see section 3.3 for
more details);

4. regular if it is pure and aipσq ´ ai`1pσq ě 1 for all 1 ď i ď n´ 1 and all σ.

5. N-regular if it is pure and aipσq ´ ai`1pσq ě N for all 1 ď i ď n´ 1 and all σ.

Finally, let E Ą K be a number field. We now define the relation „E;K .
Let tapσquσPAutpC{Kq, tbpσquσPAutpC{Kq be two families of complex numbers.

Definition 1.1.2. We say a „E;K b if one of the following conditions is verified:

(i) apσq “ 0 for all σ P AutpC{Kq,

(ii) bpσq “ 0 for all σ P AutpC{Kq, or

(iii) apσq ‰ 0, bpσq ‰ 0 for all σ and there exists t P Eˆ such that apσq “ σptqbpσq for
all σ P AutpC{Kq.

Remark 1.1.1. 1. Note that this relation is symmetric but not transitive. More pre-
cisely, if a „E;K b and a „E;K c, we do not know whether b „E;K c in general unless
the condition a ‰ 0 is provided.

2. If a „E;K b with bpσq ‰ 0, we see that apσq
bpσq is contained in the Galois closure of E.

In particular, it is an algebraic number.

3. If moreover, apσq “ apσ1q for σ, σ1 P AutpCq such that σ|E “ σ1|E, we can then define
apσq for σ P ΣE;K by taking any rσ P AutpCq, a lifting of σ, and define apσq :“ aprσq.
We identify CΣE;K with E bK C. We consider A :“ papσqqσPΣE;K as an element in
E bK C.
We assume the same condition for b and define B for b similarly. It is easy to verify
that a „E;K b if and only if one of the three conditions is verified: A “ 0, B “ 0, or
B P pE bK Cqˆ and AB´1 P Eˆ Ă pE bK Cqˆ.
We remark that our results will be in this case.

Lemma 1.1.1. We assume bpσq ‰ 0 for all σ. We also assume that apσq “ apσ1q and
bpσq “ bpσ1q if σ|E “ σ1|E for any σ, σ1 P AutpCq. We have a „E;K b if and only if

τ

˜

apσq

bpσq

¸

“
apτσq

bpτσq

for all τ P AutpC{Kq and σ P ΣE;K .

1.2 Split index and good position for automorphic pairs
Definition 1.2.1. (Split Index)

Let n and n1 be two positives integers.
Let Π and Π1 be two regular pure representations of GLnpAF q and GLn1pAF q respec-

tively. Let σ be an element of ΣF ;K . We denote the infinity type of Π and Π1 at σ by
pzaipσqz´ωpΠq´aipσqq1ďiďn, a1pσq ą a2pσq ą ¨ ¨ ¨ ą anpσq and pzbjpσqz´ωpΠ1q´bjpσqq1ďjďn1,
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b1pσq ą b2pσq ą ¨ ¨ ¨ ą bn1pσq respectively. We assume that aipσq` bjpσq ‰ ´ωpΠq`ωpΠ1q
2 for

all 1 ď i ď n all 1 ď j ď n1 and all σ.
We split the sequence pa1pσq ą a2pσq ą ¨ ¨ ¨ ą anpσqq with the numbers

´
ωpΠq ` ωpΠ1q

2 ´ bn1pσq ą ´
ωpΠq ` ωpΠ1q

2 ´ bn1´1pσq ą ¨ ¨ ¨ ą ´
ωpΠq ` ωpΠ1q

2 ´ b1pσq.

This sequence is split into n1 ` 1 parts. We denote the length of each part by

spp0,Π1; Π, σq, spp1,Π1; Π, σq, ¨ ¨ ¨ , sppn1,Π1; Π, σq,

and call them the split indices.

Lemma 1.2.1. Let n, n1, Π and Π1 be as in the above definition. Let σ be an element in
ΣF ;K . Let η be an algebraic Hecke character of AF . Let 0 ď j ď n1 be an integer. We
have the following formulas:

1.
n1
ř

i“0
sppi,Π1; Π, σq “ n.

2. sppj,Π1; Π, σq “ sppn1 ´ j,Π1c; Πc, σq “ sppn1 ´ j,Π1_; Π_, σq.

3. For any t, s P R, sppj,Π1b || ¨ ||tAK ; Π, σq “ sppj,Π1; Πb || ¨ ||sAK , σq “ sppj,Π1; Π, σq .

4. sppj,Π1bη; Π, σq “ sppj,Π1; Πbη, σq and sppj,Π1bηc; Π, σq “ sppj,Π1bη´1; Π, σq.
Similarly, sppj,Π1; Πb ηc, σq “ sppj,Π1; Πb η´1, σq.

The first two points of the above lemma are direct. For the remaining, we only need
to notice that calculating the split index is nothing but comparing aipσq ` bjpσq with
´
ωpΠq`ωpΠ1q

2 .

Example 1.2.1. 1. If F` “ Q, n “ 5, n1 “ 4, ωpΠq “ ωpΠ1q “ 0 and

´b4 ą a1 ą a2 ą ´b3 ą ´b2 ą a3 ą a4 ą ´b1 ą a5,

we have spp0,Π1; Πq “ 0, spp1,Π1; Πq “ 2, spp2,Π1; Πq “ 0, spp3,Π1; Πq “ 2 and
spp4,Π1; Πq “ 1. We verify that spp0,Π1; Πq`spp1,Π1; Πq`spp2,Π1; Πq`spp3,Π1; Πq`
spp4,Π1; Πq “ 5 as expected by the previous lemma.

2. If F` “ Q, n1 “ n ´ 1, ωpΠq “ ωpΠ1q “ 0 and a1 ą ´bn´1 ą a2 ą ´bn´2 ą ¨ ¨ ¨ ą
an´1 ą ´b1 ą an, we have sppj,Π1; Πq “ 1 for all 0 ď j ď n´ 1.

Moreover, sppk,Π; Π1q “ 1 for all 1 ď k ď n´ 1, spp0,Π; Π1q “ 0 and sppn,Π; Π1q “
0.

We verify that
n1
ř

j“0
sppj,Π1; Πq “ n and

n
ř

j“0
sppj,Π; Π1q “ n´ 1 as expected.
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Definition 1.2.2. We assume that n ą n1. Let Π and Π1 be as before. We say the
pairpΠ,Π1q is in good position if for any σ P ΣF ;K , the n1 numbers

´
ωpΠq ` ωpΠ1q

2 ´ bn1pσq ą ´
ωpΠq ` ωpΠ1q

2 ´ bn1´1pσq ą ¨ ¨ ¨ ą ´
ωpΠq ` ωpΠ1q

2 ´ b1pσq.

lie in different gaps between pa1pσq ą a2pσq ą ¨ ¨ ¨ ą anpσqq.
It is equivalent to saying that sppi,Π1; Π, σq ‰ 0 for all 0 ď i ď n1 and σ P ΣF ;K . In

particular, if n1 “ n´1, we know pΠ,Π1q is in good position if and only if sppi,Π1; Π, σq “ 1
for all i and σ.



Chapter 2

Unitary groups and base change

2.1 Unitary groups

In this section, let L be an arbitrary number field and F{L be a quadratic extension
of number fields.

Let U0 be the quasi-split unitary group over L of dimension n with respect to the
extension F{L. We want to know the local behavior of inner forms of U0. More generally,
we will answer the following question:

Let G0 be a connected reductive group over L. If we are given Gpvq, an inner form of
G0,v over Lv for each place v of L, when does G, an inner form of G0 over L such that
Gv – Gpvq for all v, exist?

The answer is given in section 2 of [4]. We recall some results there. We also refer to
section 1.2 [18] for further details in the unitary group case.

The isomorphism classes of inner forms are classified by Galois cohomology. Let v be
a place of L. Let L “ L or Lv. There exists a bijection between the set of isomorphism
classes of inner forms of G0,L and H1pL,Gad0 q. Therefore, the global inner form exists if
and only if the element in

À

v
H1pLv, Gad0 q corresponding to the local datum is in the image

of H1pL, Gad0 q Ñ
À

v
H1pLv, Gad0 q.

We remark that if L is local then the quasi-split class corresponds to the trivial element
of H1pL,Gad0 q.

If we can calculate this Galois cohomology, then everything is done. Otherwise Kot-
twitz has given an alternate choice as follows.

For H a connected reductive group over L, we define ApHq “ ApH{Lq :“ the dual of
π0pZpĤq

GL where Ĥ is the neutral component of the dual group of H.
Let A “ ApGad0 {Lq and Av “ ApGad0 {Lvq.

Proposition 2.1.1. There exists a natural map H1pLv, Gad0 q Ñ Av. Moreover, it is an
isomorphism when v is finite.

The above proposition gives a morphism
À

v
H1pLv, Gad0 q Ñ

À

v
Av Ñ A where the

latter is given by restriction.

Theorem 2.1.1. The following sequence is exact:

H1pL, Gad0 q Ñ
à

v

H1pLv, Gad0 q Ñ A.
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In other words, the image of the first map equals the kernel of the second map.

By this theorem, our question turns to determine the kernel of the second map.

Let us now focus on unitary groups, namely when G0 “ U0. Clozel has calculated Av
in the case when L is totally real and F is a quadratic imaginary extension over L. We
call it the CM case. This is enough for our purpose. Let us list some facts from [4]:

• If n is odd, then A “ 0. In other words, any local datum pUpvqqv which is quasi-split
at almost all places come from a global unitary group.

• If n is even, then

1. A – Z{2.
2. Av – Z{2 if v is finite and inert. The non quasi-split unitary group corresponds

to the non trivial element of Z{2. The map Av Ñ A is identity if we identify
both groups with Z{2.

3. Av – Z{n if v is finite and split. The element corresponding to the unitary
group of a division algebra generates Av. The map Av Ñ A is the mod 2 map
from Z{n to Z{2.

4. The real unitary group Upp, qq has image pp´ qq{2 mod 2 in A.

Remark 2.1.1. 1. The idea of the proof for the last point is to consider the surjective
map H1pR, T q Ñ H1pR, G0q where T Ă G0 is the maximal elliptic torus over R.

The above calculation leads to the following theorem:

Theorem 2.1.2. Let F “ F`K Let I be as before. Let q be a finite place of Q inert in
F` and split in F . There exists a Hermitian space VI of dimension n over F with respect
to F {F` such that the unitary group U “ UpVIq over F` associated to V satisfies:

• At each σ P Σ, U is of sign pn´ Ipσq, Ipσqq.

• For v ‰ q, a finite place of F`, Uv is unramified;

• If n is even and
ř

σPΣ

n´ 2Ipσq
2 ı 0 mod 2, then Uq is a division algebra. Otherwise

Uq is also unramified.

We denote by UI the restriction of U from F` to Q and GUI the rational similitude
group associated to VI , namely, for any Q-algebra R,

GUIpRq “ tg P GLpVI bQ Rq|pgv, gwq “ νpgqpv, wq, νpgq P R˚u. (2.1)

2.2 General base change

Let G and G1 be two connected quasi-split reductive algebraic groups over Q. Let pG
be the complex dual group of G. The Galois group GQ :“ GalpQ{Qq acts on pG. We define
the L-group of G by LG :“ pG ¸ GQ and we define LG1 similarly. A group homomor-
phism between two L-groups LG Ñ LG1 is called an L-morphism if it is continuous, its
restriction to pG is analytic and it is compatible with the projections of LG and LG1 to GQ.
If there exists an L-morphism LG Ñ LG1, the Langlands’ principal of functoriality
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predicts a correspondence from automorphic representations of GpAQq to automorphic
representations of G1pAQq (c.f. section 26 of [1]). More precisely, we wish to associate an
L-packet of automorphic representations of GpAQq to that of G1pAQq.

Locally, we can specify this correspondence for unramified representations. Let v be a
finite place of Q such that G is unramified at v. We fix Γv a maximal compact hyperspecial
subgroup of Gv :“ GpQvq. By definition, for πv an admissible representation of Gv, we
say πv is unramified (with respect to Γv) if it is irreducible and dimπΓv

v ą 0. One can
show that πΓv

v is actually one dimensional since πv is irreducible.

Denote Hv :“ HpGv,Γvq the Hecke algebra consisting of compactly supported contin-
uous functions from Gv to C which are Γv invariants on both sides. We know Hv acts on
πv and preserves πΓv

v (c.f. [24]). Since πΓv
v is one-dimensional, every element in Hv acts as

a multiplication by a scalar on it. In other words, πv thus determines a character of Hv.
This gives a map from the set of unramified representations of Gv to the set of characters
of Hv which is in fact a bijection (c.f. section 2.6 of [24]).

We can moreover describe the structure of Hv in a simpler way. Let Tv be a maximal
torus of Gv contained in a Borel subgroup of Gv. We denote by X˚pTvq the set of cocharac-
ters of Tv defined over Qv. The Satake transform identifies the Hecke algebra Hv with the
polynomial ring CrX˚pTvqsWv whereWv is the Weyl group of Gv (c.f. section 1.2.4 of [15]).

Let G1 be a connected quasi-split reductive group which is also unramified at v. We
can define Γ1v, H 1v :“ HpG1v,Γ1vq and T 1v similarly. An L-morphism LG Ñ LG1 induces
a morphism xTv Ñ xT 1v and hence a map T 1v Ñ Tv. The latter gives a morphism from
CrX˚pT 1vqsW

1
v to CrX˚pTvqsWv and thus a morphism from H 1v to Hv. Its dual hence gives

a map from the set of unramified representations of Gv to that of G1v. This is the local
Langlands’s principal of functoriality for unramified representations.

In this article, we are interested in a particular case of the Langlands’ functoriality:
the cyclic base change. Let K{Q be a cyclic extension, for example K is a quadratic imagi-
nary field. Let G be a connected quasi-split reductive group over Q. Let G1 “ ResK{QGK .
We know xG1 equals to pGrK:Qs. The diagonal embedding is then a natural L-morphism
LGÑ LG1. The corresponding functoriality is called the base change.

More precisely, let v be a place of Q and w a place of K over v. The local Langlands’s
principal of functoriality gives a map from the set of unramified representations of GpQvq

to that of GpKwq. We call this map the base change with respect to Kw{Qv.

Let π be an admissible irreducible representation of GpAQq. We say Π, a representation
of GpAKq, is a (weak) base change of π if for almost all v, a finite place of Q, such that
π is unramified at v and all w, a place of K over v, Πw is the base change of πv. In this
case, we say Π descends to π by base change.

Remark 2.2.1. The group AutpKq acts on GpAKq. This induces an action of AutpKq
on automorphic representations of GpAKq. For σ P AutpKq and Π an automorphic rep-
resentation of GpAKq, we write Πσ to be the image of Π under the action of σ. It is easy
to see that if Π is a base change of π, then Πσ is one as well. In particular, we have
Πσ
w – Πw for almost every finite place w of K. So if we have the strong multiplicity one
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theorem for GpAKq, we can conclude that every representation in the image of base change
is AutpKq-stable.

2.3 Base change for unitary groups and similitude unitary
groups

Recall that UIpAKq – GLnpAF q. The following result on base change comes from
Theorem 1.7 of [21]. We also refer to Corollary 2.5.9 of [25] for the quasi-split case.

Proposition 2.3.1. Base change for unitary group
Let Π be a cuspidal conjugate self-dual and cohomological representation of GLnpAF q.

If n is odd then Π descends to a cohomological representation of UIpAQq unconditionally.
If n is even then it descends if Πq descends locally.

We have an exact sequence 1 Ñ UI Ñ GUI Ñ Gm Ñ 1 which is split over K. Indeed,
by Galois descent, it is enough to define θI , a Galois automorphism on UI,F ˆGm,K such
that the subgroup of UI,K ˆGm,K fixed by θI is isomorphic to GUI . We now define θI as
follows:

For R a Q-algebra, note that pUI,KˆGm,KqpRq – GLpVIbQRqˆpKbQRq. We define

θI : GLpVI bQ Rq ˆ pK bQ Rq Ñ GLpVI bQ Rq ˆ pK bQ Rq

by sending pg, zq to ppg˚q´1z̄, z̄q where g˚ is the adjoint of g with respect to the Hermitian
form. It is easy to verify that θI satisfies the condition mentioned above.

We then have that GUI,K – UI,K ˆGm,K . In particular, GUpAKq – GLnpAF q ˆ AˆK .
For Π a cuspidal representation of GLnpAF q and ξ a Hecke character of K, Πb ξ defines
a cuspidal representation of GUpAKq. Conversely, by the tensor product theorem, every
irreducible admissible automorphic representation of GUpAKq is of the form Π b ξ. The
following Lemma is shown in [19] V I.2.10 and [5] Lemma 2.2.

Lemma 2.3.1. If Π is algebraic and conjugate self-dual, then there exists ξ, an algebraic
Hecke character of AK such that Πˆ ξ is θI-stable.

Proof It is easy to verify that Π ˆ ξ is θI -stable if and only if
ξpzq

ξpzq
“ ξΠpzq for any

z P AˆK where ξΠ is the central character of Π.

We define U the torus over Q such that UpQq “ kertNorm : Kˆ Ñ Qˆu. We have

UpAQq “ t
z

z
| z P AˆKu by Hilbert 90.

Again by Hilbert 90, we have an exact sequence:

1 Ñ QˆzAˆQ Ñ KˆzAˆK Ñ UpQqzUpAQq Ñ 1
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where the last map sends z to
z

z
.

Therefore, such ξ exists if and only if ξΠ is trivial on AˆQ.

Since Π is conjugate self-dual, we know ξΠ is trivial on NormAK{AQpA
ˆ
Kq. By class

field theory, QˆNAK{AQpA
ˆ
Kq has index 2 in AˆQ. It remains to show that ξΠ is trivial at

any element t in AˆQ ´QˆNAK{AQpA
ˆ
Kq.

We consider t P AˆQ such that t “ 1 at all finite places and t “ ´1 at the infinity place.
It is not in QˆNAK{AQpA

ˆ
Kq.

Since Π is algebraic, we know ξΠ has infinity type zaz´a with a P Z. In particular, we
have ξΠptq “ 1 as expected.

l

The following proposition follows from Proposition 2.3.1. The idea is the same with
Theorem V I.2.9 in [19].

Proposition 2.3.2. Let Π be an algebraic automorphic representation of GLnpAF q –
UIpAKq which descends to UIpAF q. If ξ is an algebraic Hecke character of K as in Lemma
2.3.1 then Πb ξ descends to an automorphic representation of GUIpAF q. Moreover, if Π
is cohomological then its descending is also cohomological.

In particular, let Π be a cuspidal conjugate self-dual and cohomological representation
of GLnpAF q. We assume moreover that Πq descends locally if n is even. Then there
always exists ξ such that Π b ξ descends to an irreducible cohomological automorphic
representation of GUIpAF q.





Chapter 3

Rational structures and Whittaker
periods

In this chapter, we will recall some results on the rationality of certain algebraic auto-
morphic representations and also the rationality of the associated Whittaker models and
cohomology spaces.

In particular, we will define the Whittaker period and present a way to calculate the
Whittaker period in certain cases.

3.1 Rational structures on certain automorphic representa-
tions

Let F is an arbitrary number field and n be a positive integer.
Let Π be an automorphic representation of GLnpAF q.

We denote by V the representation space for Πf . For σ P AutpCq, we define another
GLnpAF,f q-representation Πσ

f to be V bC,σ C. Let QpΠq be the subfield of C fixed by
tσ P AutpCq | Πσ

f – Πfu. We call it the rationality field of Π.

For E a number field, G a group and V a G-representation over C, we say V has an
E-rational structure if there exists an E-vector space VE endowed with an action of
G such that V “ VEbEC as representation of G. We call VE an E-rational structure of V .

We denote by Algpnq the set of algebraic automorphic representations of GLnpAF q
which are isobaric sums of cuspidal representations as in section 1 of [3].

Theorem 3.1.1. (Théorème 3.13 in [3])
Let Π be a regular representation in Algpnq. We have that:

1. QpΠq is a number field.

2. Πf has a QpΠq-rational structure unique up to homotheties.
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3. For all σ P AutpCq, Πσ
f is the finite part of a regular representation in Algpnq. It is

unique up to isomorphism by the strong multiplicity one theorem. We denote it by
Πσ.

Remark 3.1.1. Let n “ n1 ` n2 ` ¨ ¨ ¨ ` nk be a partitian of positive integers and Πi be
regular representations in Algpniq for 1 ď i ď k respectively.

The above theorem implies that, for all 1 ď i ď k, the rational field QpΠiq is a number
field.

Let Π “ pΠ1|| ¨ ||
1´n1

2
AK ‘Π2|| ¨ ||

1´n2
2

AK ‘ ¨ ¨ ¨‘Πk|| ¨ ||

1´nk
2

AK q|| ¨ ||
n´1

2
AK be the normalized isobaric

sum of Πi. It is still algebraic.

We can see from definition that QpΠq is the compositum of QpΠiq with 1 ď i ď k.
Moreover, if Π is regular, we know from the above theorem that Π has a QpΠq-rational
structure.

3.2 Rational structures on the Whittaker model
Let Π be a regular representation in Algpnq and then its rationality field QpΠq is a

number field.

We fix a nontrivial additive character φ of AF . Since Π is an isobaric sum of cuspidal
representations, it is generic. Let W pΠf q be the Whittaker model associated to Πf (with
respect to φf ). It consists of certain functions on GLnpAF ,f q and is isomorphic to Πf as
GLnpAF ,f q-modules.

Similarly, we denote the Whittaker model of Π (with respect to) φ by W pΠq.

Definition 3.2.1. Cyclotomic character
There exists a unique homomorphism ξ : AutpCq Ñ pZˆ such that for any σ P AutpCq

and any root of unity ζ, σpζq “ ζξpσq, called the cyclotomic character.

For σ P AutpCq, we define tσ P ppZ bZ OF qˆ “ xOF
ˆ

to be the image of ξpσq by the
embedding ppZqˆ ãÑ ppZbZ OF qˆ. We define tσ,n to be the diagonal matrix

diagpt´n`1
σ , t´n`2

σ , ¨ ¨ ¨ , t´1
σ , 1q P GLnpAF ,f q

as in section 3.2 of [26].

For w P W pΠf q, we define a function wσ on GLnpAF ,f q by sending g P GLnpAF ,f q
to σpwptσ,ngqq. For classical cusp forms, this action is just the AutpCq-action on Fourier
coefficients.

Proposition 3.2.1. (Lemma 3.2 of [26] or Proposition 2.7 of [8])
The map w ÞÑ wσ gives a σ-linear GLnpAF ,f q-equivariant isomorphism from W pΠf q

to W pΠσ
f q.

For any extension E of QpΠf q, we can define an E-rational structure on W pΠf q by
taking the AutpC{Eq-invariants.

Moreover, the E-rational structure is unique up to homotheties.
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Proof The first part is well-known (see the references in [26]).

For the second part, the original proof in [26] works for cuspidal representations. The
key point is to find a nonzero global invariant vector. It is equivalent to finding a nonzero
local invariant vector for every finite place. Then Theorem 5.1piiq of [20] is involved as in
[8].

The last part follows from the one-dimensional property of the invariant vector which
is the second part of Theorem 5.1piiq of [20].

l

3.3 Rational structures on cohomology spaces and compar-
ison of rational structures

Let Π be a regular representation in Algpnq. The Lie algebra cohomology of Π has a
rational structure. It is described in section 3.3 of [26]. We give a brief summary here.

Let Z be the center of GLn. Let g8 be the Lie algebra of GLnpRbQF q. Let Sreal be the
set of real places of F , Scomplex be the set of complex places of F and S8 “ SrealYScomplex
be the set of infinite places of F .

For v P Sreal, we define Kv :“ ZpRqOnpRq Ă GLnpFvq. For v P Scomplex, we define
Kv :“ ZpCqUnpCq Ă GLnpFvq. We denote by K8 the product of Kv with v P S8, and by
K0
8 the topological connected component of K8.

We fix T the maximal torus ofGLn consisting of diagonal matrices and B the Borel sub-
group of G consisting of upper triangular matrices. For µ a dominant weight of T pRbQF q
with respect to BpRbQF q, we can defineWµ an irreducible representation of GLnpRbQF q
with highest weight µ.

From the proof of Théorème 3.13 [3], we know that there exists a dominant algebraic
weight µ, such that H˚pg8,K0

8; Π8 bWµq ‰ 0.

Let b be the smallest degree such that Hbpg8,K
0
8; Π8bWµq ‰ 0. We have an explicit

formula for b in [26]. More precisely, we set r1 and r2 the numbers of real and complex
embeddings of F respectively. We have b “ r1

”

n2

4

ı

` r2
npn´1q

2 .

We can decompose this cohomology group via the action of K8{K0
8. There exists a

character ε of K8{K0
8 described explicitly in [26] such that:

1. The isotypic component Hbpg8,K
0
8; Π8 bWµqpεq is one dimensional.

2. For fixed w8, a generator of Hbpg8,K
0
8; Π8 b Wµqpεq, we have a GLnpAF ,f q-

equivariant isomorphisms:

W pΠf q
„
ÝÑ W pΠf q bH

bpg8,K
0
8; Π8 bWµqpεq

„
ÝÑ Hbpg8,K

0
8;W pΠq bWµqpεq

„
ÝÑ Hbpg8,K

0
8; ΠbWµqpεq (3.1)
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where the first map sends wf to wfbw8 and the last map is given by the isomorphism
W pΠq „ÝÑ Π.

3. The cohomology space Hbpg8,K
0
8; ΠbWµqpεq is related to the cuspidal cohomology

if Π is cuspidal and to the Eisenstein cohomology if Π is not cuspidal. In both cases,
it is endowed with a QpΠq-rational structure (see [26] for cuspidal case and [8] for
non cuspidal case).

We denote by ΘΠf ,ε,w8 the GLnpAF,f q-isomorphism given in (3.1)

W pΠf q
„
ÝÑ Hbpg8,K

0
8; ΠbWµqpεq.

Both sides have a QpΠq-rational structure. In particular, the preimage of the rational
structure on the right hand side gives a rational structure on W pΠf q. But the rational
structure onW pΠf q is unique up to homotheties. Therefore, there exists a complex number
ppΠf , ε, w8q such that the new map Θ0

Πf ,ε,w8 “ ppΠf , ε, w8q
´1ΘΠf ,ε,w8 preserves the

rational structure on both sides. It is easy to see that this number ppΠf , ε, w8q is unique
up to multiplication by elements in QpΠqˆ.

Finally, we observe that the AutpCq-action preserves rational structures on both the
Whittaker models and cohomology spaces. We can adjust the numbers ppΠσ

f , ε
σ, wσ8q for

all σ P AutpCq by elements in QpΠqˆ such that the following diagram commutes:

W pΠf q

σ

��

ppΠf ,ε,w8q´1ΘΠf ,ε,w8
// Hbpg8,K

0
8; ΠbWµqpεq

σ

��

W pΠσ
f q

ppΠσf ,ε
σ ,wσ8q

´1ΘΠσ
f
,εσ,wσ8

// Hbpg8,K
0
8; Πσ bW σ

µ qpε
σq

The proof is the same as the cuspidal case in [26].

In the following, we fix ε, w8 and we define theWhittaker period ppΠq :“ ppΠf , ε, w8q.
For any σ P AutpCq, we define ppΠσq :“ ppΠσ

f , ε
σ, wσ8q. It is easy to see that ppΠσq “ ppΠq

for σ P AutpC{QpΠqq.
Moreover, the elements pppΠσqqσPAutpCq are well defined up to QpΠqˆ in the following

sense: if pp1pΠσqqσPAutpCq is another family of complex numbers such that p1pΠσq´1ΘΠσ
f
,εσ ,wσ8

preserves the rational structure and the above diagram commutes, then there exists
t P QpΠqˆ such that p1pΠσq “ σptqppΠσq for any σ P AutpCq. This also follows from
the one dimensional property of the invariant vector. The argument is the same as the
last part of the proof of Definition/Proposition 3.3 in [26].

3.4 Shahidi’s calculation on Whittaker periods
Let us assume F is a CM field in the following sections of this chapter. In this case,

K8 itself is connected and hence we may omit the index ε.

let l be a positive integer. Let n1, n2, ¨ ¨ ¨ ,nl be positive integers such that n “
n1 ` n2 ` ¨ ¨ ¨ ` nl.

Let Π1, Π2, ¨ ¨ ¨ , Πl be regular cohomological conjugate self-dual automorphic repre-
sentations of GLn1 , GLn2 , ¨ ¨ ¨ , GLnl respectively. We assume that they are Langlands
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sum of cuspidal representations.

We write P ď GLn for the maximal parabolic group of type pn1, n2, ¨ ¨ ¨ , nlq and B ď P
be the corresponding Borel subgroup.

Let Π be the Langlands sum of Π1,Π2, ¨ ¨ ¨ ,Πl.

Proposition 3.4.1. There exists a non zero complex number Ωpn1,n2,¨¨¨ ,nlqpΠ8q depending
on Π8 and the parabolic type of P which is unique up to elements of EpΠqˆ such that:

ppΠq „EpΠ1q¨¨¨EpΠlq;K Ωpn1,n2,¨¨¨ ,nlqpΠ8q
ź

1ďiďl
ppΠiq

ź

1ďiăjďl
Lp1,Πi ˆΠ_j q (3.2)

The constructions and ideas come from [23] and [8]. We give a sketch of the proof here
and will include the details in a forthcoming paper.

Sketch of the proof: For simplicity, we may assume that l “ 2.
For i “ 1 or 2, we denote by Vi the representation space for Πi consisting of cusp

forms.
We denote by Wi,f the Whittaker model for Πi,f . We write µi for the cohomological

type of Πi. We fix ωi,8, a generator of Hbni pgi,8,Ki,8; Πi,8 bWµiq and we write Θi for
ΘΠi,f ,ωi .

We write HbipΠi bWµiq :“ Hbipgi,8,Ki,8; Πi bWµiq for simplicity.
We use similar notation for Π “ Π1 ‘ Π2.
We claim that there exists a commutative diagram as follows (c.f. (1.3) of [23]):

W1,f bW2,f

F loc

��

Θ1bΘ2 // Hb1pΠ1 bWµ1q bH
b2pΠ2 bWµ2q – V1,f b V2,f

Eis
��

W pΠf q
Θ // HbpΠbWµq Ą Vf

We now introduce the maps which appear in the diagram:

• The map F loc is an explicit map defined locally in [23].

• The map Eis is rational and defined by the theory of Eisenstein series which sends
V1,f b V2,f to Vf . (c.f. Section 1.1 in [23]).

• The isomorphism Vi,f – HbipΠi bWµiq is rational. The composition of this isomor-
phism and Θi is just the isomorphism between the cuspidal forms and the corre-
sponding Whittaker functions.

• The theory of Eisenstein cohomology (c.f. [9]) gives a rational embedding of Vf in
HbpΠbWµq.
More precisely, we write Sn for GLnpF qzGLnpAF q{K8. We denote by Sn the Borel-
Serre compactification of Sn. We write BSn for its boundary and BBSn for the face
corresponding to the Borel subgroup B.
We know HbpΠ bWµq embeds rationally in HbpSn, Eµq (c.f. Section 3 of [8] and
Section 1.2 of [9]) where Eµ is a sheaf on Sn defined by µ. We restrict the latter to
the face BBSn and get a rational map HbpΠbWµq Ñ HbpBBSn, Eµq which admits a
rational section (c.f. Proposition 5.2 of [8]).
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We may decompose HbpBBSn, Eµq as in Theorem 4.2 of [23] and we see that Vf “
IndP pV1,f b V2,f q is a rational direct summand of HbpΠbWµq Ñ HbpBBSn, Eµq as
GLnpAF,f q-module. Here we should take w to be the longest element in the Weyl
group and s to be trivial in the loc.cit.

We take g1 b g2 P W1,f bW2,f to be a rational element. We write f1 b f2 for the
image of g1 b g2 under the map Θ1 b Θ2. We denote by F :“ Eispf1 b f2q. We write
W “ W pF q to be the corresponding Whittaker function (with respect to a fixed additive
Hecke character).

From the diagram it is easy to see that p´1
1 p´1

2 pW is a rational element and therefore:

ppΠq „EpΠ1qEpΠ2q;K ppΠ1qppΠ2qW pIdq
´1. (3.3)

Shahidi’s calculation (c.f. Theorem 7.1.2 of [27] and Corollary 5.7 of [8]) implies that:

W pIdq´1 „EpΠq;K W8pId8q
´1

ź

w ramified places
Wwpidwq

´1
ź

1ďiăjďl
Lp1,Πi ˆΠ_j q.

By the arguments in Corollary 5.7 of [8]) we may choose g1, g2 such that Wwpidwq is
rational for each ramified place. At last, we conclude the proof by setting Ωpn1,n2qpΠ8q :“
W8pId8q

´1. We can read from the construction that it depend onlys on Π8 and the
parabolic data.

l

For any partition n1 ` ¨ ¨ ¨ ` nl “ n, we may take Π1, ¨ ¨ ¨ ,Πl as above such that
Π8 “ pΠ1 ‘ ¨ ¨ ¨‘Πlq8. Hence Ωpn1,¨¨¨ ,nlqpΠ8q is well defined. In particular, Ωp1,1,¨¨¨ ,1qpΠ8q
is well-defined. We denote it by ΩpΠ8q. We remark that this is the same archimedean
factor appeared in Corollary 5.7 of [8].

3.5 First discussions on archimedean factors

We will discuss the archimedean factors Ωpn1,n2,¨¨¨ ,nlqpΠ8q defined in the last section.

One first observation is that

ΩpnqpΠ8q „EpΠq;K 1. (3.4)

This can be read directly from Equation (3.2).

We observe that if Π1 is also a Langlands sum of automorphic representations, we can
furthermore decompose ppΠ1q. We will get relations between the archimedean factors. In
fact, we have:

Lemma 3.5.1. If Π is Langlands sum of Π1, Π2, ¨ ¨ ¨ , Πl then we have:

Ωpn1,n2,¨¨¨ ,nlqpΠ8q „EpΠq;K
ΩpΠ8q

ś

1ďiďn
ΩpΠi,8q

(3.5)
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Proof We endow P pnq, the set of partitions of n, with the dictionary order. More
precisely, if pn1, ¨ ¨ ¨ , nlq and pn11, ¨ ¨ ¨ , n1l1q are two partitions of n, we say pn1, ¨ ¨ ¨ , nlq ă
n11, ¨ ¨ ¨ , n

1
l1q if there exists an integer s ď mintl, l1u such that ni “ n1i for i ă s and ns ă n1s.

The set P pnq then becomes a totally ordered set.

We shall prove the lemma by induction on n. For each level n, we shall prove by
induction on P pnq.

(1) Basis: When n “ 1, we know both sides are equivalent to 1 by equation (3.4).

(2) Inductive step: We assume that the lemma is true for n1`¨ ¨ ¨`nl “ n´ 1 with
n ě 2. We shall prove it for n1 ` ¨ ¨ ¨ ` nl “ n by induction on P pnq.

