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1. Star-products

Let A be the algebra over R of functions on C∞-manifold X . Star-product on X is a
structure of an associative algebra over R[[h̄]] on A[[h̄]] := A⊗̂RR[[h̄]] such that for any
f, g ∈ A ⊂ A[[h̄]] the “new ” product, denoted by f ⋆ g, is given by the formula

f ⋆ g = fg + h̄B1(f ⊗ g) + h̄2B2(f ⊗ g) + . . . ∈ A[[h̄]]

where Bi : A ⊗ A−→A, i ≥ 1 are bidifferential operators on X . Associativity of the
star-product

(f ⋆ g) ⋆ h = f ⋆ (g ⋆ h) ∀f, g, h ∈ A[[h̄]]

is a non-trivial quadratic constraint on (Bi)i∈N.
There is an action of infinite-dimensional group G ⊂ AutR[[h̄]]−mod(A[[h̄]]):

G := {maps f 7→ f + h̄D1(f) + h̄2D2(f) + . . . | Di are differential operators on X}

on the set of star-products.
It is easy to see that by G-action one can kill symmetric part of bidifferential operator

B1. Thus, we can assume that B1 