(2.1) Basis: The smallest element in P pnq is p1, 1, ¨ ¨ ¨ , 1q. In this case, we have
Ωp1,1,¨¨¨ ,1qpΠ8q „EpΠq;K ΩpΠ8q by definition. Moreover, ΩpΠi,8q „EpΠq;K Ωp1qpΠi,8q „EpΠq;K
1 by equation (3.4) for all i. The lemma then follows.

(2.2) Inductive step: Let pn1, ¨ ¨ ¨ , nlq ‰ p1, 1, ¨ ¨ ¨ , 1q P P pnq. We assume that the
lemma holds for all elements in P pnq smaller than pn1, ¨ ¨ ¨ , nlq. We now prove the lemma
for pn1, ¨ ¨ ¨ , nlq.

Since pn1, ¨ ¨ ¨ , nlq ‰ p1, 1, ¨ ¨ ¨ , 1q, there exists an integer i such that ni ě 2. We take
the smallest i with this property and denote it by t.

We take positive integers n1t, n˚t such that n1t ` n˚t “ nt. For example, we may take
n1t “ nt´1 and n˚t “ 1. We take Π1t and Π˚t to be cohomological conjugate self-dual regular
representations of GLn1tpAF q and GLntpAF q respectively such that Πt,8 is the same with
the infinity type of the Langlands sum of Π1t and Π˚t .

Let Π# be the Langlands sum of Π1, ¨ ¨ ¨ ,Πt´1,Π1t,Π˚t ,Πt`1, ¨ ¨ ¨ ,Πl. We apply Propo-
sition 3.4.1 to pΠ1, ¨ ¨ ¨ ,Πt´1,Π1t,Π˚t ,Πt`1, ¨ ¨ ¨ ,Πlq and get:

ppΠ#q „EpΠq;K Ωpn1,¨¨¨ ,nt´1,n1t,n
˚
t ,nt`1¨¨¨ ,nlq

pΠ8qr
ś

i‰t
ppΠiqsppΠ1tqppΠ˚t q

ś

iăj,i‰t,j‰t
Lp1,Πi ˆΠ_j q

ś

iăt
pLp1,Πi ˆΠ1t_qLp1,Πi ˆΠ˚,_t qq

ś

jąt
pLp1,Π1t ˆΠ_j qLp1,Π˚t ˆΠ_j qqLpΠ1t ˆΠ˚,_t q

Similarly, we apply Proposition 3.4.1 to pΠ1,Πt´1,Π1t ‘ Π˚t ,Πt`1, ¨ ¨ ¨ ,Πlq and then to
pΠ1t,Π˚t q. We will get:

ppΠ#q „EpΠq;K Ωpn1,¨¨¨ ,nt´1,n1t`n
˚
t ,nt`1q¨¨¨ ,nlq

pΠ8qr
ź

i‰t

ppΠiqsppΠ1t ‘ Π˚t q ˆ
ź

iăj,i‰t,j‰t

Lp1,Πi ˆΠ_j q
ź

iăt

Lp1,Πi ˆ pΠ1t ‘ Π˚t q_q
ź

jąt

Lp1, pΠ1t ‘ Π˚t q ˆΠ_j q

„EpΠq;K Ωpn1,¨¨¨ ,nt´1,n1t`n
˚
t ,nt`1,¨¨¨ ,nlq

pΠ8qΩpn1t,n˚t qppΠ
1
t ‘ Π˚t q8qr

ź

i‰t

ppΠiqsppΠ1tqppΠ˚t q

ˆ
ź

iăj,i‰t,j‰t

Lp1,Πi ˆΠc
jq
ź

iăt

pLp1,Πi ˆΠ1t_qLp1,Πi ˆΠ˚,_t qq

ˆ
ź

jąt

pLp1,Π1t ˆΠ_j qLp1,Π˚t ˆΠ_j qqLpΠ1t ˆΠ˚,_t q.
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Recall that n1t ` n˚t “ nt, we obtain that:

Ωpn1,¨¨¨ ,nt´1,n1t,n
˚
t ,nt`1¨¨¨ ,nlq

pΠ8q „EpΠ;Kq Ωpn1,¨¨¨ ,nt´1,nt,nt`1,¨¨¨ ,nlqpΠ8qΩpn1t,n˚t qppΠ
1
t ‘ Π˚t q8q

(3.6)
Since pn1, ¨ ¨ ¨ , nt´1, n

1
t, n

˚
t , nt`1 ¨ ¨ ¨ , nlq ă pn1, n2, ¨ ¨ ¨ , nlq, we may apply the hypothe-

sis of the induction step p2.2q and get:

Ωpn1,¨¨¨ ,nt´1,n1t,n
˚
t ,nt`1¨¨¨ ,nlq

pΠ8q „EpΠ;Kq
ΩpΠ8q

ś

i‰t
ΩpΠi,8qΩpΠ1t,8qΩpΠ˚t,8q

. (3.7)

If nt “ n then l “ 1 and both sides of the equation of the lemma are equivalent to 1
by equation (3.4). Hence we may assume that nt ă n. Therefore, the hypothesis of the
induction step (2) is satisfied by pΠ1t,Π˚t q. We get:

Ωpn1t,n˚t qppΠ
1
t ‘ Π˚t q8q „EpΠ;Kq

ΩpΠt,8q

ΩpΠ1t,8qΩpΠ˚t,8q
. (3.8)

Comparing the above three equations, we finally deduce that the lemma is true for
pΠ1, ¨ ¨ ¨ ,Πnq and complete the proof.

l

Corollary 3.5.1. If Π is Langlands sum of Π1, Π2, ¨ ¨ ¨ , Πl then we have:

ppΠq „EpΠq;K
ΩpΠ8q

ś

1ďiďn
ΩpΠi,8q

ź

1ďiďl
ppΠiq

ź

1ďiăjďl
Lp1,Πi ˆΠ_j q (3.9)

3.6 Special values of tensor products in terms of Whittaker
periods, after Grobner-Harris

Let Π be a regular cuspidal cohomological representation of GLnpAF q. Let Π# be a
regular automorphic cohomological representation of GLn´1pAF q which is the Langlands
sum of cuspidal representations. Equivalently, it is a regular element in Algpn´ 1q.

The arguments in section of [8] go over word for word and give the following result:

Proposition 3.6.1. We assume that pΠ,Π#q is in good position.
There exists a complex number ppm,Π8,Π#

8q which depends on m,Π8 and Π#
8 well

defined up to pEpΠqEpΠ#qqˆ such that for m P N with m`
1
2 critical for ΠˆΠ#, we have

Lp
1
2`m,ΠˆΠ#q „EpΠqEpΠ#q;K ppm,Π8,Π#

8qppΠqppΠ#q (3.10)

where ppΠq and ppΠ#q are the Whittaker periods of Π and Π# respectively.

We remark that we don’t need Π# to be cuspidal here. The above conditions are
sufficient to guarantee that a certain Eisenstein series is holomorphic.

Moreover, we remark that the good position condition is necessary so that a certain
intertwining operator exists.

We shall give a proof of this proposition in a separate article.
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CM periods and arithmetic
automorphic periods

4.1 CM periods

Let pT, hq be a Shimura datum where T is a torus defined overQ and h : ResC{RGm,C Ñ

GR a homomorphism satisfying the axioms defining a Shimura variety. Such pair is called
a special Shimura datum. Let ShpT, hq be the associated Shimura variety and EpT, hq
be its reflex field.

Let pγ, Vγq be a one-dimensional algebraic representation of T (the representation γ is
denoted by χ in [17]). We denote by Epγq a definition field for γ. We may assume that
Epγq contains EpT, hq. Suppose that γ is motivic (see loc.cit for the notion). We know
that γ gives an automorphic line bundle rVγs over ShpT, hq defined over Epγq. Therefore,
the complex vector space H0pShpT, hq, rVγsq has an Epγq-rational structure, denoted by
MDRpγq and called the De Rham rational structure.

On the other hand, the canonical local system V O
γ Ă rVγs gives another Epγq-rational

structure MBpγq on H0pShpT, hq, rVγsq, called the Betti rational structure.

We now consider χ an algebraic Hecke character of T pAQq with infinity type γ´1 (our
character χ corresponds to the character ω´1 in loc.cit). Let Epχq be the number field
generated by the values of χ on T pAQ,f q over Epγq. We know χ generates a one-dimensional
complex subspace of H0pShpT, hq, rVγsq which inherits two Epχq-rational structures, one
from MDRpγq, the other from MBpγq. Put ppχ, pT, hqq the ratio of these two rational
structures which is well defined modulo Epχqˆ.

Remark 4.1.1. If we identify H0pShpT, hq, rVγsq with the set tf P C8pT pQqzT pAQq,C |
fptt8qq “ γ´1pt8qfptq, t8 P T pRq, t P T pAQqu, then χ itself is in the rational structure
inherits from MBpγq. See discussion from A.4 to A.5 in [17].

Suppose that we have two tori T and T 1 both endowed with a Shimura datum pT, hq
and pT 1, h1q. Let u : pT 1, h1q Ñ pT, hq be a map between the Shimura data. Let χ be an
algebraic Hecke character of T pAQq. We put χ1 :“ χ ˝ u an algebraic Hecke character of
T 1pAQq. Since both the Betti structure and the De Rham structure commute with the
pullback map on cohomology, we have the following proposition:
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Proposition 4.1.1. Let χ, pT, hq and χ1, pT 1, h1q be as above. We have:

ppχ, pT, hqq „Epχq ppχ
1, pT 1, h1qq

Remark 4.1.2. In Proposition 1.4 of [11], the relation is up to Epχq;EpT, hq where
EpT, hq is a number field associated to pT, hq. Here we consider the action of GQ and can
thus obtain a relation up to Epχq (see the paragraph after Proposition 1.8.1 of loc.cit).

For F a CM field and Ψ a subset of ΣF such that ΨX ιΨ “ ∅, we can define a Shimura
datum pTF , hΨq where TF :“ ResF {QGm,F is a torus and hΨ : ResC{RGm,C Ñ TF,R is a
homomorphism such that over σ P ΣF , the Hodge structure induced on F by hΨ is of type
p´1, 0q if σ P Ψ, of type p0,´1q if σ P ιΨ, and of type p0, 0q otherwise.

Let χ be a motivic critical character of a CM field F . By definition, pF pχ,Ψq “
ppχ, pTF , hΨqq and we call it a CM period. Sometimes we write ppχ,Ψq instead of
pF pχ,Ψq if there is no ambiguity concerning the base field F .

Example 4.1.1. We have pp|| ¨ ||AK , 1q „Q p2πiq´1. See p1.10.9q on page 100 of [13].

Let θ P GalpF {Qq. We know θ induces an action on ΣF by composition with θ. More-
over, θ acts on AˆF and hence acts on the set of Hecke characters of F .

The CM periods have many good properties. We list below some of them which will
be useful in the future.

Proposition 4.1.2. Let F be a CM field. Let F0 Ă F be a sub CM field.
Let η be a motivic critical Hecke character of F0, χ, χ1, χ2 be motivic critical Hecke

characters of F .
Let τ P ΣF be an embedding of F into Q̄ and Ψ be a subset of ΣF such that ΨXΨc “ ∅.

We take Ψ “ Ψ1 \Ψ2 a partition of Ψ.
Let θ be an element in GalpF {Qq. We then have:

ppχ1χ2q,Ψq „Epχ1qEpχ2q ppχ1,Ψqppχσ2 ,Ψq. (4.1)
ppχ,Ψ1 \Ψ2q „Epχq ppχ,Ψ1qppχ,Ψ2q. (4.2)

ppχθ,Ψθq „Epχq ppχ,Ψq. (4.3)
pF pη ˝NAF {AF0

, τq „Epηq pF0pη, τ |F0q. (4.4)

In particular, if we take θ “ c the complex conjugation, we have:

ppχ,Ψcq „Epχq ppχ
c,Ψq. (4.5)

Remark 4.1.3. The first three formulas come from Proposition 1.4, Corollary 1.5 and
Lemma 1.6 in [11]. The last formula is a variation of the Lemma 1.8.3 in loc.cit. The
idea was explained in the proof of Proposition 1.4 in loc.cit. We sketch the proof here.

Proof. All the equations in Proposition 4.1.2 come from Proposition 4.1.1 by certain maps
between Shimura data as follows:

1. The diagonal map pTF , hΨq Ñ pTF ˆ TF , hΨ ˆ hΨq pulls pχ1, χ2q back to χ1χ2.

2. The multiplication map TF ˆ TF Ñ TF sends hΨ1 , hΨ2 to hΨ1\Ψ2 .
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3. The Galois action θ : HF Ñ HF sends hΨ to hΨθ .

4. The norm map pTF , htτuq Ñ pTF0 , htτ |F0u
q pulls η back to η ˝NAF {AF,0 .

The special values of an L-function for a Hecke character over a CM field can be
interpreted in terms of CM periods. The following theorem is proved by Blasius. We
state it as in Proposition 1.8.1 in [11] where ω should be replaced by ω̌ :“ ω´1,c (for this
erratum, see the notation and conventions part on page 82 in the introduction of [13]),

Theorem 4.1.1. Let F be a CM field and F` be its maximal totally real subfield. Put n
the degree of F` over Q.

Let χ be a motivic critical algebraic Hecke character of F and Φχ be the unique CM
type of F which is compatible with χ.

Let DF` be the absolute discriminant of F`. We assume that D1{2
F` P Epχq for sim-

plicity.
For m a critical value of χ in the sense of Deligne (c.f. Lemma 6.1.1), we have

Lpχ,mq „Epχq p2πiqmnppχ̌,Φχq

equivariant under action of GQ

Remark 4.1.4.

1. Let tσ1, σ2, ¨ ¨ ¨ , σnu be any CM type of F . Let pσaii σ
´w´ai
i q1ďiďn denote the infinity

type of χ with w “ wpχq. We may assume a1 ě a2 ě ¨ ¨ ¨ ě an. We define a0 :“ `8

and an`1 :“ ´8 and define k :“ maxt0 ď i ď n | ai ą ´
w

2u. An integer m is
critical for χ if and only if

maxp´ak ` 1, w ` 1` ak`1q ď m ď minpw ` ak,´ak`1q (4.6)

(c.f. Lemma 6.1.1).

2. D1{2
F` is well defined up to multiplication by ˘1. More generally, if tz1, z2, ¨ ¨ ¨ , znu is

any Q-base of L, then detpσipzjqq1ďi,jďn „Q D
1{2
F`.

4.2 Construction of cohomology spaces
Let Σ “ ΣF ;K in the current and the following chapters. Fix an index I as before.

Write sσ :“ Ipσq and rσ :“ n´ Ipσq for all σ P Σ.

Denote S :“ ResC{RGm. Recall thatGUIpRq is isomorphic to a subgroup of
ś

σPΣ
GUprσ, sσq

defined by the same similitude. We can define a homomorphism hI : SpRq Ñ GUIpRq by

sending z P C to
ˆˆ

zIrσ 0
0 z̄Isσ

˙˙

σPΣ
.

Let XI be the GUIpRq-conjugation class of hI . We know pGUI , XIq is a Shimura
datum with reflex field EI and dimension 2

ř

σPΣ
rσsσ. The Shimura variety associated to

pGUI , XIq is denoted by ShI .
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Let KI,8 be the centralizer of hI in GUIpRq. Via the inclusion

GUIpRq ãÑ
ź

σPΣ
GUprσ, sσq Ă R`,ˆ

ź

σPΣ
Upn,Cq,

we may identify KI,8 with

tpµ,

ˆ

urσ 0
0 vsσ

˙

σPΣ
q | urσ P Uprσ,Cq, vsσ P Upsσ,Cq, µ P R`,ˆu

where Upr,Cq is the standard unitary group of degree r over C. Let HI be the subgroup of
KI,8 consisting of the diagonal matrices in KI,8. Then it is a maximal torus of GUIpRq.
Denote its Lie algebra by hI .

We observe that HIpRq – R`,ˆˆ
ś

σPΣ
Up1,Cqn. Its algebraic characters are of the form

pw, pzipσqqσPΣ,1ďiďnq ÞÑ wλ0
ź

σPΣ

n
ź

i“1
zipσq

λipσq

where pλ0, pλipσqqσPΣ,1ďiďnq is a pnd ` 1q-tuple of integers with λ0 ”
ř

σPΣ

n
ř

i“1
λipσq (mod

2).

Recall that GUIpCq – Cˆ
ś

σPΣGLnpCq. We fix BI the Borel subgroup of GUI,C con-
sisting of upper triangular matrices. The highest weights of finite-dimensional irreducible
representations of KI,8 are tuples Λ “ pΛ0, pΛipσqqσPΣ,1ďiďnq such that Λ1pσq ě Λ2pσq ě

¨ ¨ ¨ ě Λrσpσq, Λrσ`1pσq ě ¨ ¨ ¨ ě Λnpσq for all σ and Λ0 ”
ř

σPΣ

n
ř

i“1
Λipσq (mod 2).

We denote the set of such tuples by ΛpKI,8q. Similarly, we write ΛpGUIq for the set
of the highest weights of finite-dimensional irreducible representations of GUI . It consists
of tuples λ “ pλ0, pλipσqqσPΣ,1ďiďnq such that λ1pσq ě λ2pσq ě ¨ ¨ ¨λnpσq for all σ and

λ0 ”
ř

σPΣ

n
ř

i“1
λipσq (mod 2).

We take λ P ΛpGUIq and Λ P ΛpKI,8q.
Let Vλ and VΛ be the corresponding representations. We define a local system over

ShI :
WO
λ :“ lim

ÐÝ
K

GUIpQqzVλ ˆX ˆGUIpAQ,f q{K

and an automorphic vector bundle over ShI

EΛ :“ lim
ÐÝ
K

GUIpQqzVΛ ˆGUIpRq ˆGUIpAQ,f q{KKI,8

where K runs over open compact subgroup of GUIpAQ,f q.

The automorphic vector bundles EΛ are defined over the reflex field E.

The local systems WO
λ are defined over K. The Hodge structure of the cohomology

space HqpShI ,W
O
λ q is not pure in general. But the image ofHq

c pShI ,W
O
λ q in HqpShI ,W

O
λ q

is pure of weight q ´ c. We denote this image by H̄qpShI ,W
O
λ q.

Note that all cohomology spaces have coefficients in C unless we specify its rational
structure over a number field.
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4.3 The Hodge structures
The results in section 2.2 of [12] give a description of the Hodge components of

H̄qpShI ,W
O
λ q.

Denote by R` the set of positive roots of HI,C in GUIpCq and by R`c the set of positive
compact roots. Define αj,k “ p0, ¨ ¨ ¨ , 0, 1, 0, ¨ ¨ ¨ , 0,´1, 0, ¨ ¨ ¨ , 0q for any 1 ď j ă k ď n.
We know R` “ tpαjσ ,kσqσPΣ | 1 ď jσ ă kσ ď nu and R`c “ tpαjσ ,kσqσPΣ | jσ ă kσ ď
rσ or rσ ` 1 ď jσ ă kσu.

Let ρ “
1
2

ř

αPR`
α “

˜˜

n´ 1
2 ,

n´ 3
2 , ¨ ¨ ¨ ,´

n´ 1
2

¸¸

σ

.

Let g, k and h be Lie algebras of GUIpRq, KI,8 and HpRq. WriteW for the Weyl group
W pgC, hCq and Wc for the Weyl group W pkC, hCq. We can identify W with

ś

σPΣ
Sn and Wc

with
ś

σPΣ
Srσ ˆ Ssσ where S refers to the standard permutation group. For w P W , we

write the length of w by lpwq.

Let W 1 :“ tw P W |wpR`q Ą R`c u be a subset of W . By the above identification,
pwσqσ P W

1 if and only if wσp1q ă wσp2q ă ¨ ¨ ¨ ă wσprσq and wσprσ ` 1q ă ¨ ¨ ¨ ă wσpnq
One can show that W 1 is a set of coset representatives of shortest length for WczW .

Moreover, for λ a highest weight of a representation of GUI , one can show easily
that w ˚ λ :“ wpλ ` ρq ´ ρ is the highest weight of a representation of KI,8. More
precisely, if λ “ pλ0, pλipσqqσPΣ,1ďiďnq, then w ˚ λ “ pλ0, ppw ˚ λqipσqqσPΣ,1ďiďnq with

pw ˚ λqipσq “ λwσpiqpσq `
n` 1

2 ´ wσpiq ´ p
n` 1

2 ´ iq “ λwσpiqpσq ´ wσpiq ` i.

Remark 4.3.1. The results of [12] tell us that there exists

H̄qpShI ,W
O
λ q –

à

wPW 1
H̄q;wpShI ,W

O
λ q (4.7)

a decomposition as subspaces of pure Hodge type pppw, λq, q´ c´ ppw, λqq. We now deter-
mine the Hodge number ppw, λq.

We know that w ˚ λ is the highest weight of a representation of KI,8. We denote this
representation by pρw˚λ,Ww˚λq. We know that ρw˚λ ˝hI |SpRq : SpRq Ñ KI,8 Ñ GLpWw˚λq

is of the form z ÞÑ z´ppw,λqz̄´rpw,λqIWw˚λ
with ppw, λq, rpw, λq P Z. The first index ppw, λq

is the Hodge type mentioned above.
Recall that the map

hI |SpRq : SpRq Ñ KI,8 Ă R`,ˆ ˆ Upn,CqΣ (4.8)

z ÞÑ

¨

˚

˚

˝

|z|,

¨

˚

˚

˝

z

|z|
Irσ 0

0
z̄

|z|
Isσ

˛

‹

‹

‚

σPΣ

˛

‹

‹

‚

and the map

ρw˚λ : KI,8 Ñ GLpWw˚λq

pw, diagpzipσqqσPΣ,1ďiďnq ÞÑ wλ0
ź

σPΣ

n
ź

i“1
zipσq

pw˚λqipσq
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where diagpz1, z2, ¨ ¨ ¨ , znq means the diagonal matrix of coefficients z1, z2, ¨ ¨ ¨ , zn.

Therefore we have:

z´ppw,λqz̄´rpw,λq “ |z|λ0
ź

σPΣ
p

ź

1ďiďrσ
p
z

|z|
qpw˚λqipσq

ź

rσ`1ďiďn
p
z

|z|
qpw˚λqipσq

“ pz
1
2 z

1
2 q
λ0´

ř

σPΣ

ř

1ďiďn
pw˚λqipσq

z

ř

σPΣ

ř

1ďiďrσ
pw˚λqipσq

z

ř

σPΣ

ř

rσ`1ďiďn
pw˚λqipσq

Since pw˚λqipσq “ λwσpiqpσq´wσpiq`i and then
ř

σPΣ

ř

1ďiďn
pw˚λqipσq “

ř

σPΣ

ř

1ďiďn
λipσq,

we obtain that:

ppw, λq “

ř

σPΣ

ř

1ďiďn
λipσq ´ λ0

2 ´
ÿ

σPΣ

ÿ

1ďiďrσ
pw ˚ λqipσq

“

ř

σPΣ

ř

1ďiďn
λipσq ´ λ0

2 ´
ÿ

σPΣ

ÿ

1ďiďrσ
pλwσpiqpσq ´ wσpiq ` iq (4.9)

The method of toroidal compactification gives us more information on H̄q;wpShI ,W
O
λ q.

We take j : ShI ãÑ ĂShI to be a smooth toroidal compactification. Proposition 2.2.2
of [12] tells us that the following results do not depend on the choice of the toroidal
compactification.

The automorphic vector bundle EΛ can be extended to ĂShI in two ways: the canonical
extension EcanΛ and the sub canonical extension EsubΛ as explained in [12]. Define:

H̄qpShI , EΛq “ ImpHqpĂShI , E
sub
Λ q Ñ HqpĂShI , E

can
Λ qq.

Proposition 4.3.1. There is a canonical isomorphism

H̄q;wpShI ,W
O
λ q – H̄q´lpwqpShI , Ew˚λq

Let D “ 2
ř

σPΣ
rσsσ be the dimension of the Shimura variety. We are interested in the

cohomology space of degree D{2. Proposition 2.2.7 of [13] also works here:

Proposition 4.3.2. The space H̄D{2pShI ,W
O
λ q is naturally endowed with a K-rational

structure, called the de Rham rational structure and noted by H̄D{2
DR pShI ,W

O
λ q. This ra-

tional structure is endowed with a K-Hodge filtration F ¨H̄
D{2
DR pShI ,W

O
λ q pure of weight

D{2´ c such that

F pH̄
D{2
DR pShI ,W

O
λ q{F

p`1H̄
D{2
DR pShI ,W

O
λ q bK C –

à

wPW 1,ppw,λq“p

H̄D{2;wpShI ,W
O
λ q.

Moreover, the composition of the above isomorphism and the canonical isomorphism

H̄D{2;wpShI ,W
O
λ q – H̄D{2´lpwqpShI , Ew˚λq

is rational over K.
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Holomorphic part: Let w0 P W 1 defined by w0pσqp1, 2, ¨ ¨ ¨ , rσ; rσ`1, ¨ ¨ ¨ , nqσPΣ “

psσ`1, ¨ ¨ ¨ , n; 1, 2, ¨ ¨ ¨ , sσq for all σ P Σ. It is the only longest element in W 1. Its length is
D{2.

We have a K-rational isomorphism

H̄D{2;w0pShI ,W
O
λ q – H̄0pShI , Ew0˚λq. (4.10)

We can calculate the Hodge type of H̄D{2;w0pShI ,W
O
λ q as in Remark 4.3.1.

By definition we have

w0 ˚ λ “ pλ0, pλsσ`1pσq ´ sσ, ¨ ¨ ¨ , λnpσq ´ sσ;λ1pσq ` rσ, ¨ ¨ ¨ , λsσpσq ` rσqσPΣq. (4.11)

By the discussion in Remark 4.3.1, the Hodge number

ppw0, λq “

ř

σPΣ

ř

1ďiďn
λipσq ´ λ0 `D

2 ´
ÿ

σPΣ
pλsσ`1pσq ` ¨ ¨ ¨ ` λnpσqq.

From equation (4.9), it is easy to deduce that ppw0, λq is the only largest number
among tppw, λq | w PW 1u. Therefore

F ppw0,λqpShI ,W
O
λ q bK C – H̄0pShI , Ew0˚λq. (4.12)

Moreover, as mentioned in the above proposition, we know that the above isomorphism is
K-rational.

We call H̄D{2;w0pShI ,W
O
λ q – H̄0pShI , Ew0˚λq the holomorphic part of the Hodge

decomposition of H̄D{2pShI ,W
O
λ q. It is isomorphic to the space of holomorphic cusp forms

of type pw0 ˚ λq
_.

Anti-holomorphic part: The only shortest element in W 1 is the identity with the
smallest Hodge number

ppid, λq “

ř

σPΣ

ř

1ďiďn
λipσq ´ λ0

2 ´
ÿ

σPΣ
pλ1pσq ` ¨ ¨ ¨ ` λrσpσqq.

We call H̄D{2;idpShI ,W
O
λ q – H̄D{2pShI , Eλq the anti-holomorphic part of the Hodge

decomposition of H̄D{2pShI ,W
O
λ q.

4.4 Complex conjugation

We specify some notation first.

Let λ “ pλ0, pλ1pσq ě λ2pσq ě ¨ ¨ ¨ ě λnpσqqσPΣq P ΛpGUIq as before. We define
λc :“ pλ0, p´λnpσq ě ´λn´1pσq ě ¨ ¨ ¨ ě ´λ1pσqqσPΣq and λ_ :“ p´λ0, p´λnpσq ě
´λn´1pσq ě ¨ ¨ ¨ ě ´λ1pσqqσPΣq. They are elements in ΛpGUIq. Moreover, the repre-
sentation Vλc is the complex conjugation of Vλ and the representation Vλ_ is the dual of
Vλ as GUI -representation.
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Similarly, for Λ “ pΛ0, pΛ1pσq ě ¨ ¨ ¨ ě Λrσpσq,Λrσ`1pσq ě ¨ ¨ ¨ ě ΛnpσqqσPΣq P
ΛpKI,8q, we define Λ˚ :“ p´Λ0, p´Λrσpσq ě ¨ ¨ ¨ ě ´Λ1pσq,´Λn ě ¨ ¨ ¨ ě ´Λrσ`1qσPΣq.

We know VΛ˚ is the dual of VΛ as KI -representation. We sometimes write the latter
as |VΛ.

We define Ic by Icpσq “ n´ Ipσq for all σ P Σ. We know VIc “ ´VI and GUIc – GUI .
The complex conjugation gives an anti-holomorphic isomorphismXI

„
ÝÑ XIc . This induces

a K-antilinear isomorphism

H̄D{2pShI ,W
O
λ q

„
ÝÑ H̄D{2pShIc ,W

O
λcq. (4.13)

In particular, it sends holomorphic (resp. anti-holomorphic) elements with respect to
pI, λq to those respect to pIc, λcq. If we we denote by wc0 the longest element related to Ic
then we have K-antilinear rational isomorphisms

cDR : H̄0pShI , Ew0˚λq
„
ÝÑ H̄0pShIc , Ewc0˚λcq (4.14)

H̄D{2pShI , Eλq
„
ÝÑ H̄D{2pShIc , Eλcq . (4.15)

The Shimura datum pGUI , hq induces a Hodge structure of wights concentrated in
tp´1, 1q, p0, 0q, p1,´1qu which corresponds to the Harish-Chandra decomposition induced
by h on the Lie algebra: g “ kC ‘ p` ‘ p´.

Let P “ kC ‘ p´. Let A (resp. A0, Ap2q) be the space of automorphic forms (resp.
cusp forms, square-integrable forms) on GUIpQqzGUIpAQq.

We have inclusions for all q:

Hqpg,KI,8;A0 b Vλq Ă H̄qpShI , V
O
λ q Ă Hqpg,KI,8;Ap2q b Vλq

HqpP,KI,8;A0 b VΛq Ă H̄qpShI , EΛq Ă HqpP,KI,8;Ap2q b VΛq.

The complex conjugation on the automorphic forms induces a K-antilinear isomor-
phism:

cB : H̄0pShI , Ew0˚λq
„
ÝÑ H̄D{2pShI , Eλ_q (4.16)

More precisely, we summarize the construction in [13] as follows.

Automorphic vector bundles:

We recall some facts on automorphic vector bundles first. We refer to page 113 of [13]
and [10] for notation and further details.

Let pG,Xq be a Shimura datum such that its special points are all CM points. Let qX
be the compact dual symmetric space of X. There is a surjective functor from the category
of G-homogeneous vector bundles on qX to the category of automorphic vector bundles on
ShpG,Xq. This functor is compatible with inclusions of Shimura data as explained in the
second part of Theorem 4.8 of [10]. It is also rational over the reflex field EpG,Xq.

Let E be an automorphic vector bundle on ShpG,Xq corresponding to E0, a G-
homogeneous vector bundle on qX. Let pT, xq be a special pair of pG,Xq, i.e. pT, xq is



4.4. Complex conjugation 43

a sub-Shimura datum of pG,Xq with T a maximal torus defined over Q. Since the func-
tor mentioned above is compatible with inclusions of Shimura datum, we know that the
restriction of E to ShpT, xq corresponds to the restriction of E0 to x̌ P qX by the previous
functor. Moreover, by the construction, the fiber of E |ShpT,xq at any point of ShpT, xq is
identified with the fiber of E0 at x̌. The EpEq ¨EpT, xq-rational structure on the fiber of E0
at x̌ then defines a rational structure of E |ShpT,xq and called the canonical trivialization
of E associated to pT, xq.

Complex conjugation on automorphic vector bundles:

Let E be as in page 112 of [13] and E be its complex conjugation. The key step of the
construction is to identify E with the dual of E in a rational way.

More precisely, we recall Proposition 2.5.8 of the loc.cit that there exists a non-
degenerate GpAQ,f q-equivariant paring of real-analytic vector bundle E b E Ñ Eν such
that its pullback to any CM point is rational with respect to the canonical trivializations.

We now explain the notion Eν . Let h P X and Kh be the stabilizer of h in GpRq. We
know E is associated to an irreducible complex representation of Kh, denoted by τ in the
loc.cit. The complex conjugation of τ can be extended as an algrebraic representation of
Kh, denoted by τ 1. We know τ 1 is isomorphic to the dual of τ and then there exists ν, a one-
dimensional representation Kh, such that a Kh-equivariant rational paring Vτ b Vτ 1 Ñ Vν
exists. We denote by Eν the automorphic vector bundle associated to Vν .

In our case, we have pG,Xq “ pGUI , XIq, h “ hI and Kh “ KI,8. Let τ “ Λ “ w0 ˚ λ
and E “ EΛ. As explained in the last second paragraph before Corollary 2.5.9 in the
loc.cit, we may identify the holomorphic sections of VΛ with holomorphic sections of the
dual of VΛ. The complex conjugation then sends the latter to the anti-holomorphic sec-
tions of |VΛ “ VΛ˚ . The latter can be identified with harmonic (0,d)-forms with values in
Kb EΛ where K “ ΩD{2

ShI
is the canonical line bundle of ShI .

By 2.2.9 of [13] we have K “ Ep0,p´sσ ,¨¨¨ ,´sσ ,rσ ,¨¨¨ ,rσqσPΣq where the number of ´sσ in
the last term is rσ. Therefore, complex conjugation gives an isomorphism:

cB : H̄0pShI , EΛq
„
ÝÑ H̄D{2pShI , EΛ˚`0,p´sσ ,¨¨¨ ,´sσ ,rσ ,¨¨¨ ,rσqσPΣqq. (4.17)

Recall equation (4.11) that

Λ “ w0 ˚ λ “ pλ0, pλsσ`1pσq ´ sσ, ¨ ¨ ¨ , λnpσq ´ sσ;λ1pσq ` rσ, ¨ ¨ ¨ , λsσpσq ` rσqσPΣq.

We have

Λ˚ “ p´λ0, p´λnpσq`sσ, ¨ ¨ ¨ ,´λsσ`1pσq`sσ;´λsσpσq´rσ, ¨ ¨ ¨ ,´λ1pσq`rσqσPΣq. (4.18)

Therefore, Λ˚ ` p0, p´sσ, ¨ ¨ ¨ ,´sσ, rσ, ¨ ¨ ¨ , rσqσPΣq “ λ_. We finally get equation
(4.16).

Similarly, if we start from the anti-holomorphic part, we will get a K-antilinear iso-
morphism which is still denoted by cB:

cB : H̄D{2pShI , Eλq
„
ÝÑ H̄0pShI , Ew0˚λ_q (4.19)

which sends anti-holomorphic elements with respect to λ to holomorphic elements for λ_.
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4.5 The rational paring

Let Λ P ΛpKI,8q. We write V “ VΛ in this section for simplicity. As in sec-
tion 2.6.11 of [13], we denote by CΛ the corresponding highest weight space. We know
Λ˚ :“ Λ#´p2Λ0, p0qq is the tuple associated to qV , the dual of this KI representation. We
denote by C´Λ the lowest weight of qV .

The restriction from V to CΛ gives an isomorphism

HomKI,8pV, C
8pGUIpFqzGUIpAF qqq

„
ÝÑ HomHpCΛ, C8pGUIpFqzGUIpAF qqV q (4.20)

where C8pGUIpFqzGUIpAF qqV is the V -isotypic subspace of C8pGUIpFqzGUIpAF qq.
Similarly, we have

HomKI,8p
qV , C8pGUIpFqzGUIpAF qqq

„
ÝÑ HomHpC´Λ, C8pGUIpFqzGUIpAF qqqV q (4.21)

Proposition 2.6.12 of [13] says that up to a rational factor the perfect paring

HomHpCΛ, C8pGUIpFqzGUIpAF qqV q ˆHomHpC´Λ, C8pGUIpFqzGUIpAF qqqV q (4.22)

given by integration over the diagonal equals to restriction of the canonical paring (c.f.
p2.6.11.4q of [13])

HomKI,8pV, C
8pGUIpFqzGUIpAF qqq ˆHomKI,8p

qV , C8pGUIpFqzGUIpAF qqq

Ñ HomKI,8pV b
qV , C8pGUIpFqzGUIpAF qqq

Ñ HomKI,8pC, C
8pGUIpFqzGUIpAF qqq

Ñ C. (4.23)

We identify Γ8pShI , EΛq with HomGUIKI,8p
qV , C8pGUIpFqzGUIpAF qqq and regard the

latter as subspace of HomKI,8p
qV , C8pGUIpFqzGUIpAF qqq.

The above construction gives a K-rational perfect paring between holomorphic sec-
tions of EΛ and anti-holomorphic sections of EΛ˚ .

If Λ “ w0 ˚λ, as we have seen in Section 4.4 that the anti-holomorphic sections of EΛ˚

can be identified with harmonic p0, dq-forms with values in Eλ_ .

We therefore obtain a K-rational perfect paring

Φ “ ΦI,λ : H̄0pShI , Ew0˚λq ˆ H̄
D{2pShI , Eλ_q Ñ C. (4.24)

In other words, there is a rational paring between the holomorphic elements for pI, λq and
anti-holomorphic elements for pI, λ_q.

It is easy to see that the isomorphism ShI
„
ÝÑ ShIc commutes with the above paring

and hence:

Lemma 4.5.1. For any f P H̄0pShI , Ew0˚λq and g P H̄D{2pShI , Eλ_q, we have

ΦI,λpf, gq “ ΦIc,λcpcDRf, cDRgq.
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The next lemma follows from Corollary 2.5.9 and Lemma 2.8.8 of [13].

Lemma 4.5.2. Let 0 ‰ f P H̄0pShI , Ew0˚λq. We have Φpf, cBfq ‰ 0.
More precisely, if we consider f as an element in HomKI,8p

qV , C8pGUIpFqzGUIpAF qqq
then by (4.21) and the fixed trivialization of C´w0˚λ, we may consider f as an element in
C8pGUIpFqzGUIpAF qqq. We have:

Φpf, cBfq “ ˘iλ0

ż

GUIpQqZGUI pAQqzGUIpAQq

fpgqfpgq||νpgq||cdg. (4.25)

Recall that νp¨q is the similitude defined in (2.1).

Similarly, if we start from anti-holomorphic elements, we get a paring:

Φ´ “ ΦI,λ,´ : H̄D{2pShI , Eλq ˆ H̄
0pShI , Ew0˚λ_q Ñ C. (4.26)

We use the script ´ to indicate that is anti-holomorphic. It is still cDR stable. For
0 ‰ f´ P H̄D{2pShI , Eλq, we also know that Φ´pf´, cBf´q ‰ 0.

4.6 Arithmetic automorphic periods
Let π be an irreducible cuspidal representation of GUIpAQq defined over a number field

Epπq. We may assume that Epπq contains the quadratic imaginary field K.

We assume that π is cohomological with type λ, i.e. H˚pg,KI,8;π bWλq ‰ 0.

For M a GUIpAQ,f q-module, define the K-rational πf -isotypic components of M by

Mπ :“ HomGUIpAF,f qpResEpπq{Kpπf q,Mq “
à

τPΣEpπq;K
Hompπτf ,Mq.

Therefore, if M has a K-rational structure then Mπ also has a K-rational structure.

As in section 4.4, we have inclusions:

HqpP,KI,8;Aπ0 b VΛq Ă H̄qpShI , EΛq
π Ă HqpP,KI,8;Aπp2q b VΛq.

Under these inclusions, cB sends H̄0pShI , Ew0˚λq
π to H̄D{2pShI , Eλ_q

π_ .
These inclusions are compatible with those K-rational structures and then induce K-

rational parings

Φπ : H̄0pShI , Ew0˚λq
π ˆ H̄D{2pShI , Eλ_q

π_ Ñ C (4.27)
and Φ´,π : H̄D{2pShI , Eλq

π ˆ H̄0pShI , Ew0˚λ_q
π_ Ñ C. (4.28)

Definition 4.6.1. Let β be a non zero K-rational element of H̄0pShI , Ew0˚λq
π. We define

the holomorphic arithmetic automorphic period associated to β by P pIqpβ, πq :“
pΦπpβτ , cBβ

τ qqτPΣEpπq;K . It is an element in pEpπq bK Cqˆ.

Let γ be a non zero K-rational element of H̄D{2pShI , Eλq
π. We define the anti-

holomorphic arithmetic automorphic period associated to γ by P pIq,´pγ, πq :“
pΦ´,πpγτ , cBγτ qqτPΣEpπq;K . It is an element in pEpπq bK Cqˆ.
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Definition-Lemma 4.6.1. Let us assume now π is tempered and π8 is discrete series
representation. In this case, H̄0pShI , Ew0˚λq

π is a rank one EpπqbKC-module (c.f. [21]).

We define the holomorphic arithmetic automorphic period of π by P pIqpπq :“
P pIqpβ, πq by taking β any non zero rational element in H̄0pShI , Ew0˚λq

π. It is an element
in pEpπq bK Cqˆ well defined up to Epπqˆ-multiplication.

We define P pIq,´pπq the anti-holomorphic arithmetic automorphic period of π
similarly.

Lemma 4.6.1. We assume that π is tempered and π8 is discrete series representation.
Let β be a non zero rational element in H̄0pShI , Ew0˚λq

π and β_ be a non zero rational
element in H̄0pShI , E

_
λ q

π_.
We have cBpβq „Epπq P pIqpπqβ_.

Proof It is enough to notice that Φπpβ, β_q P Epπqˆ.

l

Lemma 4.6.2. If π is tempered and π8 is discrete series representation then we have:

1. P pIcqpπcq „Epπq;K P pIqpπq.

2. P pIqpπ_q ˚ P pIq,´pπq „Epπq;K 1.

Proof The first part comes from Lemma 4.5.1 and the fact that cDR preserves rational
structures.

For the second part, recall that the following two parings are actually the same:

Φπ_ : H̄0pShI , Ew0˚λ_q
π_ ˆ H̄D{2pShI , Eλq

π Ñ C (4.29)
and Φ´,π : H̄D{2pShI , Eλq

π ˆ H̄0pShI , Ew0˚λ_q
π_ Ñ C. (4.30)

We take β a rational element in H̄0pShI , Ew0˚λ_q
π_ and γ a rational element in

H̄D{2pShI , Eλq
π. We may assume that Φπ_pβτ , γτ q “ Φ´,πpγτ , βτ q “ 1 for all τ P ΣEpπq;K .

By definition ppIqpπ_q “ pΦπ_pβτ , cBβ
τ qqτPΣEpπq;K . Since H̄D{2pShI , Eλq

π is a rank
one Epπq b C-module, there exists C P pEpπq bK Cqˆ such that pcBβτ qτPΣEpπq;K “

Cpγτ qτPΣEpπq;K . Therefore pIpπ_q “ CpΦπ_pβτ , γτ qqτPΣEpπq;K “ C.

On the other hand, since c2
B “ Id, we have pcBγτ qτPΣEpπq;K “ C´1pβτ qτPΣEpπq;K . We

can deduce that ppIq,´pπq “ C´1 as expected.

l

Definition 4.6.2. We say I is compact if UIpCq is. In other words, I is compact if and
only if Ipσq “ 0 or n for all σ P Σ.

Corollary 4.6.1. If I is compact then P pIqpπq „Epπq;K P pIq,´pπq. We have P pIqpπ_q ˚
P pIqpπq „Epπq;K 1.
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Proof If I is compact, then w0 “ Id. The anti-holomorphic part and holomorphic part
are the same. We then have P pIqpπq „Epπq;K P pIq,´pπq. The last assertion comes from
Lemma 4.6.2.

l





Chapter 5

Special values of automorphic
L-functions: the start point

5.1 Special values of automorphic L-functions for similitude
unitary group

The method in [13] should work for a general CM field. We state the predicted formula
in this section.

Let π be a tempered representation of GUIpAQq such that π8 is discrete series repre-
sentation. In particular, the holomorphic arithmetic automorphic periods P pIqpπq is well
defined.

We assume that π is cohomological with type λ “ pλ0, pλ1pσq ě λ2pσq ¨ ¨ ¨ ě λnpσqqσPΣq.

We say λ or π is 2-regular if λipσq ´ λi`1pσq ě 1 for all 1 ď i ď n´ 1 and all σ P Σ.

Let χ be an algebraic Hecke character of AˆF with infinity type pz´kpσqqσPΣ. Let α be
an algebraic Hecke character of AˆF with infinity type pzκqσPΣ.

Definition 5.1.1. We set λ0pσq “ `8 and λn`1pσq “ ´8. We say m P Z is critical for
Mpπ, χ, αq (c.f. [13]) if for all σ P Σ,

λrσ`1pσq ` kpσq ` sσ ´ κ ď m ď ´λrσ`1pσq ´ kpσq ` rσ

and ´ λrσpσq ´ kpσq ` rσ ď m ď λrσpσq ` kpσq ` sσ ´ κ.

This definition generalize the condition in Lemma 3.3.7 of the loc.cit. In the loc.cit, it
is assumed that µ is self-dual. In general, the index Λ in that Lemma should be Λpµc; r, sq.

We assume the following conjecture throughout the text.

Conjecture 5.1.1. Let π be a tempered representation of GUIpAQq such that π8 is dis-
crete series representation and cohomological with type λ. In particular, the holomorphic

arithmetic automorphic periods P pIqpπq is well defined. If an integer m ě
n´ κ

2 is critical
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for Mpπ, χ, αq then a certain rational differential operator exists and we have

Lmot,Spm,π b χ, St, αq „EpπqEpχqEpαq;K

p2πiqpm´
n´1

2 qndp2πq´λ0P pIqpπq
ś

σPΣ
ppprχα, σq´Ipσqpprχα, σq´n`Ipσqq . (5.1)

Recall that rχ “
χ

χc
is a Hecke character of AF .

Remark 5.1.1. 1. If m ě
n´ κ

2 is critical forMpπ, χ, αq, we have 2λrσ`1´2prσ`1q ď
κ´2kpσq´n´2 and 2λrσ´2rσ ě κ´2kpσq´n. We see that rσ “ maxtr | 2λn1´2r ě
κ´ 2kpσq ´ nu.

2. We didn’t state the CM periods in the above conjecture as in Theorem 3.5.13 of [13].
Instead, the current form appears in middle steps of the proof for Theorem 3.5.13.
We refer to equation p2.9.12q or the third line in page 138 of the loc.cit.

Let us examine the condition in the above conjecture. After simple calculation, we see

that such m always exists. Moreover, if λrσ ą λrσ`1, we may have m ě
n´ κ` 1

2 . In this
case, we know Lmot,Spm,π b χ, St, αq does not vanish.

Let GU and GU 1 be two rational similitude group associated to two unitary groups
over F with respect to F {F` of dimension n. We know GU 1 is an inner form of GU and
thus they are isomorphic to each other at almost all primes.

Let π and π1 be automorphic representations of GUpAQq and GU 1pAQq respectively.
We say π is nearly equivalent to π1 if they are isomorphic to each other at almost all
primes. In particular, they have the same value of partial L-functions.

We then deduce that:

Corollary 5.1.1. The arithmetic automorphic periods P pIqpπq and P pIq,´pπq depends only
on the nearly equivalence class of π if π is 2-regular.

5.2 Special values of automorphic L-functions for GLnˆGL1

Let Π be a cuspidal automorphic representation of GLnpAF q which is regular conjugate
self-dual, cohomological. We assume moreover that Πq descends locally if n is even. By
Lemma 2.3.1, there exists an Hecke character of K, denoted by ξ, such that Π_ b ξ is θI -
stable. By Proposition 2.3.2, we know Π_bξ descends to π, an automorphic cohomological
representation of GUIpAQq with is tempered and discrete series at the infinity place. In
particular, the arithmetic automorphic period of π can be defined.

Definition 5.2.1. We fix one Hecke character ξ as above. We denote its infinity type by
zuzv. We define the arithmetic automorphic period for Π by P pIqpΠ, ξq :“ p2πqu`vP pIqpπq.

If Π is 2-regular then P pIqpΠ, ξq does not depend on the choice of ξ up to elements
in EpΠq. This is a corollary of Theorem 5.2.1. Therefore we may define P pIqpΠq :“
P pIqpΠ, ξq for any fixed ξ in this case.
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Lemma 5.2.1. Let Π be as in the above theorem.

1. For all I we have P pIqpΠq „EpΠq;K P pI
cqpΠcq.

2. If I is compact then P pIqpΠ_q˚P pIqpΠq „EpΠq;K 1. In particular, since Π is conjugate
self-dual, we have P pIcqpΠq ˚ P pIqpΠq „EpΠq;K 1 in this case.

Proof The first part comes from the first part of Lemma 4.6.2. It is also a direct corol-
lary from Theorem 5.2.1 below.

The second one follows from Corollary 4.6.1. Let ξ be the auxiliary Hecke character
with infinity type zuzv as above and π be the representation of GUIpAQq with base change
Π_ b ξ. We know π_ is a representation of GUIpAQq with base change Πb ξ´1.

By definition

P pIqpΠq „EpΠq;K p2πqu`vP pIqpπq
and P pIqpΠ_q „EpΠq;K p2πq´u´vP pIqpπ_q. (5.2)

Thus P pIqpΠ_q ˚ P pIqpΠq „EpΠq;K P pIqpπ_q ˚ P pIqpπq „EpΠq;K 1.

l

Critical points: Let n, n1 be two integers. Let Π and Π1 be algebraic automorphic rep-
resentations of GLnpAF q and GLn1pAF q with pure infinity type pzaipσqz´ωpΠq´aipσqq1ďiďn
and pza

1
jpσqz´ωpΠq´a

1
jpσqq1ďjďn1 respectively.

We assume the existence of motives MpΠq and MpΠ1q associated to Π and Π1. Let

m P Z`
n` n1

2 . We saym is critical for ΠbΠ1 ifm`
n` n1 ´ 2

2 is critical forMpΠqbMpΠ1q
in the sense of Deligne (c.f. [7] or Chapter 6).

If aipσq ` a1jpσq ‰
´ ωpΠq ´ ωpΠ1q

2 for all i, j and σ then critical points always exist.
In this case, we have an explicit description for them (c.f. p1.3.1q of [7]). More pre-

cisely, m is critical if and only if for all i, j, σ, if ´aipσq ´ a1jpσq ą
ωpΠq ` ωpΠ1q

2 then

ωpΠq`ωpΠ1q`1`aipσq`a1jpσq ď m ď ´aipσq´a
1
jpσq, if ´aipσq´a1jpσq ă

ωpΠq ` ωpΠ1q
2

then 1´ aipσq ´ a1jpσq ď m ď ωpΠq ` ωpΠ1q ` aipσq ` a1jpσq. Roughly speaking, m should
be closer to the central point than any of the aipσq ` a1jpσq.

If aipσq ` a1jpσq “
´ ωpΠq ´ ωpΠ1q

2 for some i, j and σ then there is no critical points
(c.f. Lemma 1.7.1 of [13]).

The following theorem follows directly from Conjecture 5.1.1.

Theorem 5.2.1. Let us assume that Conjecture 5.1.1 is true. Let Π be a regular, con-
jugate self-dual, cohomological, cuspidal automorphic representation of GLnpAF q which
descends to UIpAF`q for any I (c.f. Proposition 2.3.1 ). We denote the infinity type of Π
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at σ P Σ by pzaipσqz´aipσqq1ďiďn.

Let η be an algebraic Hecke character of F with infinity type zapσqzbpσq at σ P Σ. We
know that apσq ` bpσq is a constant independent of σ, denoted by ´ωpηq.

We suppose that apσq ´ bpσq ` 2aipσq ‰ 0 for all 1 ď i ď n and σ P Σ. We define I :“
IpΠ, ηq to be the map on Σ which sends σ P Σ to Ipσq :“ #ti : apσq ´ bpσq ` 2aipσq ă 0u.

Let m P Z`
n´ 1

2 . If m ě
1` ωpηq

2 is critical for Πb η, we have:

Lpm,Πb ηq „EpΠqEpηq;K p2πiqmndP pIpΠ,ηqqpΠq
ź

σPΣ
ppqη, σqIpσqppqη, σqn´Ipσq. (5.3)

Lemma 5.2.2. Let χ, α be as in Conjecture 5.1.1. Let π be a representation of GUI with

base change Πc ˆ ξ for certain auxiliary ξ. We set ηc “ rχα. Let m P Z`
n` 1

2 . Then m

is critical for Πb η if and only if m`
n´ 1

2 is critical for Mpπ, χ, αq.

Proof Since ηc “ rχα, we have bpσq “ ´kpσq ` κ and apσq “ kpσq. Note that ´ωpηq “
apσq ` bpσq “ κ.

We write the cohomology type of π by pλ0, pλ1pσq ě ¨ ¨ ¨λnpσqqq. We order aipσq in de-

creasing order. The cohomology type of π is then p´u´v; pa1pσq´
n´ 1

2 ě a2pσq´
n´ 3

2 ě

¨ ¨ ¨ ě anpσq `
n´ 1

2 qσPΣq. This gives λ0 “ ´u´ v and λipσq “ aipσq ` i´
n` 1

2 .

Let m P Z `
n´ 1

2 . By the above discussion, m is critical for Π b η if and only if
aipσq ´ bpσq ` 1 ď m ď ´aipσq ´ apσq if apσq ´ bpσq ` 2aipσq ă 0, 1´ aipσq ´ apσq ď m ď

aipσq´ bpσq if apσq´ bpσq` 2aipσq ą 0. Since rσ :“ maxti : apσq´ bpσq` 2aipσq ą 0u, we
deduce thatm is critical for Πbη if and only if arσ`1pσq´bpσq`1 ď m ď ´arσ`1pσq´apσq
and 1´ arσpσq ´ apσq ď m ď arσpσq ´ bpσq. It is easy to see that these two equations are
the same with those in Definition 5.1.1.

l

Proof of Theorem 5.2.1: We can always choose χ and α as in Conjecture 5.1.1 such
that ηc “ rχα.

As m ě
1` ωpηq

2 we have m`
n´ 1

2 ě
n` ωpηq

2 . Moreover, the above lemma implies

that m`
n´ 1

2 is critical for Mpπ, χ, αq and then Conjecture 5.1.1 applies, namely:

Lpm`
n´ 1

2 ,Π_ b rχαq „EpπqEpχqEpαq;K (5.4)

p2πiqmndp2πq´λ0P pIpΠ,ηqqpπq
ś

σPΣ
ppprχα, σq´sσpprχα, σq´n`sσq .
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Recall by definition that P pIpΠ,ηqqpΠ, ξq “ p2πq´λ0P pIpΠ,ηqqpπq. Moreover, ηc “ rχα and
then pprχα, σq „ ppηc, σq „ ppqη, σq´1 and pprχα, σq „ ppqη, σq´1. We deduce that the right
hand side of (5.4) is equivalent to p2πiqmndpP pIpΠ,ηqqpΠ, ξq

ś

σPΣ
pppqη, σqsσppqη, σqn´sσq.

We end our proof by the fact that Lpm,Π b ηq “ Lpm,Πc b ηcq “ Lpm,Π_ b rχαq “

Lmotpm`
n´ 1

2 , π b χ, St, αq.

l

5.3 Arithmetic automorphic periods for conjugate self-dual
representations

If we consider Π˚ :“ Πb η, it is not conjugate self-dual but Π˚ b η´1 is. We call such
representations conjugate self-dual. We want to generalize the definition for arithmetic
automorphic period to such representations.

We firstly generalize the definition for IpΠ, ηq in Theorem 5.2.1.

Definition-Lemma 5.3.1. Let Π˚ be an algebraic regular representation of GLnpF q with
infinity type pzaipσqzbipσqq1ďiďn at σ P Σ. Let η be am algebraic Hecke character of F with
infinity type zapσqzbpσq at σ P Σ. We assume that apσq ´ bpσq ` aipσq ´ bipσq ‰ 0 for all σ
and i.

We define IpΠ˚, ηq to be the map sending σ P Σ to #ti : apσq´bpσq`aipσq´bipσq ă 0u.
It is easy to see that IpΠ˚, η1η2q “ IpΠ˚ b η1, η2q for any η1, η2.

We can now define the arithmetic automorphic periods.

Definition-Lemma 5.3.2.
We say a 3-regular cohomological cuspidal automorphic representation Π˚ of GLnpAF q

has definable arithmetic automorphic periods if there exists an algebraic Hecke char-
acter η of F such that Π˚ b η´1 descends to unitary groups of any sign. In particular,
Π˚ b η´1 is conjugate self-dual.

In this case, for any sign I, i.e. a map from Σ to t0, 1, ¨ ¨ ¨ , nu, we define the arith-
metic automorphic period for Π˚ by P pIqpΠ˚q :“ P pIqpΠ˚bη´1q

ś

σPΣ
ppqη, σqIpσqppqη, σqn´Ipσq.

This definition does not depend on the choice of η and hence is compatible with Defi-
nition 5.2.1 if Π˚ itself is conjugate self-dual.

Proof The last part comes from Theorem 5.2.1. In fact, for any I, let χ be an algebraic
Hecke character such that IpΠ˚, χq “ I. Since Π˚ is 3-regular, we may choose χ such that

there exists m ě 1`
ωpηq ` ωpχq

2 critical for Π˚ b χ.

Let η be an algebraic Hecke character such that Π :“ Π˚ b η´1 is conjugate self-dual,
we have Π˚ b χ “ Πb pηχq.
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Since IpΠ, ηχq “ IpΠ˚, χq “ I, Theorem 5.2.1 gives that:

Lpm,Π˚ b χq “ Lpm,Πb pηχqq
„EpΠqEpηqEpχq;K p2πiqmndP pIqpΠq

ź

σPΣ
pp|ηχ, σqIpσqpp|ηχ, σqn´Ipσq

„EpΠqEpηqEpχq;K p2πiqmndP pIqpΠq
ź

σPΣ
ppqη, σqIpσqppqη, σqn´Ipσq

ź

σPΣ
ppqχ, σqIpσqppqχ, σqn´Ipσq

with both sides non zero.

In particular, P pIqpΠ˚ b η´1q
ś

σPΣ
ppqη, σqIpσqppqη, σqn´Ipσq

„EpΠ˚q;K p2πiq´mndp
ź

σPΣ
ppqχ, σqIpσqppqχ, σqn´Ipσqq´1Lpm,Π˚ b χq

which does not depend on the choice of η.

l

Remark 5.3.1. Let Π be a 3-regular cohomological cuspidal automorphic representation
of GLnpAF q which is conjugate self-dual after tensoring an algebraic Hecke character η.
Let q be a prime number inert in F` and split in F . If pΠ b ηqq descends locally then
Π has definable arithmetic automorphic periods. In particular, this holds true if Πq is in
discrete series.

We read from the above proof that Theorem 5.2.1 can be rewritten as follows:

Theorem 5.3.1. Let Π be an algebraic automorphic representation of GLnpAF q which
has definable arithmetic automorphic periods. Let η be an algebraic Hecke character as in
Definition 5.3.1. We write I :“ IpΠ, ηq.

Let m P Z`
n´ 1

2 be critical for Πb η. If m ě
1` ωpΠq ` ωpηq

2 then

Lpm,Πb ηq „EpΠqEpηq;K p2πiqmndP pIpΠ,ηqqpΠq
ź

σPΣ
ppqη, σqIpσqppqη, σqn´Ipσq. (5.5)

Moreover, there always exists such m with both sides non zero.

Remark 5.3.2. The last part comes from the fact that Π is 3-regular. The 3-regular con-
dition is not needed to define the arithmetic automorphic periods in general. We assume it
here to guarantee that Definition 5.3.2 does not depend on the choice of η. One can replace
this condition by a weaker one on the non vanishing property for certain L-functions.



Chapter 6

Motives and Deligne’s conjecture

6.1 Motives over Q

In this article, a motive simply means a pure motive for absolute Hodge cycles in the
sense of Deligne [7].

More precisely, a motive over Q with coefficients in a number field E is given by its
Betti realization MB, its de Rham realization MDR and its l-adic realization Ml for all
prime numbers l where MB and MDR are finite dimensional vector space over E, Ml is a
finite dimensional vector space over El :“ E bQ Ql endowed with:

• I8 : MB b C „
ÝÑMDR b C as E bQ C-module;

• Il : MB bQl
„
ÝÑMl as E bQ Ql-module.

From the isomorphisms above, we see that dimEMB “ dimEMDR “ dimElMl and
this is called the rank of M . We need moreover:

1. An E-linear involution (infinite Frobenius) F8 on MB and a Hodge decomposition
MB b C “

À

p,qPZ
Mp,q as E b C-module such that F8 sends Mp,q to M q,p.

For w an integer, we say M is pure of weight w if Mp,q “ 0 for p ` q ‰ w.
Throughout this paper, all the motives are assumed to be pure. We assume also
that F8 acts on Mp,p as a scalar for all p P Z.

We say M is regular if dimMp,q ď 1 for all p, q P Z.

2. An E-rational Hodge filtration onMDR: ¨ ¨ ¨ ĄM i ĄM i`1 Ą ¨ ¨ ¨ which is compatible
with the Hodge structure on MB via I8, i.e.,

I8p
à

pěi

Mp,qq “M i b C.

3. A Galois action of GQ on each Ml such that pMlql forms a compatible system of
l-adic representations ρl : GQ ÝÑ GLpMlq. More precisely, for each prime number
p, let Ip be the inertia subgroup of a decomposition group at p and Fp the geometric
Frobenius of this decomposition group. We have that for all l ‰ p, the polynomial
detp1´ Fp|M

Ip
l q has coefficients in E and is independent of the choice of l. We can

then define Lpps,Mq :“ detp1´ p´sFp|M
Ip
l q

´1 P Epp´sq for whatever l ‰ p.
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For any fixed embedding σ : E ãÑ C, we may consider Lpps,M, σq as a complex valued
function. We define Lps,M, σq “

ś

p
Lpps,M, σq. It converges for Repsq sufficiently large.

It is conjectured that the L-function has analytic continuation and functional equation on
the whole complex plane.

We can also define L8ps,Mq, the infinite part of the L-function, as in chapter 5 of [7].

Deligne has defined the critical values for M as follows:

Definition 6.1.1. We say an integer m is critical for M if neither L8pM, sq nor
L8pM̌, 1 ´ sq has a pole at s “ m where M̌ is the dual of M . We call m a critical
value of M .

Remark 6.1.1. The notion L8ps,Mq implicitly indicates that the infinity type of the L-
function does not depend on the choice of σ : E ãÑ C. More precisely, for every σ : E ãÑ C,
put MB,σ :“MB bE,σ C.

We then have MBbC “
À

σ:EãÑC
MB,σ. Since Mp,q is stable by E, each MB,σ inherits a

Hodge decomposition MB,σ “
À

Mp,q
B,σ. We may define L8ps,M, σq with help of the Hodge

decomposition of MB bE,σ C. It is a product of Γ factors which depend only on dimMp,q
B,σ

and the action of F8 on Mp,p
B,σ. The latter is independent of σ since we have assumed that

F8 acts on Mp,p by a scalar.

It remains to show that dimMp,q
B,σ is also independent of σ. In fact, since M is pure,

Mp,q can be reconstructed from the Hodge filtration M i. Hence Mp,q “
À

Mp,q
B,σ is a free

E bC-module. One can show Mp,q
B,σ “Mp,q bE,σ C and hence dimMp,q

B,σ is independent of
σ.

If F8 acts as a scalar atMp,p for every p then Deligne’s period can be defined. We will
only treat the case when M has no pp, pq class. Therefore, Deligne’s period can always be
defined.

Definition 6.1.2. Let M be a motive over Q of weight ω which has no pω{2, ω{2q class.
We denote by M`

B the subspace of MB fixed by F8. We denote by F`pMq :“ Fω{2pMq a
subspace of MDR. It is easy to see that I´1

8 pF
`pMq b Cq equals to

À

pąq
Mp,q.

The comparison isomorphism then induces an isomorphism:

M`
B b C ãÑMB b C „

ÝÑMDR b CÑ pMDR{F
`pMqq b C. (6.1)

Deligne’s period c`pMq is defined to be the determinant of the above isomorphism with
respect to fixed EpMq-bases of M`

B and MDR{F
`pMq. It is well defined up to EpMqˆ,

Deligne has conjectured in [7] that:

Conjecture 6.1.1. If 0 is critical for M (see the loc.cit for the definition of critical),
then Lp0,M, σq „EpMq c

`pMq.



6.1. Motives over Q 57

More generally, tensoringM by the Tate motive Qpmq (c.f. [7] chapter 1), we obtained
a new motive Mpmq. We remark that Lps,Mpmq, σq “ Lps ` m,M, σq. The following
conjecture is a corollary of the previous conjecture:

Conjecture 6.1.2. If m is critical for M , then

Lpm,M, σq „EpMq p2πiqd
`mc`pMq (6.2)

where d` “ dimEpMqpM
`
B q.

Deligne has given a criteria to determine whether 0 is critical for M (see p1.3.1q of
[7]). We observe that n is critical for M if and only if 0 is critical for Mpnq. Thus we can
rewrite the criteria of Deligne for arbitrary n. In the case where Mp,p “ 0 for all p, this
criteria becomes rather simple.

We first define the Hodge type of M by the set T “ T pMq consisting of pairs pp, qq
such that Mp,q ‰ 0. Since M is pure, there exists an integer w such that p` q “ w for all
pp, qq P T pMq. We remark that if pp, qq is an element of T pMq, then pq, pq is also contained
T pMq.

Lemma 6.1.1. LetM be a pure motive of weight w. We assume that for all pp, qq P T pMq,

p ‰ q which is equivalent to that p ‰
w

2 .

Let p1 ă p2 ă ¨ ¨ ¨ ă pn be some integers such that

T pMq “ tpp1, q1q, pp2, q2q, ¨ ¨ ¨ , ppn, qnqu Y tpq1, p1q, pq2, p2q, ¨ ¨ ¨ , pqn, pnqu

where qi “ w ´ pi for all 1 ď i ď n.

We set p0 “ ´8 and pn`1 “ `8. Denote by k :“ maxt0 ď i ď n | pi ă
w

2u. We have
that m is critical for M if and only if

maxppk ` 1, w ` 1´ pk`1q ď m ď minpw ´ pk, pk`1q.

In particular, critical value always exists in the case where pi ‰ qi for all i.

Proof The Hodge type ofMpmq is tppi´m,w´pi´mq | 1 ď i ď nuYtpw´pi´m, pi´mq |
1 ď i ď nu. By Deligne’s criteria, 0 is critical forM if and only if for all i, either pi´m ď ´1
and w ´ pi ´m ě 0, or pi ´m ě 0 and w ´ pi ´m ď ´1. Hence the set of critical values
for M are

Ş

1ďiďn
prw ` 1´ pi, pis Y rpi ` 1, w ´ pisq.

For i ď k, pi ă
w

2 and then pi ă w ` 1 ´ pi. Therefore
Ş

1ďiďk
prw ` 1 ´ pi, pis Y rpi `

1, w ´ pisq “
Ş

1ďiďk
rpi ` 1, w ´ pis “ rpk ` 1, w ´ pks. Similarly we have

Ş

kăiďn
prw ` 1 ´

pi, pis Y rpi ` 1, w ´ pisq “
Ş

kăiďn
rw ` 1´ pi, pis “ rw ` 1´ pk`1, pk`1s.

We deduce, at last, that the set of critical values for M is rmaxppk ` 1, w ` 1 ´
pk`1q,minpw ´ pk, pk`1qs. It is easy to verify that the latter set is non empty.

l



58 Chapter 6. Motives and Deligne’s conjecture

6.2 Motivic periods over quadratic imaginary fields
Recall that K is a quadratic imaginary field with fixed embedding K ãÑ Q. Let E be

a number field.

Let M be a regular motive over K (with respect to the fixed embedding) with coeffi-
cients in E of dimension n pure of weight ωpMq.

Recall thatMB, the Betti realization ofM , is a finite dimensional E-vector space. The
infinite Frobenius gives an E-linear isomorphism F8 : MB

„
ÝÑM c

B.

Since M is regular of dimension n, we can write its Hodge type by ppi, qi “ ωpMq ´
piq1ďiďn with p1 ą p2 ą ¨ ¨ ¨ ą pn. The Betti realization MB has a Hodge decomposition
MB bQ C “

n
À

i“1
Mpi,qi as E bQ C-modules.

We write the Hodge type of M c by ppci , qci “ ωpMq ´ pci q1ďiďn with pci “ qn`1´i “
ωpMq ´ pn`1´i. Note that the Hodge numbers pci are still in decreasing order. We know
M c
BbQC “

n
À

i“1
pM cqp

c
i ,q

c
i and F8 induces E-linear isomorphisms: Mpi,qi „ÝÑ pM cq

pcn`1´i,q
c
n`1´i .

The De Rham realizationMDR is also a finite dimensional E-linear space endowed with
a Hodge filtration MDR “Mpn ĄMpn´1 Ą ¨ ¨ ¨ ĄMp1 . The comparison isomorphism:

I8 : MB bQ C „
ÝÑMDR bQ C (6.3)

induces compatibility isomorphisms on the Hodge decomposition of MB and the Hodge
filtration on MDR.

More precisely, for each 1 ď i ď n, I8 induces an isomorphism:

I8 :
à

pjěpi

Mpj ,qj “
à

jďi

Mpj ,qj „
ÝÑMpi bQ C (6.4)

Definition 6.2.1. For any fixed E-bases of MB and MDR, we can extend them to EbQC
bases of MB b C and MDR b C respectively. We define δDelpMq to be the determinant of
I8 with respect to the fixed E-rational bases, called the determinant period. It is an
element in pE b Cqˆwell defined up to multiplication by elements in Eˆ Ă pE b Cqˆ.

This is an analogue of Deligne’s period δ defined in (1.7.3) of [7].

Let us now fix some bases. We take peiq1ďiďn an E-base of MB. Since F8 is E-linear
on MB, we know peci :“ F8eiq1ďiďn forms an E-base of M c

B.

From (6.4) we see that I8 induces an isomorphismMpi,qi „ÝÑ pMpiqbQC{pMpi´1qbQC
for any 1 ď i ď n. Here we set Mp0 “ t0u. Let ωi be a non zero element in Mpi,qi such
that the image of ωi by the above isomorphism is in Mpipmod pMpi´1q bQ Cq. In other
words, I8pωiq is equivalent to an element in Mpi modulo pMpi´1q bQ C.

Since pωiq1ďiďn forms an E b C-base of MB b C, we know pI8pωiqq1ďiďn forms an
E b C-base of MDR b C. This base is not rational, i.e. is not contained in MDR. But
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by the above construction, it can pass to a rational base of MDR bQ C with a unipotent
matrix for change of basis. Since the determinant of a unipotent matrix is always one, we
can use this base for calculating δDelpMq.

We define ωci P pM cqp
c
i ,q

c
i similarly. We will use pI8pωci qq1ďiďn as an E bQ C base of

MDR b C to calculate motivic period henceforth.

Definition 6.2.2. Since Mpci ,q
c
i is a rank one free E b C-module, we know there exists

numbers QipMq P pE b Cqˆ, 1 ď i ď n such that F8ωi “ QipMqω
c
n`1´i for all i. These

numbers in pE b Cqˆ are called motivic period and well defined up to Eˆ.

Since F 2
8 “ Id, we have F8ωcn`1´i “ QipMq

´1ωi. We deduce that:

Lemma 6.2.1. For all 1 ď i ď n, QipM cq „EpMq;K Qn`1´ipMq
´1.

We write ωa “
n
ř

i“1
Aiaei, ωct “

n
ř

i“1
Acite

c
i for all 1 ď a, t ď n.

We know δDelpMq “ detpAiaq1ďi,aďn and δDelpM cq “ detpAcitq1ďi,tďn. This implies
that

Źn
i“1 ωi “ δDelpMq

Źn
i“1 ei.

We denote by detpMq the determinant motive of M as in section 1.2 of [16]. We know
I8p

Źn
i“1 ωiq is an E-base of detpMqDR and

Źn
i“1 ei is an E-base of detpMqB. Moreover,

F8p
Źn
i“1 ωiq “

ś

1ďiďn
QipMq

Źn
i“1 ω

c
i .

We deduce that:

Lemma 6.2.2.

δDelpMq „EpMq;K δDelpdetpMqq (6.5)

Q1pdetpMqq „EpMq;K

n
ź

i“1
QipMq (6.6)

Remark 6.2.1. The determinant period δDelpMq is inverse of the period δ defined in
[16]. In fact, the period δpMq is defined by equation p1.2.4q of [16], namely,

Źn
i“1 ei “

δpMq
Źn
i“1 ωi. Therefore δpMq „EpMq;K δDelpdetpMqq´1 „EpMq;K δDelpMq´1.

Lemma 6.2.3. For all motive M as above, we have:

δDelpM cq „EpMq;K p
ź

1ďiďn
Q´1
i qδ

DelpMq
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Proof This follows directly from equation (6.10).

One can also prove this with help of Lemma 6.2.2. In fact, by Lemma 6.2.2, we may
assume that n “ 1. We take ω P MDR, ωc P M c

DR and e P MB. Then ω “ δDelpMqe and
ωc “ δDelpM cqec where ec “ F8e.

By definition of motivic period, we have F8ω “ Q1pMqω
c and then ωc “ Q1pMq

´1F8ω “
Q1pMq

´1F8pδ
DelpMqeq “ Q1pMq

´1δDelpMqec. It follows that

δDelpM cq „EpMq;K Q1pMq
´1δDelpMq

as expected.

l

Example 6.2.1. Tate motive
Let Zp1qK be the extension of Zp1q from Q to K. It is a motive with coefficients

in K. As in section 3.1 of [7], Zp1qK,B “ H1pGm,Kq – K and Zp1qK,DR is the dual of

H1
DRpGm,Kq with generator

dz

z
. Therefore the comparison isomorphism Zp1qK,BbC – Kb

CÑ Zp1qK,DRbC – KbC sends K to
ű dz

z
K “ p2πiqK. We have δDelpZp1qKq „K;K 2πi.

In general, let M be a motive over K with coefficients in E. We have

δDelpMpnqq „EpMq;K p2πiqnδDelpMq. (6.7)

Remark 6.2.2. All the determinants and the coefficients we consider here are elements
in pE bQ Cqˆ.

6.3 Deligne’s conjecture for tensor product of motives

Let E and E1 be two number fields.

Let M be a regular motive over K (with respect to the fixed embedding) with coeffi-
cients in E of dimension n pure of weight ωpMq. Let M 1 be a regular motive over K with
coefficients in E1 of dimension n1 pure of weight ωpM 1q.

We denote by RpM bM 1q the restriction from K to Q of the motive M bM 1. It is a
motive of weight ω :“ ωpMq ` ωpM 1q with Betti realization MB bM 1

B ‘M c
B bM 1c

B and
De Rham realization MDR bM

1
DR ‘M

c
DR bM

1c
DR.

We denote the Hodge type of M by ppi, ωpMq ´ piq1ďiďn with p1 ą ¨ ¨ ¨ ą pn and the
Hodge type of M 1 by prj , ωpM 1q ´ rjq1ďjďn with r1 ą r2 ą ¨ ¨ ¨ ą rn1 . As before, we define
pci “ ωpMq ´ pn`1´i and rcj “ ωpM 1q ´ rn1`1´j . There are indices for Hodge type of M c

and M 1c respectively.
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We assume that RpM bM 1q has no pw{2, w{2q class. In other words, pa ` rb ‰ ω
2 and

then pct ` rcu ‰ ω
2 for all 1 ď a, t ď n, 1 ď b, u ď n1.

As in the above section, we take peiq1ďjďn an E-base ofMB and define peci :“ F8eiq1ďiďn
which is an E-base of M c

B. Similarly, we take pfjq1ďjďn1 an E1-base of M 1
B and define

f cj :“ F8fj for 1 ď j ď n1.

We also take ωi P Mpi,ωpMq´pi , pωci q P pM cqp
c
i ,ωpMq´p

c
i for 1 ď i ď n as in previous

section and ηj PM rj ,ωpM
1q´rj , ηcj P pM 1cq

rcj ,ωpM
1q´rcj for 1 ď j ď n1 similarly.

Recall the motive periods are complex numbers Qi, 1 ď i ď n and Q1j , 1 ď j ď n1 such
that

F8ωi “ Qiω
c
n`1´i, F8µj “ Q1jµ

c
n1`1´j . (P)

The aim of this section is to calculate the Deligne’s period for RpM bM 1q in terms of
motivic periods.

Remark 6.3.1. If we define a paring pMBbCqbpMBbCq Ñ C such that ă ωi, ω
c
n`1´i ą“

1 and ă ωi, ω
c
n`1´j ą“ 0 for j ‰ i then Qi “ă ωi, F8ωi ą.

Let M# “ RpM bM 1q. It is a motive over Q. We are going to calculate c`pM#q.
We define A “ tpa, bq | pa ` rb ą

ω
2 u and T “ tpt, uq | pct ` rcu ą

ω
2 u “ tpt, uq |

pn`1´t ` rn1`1´u ă
ω
2 u.

Remark 6.3.2. Keeping in mind that

pt, uq P T if and only if pn` 1´ t, n1 ` 1´ uq R A. (6.8)

Proposition 6.3.1. Let M , M 1 be motive over K with coefficients in E and E1 respec-
tively. We assume that M bM 1 has no pω{2, ω{2q-class. We then have

c`pRpM bM 1qq

„EpMqEpM 1q;K

¨

˝

ź

pt,uqRT pM,M 1q

Qn`1´tpMq
´1Qn1`1´upM

1q´1

˛

‚δDelpM bM 1q

„EpMqEpM 1q;K

¨

˝

ź

pt,uqPApM,M 1q

QtpMq
´1QupM

1q´1

˛

‚δDelpM bM 1q (6.9)

Proof For simplification of notation, we identify ωi P MB b C and I8pωiq P MDR b C
and similarly, we identify ωc, µj , µcj with their image under I8 in the following.

We fixe bases for M`
B and M#

DR{F
`pM#q now. For M`

B , we know pei b fj ` eci b

f cj q1ďiďn,1ďjďn1 forms an EE1-base. For M#
DR{F

`pM#q, as in the above section, we con-
sider B :“ pωa b µb, ω

c
t b µcupmod F`pM#qq | pa, bq R A, pt, uq R T q as an E b C base

of pM#
DR{F

`pM#qq b C which is not rational but can change to a rational base with a
unipotent matrix for change of basis. Therefore we can use this base to calculate Deligne’s
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period.

If pa, bq R A then pn ` 1 ´ a, n1 ` 1 ´ bq P T by (6.8). Along with (P), we know that
F8pωabµbq “ QaQ

1
bω

c
n`1´aµ

c
n1`1´b P F

`pM#qbC. Similarly, F8pωctbµcuq P F`pM#qbC
for all pt, uq R T .

Note that F8 is an endomorphism onM#pBqbC andM#
DRbC. For any φ PM#pBqbC

or M#pDRq b C, we write p1` F8qφ :“ φ` F8pφq.

Recall that pM#
DR{F

`pM#qq b C – pM#
DR b Cq{pF`pM#q b Cq. Thus B “ pp1 `

F8qωa b µb, p1` F8qωct b µcupmod F`pM#q b Cq | pa, bq R A, pt, uq R T q.

We write ωa “
n
ř

i“1
Aiaei, ωct “

n
ř

i“1
Acite

c
i , µb “

n1
ř

j“1
Bjbfj , µu “

n1
ř

j“1
Bc
juf

c
j for all

1 ď a, t ď n and 1 ď b, u ď n1.

We then have

p1` F8qωaµb “ p1` F8q
ÿ

i,j

AiaBjbei b fj “
ÿ

i,j

AiaBjbpei b fj ` e
c
i b f

c
j q

and p1` F8qωctωcu “ p1` F8q
ÿ

i,j

AcitB
c
jue

c
i b f

c
j “

ÿ

i,j

AcitB
c
jupei b fj ` e

c
i b f

c
j q.

Up to multiplication by elements in pEE1qˆ, the Deligne’s period then equals the
determinant of the matrix

Mat1 :“
`

AiaBjb, A
c
itB

c
ju

˘

with 1 ď i ď n, 1 ď j ď n1, pa, bq R A, pt, uq R T .

By the relation P, we have F8ωn`1´t “ Qn`1´tω
c
t . We get

n
ÿ

i“1
Ai,n`1´te

c
i “ Qn`1´tω

c
t “ Qn`1´t

n
ÿ

i“1
Acite

c
i

Therefore, for all i, j, we obtain,

Acit “ pQn`1´tq
´1Ai,n`1´t, B

c
ju “ pQ

1
n1`1´uq

´1Bj,n1`1´u. (6.10)

We then deduce that AcitBc
ju “ pQn`1´tq

´1pQ1n1`1´uq
´1Ai,n`1´tBj,n1`1´u.

Thus the Deligne’s period:

c`pRpM bM 1qq „EpM#q;K detpMat1q “
ź

pt,uqRT

ppQn`1´tq
´1pQ1n1`1´uq

´1q ˆ detpMat2q

where Mat2 “
`

AiaBjb, Ai,n`1´t,j,n1`1´u
˘

with 1 ď i ď n, 1 ď j ď n1, pa, bq R A and
pt, uq R T .

Recall that pt, uq R T if and only if pn ` 1 ´ t, n1 ` 1 ´ uq P A. Therefore the index
pn` 1´ t, n1 ` 1´ uq above runs over the pairs in A. We see that Mat2 “ pAiaBjbq with
both pi, jq and pa, bq runs over all the pair in t1, 2, ¨ ¨ ¨ , nuˆ t1, 2, ¨ ¨ ¨ , n1u. It is noting but
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pAiaq b pBjbq.

Let us back to the definition of Aia. It is the coefficients with respect to the chosen
rational bases of the map MB bCÑMDR bC. Therefore pAiaq b pBjbq is the coefficient
matrix of the comparison isomorphism pM bM 1qB bCÑ pM bM 1qDRbC. We then get
detppAiaq b pBjbqq “ δDelpM bM 1q which terminates the proof.

l

6.4 Motivic periods for automorphic representations over
quadratic imaginary fields

Hecke character case: Let η be an arbitrary algebraic Hecke character of K with
infinity type zazb. We assume that a ‰ b.

LetMpηq be the motive associated to η (c.f. [7] section 8.) It is of Hodge type p´a,´bq.

For the motivic period for Mpηq, we use η to indicate Mpηq for simplification. For
example. δDelpηq :“ δDelpMpηqq.

On one hand, by Blasius’s result, c`pRpMpηqqq „Epηq;K ppqη, 1q if a ă b;
c`pRpMpηqqq „Epηq;K ppqη, ιq if a ą b.

On the other hand, by Proposition 6.3.1, we have

c`pRpMpηqqq „Epηq;K
ź

tPA

Qtpηq
´1δDelpηq (6.11)

where A “ t1u if ´a ą ´b and A “ H if ´a ă ´b.

Let us assume a ă b first. We have Q1pηq
´1δDelpηq „Epηq:K ppqη, 1q. We apply the

above to ηc and get δDelpMpηcqq „Epηq:K pp qηc, ιq „Epηq:K ppqη, 1q.

Notice that there is there is a rational paring: Mpηq ˆMpηcq Ñ Mpη0qpa ` bq where
η0 is a Dirichlet character over AQ such that ηηc “ pη0 ˝NAK{AQq|| ¨ ||

a`b
AK . We obtain that

δDelpηq ˆ δDelpηcq „Epηq;K δDelpη0qp2πiqa`b (6.12)

by equation (6.7).

We deduce by Lemma 4.1.2 that

δDelpηq ˆ δDelpηcq „Epηq;K Gpη0qp2πiqa`b

„Epηq;K ppη0 ˝NAK{AQ , 1q
´1pp|| ¨ ||a`bAK , 1q

´1 „Epηq;K pppη0 ˝NAK{AQq|| ¨ ||
a`b
AK , 1q

´1

„Epηq;K ppηηc, 1q´1 „Epηq;K ppqη, 1qpp qηc, 1q

Therefore,

δDelpηq „Epηq;K pp qηc, 1q and then Q1pηq „Epηq;K
pp qηc, 1q
ppqη, 1q „Epηq;K pp

ηc

η
, 1q. (6.13)
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If a ą b, we follow the above procedure and can see easily the last two formulas are still
true.

Conjugate self-dual case: Let Π be a regular cuspidal cohomological conjugate self-
dual representation of GLnpAKq. We denote the infinity type of Π by pzaiz´aiq1ďiďn with
a1 ą a2 ą ¨ ¨ ¨ ą an.

We assume that there exists a motive M over K associated to Π with coefficients in
EpMq “ EpΠq.

We know M is a reguler motive of Hodge type p´ai ` n´1
2 , ai `

n´1
2 q1ďiďn.

We define pi :“ ´an`1´i`
n´1

2 , qi :“ n´1´pi “ an`1´i``
n´1

2 , pci “ ai`
n´1

2 “ qn`1´i,
qci :“ n´ 1´ pci for all 1 ď i ď n.

We define ωi PMpi,qi , ωci P pM cqp
c
i ,q

c
i as in the previous sections.

If Π is conjugate self-dual, then MpΠq is polarized. The polarization on the De Rham
realization induces an EpMq-rational perfect parings ă,ą:

MpΠqpi,qi b pMpΠqcqp
c
n`1´i,q

c
n`1´i Ñ EpMqp1´ nq – EpMq.

We may assume that ă ωi, ω
c
n`1´i ą“ 1 by adjusting ωcn`1´i with multiplication by ele-

ments in EpMqˆ.

Let 1 ď i ď n. We write QipΠq :“ QipMpΠqq as we did for η. The motivic period
QipΠq then equals ă wi, F8wn`1´i ą up to multiplication by elements in EpΠqˆ.

conjugate self-dual case: In the general case, we write Π “ Π1bη with Π1 conjugate
self-dual and η be an algebraic Hecke character of AK .

We take ω0
i PMpΠ1qpipΠ

1q,qipΠ1q as before. Let ω be a base of MpηqDR and ωc be a base
of MpηcqDR. We know F8pωq “ Q1pηqω

c up to multiplication by elements in Epηqˆ.

Then pωi :“ ω0
i b ωq1ďiďn PM

pi,qi which is equivalent to a rational element in F pipMq
modulo F pi´1pMq b C. We have similar properties for pωci :“ ω0,c

i b ωcq1ďiďn.

Moreover,
F8pωi b ωq “ QipΠ1qQ1pηqpω

1
n`1´i b ω

1q. (6.14)

The motivic period for Π then equals QipΠq :“ QipΠ1qQ1pηq for 1 ď i ď n up to
multiplication by elements in EpΠqˆ.

6.5 Deligne’s conjecture for automorphic pairs over quadratic
imaginary fields

Let Π (resp. Π1) be a regular cuspidal cohomological conjugate self-dual represen-
tation of GLnpAKq (resp. GLn1pAKq). We denote the infinity type of Π (resp. Π1)
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by pzaiz´ωpΠq´aiq1ďiďn (resp. pzbjz´ωpΠq´bj q1ďjďn1) with a1 ą a2 ą ¨ ¨ ¨ ą an (resp.
b1 ą b2 ą ¨ ¨ ¨ ą bn1). We suppose ΠˆΠ1 is regular, i.e. ai ` bj ‰ ´ωpΠq`ωpΠ1q

2 for all i, j.

We assume that there exists a motive M (resp. M 1) over K associated to Π (resp. Π1)
with coefficients in EpMq (resp. EpM 1q).

We know M (resp. M 1) is reguler motive of Hodge type p´ai ` n´1
2 , ai ` ωpΠq `

n´1
2 q1ďiďn (resp. p´bj ` n1´1

2 , bj ` ωpΠ1q ` n´1
2 q1ďjďn1 ).

We define pi :“ ´an`1´i `
n´1

2 and pci “ ωpΠq ` n ´ 1 ´ pn`1´i “ ai ` ωpΠq ` n´1
2

for all 1 ď i ď n. We define like this to guarantee that p1 ą p2 ą ¨ ¨ ¨ ą pn and
pc1 ą pc2 ą ¨ ¨ ¨ ą pcn as in the previous sections. Similarly, we define rj :“ ´bn1`1´j `

n1´1
2 ,

rcj :“ bj ` ωpΠ1q ` n1´1
2 for all 1 ď j ď n1.

Proposition 6.3.1 implies that:

Proposition 6.5.1. The Deligne’s period of pM bM 1q satisfies:

c`pRpMpΠq bMpΠ1qqq „EpMqEpM 1q;K

¨

˝

ź

pt,uqPApM,M 1q

QtpΠq´1QupΠ1q´1

˛

‚δDelpM bM 1q.

(6.15)
where the set ApM,M 1q “ tpt, uq | pt ` ru ą

ωpΠq`ωpΠ1q`pn´1q`pn1´1q
2 u.

Recall pt “ ´an`1´t `
n´1

2 and ru :“ ´bn1`1´u `
n1´1

2 . We obtain that ApM,M 1q “

tpt, uq | pt ` ru ą
ωpΠq`ωpΠ1q`pn´1q`pn1´1q

2 u “ tpt, uq | an`1´t ` bn1`1´u ă ´
ωpΠq`ωpΠ1q

2 u.

Therefore,

ź

pt,uqPApM,M 1q

QtpΠq´1 “
n
ź

t“1
QtpΠq´#tu|bn`1´uă´an`1´t´

ωpΠq`ωpΠ1q
2 u (6.16)

In this section, we define sppjq :“ sppj,Π; Π1q for 0 ď j ď n and sp1pkq :“ sppk,Π1; Πq for
0 ď k ď n1. Recall sppjq are the lengths of different parts of b1 ą b2 ą ¨ ¨ ¨ ą bn1 separated
by ´an ´ ωpΠq`ωpΠ1q

2 ą ´an´1 ´
ωpΠq`ωpΠ1q

2 ą ¨ ¨ ¨ ą ´a1 ´
ωpΠq`ωpΠ1q

2 .
Therefore #tu | bn`1´u ă ´an`1´t´

ωpΠq`ωpΠ1q
2 u “ #tu | bu ă ´an`1´t´

ωpΠq`ωpΠ1q
2 u “

spptq ` sppt` 1q ` ¨ ¨ ¨ ` sppnq, we have
ś

pt,uqPApM,M 1qQtpΠq´1

“ Q1pΠq´spp1q´spp2q´¨¨¨´sppnqQ2pΠq´spp2q´spp3q´¨¨¨´sppnq ¨ ¨ ¨QnpΠq´sppnq

“ rQ1pΠq´1sspp1qrQ1pΠq´1Q2pΠq´1sspp2q ¨ ¨ ¨ rQ1pΠq´1Q2pΠq´1 ¨ ¨ ¨QnpΠq´1ssppnq

We define QďjpΠq “ Q1pΠq´1Q2pΠq´1 ¨ ¨ ¨QjpΠq´1 for 1 ď j ď n and Qď0pΠq “ 1.
We define QďkpΠ1q similarly for 0 ď k ď n1.

We have obtained that

ź

pt,uqPApM,M 1q

QtpΠq´1QupM
1q´1 “

n
ź

j“0
QďjpΠqsppjq

n1
ź

k“0
QďkpΠ1qsp

1pkq. (6.17)
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We define ∆pMpΠqq “ ∆pΠq :“ p2πiq
npn´1q

2 δDelpΠq. In fact, let ξΠ be the central
character of Π. Since ΛnMpΠq ” MpξΠqp´

npn´1q
2 q, we have δDelpΠq “ δDelpΛnMpΠqq “

δDelpξΠqp2πiq´
npn´1q

2 . Therefore,

∆pΠq „EpΠq:K δDelpξΠq. (6.18)

We define ∆pΠ1q similarly. We have

δDelpM bM 1q “ δDelpΠqn1δDelpΠ1qn “ p2πiq´nn1pn`n1´2q∆pΠqn1∆pΠ1qn.

Since
n
ř

i“0
sppiq “ n1 and

n
ř

i“0
sppiq “ n1, we know:

δDelpM bM 1q “ p2πiq´
nn1pn`n1´2q

2

n
ź

j“0
∆pΠqsppjq

n1
ź

k“0
∆pΠ1qsp1pkq. (6.19)

At last, we define for all 0 ď j ď n that

QpjqpΠq “ QďjpΠq ˆ∆pΠq „EpΠq;K Q1pΠq´1 ¨ ¨ ¨QjpΠq´1δDelpξΠq (6.20)

We define QpkqpΠ1q for 1 ď k ď n1 similarly. Comparing (6.15) with (6.17) and (6.19),
we have

c`pRpM bM 1qq „EpΠqEpΠ1q;K p2πiq
´nn1pn`n1´2q

2

n
ź

j“0
QpjqpΠqsppj,Π;Π1q

n1
ź

k“0
QpkqpΠ1qsppk,Π1;Πq

We can now state Deligne’s conjecture for automorphic pairs:

Conjecture 6.5.1. Let n and n1 be two positive integers. Let Π and Π1 be regular cohomo-
logical cuspidal representation of GLnpAKq and GLn1pAKq respectively which are conjugate
self-dual. We suppose that ΠbΠ1 is regular.

We assume that there exists motives M and M 1 over K associated to Π and Π1 respec-
tively.

Let m P Z` n`n1

2 be critical for Πb Π1. It is equivalent to saying that m` n`n1´2
2 is

critical for M bM 1. Deligne’s conjecture predicts that:

Lpm,ΠˆΠ1q “ Lpm` n`n1´2
2 ,M bM 1q

„EpΠqEpΠ1q;K p2πiqnn
1m

n
ś

j“0
QpjqpΠqsppj,Π;Π1q

n1
ś

k“0
QpkqpΠ1qsppk,Π1;Πq

6.6 The picture for general CM fields
Let F be a CM field containing K and F` be the maximal totally real subfield of F .
LetM be a motive over F with coefficients in EpMq of dimension n and pure of weight

ωpMq.

For each σ P ΣF , we may define the motivic period δDelpM,σq and QipM,σq as in
Section 6.2. We write the Hodge type of M at σ by ppipσq, qipσqq1ďiďn.
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We takeM 1 another motive over F with coefficients in EpM 1q of dimension n1 and pure
of weight ωpM 1q. Similarly, we write the Hodge type of M 1 at σ by prjpσq, sjpσqq1ďiďn1 .

We assume that pipσq ` rjpσq ‰
ωpMq ` ωpM 1q

2 for all σ, i, j.

Define ApM,M 1qpσq “ tpa, bq | papσq ` rbpσq ą
ω
2 u.

For any CM type Φ of F , we have ResF {QpM bM 1q “ p
À

σPΦ
Mσ bM 1σq ‘ p

À

σPΦ
Mσc b

M 1σcq.

The proof of Proposition 6.3.1 can be easily generalized to the CM field case and we
get:

Proposition 6.6.1. Let M , M 1 be motive over F with coefficients in E and E1 respec-
tively. We assume that M bM 1 has no pω{2, ω{2q-class. We have:

c`pResF {QpM bM 1qq „EpMqEpM 1q;K (6.21)

ś

σPΨ

˜

ś

pt,uqPApM,M 1qpσq

QtpM,σq´1QupM
1, σq´1

¸

ś

σPΨ
δDelpM bM 1, σq .

Let us assume that M and M 1 are motives associated to certain representations Π and
Π1 respectively. We still write the motivic period QipMpΠqq as QipΠq for simplicity.

We define QďjpΠ, σq :“
j
ś

i“1
QipΠ, σq. We have (c.f. equation (6.17))

ź

pt,uqPApM,M 1qpσq

QtpΠq´1QupM
1q´1 “

n
ź

j“0
QďjpΠ, σqsppj,Π;Π1,σq

n1
ź

k“0
QďkpΠ1, σqsp

1pk,Π1;Π,σq.

(6.22)
Recall that ΛnMpΠq –MpξΠqp´

npn´1q
2 q. We have

δDelpΠ, σq „EpΠq;K p2πiq´
npn´1q

2 δDelpξΠ, σq. (6.23)

As before, we define

∆pΠ, σq :“ p2πiq
npn´1q

2 δDelpΠ, σq “ δDelpξΠ, σq

and QpjqpΠ, σq :“ QďjpΠ, σq∆pΠ, σq. (6.24)

We have:

c`pResF {QpM bM 1qq „EpΠqEpΠ1q;K p2πiq
´nn1dpn`n1´2q

2 ˆ

ź

σPΨ

n
ź

j“0
QpjqpΠ, σqsppj,Π;Π1,σq

n1
ź

k“0
QpkqpΠ1, σqsppk,Π1;Π,σq

In particular, if we take Ψ “ ΣF ;K , Deligne’s conjecture predicts that:
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Conjecture 6.6.1. Let n and n1 be two positive integers. Let Π and Π1 be regular cohomo-
logical cuspidal representation of GLnpAF q and GLn1pAF q respectively which are conjugate
self-dual. We suppose that ΠbΠ1 is regular.

We assume that there exists motives M and M 1 over F associated to Π and Π1 respec-
tively.

If m P Z` n`n1

2 is critical for ΠˆΠ1 then

Lpm,ΠˆΠ1q “ Lpm` n`n1´2
2 ,M bM 1q

„EpΠqEpΠ1q;K p2πiqmnn
1d

ś

σPΣF ;K

p
n
ś

j“0
QpjqpΠ, σqsppj,Π;Π1,σq

n1
ś

k“0
QpkqpΠ1, σqsppk,Π1;Π,σqq

6.7 Motivic periods for Hecke characters over CM fields

Let η, η1 be two algebraic Hecke character of F . We assume that ηη1 is critical and
then is compatible with a CM type Ψpηη1q. Proposition 6.6.1 can be rewritten as

c`pResF {QpMpηq bMpη
1qqq „EpηqEpη1q;K (6.25)

ś

σPΨ

˜

ś

σPΨXΨpηη1q
Q1pη, σq

´1Q1pη
1, σq´1

¸

ś

σPΨ
δDelpM bM 1, σq .

Fix any Hecke character η. We may take η1 such that Ψpηη1q “ Ψc.
Equation (6.25) implies that

c`pResF {QqpMpηq bMpη
1qq „EpηqEpη1q;K

ź

σPΨ
δDelpη, σq

ź

σPΨ
δDelpη1, σq. (6.26)

On the other hand, by Blasius’s result, we have:

c`pResF {QpMpηq bMpη
1qqq „EpηqEpη1q;K pp|ηη1,Ψcq

„EpηqEpη1q;K
ź

σPΨ
ppqη, σcq

ź

σPΨ
ppqη1, σcq.

Let η1 vary. We get for any CM type Ψ that:
ź

σPΨ
δDelpη1, σq „Epηq;K

ź

σPΨ
ppqη, σcq. (6.27)

Let Ψ vary now. It is easy to deduce that there exists ζd, an d-th root of unity, such
that δDelpη1, σq „Epηq;K ζdppqη, σ

cq for all σ P Σ.

For simplicity, we assume that EpΠq contains all d-th roots of unity then we get
δDelpη1, σq „Epηq;K ppqη, σcq for all σ P Σ.

We can now calculate Q1pη, σq. Let σ0 be in Ψ. We take η1 such that Ψηη1 “ tσu Y
pΨ´ tσ0uq

c. Equation (6.25) implies that

c`pResF {QqpMpηq bMpη
1qq „EpηqEpη1q;K Q1pη, σq

´1Q1pη
1, σq´1ˆ

ś

σPpΨ´tσ0uq

δDelpη, σq
ś

σPpΨ´tσ0uq

δDelpη1, σq ˆ δDeltapη, σ0qδ
Deltapη1, σ0q.



6.7. Motivic periods for Hecke characters over CM fields 69

Blasius’s result implies that

c`pResF {QqpMpηqbMpη
1qq „EpηqEpη1q;K p´1qεpΨq

ź

σPpΨ´tσ0uq

pp|ηη1, σcqˆ pp|ηη1, σ0q. (6.28)

Along with equation (6.27), we obtain that

Q1pη, σ0q „Epηq;K ppqη, σc0qppqη, σ0q
´1 „Epηq;K pp

ηc

η
, σ0q. (6.29)





Chapter 7

Factorization of arithmetic
automorphic periods and a
conjecture

We want to show that the arithmetic automorphic periods can be factorized as products
of local periods over infinite places. We may assume that Π is conjugate self-dual in this
Chapter. The essential conjugate self-dual case then follows by Definition 5.3.2 and the
fact that the CM periods is factorable.

7.1 Basic lemmas
Let X, Y be two sets and Z be a multiplicative abelian group. We will apply the result

of this section to Z “ Cˆ{Eˆ where E is a proper number field.

Lemma 7.1.1. Let f be a map from X ˆ Y to Z. The following two statements are
equivalent:

1. There exists two maps g : X Ñ Z and h : Y Ñ Z such that fpx, yq “ gpxqhpyq for
all px, yq P X ˆ Y .

2. For all x, x1 P X and y, y1 P Y , we have fpx, yqfpx1, y1q “ fpx, y1qfpx1, yq.

Moreover, if the above equivalent statements are satisfied, the maps g and h are unique up
to scalars.

Proof The direction that 1 implies 2 is trivial. Let us prove the inverse. We fix any
y0 P Y and define gpxq :“ fpx, y0q for all x P X. We then fix any x0 P X and define

hpyq :“
fpx0, yq

gpx0q
“

fpx0, yq

fpx0, y0q
.

For any x P X and y P Y , Statement 2 tells us that fpx, yqfpx0, y0q “ fpx, y0qfpx0, yq.

Therefore fpx, yq “ fpx, y0q ˆ
fpx0, yq

fpx0, y0q
“ gpxqhpyq as expected.

l

Let n be a positive integer and X1, ¨ ¨ ¨ , Xn be some sets. Let f be a map from
X1 ˆX2 ˆ ¨ ¨ ¨ ˆXn to Z.

The following corollary can be deduced from the above Lemma by induction on n.
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Corollary 7.1.1. The following two statements are equivalent:

1. There exists some maps fk : Xk Ñ Z for 1 ď k ď n such that

fpx1, x2, ¨ ¨ ¨ , xnq “
ź

1ďkďn
fkpxkq

for all xk P Xk, 1 ď k ď n.

2. Given any xj , x1j P Xj for each 1 ď j ď n, we have

fpx1, x2, ¨ ¨ ¨ , xnq ˆ fpx
1
1, x

1
2, ¨ ¨ ¨ , x

1
nq

“ fpx1, ¨ ¨ ¨ , xk´1, x
1
k, xk`1, xnq ˆ fpx

1
1, ¨ ¨ ¨x

1
k´1, xk, x

1
k`1, ¨ ¨ ¨ , x

1
nq

for any 1 ď k ď n.

Moreover, if the above equivalent statements are satisfied then for any λ1, ¨ ¨ ¨ , λn P Z such
that λ1 ¨ ¨ ¨λn “ 1, we have another factorization fpx1, ¨ ¨ ¨ , xnq “

ś

1ďiďn
pλifiqpxiq. Each

factorization of f is of the above form.

We fix ai P Xi for each i and c1, ¨ ¨ ¨ , cn P Z such that fpa1, ¨ ¨ ¨ , anq “ c1 ¨ ¨ ¨ cn. If the
above equivalent statements are satisfied then there exists a unique factorization such that
fipaiq “ ci.

Remark 7.1.1. If #Xk ě 3 for all k, it is enough to verify the condition in statement 2
of the above corollary in the case xj ‰ x1j for all 1 ď j ď n.

In fact, when #Xk ě 3 for all k, for any 1 ď j ď n and any yj , y1j P Xj, we may take
xj P Xj such that xj ‰ yj, xj ‰ y1j.

We fix any 1 ď k ď n. If statement 2 is verified when xj ‰ x1j for all j then for any
yk ‰ y1k, we have

fpy1, y2, ¨ ¨ ¨ , ynqfpy
1
1, y

1
2, ¨ ¨ ¨ , y

1
nqfpx1, x2, ¨ ¨ ¨ , xnq

“ fpy1, y2, ¨ ¨ ¨ , ynqfpy
1
1, ¨ ¨ ¨ y

1
k´1, xk, y

1
k`1, ¨ ¨ ¨ , y

1
nqfpx1, ¨ ¨ ¨ , xk´1, y

1
k, xk`1, ¨ ¨ ¨xnq

“ fpy1, y2, ¨ ¨ ¨ , ynqfpx1, ¨ ¨ ¨ , xk´1, y
1
k, xk`1, ¨ ¨ ¨xnqfpy

1
1, ¨ ¨ ¨ y

1
k´1, xk, y

1
k`1, ¨ ¨ ¨ , y

1
nq

“ fpy1, ¨ ¨ ¨ , yk´1, y
1
k, yk`1, ¨ ¨ ¨ , ynqfpx1, ¨ ¨ ¨ , xk´1, yk, xk`1, ¨ ¨ ¨ , xnq ˆ

fpy11, ¨ ¨ ¨ y
1
k´1, xk, y

1
k`1, ¨ ¨ ¨ , y

1
nq

“ fpy1, ¨ ¨ ¨ , yk´1, y
1
k, yk`1, ¨ ¨ ¨ , ynqfpy

1
1, ¨ ¨ ¨ y

1
k´1, yk, y

1
k`1, ¨ ¨ ¨ , y

1
nqfpx1, x2, ¨ ¨ ¨ , xnq.

We have assumed yk ‰ y1k to guarantee that each time we apply the formula in Statement
2, the coefficients satisfy xj ‰ x1j for all 1 ď j ď n.

Therefore if yk ‰ y1k,

fpy1, y2, ¨ ¨ ¨ , ynq ˆ fpy
1
1, y

1
2, ¨ ¨ ¨ , y

1
nq

“ fpy1, ¨ ¨ ¨ , yk´1, y
1
k, yk`1, ¨ ¨ ¨ , ynq ˆ fpy

1
1, ¨ ¨ ¨ y

1
k´1, yk, y

1
k`1, ¨ ¨ ¨ , y

1
nq (7.1)

If yk “ y1k, this formula is trivially true.

We conclude that we can weaken the condition in Statement 2 of the above Corollary
to xj ‰ x1j for all 1 ď j ď n when #Xk ě 3 for all k. We will verify this weaker condition
in the application to the factorization of arithmetic automorphic periods.
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7.2 Formula for the Whittaker period: even dimensional
Let Π be a regular cuspidal representation ofGLnpAF q as in Theorem 5.2.1 with infinity

type pzaipσqz´aipσqq1ďiďn at σ P Σ. We may assume that a1pσq ą a2pσq ą ¨ ¨ ¨ ą anpσq for
all σ P Σ.

Recall that we say Π isN-regular if aipσq´ai`1pσq ě N for all 1 ď i ď n´1 and σ P Σ.

For 1 ď u ď n ´ 1, let χu be an algebraic conjugate self-dual Hecke character of F
with infinity type zkupσqz´kupσq at σ P Σ.

Let us first consider the case n even. In this case, aipσq P Z`
1
2 for all 1 ď i ď n and

all σ P Σ. We assume the following hypothesis:

Hypothesis 7.2.1. Even dimensional
For all σ P Σ, the numbers tkupσq | 1 ď u ď n ´ 1u lie in the n ´ 1 gaps between

´anpσq ą ´an´1pσq ą ¨ ¨ ¨ ą ´a1pσq.

We define Π# to be the Langlands sum of χu, 1 ď u ď n ´ 1. It is an algebraic
regular automorphic representation of GLn´1pAF q. It follows by the above hypothesis
that pΠ,Π#q is in good position. By Proposition 3.6.1 we have

Lp
1
2`m,ΠˆΠ#q „EpΠqEpΠ#q;K ppΠqppΠ#qppm,Π8,Π#

8q (7.2)

where ppm,Π8,Π#
8q is a complex number which depends on m,Π8 and Π#

8.

Simplification of Lp
1
2`m,ΠˆΠ#q:

Since Π# is the Langlands sum of χu, 1 ď u ď n´ 1, we have

Lp
1
2`m,ΠˆΠ#q “

ź

1ďuďn´1
Lp

1
2`m,Πˆ χuq.

We then apply Theorem 5.3 to the right hand side and get:

Lp
1
2`m,ΠˆΠ#q “

ź

1ďuďn´1
Lp

1
2`m,Πˆ χuq

„EpΠqEpΠ#q;K
ź

1ďuďn´1
rp2πiqdpm`

1
2 qnP pIpΠ,χuqqpΠq

ź

σPΣ
pp|χu, σq

Iupσqpp|χu, σq
n´Iupσqs

Here we write Iu for IpΠ, χuq. In particular, Iupσq “ #ti | ´aipσq ą kupσqu for σ P Σ.

Note that χu is conjugate self-dual, we have pp|χu, σq „EpΠ#q;K pp|χcu, σq „EpΠ#q;K

pp}χ´1
u , σq „EpΠ#q;K pp|χu, σq

´1. We deduce that:

Lp
1
2`m,ΠˆΠ#q „EpΠqEpΠ#q;K p2πiqdpm`

1
2 qnpn´1q

ź

1ďuďn´1
rP pIuqpΠq

ź

σPΣ
pp|χu, σq

2Iupσq´ns

(7.3)
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Calculate ppΠ#q: By Proposition 3.5.1, there exists a constant ΩpΠ#
8q P Cˆ well defined

up to EpΠ#qˆ such that

ppΠ#q „EpΠ#q;K ΩpΠ#
8q

ź

1ďuăvďn´1
Lp1, χuχ´1

v q. (7.4)

By Blasius’s result, we have:

Lp1, χuχ´1
v q „EpΠ#q;K p2πiqd

ź

σPΣ
ppχuχ´1

v , σ1q

If kupσq ă kvpσq we have σ1 “ σ and ppχuχ´1
v , σ1q „Epχuq;K pp|χu, σqpp|χv, σq

´1.

Otherwise we have σ1 “ σ and ppχuχ´1
v , σ1q „Epχuq;K pp|χu, σq

´1pp|χv, σq.

Therefore, we have the Whittaker period ppΠ#q

„EpΠ#q;K p2πiq
dpn´1qpn´2q

2 ΩpΠ#
8q

ź

1ďuďn´1

ź

σPΣ
pp|χu, σq

#tv|kvpσqąkupσqu´#tv|kvpσqăkupσqu

(7.5)
We know #tv | kvpσq ă kupσqu “ n´ 2´#tv | kvpσq ą kupσqu.
Moreover, by Hypothesis 7.2.1, we have #tv | kvpσq ą kupσqu “ #ti | ´aipσq ą

kupσqu ´ 1 “ Iupσq ´ 1. Therefore,

#tv | kvpσq ą kupσqu ´#tv | kvpσq ă kupσqu “ 2Iupσq ´ n (7.6)

We compare equations (7.2), (7.3), (7.5) and (7.6). If Lp
1
2`m,ΠˆΠ#q ‰ 0, we obtain

that:

p2πiqdpm`
1
2 qnpn´1q

ź

1ďuďn´1
P pIuqpΠq „EpΠqEpΠ#q;K p2πiq

dpn´1qpn´2q
2 ppΠqΩpΠ#

8qppm,Π8,Π#
8q.

(7.7)
Hence we have

ppΠq „EpΠqEpΠ#;Kq p2πiqdpm`
1
2 qnpn´1q´ dpn´1qpn´2q

2 ΩpΠ#
8q
´1ppm,Π8,Π#

8q
´1

ź

1ďuďn´1
P pIuqpΠq.

If we take Zpm,Π8,Π18q “ p2πiqdpm`
1
2 qnpn´1q´ dpn´1qpn´2q

2 ΩpΠ#
8q
´1ppm,Π8,Π#

8q
´1 then

ppΠq „EpΠqEpΠ#;Kq Zpm,Π8,Π18q
ś

1ďuďn´1
P pIuqpΠq. We see that Zpm,Π8,Π18q depends

only on Π8.

We may define:

ZpΠ8q :“ Zpm,Π8,Π18q “ p2πiqdpm`
1
2 qnpn´1q´ dpn´1qpn´2q

2 ΩpΠ#
8q
´1ppm,Π8,Π#

8q
´1.
(7.8)

It is well defined up to elements in EpΠqˆ.

We deduce that:

ppΠq „EpΠqEpΠ#;Kq ZpΠ8q
ź

1ďuďn´1
P pIuqpΠq. (7.9)
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7.3 Formula for the Whittaker period: odd dimensional
Let n be an odd positive integer. We keep the notation in the above section We have

aipσq P Z for all 1 ď i ď n and all σ P Σ. We assume that:

Hypothesis 7.3.1. Odd dimensional For all σ P Σ, the numbers tkupσq `
1
2 | 1 ď u ď

n´ 1u lies in the n´ 1 gaps between ´anpσq ą ´an´1pσq ą ¨ ¨ ¨ ą ´a1pσq.

Recall that ψF is an algebraic Hecke character of F with infinity type z1 at each
σ P Σ such that ψFψcF “ || ¨ ||AF . We take Π# to be the Langlands sum of χuψF || ¨ ||

´ 1
2

AF ,
1 ď u ď n´ 1. It is an algebraic regular automorphic representation of GLn´1pAF q. The
conditions of 3.6.1 hold.

We repeat the above process for Π and Π# and get

Lp
1
2`m,ΠˆΠ#q

„EpΠqEpΠ#q;K p2πiqdmnpn´1q
ź

1ďuďn´1
rP pIpΠ,χuψF qq

ź

σPΣ
pp|χu, σq

2Iupσq´ns ˆ

ź

σPΣ
ppp|ψF , σq

ř

1ďuďn´1 Iupσqpp|ψF
c
, σq

ř

1ďuďn´1pn´Iupσqqq (7.10)

where Iu :“ IpΠ, χuψF q with Iupσq “ #ti | ´aipσq ą kupσq `
1
2u.

It is easy to verify that Hypothesis 7.2.1 or 7.3.1 is equivalent to the following hypoth-
esis:

Hypothesis 7.3.2. For all σ P Σ, the pn ´ 1q numbers Iupσq, 1 ď u ď n ´ 1, run over
the numbers 1, 2, ¨ ¨ ¨ , n´ 1.

We see
ś

1ďuďn´1
Iupσq “

npn´ 1q
2 and

ř

1ďuďn´1pn´ Iupσqq “
npn´ 1q

2 .

We then have
ź

σPΣ
ppp|ψF , σq

ř

1ďuďn´1 Iupσqpp|ψF
c
, σq

ř

1ďuďn´1pn´Iupσqqq

„EpψF q;K
ź

σPΣ
ppψFψcF , σq

npn´1q
2 „EpψF q;K

ź

σPΣ
pp|| ¨ ||´1

AF , σq
npn´1q

2 „EpψF q;K p2πiq
dnpn´1q

2 .

We verify that the equation (7.5) and (7.6) remain unchanged. We can see that equa-
tion (7.9) still holds here.

Let us start from the numbers Iupσq. If we are given some numbers Iupσq, σ P Σ,
1 ď u ď n ´ 1, such that Hypothesis 7.3.2 is satisfied, we can always choose kupσq P Z

such that Iupσq “ #ti | ´aipσq ą kupσqu if n is even, Iupσq “ #ti | ´aipσq ą kupσq `
1
2u

if n is odd.

We may then take χu, 1 ď u ď n´1 with infinity type zkupσqz´kupσq at σ P Σ. Equation
(7.9) tells us that

ppΠq „EpΠq;K ZpΠ8q
ź

1ďuďn´1
P pIuqpΠq (7.11)
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provided a non vanishing condition of the L-function, for example, if Π is 3-regular.

Theorem 7.3.1. Let Iupσq, 1 ď u ď n´ 1, σ P Σ be some integers such that Hypothesis
7.3.2 is verified. There exists a complex number ZpΠ8q such that if a non vanishing
condition of a global L-function is verified, in particular, if Π is 3-regular, then:

ppΠq „EpΠq;K ZpΠ8q
ź

1ďuďn´1
P pIuqpΠq. (7.12)

7.4 Factorization of arithmetic automorphic periods: re-
stricted case

We consider the function
ś

σPΣ
t0, 1, ¨ ¨ ¨ , nu Ñ Cˆ{EpΠqˆ which sends pIpσqqσPΣ to

P pIqpΠq.
The motivic calculation predicts that:

Conjecture 7.4.1. There exists some non zero complex numbers P psqpΠ, σq for all 0 ď
s ď n and σ P Σ such that P pIqpΠq „EpΠq;K

ś

σPΣ
P pIpσqqpΠ, σq for all I “ pIpσqqσPΣ P

t0, 1, ¨ ¨ ¨ , nuΣ.

In this section, we will prove the above conjecture restricted to t1, 2, ¨ ¨ ¨ , n´ 1uΣ.
More precisely, we will prove that

Theorem 7.4.1. If n ě 4 and Π satisfies a global non vanishing condition, in particular,
if Π is 3-regular, then there exists some non zero complex numbers P psqpΠ, σq for all
1 ď s ď n ´ 1, σ P Σ such that P pIqpΠq „EpΠq;K

ś

σPΣ
P pIpσqqpΠ, σq for all I “ pIpσqqσPΣ P

t1, 2, ¨ ¨ ¨ , n´ 1uΣ.

Proof For all σ P Σ, let I1pσq ‰ I2pσq be two numbers in t1, 2, ¨ ¨ ¨ , n´ 1u. We consider
I1, I2 as two elements in t1, 2, ¨ ¨ ¨ , n´ 1uΣ.

Let σ0 be any element in Σ. We define I 11, I 12 P t1, 2, ¨ ¨ ¨ , n ´ 1uΣ by I 11pσq :“ I1pσq,
I 12pσq :“ I2pσq if σ ‰ σ0 and I 11pσ0q :“ I2pσ0q, I 12pσ0q :“ I1pσ0q.

By Remark 7.1.1, it is enough to prove that

P pI1qpΠqP pI2qpΠq „EpΠq;K P pI
1
1qpΠqP pI 12qpΠq.

Since I1pσq ‰ I2pσq for all σ P Σ, we can always find I3, ¨ ¨ ¨ , In´1 P t1, 2, ¨ ¨ ¨ , n´ 1uΣ
such that for all σ P Σ, the pn´ 1q numbers Iupσq, 1 ď u ď n´ 1 run over 1, 2, ¨ ¨ ¨ , n´ 1.
In other words, Hypothesis 7.3.2 is verified.

By Theorem 7.3.1, we have

ppΠq „EpΠq;K ZpΠ8qP pI1qpΠqP pI2qpΠq
ź

3ďuďn´1
P pIuqpΠq.

On the other hand, it is easy to see that I 11, I 12, I3, ¨ ¨ ¨ , In´1 also satisfy Hypothesis
7.3.2. Therefore

ppΠq „EpΠq;K ZpΠ8qP pI
1
1qpΠqP pI 12qpΠq

ź

3ďuďn´1
P pIuqpΠq.
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We conclude at last P pI1qpΠqP pI2qpΠq „EpΠq;K P pI
1
1qpΠqP pI 12qpΠq and then the above

theorem follows.

l

7.5 Factorization of arithmetic automorphic periods: com-
plete case

In this section, we will prove Conjecture 7.4.1 when Π is regular enough. More precisely,
we have

Theorem 7.5.1. Conjecture 7.4.1 is true if Π is 2-regular and satisfies a global non
vanishing condition, in particular, if Π is 6-regular.

Corollary 7.5.1. If Π satisfied the conditions in the above theorem then we have:

ppΠq „EpΠq;K ZpΠ8q
ź

σPΣ

ź

1ďiďn´1
P piqpΠ, σq (7.13)

If n “ 1, Conjecture 7.4.1 is known as multiplicity of CM periods. We may assume
that n ě 2. The set t0, 1, ¨ ¨ ¨ , nu has at least 3 elements and then Remark 7.1.1 can apply.

For all σ P Σ, let I1pσq ‰ I2pσq be two numbers in t0, 1, ¨ ¨ ¨ , nu. We have I1, I2 P
t0, 1, 2, ¨ ¨ ¨ , nuΣ.

Let σ0 be any element in Σ. We define I 11, I 12 P t0, 1, 2, ¨ ¨ ¨ , nuΣ as in the proof of
Theorem 7.4.1.

It remains to show that

P pI1qpΠqP pI2qpΠq „EpΠq;K P pI
1
1qpΠqP pI 12qpΠq. (7.14)

Let us assume that n is odd at first. Since Π is 2-regular, we can find χu a conjugate
self-dual algebraic Hecke character of F such that IpΠ, χuq “ Iu for u “ 1, 2. We denote
the infinity type of χu at σ P Σ by zkupσqz´kupσq, u “ 1, 2. We remark that k1pσq ‰ k2pσq
for all σ since I1pσq ‰ I2pσq.

Let Π# be the Langlands sum of Π, χc1 and χc2. We write the infinity type of
Π# at σ P Σ by pzbipσqz´bipσqq1ďiďn`2 with b1pσq ą b2pσq ą ¨ ¨ ¨ ą bn`2pσq. The set
tbipσq, 1 ď i ď n` 2u “ taipσq, 1 ď i ď nu Y t´k1pσq,´k2pσqu.

Let Π♦ be a cuspidalconjugate self-dual cohomological representation of GLn`3pAF q
with infinity type pzcipσqz´cipσqq1ďiďn`3 such that ´cn`3pσq ą b1pσq ą ´cn`2pσq ą
b2pσq ą ¨ ¨ ¨ ą ´c2pσq ą bn`2pσq ą ´c1pσq for all σ P Σ. We may assume that Π♦

has definable arithmetic automorphic periods.

Proposition 3.6.1 is true for pΠ♦,Π#q. Namely,

Lp
1
2`m,Π

♦ ˆΠ#q „EpΠ♦qEpΠ#q;K ppΠ♦qppΠ#qppm,Π♦
8,Π#

8q. (7.15)
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We know

Lp
1
2`m,Π

♦ ˆΠ#q “ Lp
1
2`m,Π

♦ ˆΠqLp
1
2`m,Π

♦ ˆ χc1qLp
1
2`m,Π

♦ ˆ χc2q (7.16)

For u “ 1 or 2, by Theorem 5.3 and the fact that χu is conjugate self-dual, we have

Lp
1
2`m,Π

♦ ˆ χuq

„EpΠ♦qEpΠ#q;K p2πiqp
1
2`mqdpn`3qP IpΠ

♦,χcuqpΠq
ś

σPΣ
pp|χu, σq

´2IpΠ♦,χcuqpσq`pn`3q. (7.17)

Proposition 3.5.1 implies that

ppΠ#q „EpΠ#q;K ΩpΠ#
8qppΠqLp1,Πb χ1qLp1,Πb χ2qLp1, χ1χ

c
2q (7.18)

where ΩpΠ#
8q is a non zero complex numbers depend on Π#

8.

By Theorem 5.3 again, for u “ 1, 2, we have

Lp1,Πˆ χuq „EpΠ#q;K p2πiqdnP IpΠ,χuq
ź

σPΣ
pp|χu, σq

2IpΠ,χuqpσq´n. (7.19)

Moreover, Lp1, χ1χ
c
2q „EpΠ#q;K p2πiqd

ś

σPΣ
pp|χ1, σq

tpσqpp|χ2, σq
´tpσq where tpσq “ 1 if

k1pσq ă k2pσq, tpσq “ ´1 if k1pσq ą k2pσq.

Lemma 7.5.1. For all σ P Σ,

´2IpΠ♦, χc1qpσq ` pn` 3q “ 2IpΠ, χ1qpσq ´ n` tpσq,

´2IpΠ♦, χc2qpσq ` pn` 3q “ 2IpΠ, χ1qpσq ´ n´ tpσq.

Proof By definition we have

IpΠ♦, χc1qpσq “ #t1 ď i ď n` 3 | ´cipσq ą ´k1pσqu.

Recall that ´cn`3pσq ą b1pσq ą ´cn`2pσq ą b2pσq ą ¨ ¨ ¨ ą ´c2pσq ą bn`2pσq ą
´c1pσq and tbipσq, 1 ď i ď n` 2u “ taipσq, 1 ď i ď nu Y t´k1pσq,´k2pσqu.

Therefore

IpΠ♦, χc1qpσq “ #t1 ď i ď n` 2 | bipσq ą ´k1pσqu ` 1
“ #t1 ď i ď n | aipσq ą ´k1pσqu ` 1´k2pσqą´k1pσq ` 1.

By definition we have

IpΠ, χ1qpσq “ #t1 ď i ď n | ´aipσq ą k1pσqu “ n´#t1 ď i ď n | aipσq ą ´k1pσqu.

Therefore, IpΠ♦, χc1qpσq “ n ´ IpΠ, χ1qpσq ` 1´k2pσqą´k1pσq ` 1. Hence we have
´2IpΠ♦, χc1qpσqq ` pn` 3q “ 2IpΠ, χ1qpσq ´ n` 1´ 21´k2pσqą´k1pσq.

It is easy to verify that 1 ´ 21´k2pσqą´k1pσq “ tpσq. The first statement then follows
and the second is similar to the first one.
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l

We deduce that if Lp
1
2`m,Π

♦ ˆΠ#q ‰ 0, then

Lp
1
2`m,Π

♦ ˆΠqp2πiqp1`2mqdpn`3qP IpΠ
♦,χc1qpΠ♦qP IpΠ

♦,χc2qpΠ♦q „EpΠ♦qEpΠ#q;K

p2πiqdp2n`1qppΠ♦qΩpΠ#
8qppm,Π#

8,Π#
8qP

IpΠ,χ1qpΠqP IpΠ,χ2qpΠq. (7.20)

Now let χ11, χ12 be two conjugate self-dual algebraic Hecke characters of F such that
χ11,σ “ χ1,σ and χ12,σ “ χ2,σ for σ ‰ σ0, χ11,σ0 “ χ2,σ0 and χ12,σ0 “ χ1,σ0 .

We take Π## as Langlands sum of Π, χ11c and χ12c. Since the infinity type of Π## is
the same with Π#, we can repeat the above process and we see that equation (7.20) is
true for pΠ♦,Π##q. Observe that most terms remain unchanged.

Comparing equation (7.20) for pΠ♦,Π#q and that for pΠ♦,Π##q, we get

P IpΠ
♦,χ11

cqpΠ♦qP IpΠ
♦,χ12

cqpΠ♦q

P IpΠ
♦,χc1qpΠ♦qP IpΠ

♦,χc2qpΠ♦q
„EpΠ♦qEpΠq;K

P IpΠ,χ
1
1qpΠqP IpΠ,χ12qpΠq

P IpΠ,χ1qpΠqP IpΠ,χ2qpΠq
. (7.21)

By construction, IpΠ, χuq “ Iu and IpΠ, χ1uq “ I 1u for u “ 1, 2. Hence to prove (7.14),
it is enough to show the left hand side of the above equation is a number in EpΠ♦qˆ.

There are at least two ways to see this. We observe that

IpΠ♦, χ11
cqpσq “ IpΠ♦, χ1

cqpσq, IpΠ♦, χ12
cqpσq “ IpΠ♦, χ2

cqpσq for σ ‰ σ0

and IpΠ♦, χ11
cqpσ0q “ IpΠ♦, χ2

cqpσ0q, IpΠ♦, χ12
cqpσ0q “ IpΠ♦, χ1

cqpσ0q.

Moreover, these numbers are all in t1, 2, ¨ ¨ ¨ , pn`3q´1u. Theorem 7.4.1 gives a factoriza-
tion of the holomorphic arithmetic automorphic periods through each place. In particular,
it implies that the left hand side of (7.21) is in EpΠ♦qˆ as expected.

One can also show this by taking Π♦ an automorphic induction of a Hecke character.

We can then calculate Lp
1
2`m,Π

♦ˆχcuq in terms of CM periods. Since the factorization
of CM periods is clear, we will also get the expected result.

When n is even, we consider Π# the Langlands sum of Π, pχ1ψF ||¨||
´1{2qc and pχ2ψF ||¨

||´1{2qc where χ1, χ2 are two suitable algebraic Hecke characters of F . We follow the above
steps and will get the factorization in this case. We leave the details to the reader and just
remark that as in section 7.3, some CM periods of ψF appear but they will be eliminated
at the end.

7.6 Specify the factorization
Let us assume that Conjecture 7.4.1 is true. We want to specify one factorization.

We denote by I0 the map which sends each σ P Σ to 0. By the last part of Corol-
lary 7.1.1, it is enough to choose cpΠ, σq P pC{EpΠqqˆ which is GK-equivariant such that
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P pI0qpΠq „EpΠq;K
ś

σPΣ
cpΠ, σq. Then there exists a unique factorization of P p¨qpΠq such that

P p0qpΠ, σq “ cpΠ, σq . We may then define the local arithmetic automorphic periods
P psqpΠ, σq as an element in Cˆ{pEpπqqˆ.

In this section, we shall prove P pI0qpΠq „EpΠq;K pp|ξΠ,Σq „EpΠq;K
ś

σPΣ
pp|ξΠ, σq. There-

fore, we may take cpΠ, σq “ pp|ξΠ, σq.

More generally, we will see that:

Lemma 7.6.1. If I is compact then P pIqpΠq „EpΠq;K
ś

Ipσq“0
pp|ξΠ, σq ˆ

ś

Ipσq“n

pp|ξΠ, σq.

This lemma leads to the following theorem:

Theorem 7.6.1. If Conjecture 7.4.1 is true, in particular, if conditions in Theorem 7.5.1
are satisfied, then there exists some complex numbers P psqpΠ, σq unique up to multiplication
by elements in pEpΠqqˆ such that the following two conditions are satisfied:

1. P pIqpΠq „EpΠq;K
ś

σPΣ
P pIpσqqpΠ, σq for all I “ pIpσqqσPΣ P t0, 1, ¨ ¨ ¨ , nuΣ,

2. and P p0qpΠ, σq „EpΠq;K pp|ξΠ, σq

where ξΠ is the central character of Π.
Moreover, we know

P pnqpΠ, σq „EpΠq;K pp|ξΠ, σq

or equivalently
P p0qpΠ, σq ˆ P pnqpΠ, σq „EpΠq;K 1.

Proof of Lemma 7.6.1: Recall that D{2 “
ř

σPΣ
Iσpn´ Iσq “ 0 since I is compact.

Let T be the center ofGUI . We have T pRq – tpzσq P pCˆqΣ | |zσ| does not depend on σu.
We define a homomorphism hT : SpRq Ñ T pRq by sending z P C to ppzqIpσq“0, pzqIpσq“nq.

Since I is compact, we see that hI is the composition of hT and the embedding T ãÑ

GUI . We get an inclusion of Shimura varieties: ShT :“ ShpT, hT q ãÑ ShI “ ShpGUI , hIq.

Let ξ be a Hecke character of K such that Π_ b ξ descends to π, a representation
of GUIpAQq, as before. We write λ P ΛpGUIq the cohomology type of π. We define
λT :“ pλ0, p

ř

1ďiďn
λipσqqσPΣq. Since π is irreducible, it acts as scalars when restrict to T .

This gives πT , a one dimensional representation of T pAQq which is cohomology of type
λT . We denote by VλT the character of T pRq with highest weight λT .

The automorphic vector bundle Eλ pulls back to the automorphic vector bundle rVλT s
(see [17] for notation) on ShT .

Let β be an element in H̄0pShI , Eλq
π. We fix a non zero Epπq-rational element in π

and then we can lift β to φ, an automorphic form on GUIpAQq.
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There is an isomorphism H0pShT , rVλT sq
„
ÝÑ tf P C8pT pQqzT pAQq,C | fptt8qq “

πT pt8qfptq, t8 P T pRq, t P T pAQqu (c.f. [17]). We send β to the element inH0pShT , rVλT sq
πT

associated to φ|T pAQq.

We then obtain rational morphisms

H̄0pShI , Eλq
π „
ÝÑ H0pShT , rVλT sq

πT (7.22)
and similarly H̄0pShI , Eλ_q

π_ „
ÝÑ H0pShT , rVλT,_sq

πT,_ . (7.23)

These morphisms are moreover isomorphisms. In fact, since both sides are one di-
mensional, it is enough to show the above morphisms are injective. Indeed, if φ, a lifting
of an element in H̄0pShI , Eλq

π, vanishes at the center, in particular, it vanishes at the
identity. Hence it vanishes at GUIpAQ,f q since it is an automorphic form. We observe
that GUIpAQ,f q is dense in GUIpQqzGUIpAQq. We know φ “ 0 as expected.

We are going to calculate the arithmetic automorphic period. Let β be rational. We
take a rational element β_ P H̄0pShI , Eλ_q

π_ and lift it to an automorphic form φ_. We
have cBpφq „Epπq;K P pIqpπqφ_ by Lemma 4.6.1.

For the torus, by Remark 4.1.1, we know

φ_|T pAQq „Epπq;K ppShpT, hT q, π
T q´1pφ|T pAQqq

´1.

Recall that cBpφq “ ˘iλ0φ||νp¨q||λ0 . Therefore pcBpφqq|T pAQq “ ˘i
λ0pφ|T pAQqq

´1. We
then get

iλ0P pIqpπq „Epπq;K ppShpT, hT q, π
T q. (7.24)

We now set T# :“ ResK{QTK . We have T# – ResK{QGmˆResF {QGm. In particular,
T#pRq – Cˆ ˆ pRbQ F q

ˆ – Cˆ ˆ pCˆqΣ.

We define hT# : SpRq Ñ T#pRq to be the composition of hT and the natural em-
bedding T pRq Ñ T#pRq. We know hT# sends z P Cˆ to pzz, pzqIpσq“0, pzqrpσq“0q. The
embedding pT, hT q Ñ pT#, hT#q is a map between Shimura datum.

We observe that πT,# :“ || ¨ ||´λ0ˆ ξ´1
Π is a Hecke character on T#. Its restriction to T

is just πT . By Proposition 4.1.1, we have ppShpT, hT q, πT q „Epπq;K ppShpT#, hT#q, πT
#
q.

By the definition of CM period and Proposition 4.1.2, we have

ppShpT#, hT#q, πT
#
q „Epπq;K p2πiqλ0

ź

Ipσq“0
ppξ´1

Π , σq
ź

Ipσq“n

ppξ´1
Π , σq. (7.25)

Since ξΠ is conjugate self-dual, we have ppξ´1
Π , σq „EpΠq;K ppξΠ, σq.

By equation (7.24), we get:

iλ0P pIqpπq „Epπq;K p2πiqλ0
ź

Ipσq“0
ppξ´1

Π , σq
ź

Ipσq“n

ppξΠ, σq. (7.26)
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Recall that by definition P pIqpΠq „EpΠq;K p2πq´λ0P pIqpπq, we get finally

P pIqpΠq „EpΠq;K
ź

Ipσq“0
ppξ´1

Π , σq ˆ
ź

Ipσq“n

ppξΠ, σq

„EpΠq;K
ź

Ipσq“0
pp|ξΠ, σq ˆ

ź

Ipσq“n

pp|ξΠ, σq.

The last formula comes from the fact that ξΠ is conjugate self-dual.

l

We recall that the arithmetic automorphic periods can be defined for essential conju-
gate self-dual representations. More precisely, let Π be conjugate self-dual as in Theorem
7.6.1, let η be an algebraic Hecke character. By Definition 5.3.2, we have defined P pIqpΠb
ηq as P pIqpΠq

ś

σPΣ
ppqη, σqIpσqppqη, σqn´Ipσq. As we showed above that P pIqpΠq „EpΠq;K

ś

σPΣ
P pIpσqqpΠ, σq, it is natural to define:

Definition 7.6.1. We define local arithmetic automorphic periods for conjugate
self-dual representations by

P psqpΠb η, σq “ P psqpΠ, σqppqη, σqIpσqppqη, σqn´Ipσq. (7.27)

Remark 7.6.1. If s “ 0, we see that

P p0qpΠb η, σq “ P p0qpΠ, σqppqη, σqn „EpΠ;Kq pp|ξΠ, σqppqη, σq
n (7.28)

„EpΠ;Kq pp~ξΠηn, σq „EpΠ;Kq pp~ξΠbη, σq

Therefore, if Π has definable arithmetic automorphic periods and regular enough, we
still have

1. P pIqpΠq „EpΠq;K
ś

σPΣ
P pIpσqqpΠ, σq for all I “ pIpσqqσPΣ P t0, 1, ¨ ¨ ¨ , nuΣ,

2. and P p0qpΠ, σq „EpΠq;K pp|ξΠ, σq.

Moreover, these two properties determine the local periods.

Remark 7.6.2. If n “ 1 and Π “ η is a Hecke character, we obtain that: P p0qpη, σq „Epηq;K
ppqη, σq and similarly P p1qpη, σq „Epηq;K ppqη, σq.



Chapter 8

Functoriality of arithmetic
automorphic periods

8.1 Period relations for automorphic inductions: settings

Let F be a CM field containing K as before.
Let F{F be a cyclic extension of CM fields of degree l.
Let ΠF be a cuspidal representation of GLnpAF q.

By Theorem 6.2 of [2], there exists ΠF , an automorphic representation of GLnlpAF q
which lifts ΠF . We assume moreover that ΠF fl Πg

F for all g P GalpF{F q non trivial. We
can read from the proof of Theorem 6.2 in the loc.cit that ΠF is then cuspidal.

We want to compare the arithmetic automorphic periods of ΠF and ΠF if they are
defined. For this purpose, we assume that ΠF has definable arithmetic automorphic peri-
ods as in Definition 5.3.2. In other words, ΠF is 3-regular, cohomological and descends to
unitary groups of any sign after tensoring by an algebraic Hecke character.

We write the infinity type of ΠF as pzaipσqzbipσqq1ďiďn at σ P ΣF ;K . We remark that

aipσq, bipσq P Z`
n´ 1

2 .

The restriction of embeddings gives a map:

ΨF{F : ΣF ;K Ñ ΣF ;K .

For τ P ΣF ;K , the infinity type of ΠF at τ is pzaipσqzbipσqq1ďiďn,σPΨ´1
F{F pτq

. We assume in

this chapter that for any τ the nl numbers aipσq, 1 ď i ď n and σ P Ψ´1
F{F pτq, are different.

We assume moreover their differences are at least 3. Hence ΠF is also 3-regular.

If l is odd or n is even, we know ΠF is algebraic and then cohomological. We write
Π1F :“ ΠF in this case.

If l is even and n is odd, ΠF is no longer algebraic. We define Π1F :“ ΠF || ¨ ||
´1{2
AF . It is

then a cuspidal cohomological representation of GLnlpAF q. It is conjugate self-dual after
tensoring by an algebraic Hecke character. To see this, we take ψF an algebraic Hecke
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character of F with infinity type z1z0 at each infinity place such that ψFψcF “ || ¨ ||AF . We
remark that the Hecke character || ¨ ||´1{2

AF b ψF is conjugate self-dual.

We also assume that Π1F descends to unitary groups of any sign after tensoring an
algebraic Hecke character. Therefore, Π1F has definable arithmetic automorphic periods.

Let IF be a map from ΣF ;K to the set t0, 1, ¨ ¨ ¨ , nlu. We want to relate P pIF qpΠ1F q to
arithmetic automorphic periods of ΠF in the following sections.

We take η an algebraic Hecke character of F such that IpΠF , ηq “ IF . We take m as
in the last part Theorem 5.3.1. We assume that Conjecture 5.1.1 is true and we have:

Lpm,Π1F b ηq „EpΠF qEpηq;K p2πiq
mnldP pIF qpΠ1F q

ź

τPΣF ;K

ppqη, τqIF pτqppqη, τqnl´IF pτq (8.1)

with both sides non zero.

8.2 Relations of global periods for automorphic inductions

The case l is odd or n is even: In this case, Π1F “ ΠF is the automorphic induction
of ΠF .

We know Lpm,ΠF b ηq “ Lpm,ΠF b η ˝ NAˆF {A
ˆ
F
q. It is easy to see that m is also

critical for ΠF b η ˝NAˆF {A
ˆ
F
. We can apply Theorem 5.3.1 to pΠF , η ˝NAˆF {A

ˆ
F
q.

We write IF :“ IpΠF , η ˝NAˆF {A
ˆ
F
q and get:

Lpm,ΠF b ηq “ Lpm,ΠF b η ˝NAˆF {A
ˆ
F
q „EpΠF qEpηq;K

p2πiqmndlP pIF qpΠF q
ś

σPΣF;K

pp η ˝NAˆF {A
ˆ
F
, σqIF pσqpp η ˝NAˆF {A

ˆ
F
, σqn´IF pσq. (8.2)

We first calculate IF “ IpΠF , η ˝NAˆF {A
ˆ
F
q. We write the infinity type of η at τ P ΣF ;K

by zapτqzbpτq.

For σ P ΣF ;K , the infinity type of η ˝NAF {AF at σ is then zapΨF{F pσqqzbpΨF{F pσqq.

We have by definition that

IF pσq “ #ti | 1 ď i ď n, apΨF{F pσqq ´ bpΨF{F pσqq ` aipσq ´ bipσq ă 0u (8.3)

Recall that the infinity type of ΠF at τ is pzaipσqzbipσqq1ďiďn,σPΨ´1
F{F pτq,1ďiďn

. We have:

IF pτq “ IpΠF , ηqpτq “ #tpi, σq | 1 ď i ď n, σ P Ψ´1
F{F pτq, apτq ´ bpτq ` aipσq ´ bipσq ă 0u.

(8.4)
We observe that IF is uniquely determined by IF . More precisely, it is easy to show

that:
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Lemma 8.2.1. The integer IF pσq is the number of elements in taipσq | 1 ď i ď nu which
is one of the IF pτq-th smallest numbers in the set taipσ1q | 1 ď i ď n, σ1 P Ψ´1

F{F pτqu where
τ “ ΨF{F pσq.

Moreover, it is easy to see that
ÿ

σPΨ´1
F{F pτq

IF pσq “ IF pτq. (8.5)

By Proposition 4.1.2, we get
ź

σPΣF;K

pp η ˝NAˆF {A
ˆ
F
, σqIF pσq „Epηq;K

ź

σPΣF;K

ppqη,ΨF{F pσqq
IF pσq

„Epηq;K
ź

τPΣF ;K

ppqη, τq

ř

σPΨ´1
F{F pτq

IF pσq

„Epηq;K
ź

τPΣF ;K

ppqη, τqIF pτq (8.6)

Similarly, we have
ź

σPΣF;K

pp η ˝NAˆF {A
ˆ
F
, σqn´IF pσq „Epηq;K

ź

τPΣF ;K

ppqη, τqnl´IF pτq. (8.7)

Comparing the above two equations with equations (8.1) and (8.2), we deduce that:

P pIF qpΠF q „EpΠF q;K P pIF qpΠF q. (8.8)

The case l is even and n is odd: In this case ΠF is no longer algebraic and we consider
Π1F “ ΠF b || ¨ ||

´1{2.

We know Lpm,Π1F b ηq “ Lpm´
1
2,ΠF b ηq “ Lpm´

1
2,ΠF b η ˝NAˆF {A

ˆ
F
q.

As in the previous case, we get:

Lpm´
1
2,ΠF b ηq “ Lpm´

1
2,ΠF b η ˝NAˆF {A

ˆ
F
q

„EpΠF qEpηq;K p2πiq
pm´ 1

2 qndlP pIF qpΠF q
ś

σPΣF;K

pp η ˝NAˆF {A
ˆ
F
, σqIF pσqpp η ˝NAˆF {A

ˆ
F
, σqn´IF pσq

„EpΠF qEpηq;K p2πiq
pm´ 1

2 qndlP pIF qpΠF q
ś

τPΣF ;K

ppqη, τqIF pτqppqη, τqnl´IF pτq

We conclude that:

P pIF qpΠF b || ¨ ||
´1{2q „EpΠF q;K p2πiq

´nld
2 P pIF qpΠF q. (8.9)

8.3 Relations of local periods for automorphic inductions
Recall that the arithmetic automorphic periods admit a factorization (c.f. Theorem

7.6.1) P pIqpΠq „EpΠq;K
ś

σPΣ
P pIpσqqpΠ, σq such that

P p0qpΠ, σq „EpΠq;K ppξ´1
Π , σq „EpΠq;K ppξΠ, σq

´1. (8.10)
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We will discuss the functoriality of local periods in this section.

Let τ be an element of ΣF ;K .
It is easy to see from Lemma 8.2.1 or equation (8.5) that if IF pτq “ 0 then IF pσq “ 0

for all σ P ΣF ;K over τ .

Fix any τ0 P ΣF ;K and an integer 0 ď s0 ď n. We define IF such that IF pτ0q “ s0 and
IF pτq “ 0 for τ ‰ τ0 P ΣF ;K .

The case l is odd or n is even: Recall P pIF qpAIpΠF qq „EpΠF q;K P pIF qpΠF q in this
case. We get

P ps0qpΠF , τ0q
ź

τ‰τ0PΣF ;K

P p0qpΠF , τq „EpΠF q;K
ź

σ0|τ0

P pIF pσ0qqpΠF , σ0q
ź

τ‰τ0PΣF ;K

ź

σ|τ

P p0qpΠF , σq

(8.11)

For τ ‰ τ0, we have P p0qpΠF , τq „EpΠF q;K ppξΠF , τq
´1. Similarly, we have P p0qpΠF , σq „EpΠF q;K

ppξΠF , σq
´1.

Let g be a generator of GalpF{F q. From the construction in [3] we know ΠF has base
change ΠF ˆΠg

F ˆ ¨ ¨ ¨ ˆΠgl´1

F . In particular, we know ξΠF ˝NAˆF {A
ˆ
F
“

ś

0ďiďl´1
ξg
i

ΠF
.

We fix any σ1 P ΣF ;K over τ . We know

ppξΠF , τq „EpΠF q;K ppξΠF ˝NAˆF {A
ˆ
F
, σ1q

„EpΠF q;K
ź

0ďiďl´1
ppξg

i

ΠF
, σ1q

„EpΠF q;K
ź

0ďiďl´1
ppξΠF , σ

g´i

1 q

„EpΠF q;K
ź

σ|τ

ppξΠF , σq

Equation (8.11) then gives:

P ps0qpΠF , τ0q „EpΠF q;K
ź

σ0|τ0

P pIF pσ0qqpΠF , σ0q (8.12)

We can read from Lemma 8.2.1 that IF pσ0q depends only on IF pτ0q “ s0.

It is natural to define:

Definition 8.3.1. Let 0 ď s ď nl be any integer. Let τ P ΣF ;K . For any σ P ΣF ;K over
τ , we define spσq to be the number of elements in taipσq | 1 ď i ď nu which is one of the
s-th smallest numbers in the set taipσ1q | 1 ď i ď n, σ1 P Ψ´1

F{F pτqu.

Equation (8.12) can be rewritten as

P psqpΠF , τq „EpΠF q;K
ź

σ|τ

P pspσqqpΠF , σq. (8.13)
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The case l is even and n is odd: In this case, we have:

ξΠ1F ˝NAˆF {A
ˆ
F
“

ź

0ďiďl´1
ξg
i

ΠF
ˆ || ¨ ||

´nl{2
AF . (8.14)

We repeat the above procedure and get:

P psqpAIpΠF q b || ¨ ||
´1{2, τq „EpΠF q;K p2πiq

´nl
2
ź

σ|τ

P pspσqqpΠF , σq. (8.15)

We conclude the functoriality of arithmetic automorphic periods for automorphic in-
duction:

Theorem 8.3.1. Let F Ą K be a CM field of degree d over K.
Let F{F be a cyclic extension of CM fields of degree l and ΠF be a cuspidal represen-

tation of GLnpAF q which has definable arithmetic automorphic periods.
We assume that ΠF fl Πg

F for all g P GalpF{F q non trivial. We define AIpΠF q to be
the automorphic induction of ΠF . It is a cuspidal representation of GLnlpAF q.

We assume that AIpΠF q (resp. AIpΠF q b || ¨ ||
´1{2) also has definable arithmetic

automorphic periods if l is odd or n is even (resp. if l is even and n is odd) (c.f. Section
8.1).

Let IF be any map from ΣF ;K to t0, 1, ¨ ¨ ¨ , nlu. Let IF be the map from ΣF ;K to
t0, 1, ¨ ¨ ¨ , nu determined by IF and ΠF as in Lemma 8.2.1. Or locally let 0 ď s ď nl be
an integer and sp¨q be as in Definition 8.3.1.

If l is odd or n is even, we have:

P pIF qpAIpΠF qq „EpΠF q;K P pIF qpΠF q

or locally P psqpAIpΠF q, τq „EpΠF q;K
ź

σ|τ

P pspσqqpΠF , σq.

Otherwise we have:

P pIF qpAIpΠF q b || ¨ ||
´1{2q „EpΠF q;K p2πiq

´nld
2 P pIF qpΠF q

or locally P psqpAIpΠF q b || ¨ ||
´1{2, τq „EpΠF q;K p2πiq

´nl
2
ź

σ|τ

P pspσqqpΠF , σq.

8.4 Period relations under Galois action
We are going to prove period relations for base change. Before that, we first prove

that arithmetic periods are equivariant under Galois actions.

More precisely, let F Ą K be a CM field and Π be a cuspidal representation ofGLnpAF q
which has definable arithmetic automorphic periods.

We fix any I : ΣF ;K Ñ t0, 1, ¨ ¨ ¨ , nu and take η, an algebraic Hecke character of F
such that IpΠ, ηq “ I. Assuming Conjecture 5.1.1 and Theorem 5.2.1 gives:

Lpm,Πb ηq „EpΠqEpηq;K P pIqpΠq
ź

σPΣF ;K

ppqη, σqIpσqppqη, σqn´Ipσq (8.16)

for a critical point m with both sides non zero.
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Let g P GalpF {Kq. We observe that Lps,Πb ηq “ Lps,Πg b ηgq.

We then get:
Lpm,Πb ηq “ Lps,Πg b ηgq (8.17)

„EpΠqEpηq;K P pIpΠ
gqqpΠg, ηgq

ź

σPΣF ;K

pp qηg, σqIpΠ
g ,ηgqpσqpp qηg, σqn´IpΠ

g ,ηgqpσq

It is easy to see that IpΠg, ηgqpσq “ IpΠ, ηqpσg´1
q.

Moreover, by Proposition 4.1.2 we have pp qηg, σq „Epηq;K ppqη, σg
´1
q.

We obtain:

ź

σPΣF ;K

pp qηg, σqIpΠ
g ,ηgqpσq „Epηq;K

ź

σPΣF ;K

ppqη, σg
´1
qIpΠ,ηqpσ

g´1
q

„Epηq;K
ź

σPΣF ;K

ppqη, σqIpΠ,ηqpσq. (8.18)

Similarly,
ś

σPΣF ;K

pp qηg, σqn´IpΠ
g ,ηgqpσq „Epηq;K

ś

σPΣF ;K

ppqη, σqn´IpΠ,ηqpσq.

We write Ig :“ IpΠg, ηgq. Then Igpσq “ Ipσg
´1
q. Compare with equation (8.16) and

equation (8.17), we deduce that:
P pIqpΠq „EpΠq;K P pI

gqpΠgq. (8.19)
We can moreover get relations of local periods. Let us fix σ0 P ΣF ;K and 0 ď s ď n an

integer.
We set Ipσ0q “ s and Ipσq “ 0 for σ ‰ σ0. Then Igpσg0q “ s and Igpσq “ 0 for σ ‰ σg0 .
By the results in Section 7.6, we have
P pIqpΠq „EpΠq;K P psqpΠ, σ0q

ź

σ‰σ0

P p0qpΠ, σq „EpΠq;K P psqpΠ, σ0q
ź

σ‰σ0

ppξΠ, σq
´1 (8.20)

and similarly:
P pI

gqpΠgq „EpΠq;K P psqpΠg, σg0q
ź

σ‰σg0

ppξΠg , σq
´1. (8.21)

Again by Proposition 4.1.2, we have
ź

σ‰σg0

ppξΠg , σq
´1 „EpΠq;K

ź

σ‰σg0

ppξgΠ, σq
´1

„EpΠq;K
ź

σ‰σg0

ppξΠ, σ
g´1
q´1

„EpΠq;K
ź

σ‰σ0

ppξΠ, σq
´1. (8.22)

We conclude that:
P psqpΠ, σ0q „EpΠq;K P psqpΠg, σg0q. (8.23)

Theorem 8.4.1. Let F Ą K be a CM field and Π be a cuspidal representation of GLnpAF q
which has definable arithmetic automorphic periods. We assume that Conjecture 5.1.1 is
true. Let g P GalpF {Kq, σ P ΣF ;K and 0 ď s ď n be an integer. We have:

P pIqpΠq „EpΠq;K P pI
gqpΠgq (8.24)

or locally P psqpΠ, σq „EpΠq;K P psqpΠg, σgq. (8.25)
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8.5 Relations of global periods for base change
Let F{F a cyclic extension of CM fields of degree l as before. Let πF be a cuspidal

representation of GLnpAF q. The strong base change of πF exists. We denote it by πF or
BCpπF q.

By the class field theory, we have pFˆNAˆF {A
ˆ
F
AˆF qzA

ˆ
F – GalpF{F q. Since GalpF{F q

is cyclic, its dual is also cyclic. We fix any generator of HompGalpF{F q,Cˆq which gives
ηF{F a Hecke character of F .

We remark that ηF{F is an order l Hecke character. In particular it has trivial infinity
type. It is also unitary and thus conjugate self-dual.

We assume that πF b ηtF{F fl πF for all 1 ď t ď l´ 1. Then ΠF is cuspidal (Théorèm
4.2 of [2]). We want to compare the arithmetic automorphic periods of ΠF to those of πF
if they are defined.

We assume that πF has definable arithmetic automorphic periods. In other words, it
is 3-regular, cohomological and descends to unitary groups of any sign after tensoring an
algebraic Hecke character. We know ΠF is also 3-regular and cohomological. We assume
that ΠF also descends to unitary groups of any sign after tensoring an algebraic Hecke
character.

Let IF be any map from ΣF ;K to the set t0, 1, ¨ ¨ ¨ , nu.

We take η an algebraic Hecke character of F with IpπF , ηq “ IF such that pπF , ηq
satisfies conditions in Theorem 5.3.1. Let η1 :“ η ˝NAˆF {A

ˆ
F
be the base change of η to F .

There is a relation between the L-function of πF and that of πF , namely:

Lps, πF b η
1q “

l´1
ź

i“0
Lps, πF b ηη

i
F{F q. (8.26)

We write IF :“ IpπF , η
1q. For any τ P ΣF ;K and any σ P ΣF ;K with σ | τ , it is easy to

see that IF pσq “ IF pτq. In other words, IF is the composition of IF and ΨF{F .

We assume that Conjecture 5.1.1 is true. We can interpret both sides in terms of
arithmetic automorphic periods and CM periods and then deduce period relations.

More precisely, for a certain critical point m we have:

Lpm,πF b η
1q „EpπF qEpηq;K p2πiq

mnldP pIF qpπF q
ź

τPΣF ;K

ź

σ|τ

ppqη1, σqIF pσqppqη1, σqn´IF pσq

(8.27)
with both sides non zero.

Since η1 “ η ˝NAˆF {A
ˆ
F
, we have ppqη1, σq “ ppqη, σ |F q. Moreover, IF pσq “ IF pτq if σ | τ .

Therefore,

Lpm,πFbη
1q „EpπF qEpηq;K p2πiq

mnldP pIF qpπF q
ź

τPΣF ;K

ppqη, τqlIF pτqppqη, τqlpn´IF pτqq. (8.28)
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On the other hand, we apply Theorem 5.3.1 to pπF , ηηiF{F q and get:

Lpm,πF b ηη
i
F{F q (8.29)

„EpπF qEpηq;K p2πiqmndP pIF qpπF q
ź

τPΣF ;K

ppηηiF{F , τq
IF pτqppηηiF{F , τq

n´IF pτq

„EpπF qEpηq;K p2πiqmndP pIF qpπF q
ź

τPΣF ;K

ppqη, τqIF pτqppqη, τqn´IF pτq

ˆpp~ηF{F , τq
iIF pτqpp~η´1

F{F , τq
ipn´IF pτqq

„EpπF qEpηq;K p2πiqmndP pIF qpπF q
ź

τPΣF ;K

ppqη, τqIF pτqppqη, τqn´IF pτqpp~ηF{F , τq
2iIF pτq´in.

Comparing equation (8.26), (8.28) and (8.29), we get:

P pIF qpπF q „EpπF q;K pIF pπF q
ź

τPΣF ;K

l´1
ź

i“0
pp~ηF{F , τq

2iIF pτq´in

„EpπF q;K pIF pπF q
l

ź

τPΣF ;K

pp~ηF{F , τq
lpl´1qIF pτq´lpl´1qn{2. (8.30)

Since pp~ηF{F , τq
l „K;K pp~ηlF{F , τq „K;K 1, we have:

P pIF qpπF q „EpπF q;K pIF pπF q
l

ź

τPΣF ;K

pp~ηF{F , τq
´lpl´1qn{2. (8.31)

If l is odd, we have pp~ηF{F , τq
´lpl´1qn{2 „K;K 1. Otherwise we assume that pp~ηF{F

l{2, τq P
EpπF q

ˆ for simplicity.
We conclude that:

P pIF qpπF q „EpπF q;K pIF pπF q
l. (8.32)

8.6 Relations of local periods for base change
There are relations between local periods of πF and those of πF .
Let 0 ď s0 ď n be an integer. We fix τ0 P ΣF ;K . We take IF to be the map which

sends τ0 to s0 and τ ‰ τ0 to 0. Equation (8.32) then becomes:

ź

σ0|τ0

P ps0qpπF , σ0q
ź

τ‰τ0

ź

σ|τ

P p0qpπF , σq „EpπF q;K pps0qpπF , τ0q
l
ź

τ‰τ0

pp0qpπF , τq
l. (8.33)

Recall that for σ | τ , we have:

P p0qpπF , σq „EpπF q;K ppξπF , σq
´1

„EpπF q;K ppξπF ˝NAˆF {A
ˆ
F
, σq´1

„EpπF q;K ppξπF , τq
´1

„EpπF q;K P p0qpπF , τq. (8.34)

We deduce that:
ź

σ|τ0

P psqpπF , σq „EpπF q;K P psqpπF , τ0q
l. (8.35)
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We observe that πF is GalpF{F q-invariant. The local periods are then GalpF{F q-
invariant.

Indeed, for any g P GalpL{Kq, we have πgF – πF . Theorem 8.25 implies that

P psqpπF , σq „EpπF q;K P psqpπgF , σ
gq „EpπF q;K P psqpπF , σ

gq. (8.36)

Recall that GalpF{F q acts faithfully and transitively on the set tσ : σ | τu. We fix any
σ0 | τ and then:

ź

σ|τ

P psqpπF , σq “
ź

gPGalpF{F q
P psqpπF , σ

g
0q „EpπF q;K P psqpπF , σ0q

l. (8.37)

Comparing equation (8.35) and equation (8.37), we conclude that for any σ P ΣF ;K :

P psqpπF , σq
l „EpπF q;K P psqpπF , σ |F q

l. (8.38)

Consequently, there exists an algebraic number λpsqpπF .σq with λpσql P EpπF qˆ such that
P psqpπF , σq „EpπF q λ

psqpπF , σqP
psqpπF , σ |F q.

It is expected that λpsqpπF , σq is equivariant under Galois action. But we don’t know
how to prove it at this moment.

We summarize the above results on period relations for base change as follows.

Theorem 8.6.1. Let F{F be a cyclic extension of CM fields of degree l. Let πF be a
cuspidal representation of GLnpAF q. We denote by BCpπF q its strong base change to F .

We assume that πF b ηtF{F fl πF for all 1 ď t ď l ´ 1 and then BCpΠF q is cuspidal
(Théorèm 4.2 of [2]). We assume that both πF and BCpπF q have definable arithmetic
automorphic periods.

Let IF be any map from ΣF ;K to t0, 1, ¨ ¨ ¨ , nu. We write IF the composition of IF and
ΨF{F .

We then have:

P pIF qpBCpπF qq „EpπF q;K pIF pπF q
l (8.39)

or locally P psqpBCpπF q, σq
l „EpπF q;K P psqpπF , σ |F q

l. (8.40)

Consequently, we know

P psqpBCpπF q, σq „EpπF q λ
psqpπF , σqP

psqpπF , σ |F q. (8.41)

where λpsqpπF , σq is an algebraic number whose l-th power is in EpπF qˆ.





Chapter 9

An automorphic version of
Deligne’s conjecture

9.1 A conjecture
Conjecture 9.1.1. Let n and n1 be two positive integers. Let Π and Π1 be cuspidal
representations of GLnpAF q and GLn1pAF q respectively which have definable arithmetic
automorphic periods.

Let m P Z`
n` n1

2 be critical for ΠbΠ1. We predict that:

Lpm,ΠˆΠ1q „EpΠqEpΠ1q;K p2πiqnn
1md

ź

σPΣF ;K

p

n
ź

j“0
P pjqpΠ, σqsppj,Π;Π1,σq

n1
ź

k“0
P pkqpΠ1, σqsppk,Π1;Π,σqq.

Example 9.1.1. (Known cases for the above conjecture:)
Let F “ K be the quadratic imaginary field. Then the above conjecture is already

known in the following cases:

1. n1 “ 1 and m is strictly bigger than the central value. This is the main theorem
in [13]. We keep the notation as in Therem 5.3.1. Let Π1 “ η. It is easy to
verify that spp0,Π; Π1q “ n ´ s, spp1,Π1; Πq “ s, sppi,Π; Π1q “ 0 unless i “ s and
spps,Π; Π1q “ 1.
Recall that P p0qpηq „ ppqη, ιq and P p1qpηq „ ppqη, 1q. The formula in the above conjec-
ture is the same with the formula in Theorem 5.3.1.

2. n1 “ n ´ 1, Π, Π1 conjugate self-dual in good position and m ą 1
2 or m “ 1

2 along
with a non vanishing condition.
In this case, we have ´an ą b1 ą ´an´1 ą b2 ą ¨ ¨ ¨ ą bn´1 ą ´a1. Equivalently we
have sppk,Π1; Πq “ 1 for all 0 ď k ď n ´ 1; sppj,Π; Π1q “ 1 for 1 ď j ď n ´ 1 and
“ 0 for j “ 0 or n. Recall that P p0qpΠ1q „EpΠq;K P pn´1qpΠ1q´1. Above conjecture is
equivalent to that:

Lpm,ΠˆΠ1q „EpΠqEpΠ1q;K p2πiqnpn´1qm
n´1
ź

j“1
P pjqpΠq

n´2
ź

k“2
P pkqpΠ1q

This is Theorem 6.11 of [8] and Theorem 5.1 of [22].
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The shall prove the following special cases of the above conjecture in the next chapters:

Theorem 9.1.1. We assume that Π and Π1 are 6-regular if F ‰ K to guarantee the
factorization of the arithmetic automorphic periods. We know Conjecture 9.1.1 is true for
the following cases:

1. n ą n1, the pair pΠ,Π1q is in good position (see Definition 1.2.2), m is strictly bigger
than the central value, or m equals to the central value along with a non vanishing
condition and moreover

(i) Π, Π1 conjugate self-dual if n ı n1pmod 2q,
(i) Π conjugate self-dual, Π1 b ψ´1

F conjugate self-dual if n ” n1pmod 2q.

2. Any n, n1 and any position for Π, Π1 , the pair pΠ,Π1q is very regular (11.1) and
moreover:

(i) m “ 1, Π1, Π2 conjugate self-dual if n ” n1pmod 2q;
(i) m “ 1

2 , Π1, Π2 b ψ
´1
F conjugate self-dual if n ı n1pmod 2q.

9.2 Compatibility with Deligne’s conjecture over quadratic
imaginary fields

One see easily that Conjecture 9.1.1 is formally compatible with Conjecture 6.5.1,
Deligne’s conjecture for automorphic pairs. For this, it is enough to compare the arith-
metic automorphic period P pjqpΠq with the motivic periodQpjqpΠq where Π is an conjugate
self-dual representation.

When F is not K, this is difficult since we don’t have geometric meanings for our local
periods P psqpΠ, σq. But for the case when F “ K, this is already discussed in Section 4 of
[8]. We now give a detailed explanation here.

First, let Π be conjugate self-dual. In the construction of the arithmetic automor-
phic period, we have chosen ξ, an algebraic Hecke character of AK , such that Π_ b ξ

descends to a similitude unitary group. It is easy to verify that ξΠ “
ξ

ξc
(c.f. Theorem

V I.2.1 or V I.2.9 of [19]). The arithmetic automorphic period is defined to be the Pet-
terson inner product of a rational class in the bottom stage of the Hodge filtration of
a cohomology space related to ΛjMpΠcq bMpξq. In other words, P pjqpΠq is related to
Qn´j`1pΠcqQn´j`2pΠcq ¨ ¨ ¨QnpΠcq ˆQ1pξq.

By Lemma 6.2.1 we have Qn´i`1pΠcq „EpMq QipΠq´1 for all 1 ď i ď n.

By equation (6.13), we see

Q1pξq „Epξq;K pp
ξc

ξ
, 1q „Epξq;K ppξcΠ, 1q „Epξq;K pp|ξcΠ, 1q „EpξΠq;K δDelpξΠq.

We deduce that:

Qn´j`1pΠcq ¨ ¨ ¨QnpΠcq ˆQ1pξ
cq „EpΠqEpξq;K Q1pΠq´1Q2pΠq´1 ¨ ¨ ¨QjpΠq´1δDelpξΠq.

(9.1)
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Recall equation (6.20), the right hand side of the above formula is just QpjqpΠq as
expected.

Remark 9.2.1. We can also deduce the above result without passing to the motivic period
of Πc. In fact, we can also consider P pjqpΠq as Petterson inner product of a rational class
in the bottom degree of a cohomology space related to Λn´jMpΠq bMpξcq. It should be
related to Qj`1pΠqQj`2pΠq ¨ ¨ ¨QnpΠqQ1pξ

cq.

Lemma 6.2.3 implies that

δDelpξcΠq „EpMq;K p
ź

1ďiďn
Q´1
i qδ

DelpξΠq.

Therefore,

QpjqpΠq “ Q1pΠq´1Q2pΠq´1 ¨ ¨ ¨QjpΠq´1δDelpξΠq

“ Qj`1pΠqQj`2pΠq ¨ ¨ ¨QnpΠqδDelpξcΠq.

We can deduce the comparison by the fact that

Q1pξ
cq „Epξq;K pp

qξ

ξc
, 1q „Epξq;K pp|ξΠ, 1q „Epξq;K δDelpξcΠq.

For the general cases, we write Π “ Π1 b η with Π1 conjugate self-dual. For the
automorphic part, we see from Definition-Lemma (5.3.2) that

P pjqpΠq „EpΠq;K P pjqpΠ1qppqη, 1qjppqη, ιqn´j .

For the motivic part, we have QipΠq “ QipΠ1qQ1pηq and ∆pΠq “ ∆pΠ1qδDelpηqn.
Therefore QpjqpΠq “ QpjqpΠ1qQ1pηq

´jδDelpηqn.

By (6.13) again, we see at first thatQ1pηq „Epηq;K
pp qηc, 1q
ppqη, 1q and δ

Delpηq „Epηq;K pp qηc, 1q.
We obtain finally:

QpjqpΠq „EpΠq;K QpjqpΠ1qppqη, 1qjppqη, ιqn´j .

We have already related P pjqpΠ1q to QpjqpΠ1q. The relation for the general cases then
comes.

Remark 9.2.2. We believe that the above comparison also works over general CM fields.
However, the local periods P psqpΠ, σq are not defined geometrically. It is expected that their
geometric meaning can be obtained by comparing special values of L-functions.

9.3 Simplify archimedean factors
We observe that in Conjecture 9.1.1 the right hand side only concerns arithmetic au-

tomorphic periods and a power of 2πi. Sometimes we will get a formula of Lpm,Πb Π1q
which also involves archimedean factors as in Theorem 6.10 of [8]. We need to show that
the contribution of these archimedean factors is equivalent to a power of 2πi:
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Proposition 9.3.1. Let Π and Π1 be as in Conjecture 9.1.1. We assume that either the
critical value m is strictly bigger then the central value, either it is equal to the central
value along with a nonvanishing condition on a certain L-function that we shall see in the
proof.

If there exists an archimedean factor apm,Π8,Π18q depending only on m, Π8 and Π18
such that

Lpm,ΠˆΠ1q „EpΠqEpΠ1q;K (9.2)

apm,Π8,Π18q
ś

σPΣF ;K

p
n
ś

l“0
P plqpΠ, σqsppl,Π;Π1,σq

n1
ś

k“0
P pkqpΠ1, σqsppk,Π1;Π,σqq ,

then we have apm,Π8,Π18q „EpΠq;K p2πiqnn1md. In particular, Conjecture 9.1.1 then
follows.

Sometimes it is possible to calculate the archimedean factors directly.
A simpler way is to take Π and Π1 as representations induced from Hecke characters.

Then we may write the left hand side of equation (9.2) in terms of a power of 2πi and
products of CM periods. For the right hand side, note that we have already related the
arithmetic automorphic periods of a representation induced from Hecke characters and
the CM periods by Theorem 8.3.1.

We shall deduce that the archimedean factor apm,Π8,Π18q is equivalent to a power of
2πi if Π and Π1 are induced from Hecke characters. But such representations can have any
infinity type. The only non trivial point is that if Π is conjugate self-dual then we may
take a conjugate self-dual Hecke character such that its automorphic induction has the
same infinity type as Π. We prove this in the lemma below. Hence the above proposition
is true for any Π and Π1. This is the idea of the proof of Theorem 5.1 in [22].

Lemma 9.3.1. Let L Ą F be a cyclic extension of CM fields of degree n. We assume that
n is odd. If Π is a conjugate self-dual representation of GLnpAF q then there exists χ a
conjugate self-dual algebraic Hecke character of L such that Π8 – AIpχq8.

Proof We denote by L` the maximal totally real subfield of L.
We may take an algebraic Hecke character χ1 of L such that Π8 – AIpχ1q8 (c.f.

Lemma 4.1.1 and paragraphs before Lemma 4.1.3 in [6]).
Since Π is conjugate self-dual, we see that χ18 is conjugate self-dual. In particular,

χ1|L` is trivial at infinity places. By Lemma 4.1.4 of [6], we may find φ an algebraic Hecke
character of L with trivial infinity type such that φφc “ χ1χ1c. Put χ “ χ1φ´1. It is then
a conjugate self-dual Hecke character with Π8 – AIpχq8.

l

We now give the details of the proof for Proposition 9.3.1.

Proof For simplicity, we assume that both n and n1 are odd. For general case, we have
to twist AIpχq or AIpχ1q by ||¨||´1{2ψF as before. The following proof goes through as well.

We take L Ą F (resp. L1 Ą F ) a CM field which is a cyclic extension of F of degree n
(resp. n1). We assume that L and L1 are linearly independent over F . Let L :“ LL1. It is
then a CM field of degree nn1 over F .



9.3. Simplify archimedean factors 97

We may take χ (resp. χ1) an algebraic Hecke character of L such that Π8 “ AIpχq8
(resp. Π18 “ AIpχ1q8) where AIpχq (resp. AIpχ1q) is the automorphic induction of χ
(resp. χ1) from L (resp. L1) to F . Moreover, we may assume that AIpχq and AIpχ1q are
cuspidal and have definable arithmetic automorphic periods.

For σ P ΣF ;K , we write σ1, ¨ ¨ ¨ , σn for the elements in ΣL;K above σ and σ11, ¨ ¨ ¨ , σ1n1
for the elements in ΣL1;K above σ. Let 1 ď i ď n and 1 ď j ď n1. We write σi,j for the
only element in ΣL;K such that σi,j |L“ σi and σi,j |L1“ σ1j .

We write zaipσqz´ωpΠq´aipσq for the infinity type of AIpχq at σi and zbjpσqz´ωpΠ
1q´bjpσq

for the infinity type of AIpχq at σ1j .
Then Π has infinity type pzaipσqz´ωpΠq´aipσqq1ďiďn and Π1 has infinity type

pzbjpσqz´ωpΠ
1q´bjpσqq1ďjďn1 at σ.

By equation (9.2), we have

Lpm,AIpχq ˆAIpχ1qq „EpχqEpχ1q;K (9.3)

apm,Π8,Π18q
ś

σPΣF ;K

p
n
ś

l“0
P plqpAIpχq, σqsppl,Π;Π1,σq

n1
ś

k“0
P pkqpAIpχ1q, σqsppk,Π

1;Π,σqq

On one hand, we have Lpm,AIpχq ˆAIpχ1qq “ Lpm, pχ ˝NAL{ALqpχ
1 ˝NAL{AL1

qq.
We observe that the infinity type of pχ ˝ NAL{ALqpχ

1 ˝ NAL{AL1
q at σi,j P ΣL;K is

zaipσq`bjpσqz´ωpΠq´ωpΠ
1q´aipσq´bjpσq.

We denote Jσ :“ tpi, jq | aipσq ` bjpσq ă ´
ωpΠq ` ωpΠ1q

2 u.
We write χL “ pχ ˝NAL{ALqpχ

1 ˝NAL{AL1
q. By Blasius’s result,

Lpm,AIpχq ˆAIpχ1qq „EpχqEpχ1q;K p2πiqmnn
1d

ź

σPΣF ;K

ź

pi,jqPJσ

pp|χL, σi,jq
ź

pi,jqRJσ

pp|χL, σi,jq.

(9.4)
We need to assume that we may choose χ and χ1 such that Lpm,AIpχqˆAIpχ1qq ‰ 0.

When m is strictly bigger then the central value, this is always true. When m is equal to
the central value, we assume this as a hypothesis.

Recall that the CM periods are multiplicative and functorial for base change. Hence

pp|χL, σi,jq „EpχqEpχ1q;K pp χ ˝NAL{AL , σi,jqpp
χ ˝NAL{AL1

, σi,jq

„EpχqEpχ1q;K ppqχ, σiqppqχ1, σjq. (9.5)

We have deduced that

Lpm,AIpχq ˆAIpχ1qq „EpχqEpχ1q;K (9.6)

p2πiqmnn1d
ś

σPΣF ;K

ś

1ďiďn
pppqχ, σiq

sipσqppqχ, σiq
n1´sipσqq

ś

1ďjďn1
pppqχ1, σjq

tjpσqppqχ1, σjq
n´tjpσqq

where sipσq “ #t1 ď j ď n1 | pi, jq P Jσu and tjpσq “ #t1 ď i ď n | pi, jq P Jσu.

On the other hand, for 0 ď l ď n, we have

P plqpAIpχq, σq „EpΠF q;K
ź

1ďiďn
P puiplqqpχ, σiq (9.7)
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where uiplq “ 1 if aipσq is in the l-th smallest numbers in the set taipσq | 1 ď i ď nu and
uiplq “ 0 otherwise by Definition 8.3.1.

We order aipσq and bjpσq in decreasing order. We have uiplq “ 1 if and only if
i ě n´ l ` 1. We get

P plqpAIpχq, σq „EpΠF q;K
ź

1ďiďn´l
P p0qpχ, σiq

ź

n´l`1ďiďn
P p1qpχ, σiq (9.8)

Recall that P p0qpχ, σiq „Epχq;K ppqχ, σiq and P p1qpχ, σiq „Epχq;K ppqχ, σiq by Remark
7.6.2. We obtain that:

P plqpAIpχq, σq „EpΠF q;K
ź

1ďiďn´l
ppqχ, σiq

ź

n´l`1ďiďn
ppqχ, σiq (9.9)

Comparing equations (9.3), (9.6) and (9.9), we observe that it remains to show:

n
ÿ

l“n´i`1
sppl,Π; Π1, σq “ sipσq (9.10)

and
n´i
ÿ

l“0
sppl,Π; Π1, σq “ n1 ´ sipσq. (9.11)

Since
n
ř

l“0
sppl,Π; Π1, σq “ n1 by Lemma 1.2.1. We see the above two equations are

equivalent. We now prove the first one.
Recall by definition that sppl,Π; Π1, σq is the length of the l-th part of the sequence

b1pσq ą b2pσq ą ¨ ¨ ¨ ą bn1pσq split by the numbers ´
ωpΠq ` ωpΠ1q

2 ´an ą ´
ωpΠq ` ωpΠ1q

2 ´

an´1 ą ¨ ¨ ¨ ą ´
ωpΠq ` ωpΠ1q

2 ´ a1.

Therefore,
n
ř

l“n´i`1
sppl,Π; Π1, σq “ #tj | bj ă ´

ωpΠq ` ωpΠ1q
2 ´ aiu. This is exactly

sipσq as expected.

l

Remark 9.3.1. Roughly speaking, the above proposition tells us that if we have a formula
like equation (9.2) then the archimedean factor must be equivalent to a power of 2πi. If
one can show that the CM periods ppχ, τq, τ P ΣL;K is algebraically independent, we can
moreover prove that the power of arithmetic automorphic periods must be the split indices.

More precisely, the following statement is true:

If there exists an archimedean factor apm,Π8,Π18q depending only on m, Π8 and Π18
and integers bpj,Π8; Π18, σq, cpk,Π18; Π8, σq for 0 ď j ď n, 0 ď k ď n1 and σ P ΣF ;K
depending on Π8, Π18 such that

Lpm,ΠˆΠ1q „EpΠqEpΠ1q;K (9.12)

apm,Π8,Π18q
ś

σPΣF ;K

p
n
ś

j“0
P pjqpΠ, σqbpj,Π8;Π18,σq

n1
ś

k“0
P pkqpΠ1, σqcpk,Π18;Π8,σqqq ,
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then we have bpj,Π8; Π18, σq “ sppj,Π; Π1, σq and cpk,Π18; Π8, σq “ sppk,Π1; Π, σq pro-
vided that the local CM periods are algebraically independent. In particular, Conjecture
9.1.1 then follows.

The proof of the above statement is the same as proof for Proposition 9.3.1. We remark
that the indices for the arithmetic automorphic periods are determined by equation (9.10).

This statement is very powerful. Sometimes it is easy to show that there exists a for-
mula in the form of equation (9.12) but difficult to calculate the exact indices. In fact,
one can explain in several lines that there exists such formulas for the cases in Theorem
9.1.1. But we have devoted the next two whole chapters to calculate the precise indices.

Unfortunately we don’t know how to prove the algebraically independency of the CM
periods. So the calculation in the next two chapters are inevitable at the moment.

9.4 More discussions on the archimedean factors
As discussed in the previous section, one can leave the archimedean factors to the end

of the proof and show that they contribute as a power of 2πi.

In our situation, we happen to be able to calculate the product of the archimedean
factors directly. Let us first recall some archimedean factors.

Let Π8 (resp. Π#
8) be an algebraic regular generic representation of GLnpF bQ R

(resp.GLn´1pF bQ R)). We have defined:

1. ΩpΠ8q which appears in the calculation of Whittaker period (c.f. Section 3.4).

2. ppm,Π8,Π18q which appears in the calculation of critical values for automorphic
representations of GLn ˆGLn´1 (c.f. Proposition 3.6.1).

3. ZpΠ8q defined in equation (7.8) by

ZpΠ8q :“ p2πiqdpm`
1
2 qnpn´1q´ dpn´1qpn´2q

2 ΩpΠ#
8q
´1ppm,Π8,Π#

8q
´1.

Lemma 9.4.1. The archimedean factors satisfy:

ZpΠ8qΩpΠ18qppm,Π8,Π18q „EpΠ8qEpΠ18q;K p2πiq
dnpn´1qpm` 1

2 q´
dpn´1qpn´2q

2

for all m ě 0.

We now take Π and Π# to be cuspidal conjugate self-dual representations of GLnpAF q
and GLn´1pAF q respectively such that pΠ,Π#q is in good position. We assume that they
all have definable arithmetic automorphic periods.

By Proposition 3.6.1, we have

Lp
1
2`m,ΠˆΠ#q „EpΠqEpΠ#q;K ppm,Π8,Π#

8qppΠqppΠ#q (9.13)

for some critical
1
2`m ě

1
2.
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Recall from equation (7.5.1) that:

ppΠq „EpΠqEpΠ#;Kq ZpΠ8q
ź

σPΣF ;K

ź

1ďiďn´1
P piqpΠq. (9.14)

We have a similar formula for Π# since Π# is also cuspidal. We then deduce that:

Lp
1
2`m,ΠˆΠ#q (9.15)

„EpΠqEpΠ#q;K ppm,Π8,Π#
8qZpΠ8qZpΠ#

8q
ź

σPΣF ;K

p
ź

1ďiďn´1
P piqpΠ, σq

ź

1ďjďn´2
P pjqpΠ#, σqq

„EpΠqEpΠ#q;K ppm,Π8,Π#
8qZpΠ8qZpΠ#

8q
ź

σPΣF ;K

p
ź

1ďiďn´1
P piqpΠ, σq

ź

0ďjďn´1
P pjqpΠ#, σqq.

Here we have used the fact that P p0qpΠ#, σqP pn´1qpΠ#, σq „EpΠ#q;K 1 by Theorem 7.6.1.

Proposition 9.3.1 then gives the following result on the archimedean factors:

Proposition 9.4.1. The archimedean factors satisfy:

ppm,Π8,Π#
8qZpΠ8qZpΠ#

8q „EpΠ8qEpΠ18q;K p2πiq
dpm` 1

2 qnpn´1q

provided m ě 1 or m “ 0 along with a non vanishing condition for the central value of
a certain L-function.

This is Theorem 5.1 of [22] when F “ K is a quadratic imaginary field.

Comparing Lemma 9.4.1 and Proposition 9.4.1, we change the notation Π# to Π and
deduce that:

Corollary 9.4.1. We write r “ n ´ 1. For Π8 an algebraic and generic representation
of GLn1pF bQ Rq, we have

ZpΠ8qΩpΠ8q´1 „EpΠ8q;K p2πiq
dpn´1qpn´2q

2 “ p2πiq
dpr´1qr

2

provided m ě 1 or m “ 0 along with a non vanishing condition for the central value of
a certain L-function.

In the following, we assume that m ě 1, or m “ 0 along with a non vanishing condition
for Π.

9.5 From quadratic imaginary fields to general CM fields

We shall prove Theorem 9.1.1 in the following two chapters over quadratic imaginary
field. The proof only requires little change for general CM fields. This is because the
automorphic arithmetic periods and the CM periods are all factorable. We now explain
the details for the first case of Theorem 9.1.1 in the current section.

Let Π and Π1 be cuspidal conjugate self-dual representations ofGLnpAF q andGLn1pAF q
which has definable arithmetic automorphic periods. We assume that pΠ,Π1q is in good
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position and both Π and Π1 are regular enough. For simplicity, we also assume that n is
even and n1 is odd.

Let l “ n´ n1´ 1. We take some conjugate self-dual Hecke characters χ1, ¨ ¨ ¨ , χl such
that if we write Π# for the Langlands sum of Π1 and χ1, ¨ ¨ ¨ , χn then pΠ,Π#q is in good
position. By the assumption on the parity of n and n1 we know that Π# is algebraic.

We may assume that for each σ P ΣF ;K , the first index of the infinity type of χi is in
decreasing order. Therefore, IpΠ, χiqpσq is determined by the infinity type of Π and Π1 at
σ.

As explained in the introduction, the proof requires three main ingredients.

Ingredient A: Theorem 5.3.1 says that for certain Hecke characters η and critical points
m we have:

Lpm,Πb ηq „EpΠqEpηq;K p2πiqmndP pIpΠ,ηqqpΠq
ź

σPΣ
ppqη, σqIpΠ,ηqpσqppqη, σqn´IpΠ,ηqpσq. (9.16)

where IpΠ, ηqpσq depends only the infinity type of Π and η at σ.
By Theorem 7.6.1, we may rewrite the above equation as:

Lpm,Πb ηq „EpΠqEpηq;K p2πiqmnd
ź

σPΣ
rP pIpΠ,ηqpσqqpΠ, σqppqη, σqIpΠ,ηqpσqppqη, σqn´IpΠ,ηqpσqs.

(9.17)

Ingredient B: Proposition 3.6.1 says that if m ě 0 and m`
1
2 is critical for ΠˆΠ# then

Lp
1
2`m,ΠˆΠ#q „EpΠqEpΠ#q;K ppm,Π8,Π#

8qppΠqppΠ#q (9.18)

where ppΠq and ppΠ#q are the Whittaker periods.

Ingredient C: Corollary 3.5.1 implies that

ppΠ#q „EpΠq;K ppΠ1q
ΩpΠ8q
ΩpΠ18q

ź

1ďiďl
Lp1,Π1 b χ_i q

ź

1ďiăjďl
Lp1, χi ˆ χ_j q (9.19)

Moreover, by Corollary 7.5.1, we have

ppΠq „EpΠq;K ZpΠ8q
ź

σPΣ

ź

1ďiďn´1
P piqpΠ, σq (9.20)

ppΠ1q „EpΠ1q;K ZpΠ18q
ź

σPΣ

ź

1ďjďn1´1
P pjqpΠ1, σq (9.21)

On one hand, note that Lp
1
2`m,ΠˆΠ#q “ Lp

1
2`m,ΠˆΠ1q

ś

1ďiďl
Lp

1
2`m,Πˆ χiq.

We replace η by χi in equation (9.17) and will get:

Lp
1
2`m,ΠˆΠ#q “ Lp

1
2`m,ΠˆΠ1qˆ (9.22)

ś

σPΣF ;K

r
ś

1ďiďl
P pIpΠ,χiqpσqqpΠ, σqpp qχi, σqIpΠ,χiqpσqpp qχi, σqn´IpΠ,χiqpσqs
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On the other hand, apply equations (9.19), (9.20) and (9.21) to the right hand side of
equation (9.18), we get:

Lp
1
2`m,ΠˆΠ#q „EpΠqEpΠ#q;K a0pm,Π8,Π18qˆ (9.23)

ś

σPΣ
r

ś

1ďiďn´1
P piqpΠ, σq

ś

1ďjďn1´1
P pjqpΠ1, σqs

ś

1ďiďl
Lp1,Π1 b χ_i q

ś

1ďiăjďl
Lp1, χi ˆ χ_j q

where a0pm,Π8,Π18q is a non zero complex number depending only on m and the infinity
type.

We apply equation (9.17) to pΠ1, χiq and Blasius’s result to Lp1, χi ˆ χ_j q, we get:

Lp
1
2`m,ΠˆΠ#q (9.24)

„EpΠqEpΠ#q;K apm,Π8,Π18q
ź

σPΣ
r

ź

1ďiďn´1
P piqpΠ, σq

ź

1ďjďn1´1
P pjqpΠ1, σq ˆ

ź

1ďiďl
P pIpΠ

1,χiqpσqqpΠ1, σqppχi, σqI1pΠ,Π
1qpσqppχi, σq

I2pΠ,Π1qpσqs (9.25)

where apm,Π8,Π18q is an archimedean factor as before, I1pΠ,Π1qpσq and I2pΠ,Π1qpσq are
two integers which depend only on the infinity type of Π and Π1 at σ.

The first thing we need to show is that I1pΠ, χiqpσq “ IpΠ, χiqpσq and I2pΠ, χiqpσq “
n ´ IpΠ, χiqpσq. Since we have ordered the first index of the infinity type of χi at σ in
decreasing order, we know that both sides only concern the infinity type of Π and Π1 at
the fixed place σ. So the proof is the same with the quadratic imaginary case.

We then deduce a formula in the following form:

Lpm,ΠˆΠ1q „EpΠqEpΠ1q;K (9.26)

apm,Π8,Π18q
ś

σPΣF ;K

p
n
ś

j“0
P pjqpΠ, σqbpj,Π8;Π18,σq

n1
ś

k“0
P pkqpΠ1, σqcpk,Π18;Π8,σqqq

where bpj,Π8; Π18, σq and cpk,Π8; Π18, σq are integers which depend only on j, k and the
infinity type of Π8 and Π18 at σ.

If we know the CM periods are algebraically independent then we can finish the proof
by Remark 9.3.1. Unfortunately this is hard to prove and hence we need to calculate
bpj,Π8; Π18, σq and cpk,Π8; Π18, σq explicitly. Again, since they only concern infinity
type of Π8 and Π18 at σ, we may repeat our calculation for the quadratic imaginary field
case for the fixed place σ. We shall see that the indices are just the split indices.

Finally we may show that the archimedean factor apm,Π8,Π18q „EpΠqEpΠ1q;K p2πiqmnn
1d

by Proposition 9.3.1 and complete the proof.



Chapter 10

Special values of L-functions for
automorphic pairs over quadratic
imaginary fields

10.1 Settings, the simplest case
In the current and the following chapters, let Π and Π1 be conjugate self-dual cuspidal

representations of GLnpAKq and GLn1pAKq respectively which have definable arithmetic
automorphic periods. We will interpret the critical values for Lps,Π b Π1q in terms of
arithmetic automorphic periods when pΠ,Π1q is in good position (see Definition 1.2.2).

We write pzaiz´aiq1ďiďn for the infinity type of Π and pzbjz´bj q1ďjďn1 for the infinity
type of Π. We may order ai and bj such that a1 ą a2 ą ¨ ¨ ¨ ą an and b1 ą b2 ą ¨ ¨ ¨ ą bn1 .

We assume n is even and n1 is odd at first. Then the numbers ai, 1 ď i ď n are half
integers and the numbers bj , 1 ď j ď n1 are integers.

We assume the pair pΠ,Π1q is in good position, namely, each bi are included in one
of the intervals s´aj`1,´ajr, 1 ď j ď n´1 and each such interval contains at most one bi.

Let wp1q ą wp2q ą ¨ ¨ ¨ ą wpnq be the integers such that an´wpiq ą ´bn1`1´i ą
an`1´wpiq for all 1 ď i ď n1. More precisely, we have:

a1 ą ¨ ¨ ¨ ą an´wp1q ą ´bn1 ą

an`1´wp1q ą ¨ ¨ ¨ ą an´wp2q ą ´bn1´1 ą

¨ ¨ ¨

ą ¨ ¨ ¨ ą an´wpn1`1´iq ą ´bi ą

¨ ¨ ¨

¨ ¨ ¨ ą an´wpn1q ą ´b1 ą

an`1´wpn1q ą ¨ ¨ ¨ ą an. (10.1)

It is easy to see:

spp0,Π1; Πq “ n´ wp1q, sppn1,Π1; Πq “ wpn1q

sppj,Π1; Πq “ wpjq ´ wpj ` 1q for all 1 ď j ď n1 ´ 1. (10.2)



104
Chapter 10. Special values of L-functions for automorphic pairs over

quadratic imaginary fields

Hence we have

wpjq “
n1
ÿ

k“j

sppk,Π1; Πq for all 1 ď j ď n1. (10.3)

We put l “ n ´ n1 ´ 1. Let χ1, χ2, ¨ ¨ ¨ , χl be conjugate self-dual algebraic Hecke
characters of AK of infinity type zk1z´k1 , zk2z´k2 , ¨ ¨ ¨ zklz´kl respectively. We assume that
k1 ą k2 ą ¨ ¨ ¨ ą kl lie in different intervals s ´ aj`1,´ajr which do not contain any of bi.

More precisely, we have

k1 ą k2 ą ¨ ¨ ¨ ą kwpn1q´1 ą b1 ą

ą kwpn1q ą kwpn1q`1 ą ¨ ¨ ¨ ą kwpn1´1q´2 ą b2 ą

¨ ¨ ¨

kwpn1`2´iq´i`2 ą kwpn1`2´iq´i`3 ą ¨ ¨ ¨ ą kwpn1`1´iq´i ą bi ą

¨ ¨ ¨

kwp2q´n1`2 ą kwp2q´n1`3 ą ¨ ¨ ¨ kwp1q´n1 ą bn1 ą

kwp1q´n1`1 ą kwp1q´n1`2 ą ¨ ¨ ¨ ą kl (10.4)

and the above l ` n1 “ n ´ 1 numbers lie in different gaps between the n numbers
´an ą ´an´1 ą ¨ ¨ ¨ ą ´a1. Note that in this case, the n ´ 1 numbers above are in-
tegers and the paiq1ďiďn are half integers.

Let Π# be the Langlands sum of Π1 and χ1, χ2, ¨ ¨ ¨ , χl. It is a generic cohomological
conjugate self-dual automorphic representation of GLn´1pAKq.

Let m ě 0 be an integer. By Proposition 3.6.1, we know that if m ` 1
2 is critical for

ΠˆΠ#, then

Lp
1
2 `m,ΠˆΠ#q „EpΠqEpΠ#q;K ppΠqppΠ#qppm,Π8,Π#

8q (10.5)

We shall simplify both sides of the above formula. We first calculate the left hand side.

We know Lp1
2 `m,ΠˆΠ#q “ Lp

1
2`m,ΠˆΠ1q

l
ś

j“1
Lp1

2 `m,Πb χjq.

For each j with 1 ď j ď l, we apply Theorem 5.2.1 to Πb χj and get:

Lp
1
2 `m,Πb χjq „EpΠqEpχjq;K p2πiq

pm` 1
2 qnP psjqpΠqpp|χj , 1qsjpp|χj , ιqn´sj

„EpΠqEpχjq;K p2πiq
pm` 1

2 qnP psjqpΠqpp|χj , 1q2sj´n

where
sj “ #t1 ď i ď n | kj ă ´aiu “ j `#t1 ď i ď n1 | bi ą kju. (10.6)

By equation (10.4), we see that

s1 “ 1, s2 “ 2, ¨ ¨ ¨ , swpn1q´1 “ wpn1q ´ 1,
swpn1q “ wpn1q ` 1, swpn1q`1 “ wpn1q ` 2, ¨ ¨ ¨ , swpn1´1q´2 “ wpn1 ´ 1q ´ 1,

¨ ¨ ¨

swp1q´n1`1 “ wp1q ` 1, swp1q´n1`2 “ wp1q ` 2, ¨ ¨ ¨ , sl “ l ` n1 “ n´ 1.
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Shortly, s1 ă s2 ă ¨ ¨ ¨ ă sl are the numbers in t1, 2, ¨ ¨ ¨ , n ´ 1uztwpn1q, wpn1 ´
1q, ¨ ¨ ¨ , wp1qqu.

We then deduce that:

Lp
1
2 `m,ΠˆΠ#q „EpΠqEpΠ1qE;K Lp

1
2`m,ΠˆΠ1qp2πiqpm`

1
2 qnlˆ

n´1
ź

i“1
P piqpΠq

n1
ź

k“1
P pwpkqqpΠq´1

l
ź

j“1
pp|χj , 1q2sj´n

where E is the compositum of Epχjq, 1 ď j ď l.

10.2 Calculate the Whittaker period, the simplest case
By Corollary 3.5.1, we know that

ppΠ#q „EpΠq;K ΩpΠ#
8qppΠ1qΩpΠ18q´1

ź

1ďjďl
Lp1,Π1 b χcjq

ź

1ďiăjďl
Lp1, χi b χcjq.

Recall that χ_j “ χcj since χj is conjugate self-dual.

Calculate
ś

1ďjďl
Lp1,Π1 b χcjq:

For 1 ď j ď l, applying Theorem 5.2.1 to Π1 ˆ χcj , we get

Lp1,Π1 b χcjq „EpΠ1qEpχjq;K p2πiq
n1P ptjqpΠ1qpp|χcj , 1q

tjpp|χcj , ιq
n1´tj

„EpΠ1qEpχjq;K p2πiq
n1P ptjqpΠ1qpp|χj , 1qn

1´2tj

where tj “ #t1 ď i ď n1 | bi´ kj ă 0u. The last step is due to the fact that χcj “ χ´1
j .

It is easy to verify that 1 is critical for Π1ˆχcj by considering the Hodge type and the
original definition by Deligne. Recall that Π1 is of infinity type pzbiz´biq1ďiďn1 and χcj is
of infinity type z´kjzkj .

Compare with (10.6), we see that tj “ n1´#t1 ď i ď n1 | bi ą kju “ n1` j´ sj . Then
n1 ´ 2tj “ 2sj ´ n1 ´ 2j.

Therefore, we have deduced that:

ź

1ďjďl
Lp1,Π1 b χcjq „EpΠ1qE;K p2πiqrl

l
ź

j“1
P ptjqpΠ1q

l
ź

j“1
pp|χj , 1q2sj´n

1´2j

Calculate
ś

1ďiăjďl
Lp1, χi b χcjq:

For 1 ď i ă j ď l, since ki ą kj , we have

Lp1, χi b χcjq „Epχjq;K p2πiqpp~χiχcj , ιq „Epχjq;K p2πiqpp qχi, 1q
´1pp|χj , 1q

by Blasius’s result.
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Therefore, we know that

ź

1ďiăjďl
Lp1, χi b χcjq „E;K p2πiq

lpl´1q
2

l
ź

j“1
pp|χj , 1q2j´l´1. (10.7)

Since p2sj ´ n1 ´ 2jq ` p2j ´ l ´ 1q “ 2sj ´ n1 ´ l ´ 1 “ 2sj ´ n, we get finally

ppΠ#q „EpΠqE;K ΩpΠ#
8qppΠ1qΩpΠ18q´1p2πiqrl`

lpl´1q
2

l
ź

j“1
P ptjqpΠ1q

l
ź

j“1
pp|χj , 1q2sj´n.

10.3 Calculate the arithmetic automorphic periods and con-
clude, the simplest case

Since Π and Π1 are cuspidal, we may apply Corollary 7.5.1 and get:

ppΠq „EpΠq;K ZpΠ8q
n´1
ź

i“1
P piqpΠq (10.8)

and ppΠ1q „EpΠ1q;K ZpΠ18q
n1´1
ź

k“1
P pkqpΠ1q. (10.9)

Therefore, the right hand side of equation (10.5)

ppΠqppΠ#qppm,Π8,Π#
8q

„EpΠqEpΠ1qE;K ZpΠ8qΩpΠ#
8qZpΠ18qΩpΠ18q´1ppm,Π8,Π#

8qp2πiqrl`
lpl´1q

2 ˆ

l
ź

j“1
pp|χj , 1q2sj´n

n´1
ź

i“1
P piqpΠq

n1´1
ź

k“1
P pkqpΠ1q

l
ź

j“1
P ptjqpΠ1q.

Archimedean factors: Recall that by lemma 9.4.1, we have

ZpΠ8qΩpΠ#
8qppm,Π8,Π#

8q „EpΠqEpΠ1qE;K p2πiqnpn´1qpm` 1
2 q´

pn´1qpn´2q
2 .

By corollary 9.4.1, we know

ZpΠ18qΩpΠ18q´1 „EpΠ1q;K p2πiq
n1pn1´1q

2 .

Therefore ZpΠ8qΩpΠ#
8qZpΠ18qΩpΠ18q´1ppm,Π8,Π#

8qp2πiqn
1l`

lpl´1q
2

„EpΠqEpΠ1qE;K p2πiqnpn´1qpm` 1
2 q´

pn´1qpn´2q
2 `

n1pn1´1q
2 `n1l`

lpl´1q
2 .

Note that n´ 1 “ l ` n1 and hence
`

n´1
2
˘

“
`

l
2
˘

` ln1 `
`

n1

2
˘

, we obtain that

ZpΠ8qΩpΠ#
8qZpΠ18qΩpΠ18q´1ppm,Π8,Π#

8qp2πiqn
1l`

lpl´1q
2

„EpΠqEpΠ1q;K p2πiqnpn´1qpm` 1
2 q.
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Arithmetic automorphic periods:
At last, we have to determine the value of tj “ #t1 ď i ď n1 | bi´kj ă 0u for 1 ď j ď l.
For fixed 1 ď k ď n1´1, from the equation (10.4), we see that the number of 1 ď j ď l

such that tj “ k is wpkq ´ wpk ` 1q ´ 1, the number of 1 ď j ď l such that tj “ r is
wpn1q ´ 1, and the number of 1 ď j ď l such that tj “ 0 is n´ 1´ wp1q.

For example, we see t1 “ t2 “ ¨ ¨ ¨ “ twpn1´1q´1 “ n1, twpn1q “ ¨ ¨ ¨ “ twpn1´1q´2 “ n1 ´ 1,
¨ ¨ ¨ , twpn1`2´iq´i`2 “ ¨ ¨ ¨ “ twpn1`1´iq´1 “ n1 ´ i` 1, ¨ ¨ ¨ , and twp1q´n1`1 “ ¨ ¨ ¨ “ tl “ 0.

We then deduce that
n1´1
ź

k“1
P pkqpΠ1q

l
ź

j“1
P ptjqpΠ1q “

n1´1
ź

k“1
P pkqpΠ1qwpkq´wpk`1qP p0qpΠ1qn´1´wp1qP pn

1qpΠ1qwpn1q´1

„EpΠ1q

n1´1
ź

k“1
P pkqpΠ1qwpkq´wpk`1qP p0qpΠ1qn´wp1qP pn1qpΠ1qwpn1q

“

n1
ź

k“0
P pkqpΠ1qsppk,Π1;Πq

by the fact that P 0pΠ1q ˆ P pn1qpΠ1q „EpΠ1q 1 and equation (10.2).

Finally, we get ppΠqppΠ#qppm,Π8,Π#
8q

„EpΠqEpΠ1qE;K p2πiqnpn´1qpm` 1
2 q

l
ź

j“1
pp|χj , 1q2sj´n

n´1
ź

i“1
P piqpΠq

n1
ź

k“0
P pkqpΠ1qsppk,Π1;Πq.

Final conclusion, simplest case:

When Lp
1
2`m,ΠˆΠ#q ‰ 0, we have that

Lp
1
2`m,ΠˆΠ1qp2πiqpm`

1
2 qnl

n´1
ź

i“1
P piqpΠq

n1
ź

k“1
P pwpkqqpΠq´1

l
ź

j“1
pp|χj , 1q2sj´n

„EpΠqEpΠ1qE;K p2πiqnpn´1qpm` 1
2 q

l
ź

j“1
pp|χj , 1q2sj´n

n´1
ź

i“1
P piqpΠq

n1
ź

k“0
P pkqpΠ1qsppk,Π1;Πq.

We deduce that

Lp
1
2`m,ΠˆΠ1q „EpΠqEpΠ1q;K p2πiqpm`

1
2 qnn

1
n1
ź

k“1
P pwpkqqpΠq

n1
ź

k“0
P pkqpΠ1qsppk,Π1;Πq.

We can read from (10.1) that for 0 ď i ď n, sppi,Π; Π1q “ 0 unless i P twpkq | 1 ď k ď
n1u. Moreover, if i P twpkq | 1 ď k ď n1u then sppi,Π; Π1q “ 1. We can then write the
above formula in a symmetric way:

Lp
1
2`m,ΠˆΠ1q „EpΠqEpΠ1q;K p2πiqpm`

1
2 qnn

1
n
ź

i“0
P piqpΠqsppi,Π;Π1q

n1
ź

k“0
P pkqpΠ1qsppk,Π1;Πq.
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Remark 10.3.1. If Lp
1
2`m,Πˆ Π1q “ 0, then the above formula is automatically true.

Otherwise the condition Lp
1
2`m,ΠˆΠ#q ‰ 0 is equivalent to that Lp

1
2`m,Πˆ χjq ‰ 0

for all 1 ď j ď l. For m ě 1, we can always choose kj and χj such that the above is true,
see Section 3 of [14]. For m “ 0, we don’t know how to prove it at the moment. We will
assume this is true henceforth.

10.4 Settings, the general cases

Let n ą r be arbitrary integers. We still want to apply the previous strategy to
get special values of L-function for Π ˆ Π1. But if we take Π# to be Langlands sum of
Π1 and some algebraic Hecke characters, it may be no longer algebraic. For example, if
n´1 ı n1pmod 2q, we know the Langlands parameters of Π1 are in Z` n1´1

2 . But the Lang-
lands parameters of an algebraic representation of GLn´1 should be in Z` n´1

2 “ Z` n1

2 .
In order to fix this, we will tensor the character || ¨ ||´

1
2

AKψ, a Hecke character of infinity
type p1

2 ,´
1
2q, when necessary.

When n ´ 1 ” rpmod 2q, we write T1 “ 0 and we will expand Π1 to an algebraic
representation of GLn´1 as previously. When n ´ 1 ı rpmod 2q, we write T1 “

1
2 and

we will expand Π1 ˆ || ¨ ||´
1
2

AKψ to an algebraic representation of GLn´1. In both cases, we
assume the pair pΠ,Π1q is in good position, namely,

each bi ` T1 are included in one of the intervals s ´ aj`1,´ajr, 1 ď j ď n´ 1
and each such interval contains at most one bi. (10.10)

Let wp1q ą wp2q ą ¨ ¨ ¨ ą wpnq be the integers such that

´an`1´wpiq ą bn1`1´i ` T1 ą ´an´wpiq (10.11)

for all 1 ď i ď n1.

Let χ1, χ2, ¨ ¨ ¨ , χl be conjugate self-dual algebraic Hecke characters of AK of infinity
type zk1z´k1 , zk2z´k2 , ¨ ¨ ¨ zklz´kl respectively. These characters will help us expand Π1 or
Π1 b || ¨ ||´

1
2

AKψ to an algebraic representation of GLn´1. Similarly, we will tensor them by

|| ¨ ||
´ 1

2
AKψ if n ı 0pmod 2q to settle the parity issue. We write T2 “

1
2 in this case and 0

otherwise.

We assume that k1 ` T2 ą k2 ` T2 ą ¨ ¨ ¨ ą kl ` T2 and lie in different intervals
s ´ aj`1,´ajr which doesn’t contain any of bi ` T1.

More precisely, we have
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k1 ` T2 ą k2 ` T2 ą ¨ ¨ ¨ ą kwpn1q´1 ` T2 ą b1 ` T1 ą

ą kwpn1q ` T2 ą kwpn1q`1 ` T2 ą ¨ ¨ ¨ ą kwpn1´1q´2 ` T2 ą b2 ` T1 ą

¨ ¨ ¨

kwpn1`2´iq´i`2 ` T2 ą kwpn1`2´iq´i`3 ` T2 ą ¨ ¨ ¨ ą kwpn1`1´iq´i ` T2 ą bi ` T1 ą

¨ ¨ ¨

kwp2q´n1`2 ` T2 ą kwp2q´n1`3 ` T2 ą ¨ ¨ ¨ kwp1q´n1 ` T2 ą bn1 ` T1 ą

kwp1q´n1`1 ` T2 ą kwp1q´n1`2 ` T2 ą ¨ ¨ ¨ ą kl ` T2 (10.12)

and the above l ` k “ n ´ 1 numbers lie in the gaps between the n numbers ´an ą

´an´1 ą ¨ ¨ ¨ ą ´a1. Note the above n´ 1 numbers are in Z`
n

2 when ai P Z`
n´ 1

2 for
all 1 ď i ď n.

There are four cases:

(A) n is even and n1 is odd, then T1 “ 0 and T2 “ 0. We set Π# “ Π1‘χ1 ‘χ2 ‘ ¨ ¨ ¨‘χl
as in previous sections.

(B) n is even and n1 is even, then T1 “
1
2 and T2 “ 0. We set Π# “ pΠ1 b || ¨ ||´

1
2

AKψq ‘

χ1 ‘ χ2 ‘ ¨ ¨ ¨‘ χl.

(C) n is odd and n1 is even, then T1 “ 0 and T2 “
1
2 . We set Π# “ Π1‘ pχ1b|| ¨ ||

´ 1
2

AKψq‘

pχ2 b || ¨ ||
´ 1

2
AKψq‘ ¨ ¨ ¨‘ pχl b || ¨ ||

´ 1
2

AKψq.

(D) n is odd and n1 is odd, then T1 “
1
2 and T2 “

1
2 . We set Π# “ pΠ1 ‘ χ1 ‘ χ2 ‘ ¨ ¨ ¨‘

χlq b || ¨ ||
´ 1

2
AKψ.

In all cases, Π# is a generic cohomological conjugate self-dual automorphic represen-
tation of GLn´1pAKq and Proposition 3.6.1 gives us that if m` 1

2 is critical for Πˆ Π#,
then

Lp
1
2 `m,ΠˆΠ#q „EpΠqEpΠ#q;K ppΠqppΠ#qppm,Π8,Π#

8q. (10.13)

Again, we shall simplify both sides of this equation.

10.5 Simplify the left hand side, general cases

For the left hand side of equation (10.13), we know by construction that:

(A) Lp1
2 `m,ΠˆΠ#q “ Lp

1
2`m,ΠˆΠ1q

l
ś

j“1
Lp1

2 `m,Πb χjq

(B)
Lp1

2 `m,ΠˆΠ#q “ Lp
1
2`m,Πˆ pΠ

1 b || ¨ ||
´ 1

2
AKψqq

l
ś

j“1
Lp1

2 `m,Πb χjq

“ Lpm,Πˆ pΠ1 b ψqq
l
ś

j“1
Lp1

2 `m,Πb χjq
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(C)
Lp1

2 `m,ΠˆΠ#q “ Lp
1
2`m,ΠˆΠ1q

l
ś

j“1
Lp1

2 `m,Πb pχj b || ¨ ||
´ 1

2
AKψqq

“ Lp
1
2`m,ΠˆΠ1q

l
ś

j“1
Lpm,Πb pχj b ψqq

(D) Lp1
2 `m,ΠˆΠ#q “ Lp

1
2,Πˆ pΠ

1 b ψqq
l
ś

j“1
Lpm,Πb pχj b ψqq

We set sj “ #t1 ď i ď n | kj ` T2 ă ´aiu “ j `#t1 ď i ď n1 | bi ` T1 ą kj ` T2u and
tj “ #t1 ď i ď n1 | pbi ` T1q ´ pkj ` T2q ă 0u as before. Recall that sj ` tj “ n1 ` j for
all 1 ď j ď l.

If n is even (case (A) and (B)), we have for all 1 ď j ď l:

Lp
1
2 `m,Πb χjq „EpΠqEpχjq;K p2πiq

pm` 1
2 qnP psjqpΠqpp|χj , 1q2sj´n.

If n is odd (case (C) and (D)), we have for all 1 ď j ď l:

Lpm,Πb pχjq b ψq „EpΠqEpχjq;K p2πiq
mnP psjqpΠqpp|χj , 1q2sj´npp qψ, 1qsjpp qψ, ιqn´sj .

Therefore for cases (A) and (B), we have

l
ź

j“1
Lp

1
2 `m,Πb χjq „EpΠqE;K p2πiqpm`

1
2 qnl

n´1
ź

k“1
P pkqpΠq

n1
ź

k“1
P pwpkqqpΠq´1

l
ź

j“1
pp|χj , 1q2sj´n.

For cases (C) and (D), we put s :“
l
ř

j“1
sj and then we have:

l
ś

j“1
Lpm,Πb pχj b ψqq „EpΠqEEpψq;K

p2πiqmnl ˆ
n´1
ś

k“1
P pkqpΠq

n1
ś

k“1
P pwpkqqpΠq´1

l
ś

j“1
pp|χj , 1q2sj´npp qψ, 1qspp qψ, ιqnl´s

10.6 Simplify the right hand side, general cases
Calculate ppΠ#q: Apply Corollary 3.5.1, we get

(A) ppΠ#q „EpΠ#q;K ΩpΠ#
8qppΠ1qΩpΠ18q´1 ś

1ďjďl
Lp1,Π1 b χcjq

ś

1ďiăjďl
Lp1, χi b χcjq

(B) ppΠ#q „EpΠ#q;K ΩpΠ#
8qppΠ1qΩpΠ18q´1 ś

1ďjďl
Lp1, pΠ1b||¨||´

1
2

AKψqbχ
c
jq

ś

1ďiăjďl
Lp1, χib

χcjq

(C) ppΠ#q „EpΠ#q;K ΩpΠ#
8qppΠ1qΩpΠ18q´1 ś

1ďjďl
Lp1,Π1bpχjb||¨||

´ 1
2

AKψq
cq

ś

1ďiăjďl
Lp1, χib

χcjq

(D) ppΠ#q „EpΠ#q;K ΩpΠ#
8qppΠ1qΩpΠ18q´1 ś

1ďjďl
Lp1,Π1 b χcjq

ś

1ďiăjďl
Lp1, χi b χcjq
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Here we have used that:

Lemma 10.6.1. If η is a conjugate self-dual Hecke character then:

ppΠ1 b ηq
ΩppΠ1 b ηq8q

„EpΠ1qEpηq;K
ppΠ1q

ΩpΠ18q
.

Proof By Corollary 7.5.1, we have:

ppΠ1 b ηq „EpΠ1qEpηq;K ZppΠ1 b ηq8q
ź

1ďiďn1´1
P piqpΠ1 b ηq. (10.14)

By the definition of arithmetic automorphic period (c.f. Definition-Lemma 5.3.2), we
know P piqpΠ1 b ηq „EpΠ1qEpηq;K ppqη, 1qippqη, ιqn´i. The latter is equivalent to ppqη, 1q2i´n
since η is conjugate self-dual.

We see that:
ź

1ďiďn
P piqpΠ1 b ηq „EpΠ1qEpηq;K

ź

1ďiďn
rP piqpΠ1qppqη, 1q2i´ns „EpΠ1qEpηq;K

ź

1ďiďn
P piqpΠ1q.

(10.15)
By Corollary 7.5.1, This will imply that:

ppΠ1 b ηq
ZppΠ1 b ηq8q

„EpΠ1qEpηq;K
ppΠ1q
ZpΠ18q

.

But we know by Corollary 9.4.1 that ZpΠ18q „EpΠ18;Kq p2πiq
n1pn1´1q

2 ΩpΠ18q and a similar
formula for pΠ1 b ηq8. The lemma then follows.

l

By Theorem 5.2.1, for all 1 ď j ď l, we have

Lp1,Π1 b χcjq „EpΠ1qEpχjq;K p2πiq
n1P ptjqpΠ1qpp|χj , 1qn

1´2tj .

Similarly, we have

Lp1, pΠ1 b || ¨ ||´
1
2

AKψq b χ
c
jq “ Lp

1
2 ,Π

1 b pψχcjqq

„EpΠ1qEpχjqEpψq;K p2πiq
n1

2 P ptjqpΠ1qpp|χj , 1qn
1´2tjpp qψ, 1qtjpp qψ, ιqn1´tj ;

and Lp1,Π1 b pχi b || ¨ ||
´ 1

2
AKψq

cq “ Lp
1
2 ,Π

1 b pχi b ψq
cq

„EpΠ1qEpχjqEpψq;K p2πiq
n1

2 P ptjqpΠ1qpp|χj , 1qn
1´2tjpp qψ, 1qn1´tjpp qψ, ιqtj .

Along with equation (10.7), we get

(A) and (D): ppΠ#q „EpΠ1qEEpψq;K ΩpΠ#
8qppΠ1qΩpΠ18q´1p2πiqn1l`

lpl´1q
2 ˆ

l
ź

j“1
P ptjqpΠ1q

l
ź

j“1
pp|χj , 1q2sj´n
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(B) : ppΠ#q „EpΠ1qEEpψq;K ΩpΠ#
8qppΠ1qΩpΠ18q´1p2πiq

n1l
2 `

lpl´1q
2 ˆ

l
ź

j“1
P ptjqpΠ1q

l
ź

j“1
pp|χj , 1q2sj´npp qψ, 1qtpp qψ, ιqn

1l´t

(C) : ppΠ#q „EpΠ1qEEpψq;K ΩpΠ#
8qppΠ1qΩpΠ18q´1p2πiq

n1l
2 `

lpl´1q
2 ˆ

l
ź

j“1
P ptjqpΠ1q

l
ź

j“1
pp|χj , 1q2sj´npp qψ, 1qn

1l´tpp qψ, ιqt

where t “
l
ř

j“1
tj “

l
ř

j“1
pn1 ` j ´ sjq “ n1l `

lpl ` 1q
2 ´ s.

We then apply equations (10.8), (10.9) and Lemma 9.4.1, Corollary 9.4.1 to get:

(A) ppΠqppΠ#qppm,Π8,Π#
8q „EpΠqEpΠ1qE;K p2πiqnpn´1qpm` 1

2 qˆ

l
ź

j“1
pp|χj , 1q2sj´n

n´1
ź

i“1
P piqpΠq

n1
ź

k“0
P pkqpΠ1qsppk,Π1;Πq.

(B) ppΠqppΠ#qppm,Π8,Π#
8q „EpΠqEpΠ1qEEpψq;K p2πiqnpn´1qpm` 1

2 q´
n1l
2 ˆ

l
ź

j“1
pp|χj , 1q2sj´npp qψ, 1qtpp qψ, ιqn

1l´t
n´1
ź

i“1
P piqpΠq

n1
ź

k“0
P pkqpΠ1qsppk,Π1bψ;Πq.

(C) ppΠqppΠ#qppm,Π8,Π#
8q „EpΠqEpΠ1qEEpψq;K p2πiqnpn´1qpm` 1

2 q´
n1l
2 ˆ

l
ź

j“1
pp|χj , 1q2sj´npp qψ, 1qn

1l´tpp qψ, ιqt
n´1
ź

i“1
P piqpΠq

n1
ź

k“0
P pkqpΠ1qsppk,Π1bψ;Πq.

(D) ppΠqppΠ#qppm,Π8,Π#
8q „EpΠqEpΠ1qEEpψq;K p2πiqnpn´1qpm` 1

2 qˆ

l
ź

j“1
pp|χj , 1q2sj´n

n´1
ź

i“1
P piqpΠq

n1
ź

k“0
P pkqpΠ1qsppk,Π1;Πq.

10.7 Compare both sides, general cases
At first, observe that

pp qψ, 1qpp qψ, ιq „Epψq;K pp qψ, 1qpp|ψc, 1q „Epψq;K pp}ψψc, 1q „Epψq;K pp|| ¨ ||´1
AK , 1q „Epψq 2πi.

We can then conclude:

(A) Lp
1
2`m,ΠˆΠ1q „EpΠqEpΠ1q;K

p2πiqpm`
1
2 qnn

1
n1
ź

k“1
P pwpkqqpΠq

n1
ź

k“0
P pkqpΠ1qsppk,Π1;Πq
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(B) Since npn´1qpm` 1
2q´

n1l
2 ´pm`

1
2qnl “ pm`

1
2qnpn´1´lq´ n1l

2 “ pm` 1
2qnn

1´ n1l
2 “

mnn1 ` nn1

2 ´ n1l
2 , we have

Lpm,Πˆ pΠ1 b ψqq „EpΠqEpΠ1qEpψq;K p2πiqmnn
1`nn1

2 ´n1l
2 ˆ (10.16)

n1
ź

k“1
P pwpkqqpΠq

n1
ź

k“0
P pkqpΠ1qsppk,Π1bψ;Πqpp qψ, 1qtpp qψ, ιqn1l´t

Since p2πiq
nn1

2 ´n1l
2 „Epψq pp qψ, 1q

nn1

2 ´n1l
2 pp qψ, ιq

nn1

2 ´n1l
2 , and

nn1

2 ´
n1l

2 ` t “
nn1

2 ´
n1l

2 ` pn1l `
lpl ` 1q

2 ´ sq “
nn1

2 `
n1l

2 `
lpl ` 1q

2 ´ s

“
nn1

2 `
pn1 ` l ` 1ql

2 ´ s “
nn1

2 `
nl

2 ´ s

“
npn1 ` lq

2 ´ s “
npn´ 1q

2 ´ s;

nn1

2 ´
n1l

2 ` n1l ´ t “
nn1

2 ´
n1l

2 ` n1l ´ pn1l `
lpl ` 1q

2 ´ sq

“ s`
nn1

2 ´
pn1 ` l ` 1ql

2

“ s` nn1 ´
nn1

2 ´
nl

2

“ s` nn1 ´
npn´ 1q

2

We get Lpm,Πˆ pΠ1 b ψqq „EpΠqEpΠ1qEpψq;K p2πiqmnn
1

ˆ

n1
ź

k“1
P pwpkqqpΠq

n1
ź

k“0
P pkqpΠ1qsppk,Π1;Πqpp qψ, 1q

npn´1q
2 ´spp qψ, ιqs`nn

1´
npn´1q

2

(C) Since npn ´ 1qpm ` 1
2q ´

n1l
2 ´ mnl “ npn ´ 1qpm ` 1

2q ´
n1l
2 ´ pm ` 1

2qnl `
nl
2 “

pm` 1
2qnn

1 ` nl
2 ´

n1l
2 , we have

Lp
1
2`m,ΠˆΠ1q „EpΠqEpΠ1qEpψq;K p2πiqpm`

1
2 qnn

1`nl
2 ´

n1l
2 ˆ (10.17)

n1
ź

k“1
P pwpkqqpΠq

n1
ź

k“0
P pkqpΠ1qsppk,Π1;Πqpp qψ, 1qn1l´t´spp qψ, ιqt`s´nl

Moreover, we know t ` s “ n1l ` lpl`1q
2 , we have 2pt ` sq “ 2n1l ` pl ` 1ql “

n1l ` pn1 ` l ` 1ql “ n1l ` nl. Thus n1l ´ t´ s “ t` s´ nl “ n1l
2 ´

nl
2 . We then get

pp qψ, 1qn1l´t´spp qψ, ιqt`s´nl “ ppψ b ψc, 1q
n1l
2 ´

nl
2 “ p2πiq

n1l
2 ´

nl
2 .

Therefore:

Lp
1
2`m,ΠˆΠ1q „EpΠqEpΠ1q;K p2πiqpm`

1
2 qnn

1
n1
ź

k“1
P pwpkqqpΠq

n1
ź

k“0
P pkqpΠ1qsppk,Π1;Πq.
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(D) Similarly, since npn´1qpm` 1
2q´mnl “ npn´1qm` npn´1q

2 ´mnl “ mnn1` npn´1q
2 ,

we have

Lpm,Πˆ pΠ1 b ψqq „EpΠqEpΠ1qEpψq;K p2πiqmnn
1

ˆ (10.18)
n1
ź

k“1
P pwpkqqpΠq

n1
ź

k“0
P pkqpΠ1qsppk,Π1bψ;Πqpp qψ, 1q

npn´1q
2 ´spp qψ, ιqs`nn

1´
npn´1q

2 .

It is easy to verify that s´nl` npn´1q
2 “ s´nl`npn´1q´ npn´1q

2 “ s`nn1´ npn´1q
2 .

10.8 Final conclusion: general cases
Before concluding, we notice that in case (B) or (D),

s “
ÿ

1ďjďn´1
sj “

n´1
ÿ

j“1
j ´

n1
ÿ

j“1
wpjq “

npn´ 1q
2 ´

n1
ÿ

j“1
wpjq.

Recall that wpjq “
n1
ř

k“j
sppk,Π1 b ψ; Πq for all 1 ď k ď n1 by (10.3). Therefore:

npn´ 1q
2 ´ s “

n1
ÿ

j“1
wpjq “

n1
ÿ

j“1

ÿ

jďkďn1

sppj,Π1 b ψ; Πq “
n1
ÿ

k“1
k ˚ sppk,Π1 b ψ; Πq

“

n1
ÿ

k“0
k ˚ sppk,Π1 b ψ; Πq; (10.19)

and s` nn1 ´ npn´ 1q
2 “ nn1 ´

n1
ÿ

k“0
k ˚ sppk,Π1 b ψ; Πq

“ r
n1
ÿ

k“0
sppk,Π1 b ψ; Πq ´

n1
ÿ

k“0
j ˚ sppk,Π1 b ψ; Πq

“

n1
ÿ

k“0
pn1 ´ kqsppk,Π1 b ψ; Πq

by Lemma 1.2.1 which says that
n1
ř

k“0
sppk,Π1 b ψ; Πq “ n.

Therefore, we get

n1
ź

k“0
P pkqpΠ1qsppk,Π1bψ;Πqpp qψ, 1q

npn´1q
2 ´spp qψ, ιqs`nn

1´
npn´1q

2

„EpΠ1qEpψq

n1
ź

k“0
P pkqpΠ1qsppk,Π1bψ;Πqpp qψ, 1q

n1
ř

k“0
k˚sppk,Π1bψ;Πq

pp qψ, ιq

n1
ř

k“0
pn1´kqsppk,Π1bψ;Πq

„EpΠ1qEpψq

n1
ź

k“0

´

P pkqpΠ1qpp qψ, 1qkpp qψ, ιqn1´k
¯sppk,Π1bψ;Πq

.

Recall that P pkqpΠ1 b ψq :“ P pkqpΠ1qpp qψ, 1qkpp qψ, ιqn1´k by definition, we obtain that:
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Theorem 10.8.1. Let n ą n1 be two positive integers. Let K be a quadratic imaginary
field. Let Π and Π1 be cuspidal representations of GLn and GLn1 respectively which are
very regular, cohomological, conjugate self-dual and supercuspidal at at least two finite split
places. We assume that pΠ,Π1q is in good position in the sense of Definition 1.2.2.

(i) If n ı n1pmod 2q, then for any critical value m` 1
2 for Πb Π1 such that m ě 1, or

m ě 0 along with a non-vanishing condition, we have:

Lp
1
2`m,ΠˆΠ1q „EpΠqEpΠ1q;K p2πiqpm`

1
2 qnn

1
n
ź

i“0
P piqpΠqsppi,Π;Π1q

n1
ź

k“0
P pkqpΠ1qsppk,Π1;Πq.

(ii) If n ” n1pmod 2q, then for any critical value m for ΠbΠ1 such that m ě 1, or m ě 0
along with a non-vanishing condition, we have:

Lpm,Πˆ pΠ1 b ψqq

„EpΠqEpΠ1qEpψq;K p2πiqmnn
1
n
ś

i“0
P piqpΠqsppi,Π;Π1bψq

n1
ś

k“0
P pkqpΠ1 b ψqsppk,Π1bψ;Πq.





Chapter 11

Special values at 1 of L-functions
for automorphic pairs over
quadratic imaginary fields

11.1 Settings

Let r1 and r2 be two positive integers.
Let Π1 and Π2 be two cuspidal representations ofGLr1pAKq andGLr2pAKq respectively

which has definable arithmetic automorphic periods. We assume they are also conjugate
self-dual.

We write the infinity type of Π1 (resp. Π2) by pzbjz´bj q1ďjďr1 (resp. pzckz´ckq1ďkďr2).
We see that bj P Z` r1´1

2 for all 1 ď j ď r1 (resp. ck P Z` r2´1
2 for all 1 ď k ď r2).

(A) If r1 ” r2 ” 0p mod 2q, we write Π# “ Π1 ‘ Πc
2. We define T3 “ T4 “ 0.

(B) If r1 ” r2 ” 1p mod 2q, we write Π# “ pΠ1b|| ¨ ||
´ 1

2
AKψq‘ pΠc

2b|| ¨ ||
´ 1

2
AKψq. We define

T3 “ T4 “
1
2 .

(C) If r1 ı r2pmod 2q, we may assume that r1 is even and r2 is odd. We write Π# “

pΠ1 b || ¨ ||
´ 1

2
AKψq‘ Πc

2. We define T3 “
1
2 and T4 “ 0.

It is easy to see that Π# is an algebraic generic representation of GLr1`r2pAKq with
infinity type pzbj`T3z´bj´T3 , z´ck`T4zck´T4q1ďjďr1,1ďkďr2 .

We assume that Π# is regular, i.e. for any 1 ď j ď r1 and any 1 ď k ď r2, we have
bj ` T3 ‰ ´ck ` T4.

Set n “ r1 ` r2 ` 1. We see that tbj ` T3 | 1 ď j ď r1u Y t´ck ` T4 | 1 ď k ď r2u are
n´ 1 different numbers in Z` n´2

2 . We take a1 ą a2 ą ¨ ¨ ¨ ą an P Z` n´1
2 such that the

n ´ 1 numbers above are in different gaps between tai | 1 ď i ď nu. Let Π be a cuspidal
conjugate self-dual representation of GLnpAKq which has arithmetic automorphic periods
and infinity type pzaiz´aiq.
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Our method also requires Π to be 3-regular. To guarantee this, we assume that

|pbj ` T3q ´ p´ck ` T4q| ě 3 for all 1 ď j ď r1, 1 ď k ď r2. (11.1)

In this case, we say the pair pΠ1,Π2q is very regular. We can then take ai as above such
that 1 ` 1

2 is critical for Π b Π#. Moreover, results in [14] show the existence of Π as
above, such that Lp1` 1

2 ,ΠbΠ#q ‰ 0.

We fix such Π and m “ 1, then m` 1
2 is critical for ΠˆΠ# and moreover

Lp
1
2 `m,ΠˆΠ#q „EpΠqEpΠ#q;K ppΠqppΠ#qppm,Π8,Π#

8q (11.2)

with both sides non zero.

In the end of this section, let us show some simple facts on the split index. We can
read from the construction of ai that

sppj,Π1 b ψ
2T3 ; Πq “ sppj,Π1 b ψ

2T3 ; Π2 b pψq
2T4q ` 1 for all 0 ď j ď r1

and similarly, sppj,Πc
2 b ψ

2T4 ; Πq “ sppj, pΠ2 b pψ
cq2T4qc; pΠ1 b ψ

2T3qcq ` 1
“ sppr2 ´ j,Π2 b pψ

cq2T4q; Π1 b ψ
2T3q ` 1 for all 0 ď j ď r2

Here we have used Lemma 1.2.1.

Moreover, for each 1 ď i ď n´ 1, one of sppi,Π; Π1 b pψ
cq2T3q and sppi,Π; Πc

2 b ψ
2T4q

is 1 and another is 0. We also know that spp0,Π; Π1 b ψ2T3q “ spp0,Π; Πc
2 b ψ2T4q “ 0

and sppn,Π; Π1 b ψ
2T3q “ sppn,Π; Πc

2 b ψ
2T3q “ 0.

11.2 Simplify the left hand side

We are going to simply the left hand side of equation (11.2) now.

(A) In this case we have Lpm` 1
2 ,ΠˆΠ#q “ Lpm` 1

2 ,ΠˆΠ1q ˆ Lpm`
1
2 ,ΠˆΠc

2q.

By Theorem 10.8.1, we know that

Lp
1
2`m,ΠˆΠ1q „EpΠqEpΠ1q;K (11.3)

p2πiqpm`
1
2 qnr1

n
ś

i“0
P piqpΠqsppi,Π;Π1q

r1
ś

j“0
P pjqpΠ1q

sppj,Π1;Πq

and similarly Lp
1
2`m,ΠˆΠc

2q „EpΠqEpΠ2q;K

p2πiqpm`
1
2 qnr2

n
ś

i“0
P piqpΠqsppi,Π;Πc2q

r2
ś

k“0
P pkqpΠc

2q
sppk,Πc2;Πq .

Therefore, since sppi,Π; Π1q ` sppi,Π; Πc
2q “ 1 for all 1 ď i ď n´ 1, we obtain that
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Lpm`
1
2 ,ΠˆΠ#q (11.4)

„EpΠqEpΠqEpΠ2q;K p2πiqpm`
1
2 qnpn´1q

n
ź

i“0
P piqpΠqsppi,Π;Π1q`sppi,Π;Πc2q

r1
ź

j“0
P pjqpΠ1q

sppj,Π1;Πq
r2
ź

k“0
P pkqpΠ2q

sppk,Πc2;Πq

„EpΠqEpΠqEpΠ2q;K p2πiqpm`
1
2 qnpn´1q

n´1
ź

i“1
P piqpΠq

r1
ź

j“0
P pjqpΠ1q

sppj,Π1;Πq
r2
ź

k“0
P pkqpΠc

2q
sppk,Πc2;Πq.

(B) In this case, we have Lpm` 1
2 ,ΠˆΠ#q “ Lpm,ΠˆpΠ1bψqqˆLpm,ΠˆpΠc

2bψqq.

Applying the second part of Theorem 10.8.1, we have

Lpm` 1
2 ,ΠˆΠ#q (11.5)

„EpΠqEpΠqEpΠ2q;K p2πiqmnpn´1q
n´1
ś

i“1
P piqpΠq

r1
ś

j“0
P pjqpΠ1q

sppj,Π1bψ;Πq

r2
ś

k“0
P pkqpΠc

2q
sppk,Πc2bψ;Πqpp qψ, 1q

r1
ř

j“0
j˚sppj,Π1bψ;Πq`

r2
ř

k“0
k˚sppk,Πc2bψ;Πq

ˆpp qψ, ιq

n1
ř

j“0
pr1´jq˚sppj,Π1bψ;Πq`

r2
ř

k“0
pr2´kq˚sppk,Πc2bψ;Πq

.

Lemma 11.2.1. We have:
r1
ÿ

j“0
j ˚ sppj,Π1 b ψ; Πq `

r2
ÿ

k“0
k ˚ sppk,Πc

2 b ψ; Πq

“

n1
ÿ

j“0
pr1 ´ jq ˚ sppj,Π1 b ψ; Πq `

r2
ÿ

k“0
pr2 ´ kq ˚ sppk,Πc

2 b ψ; Πq

“
npn´ 1q

2

Proof We set wpj,Π1bψ; Πq, 1 ď j ď r1 (resp. wpk,Πc
2bψ; Πq, 1 ď k ď r2) to be

the index wpjq for the pair pΠ,Π1bψq (resp. pΠ,Πc
2bψq)) as in (10.1). We see from

(10.19) that
r1
ř

j“0
j˚sppj,Π1bψ; Πq “

r1
ř

j“1
wpj,Π1bψ; Πq and

r2
ř

k“0
k˚sppk,Π1bψ; Πq “

r1
ř

k“1
wpk,Πc

2 b ψ; Πq.
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Recall that wpj,Π1bψ; Πq (resp. wpk,Πc
2bψ; Πq) is the position of the infinity type

of Π1 b ψ (resp. Πc
2 b ψ) in the gaps of the infinity type of Π. It is easy to see that

the n ´ 1 numbers wpj,Π1 b ψ; Πq, wpk,Πc
2 b ψ; Πq for 1 ď j ď r1 and 1 ď k ď r2

runs over 1, 2, ¨ ¨ ¨ , n´ 1. We then deduce the first formula of the lemma.

The second equation follows easily from the first one.

l

From the lemma we see that

p2πiq
npn´1q

2 „Epψq;K pp qψ, 1q

r1
ř

j“0
j˚sppj,Π1bψ;Πq`

r2
ř

k“0
k˚sppk,Πc2bψ;Πq

ˆ

pp qψ, ιq

n1
ř

j“0
pr1´jq˚sppj,Π1bψ;Πq`

r2
ř

k“0
pr2´kq˚sppk,Πc2bψ;Πq

.(11.6)

We thus obtain that

Lpm` 1
2 ,ΠˆΠ#q „EpΠqEpΠqEpΠ2q;K p2πiq

pm` 1
2 qnpn´1q

n´1
ś

i“1
P piqpΠq

r1
ś

j“0
P pjqpΠ1q

sppj,Π1bψ;Πq
r2
ś

k“0
P pkqpΠc

2q
sppk,Πc2bψ;Πq. (11.7)

(C) In this case, we have Lpm` 1
2 ,ΠˆΠ#q “ Lpm,Πˆ pΠ1 b ψqq ˆ Lpm`

1
2 ,ΠˆΠc

2q.

Similarly, we get:

Lpm` 1
2 ,ΠˆΠ#q „EpΠqEpΠqEpΠ2q;K

p2πiqpm`
1
2 qnpn´1q´nr1

2
n´1
ś

i“1
P piqpΠq

r1
ś

j“0
P pjqpΠ1q

sppj,Π1bψ;Πq
r2
ś

k“0
P pkqpΠc

2q
sppk,Πc2;Πqˆ

pp qψ, 1q

r1
ř

j“0
j˚sppj,Π1bψ;Πq

pp qψ, ιq

n1
ř

j“0
pr1´jq˚sppj,Π1bψ;Πq

. (11.8)

11.3 Simplify the right hand side

By Corollary 3.5.1 and Corollary 9.4.1, for cases (A) and (B), we have:

ppΠ#q „EpΠ#q;K ΩpΠ#
8qppΠ1qΩpΠ1,8q

´1ppΠ2qΩpΠ2,8q
´1Lp1,Π1 ˆΠ2q

„EpΠ#q;K ΩpΠ#
8qZpΠ1,8qΩpΠ1,8q

´1ZpΠ2,8qΩpΠ2,8q
´1Lp1,Π1 ˆΠ2q ˆ

r1´1
ź

j“1
P pjqpΠ1q

r2´1
ź

k“1
P pkqpΠc

2q

„EpΠ#q;K p2πiq
pr1´1qr1

2 `
pr2´1qr2

2 ΩpΠ#
8qLp1,Π1 ˆΠ2q

r1´1
ź

j“1
P pjqpΠ1q

r2´1
ź

k“1
P pkqpΠc

2q.
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Therefore, for cases (A) and (B), we obtain that:

ppΠqppΠ#qppm,Π8,Π#
8q

„EpΠ#q;K p2πiq
pr1´1qr1

2 `
pr2´1qr2

2 ΩpΠ#
8qZpΠ8qppm,Π8,Π#

8q ˆ

Lp1,Π1 ˆΠ2q
n´1
ź

i“1
P piqpΠq

r1´1
ź

j“1
P pjqpΠ1q

r2´1
ź

k“1
P pkqpΠc

2q

„EpΠ#q;K p2πiqnpn´1qpm` 1
2 q´

npn´1q
2 `

pr1´1qr1
2 `

pr2´1qr2
2 Lp1,Π1 ˆΠ2q ˆ

n´1
ź

i“1
P piqpΠq

r1´1
ź

j“1
P pjqpΠ1q

r2´1
ź

k“1
P pkqpΠc

2q

„EpΠ#q;K p2πiqnpn´1qpm` 1
2 q´r1r2Lp1,Π1 ˆΠ2q

n´1
ź

i“1
P piqpΠq ˆ

r1
ź

j“0
P pjqpΠ1q

r2
ź

k“0
P pkqpΠc

2q (11.9)

We have used Lemma 9.4.1, the fact that
`

n´1
2
˘

“
`

r1`r2
2

˘

“
`

r1
2
˘

`
`

r2
2
˘

` r1r2 and also the
fact that P p0qpΠ1qP

pr1qpΠ1q „EpΠ1q 1, P p0qpΠc
2qP

pr2qpΠc
2q „EpΠ2q 1.

For case (C), we only need to change Lp1,Π1ˆΠ2q to Lp1
2 , pΠ1bψqˆΠ2q in the above

formula.

11.4 Final conclusion

Comparing (11.4) and (11.9), we get for case (A):

Lp1,Π1 ˆΠ2q „EpΠ1qEpΠ2q;K p2πiqr1r2
r1
ź

j“0
P pjqpΠ1q

sppj,Π1;Πq´1
r2
ź

k“0
P pkqpΠc

2q
sppk,Πc2;Πq´1

„EpΠ1qEpΠ2q;K p2πiqr1r2
r1
ź

j“0
P pjqpΠ1q

sppj,Π1;Π2q
r2
ź

k“0
P pkqpΠc

2q
sppk,Πc2;Πc1q

„EpΠ1qEpΠ2q;K p2πiqr1r2
r1
ź

j“0
P pjqpΠ1q

sppj,Π1;Π2q
r2
ź

k“0
P pr2´kqpΠ2q

sppr2´k,Π2;Π1q

„EpΠ1qEpΠ2q;K p2πiqr1r2
r1
ź

j“0
P pjqpΠ1q

sppj,Π1;Π2q
r2
ź

k“0
P pkqpΠ2q

sppk,Π2;Π1q.

Comparing (11.7) and (11.9), we get for case (B):

Lp1,Π1 ˆΠ2q

„EpΠ1qEpΠ2q;K p2πiqr1r2
r1
ź

j“0
P pjqpΠ1q

sppj,Π1bψ;Π2bψcq
r2
ź

k“0
P pkqpΠ2q

sppk,Π2bψc;Π1bψq

„EpΠ1qEpΠ2q;K p2πiqr1r2
r1
ź

j“0
P pjqpΠ1q

sppj,Π1;Π2q
r2
ź

k“0
P pkqpΠ2q

sppk,Π2;Π1q.

Here we have used that sppj,Π1bψ; Π2bψ
cq “ sppj,Π1bψ; Π2bψ

´1q “ sppj,Π1; Π2q
by Lemma 1.2.1.
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Similarly, for case pCq, comparing (11.8) and (11.9), we obtain that:

Lp
1
2 , pΠ1 b ψq ˆΠ2q

„EpΠ1qEpΠ2qEpψq;K p2πiqr1r2´
nr1

2

r1
ź

j“0
P pjqpΠ1q

sppj,Π1bψ;Π2q
r2
ź

k“0
P pkqpΠ2q

sppk,Π2;Π1bψq ˆ

pp qψ, 1q

r1
ř

j“0
j˚psppj,Π1bψ;Π2q`1q

pp qψ, ιq

r1
ř

j“0
pr1´jq˚psppj,Π1bψ;Π2`1qq

„EpΠ1qEpΠ2qEpψq;K p2πiq
r1r2

2 ´
r1pr1`1q

2

r1
ź

j“0
P pjqpΠ1q

sppj,Π1bψ;Π2q
r2
ź

k“0
P pkqpΠ2q

sppk,Π2;Π1bψq ˆ

pp qψ, 1q

r1
ř

j“0
j˚sppj,Π1bψ;Π2q`

r1pr1`1q
2

pp qψ, ιq

r1
ř

j“0
pr1´jq˚sppj,Π1bψ;Π2q`

r1pr1`1q
2

„EpΠ1qEpΠ2qEpψq;K p2πiq
r1r2

2

r1
ź

j“0
P pjqpΠ1q

sppj,Π1bψ;Π2q
r2
ź

k“0
P pkqpΠ2q

sppk,Π2;Π1bψq ˆ

pp qψ, 1q

r1
ř

j“0
j˚sppj,Π1bψ;Π2q

pp qψ, ιq

r1
ř

j“0
pr1´jq˚sppj,Π1bψ;Π2q

„EpΠ1qEpΠ2qEpψq;K p2πiq
r1r2

2

r1
ź

j“0
P pjqpΠ1 b ψq

sppj,Π1bψ;Π2q
r2
ź

k“0
P pkqpΠ2q

sppk,Π2;Π1bψq.

The last step is deduced by definition of P p˚qpΠ1 b ψq (c.f. Definition-Lemma 5.3.2).

Theorem 11.4.1. Let r1 and r2 be two positive integers. Let Π1 and Π2 be two cuspidal
representations of GLr1pAKq and GLr2pAKq respectively which are very regular, cohomo-
logical, conjugate self-dual and supercuspidal at at least two finite split places. Assume
that the pair Π1,Π2 is very regular in the sense of (11.1).

(i) If r1 ” r2pmod 2q, then Lp1,Π1 ˆΠ2q „EpΠ1qEpΠ2q;K

p2πiqr1r2
r1
ź

j“0
P pjqpΠ1q

sppj,Π1;Π2q
r2
ź

k“0
P pkqpΠ2q

sppk,Π2;Π1q.

(ii) If r1 ı r2pmod 2q, then Lp1
2 , pΠ1 b ψq ˆΠ2q „EpΠ1qEpΠ2qEpψq;K

p2πiq
r1r2

2

r1
ź

j“0
P pjqpΠ1 b ψq

sppj,Π1bψ;Π2q
r2
ź

k“0
P pkqpΠ2q

sppk,Π2;Π1bψq.
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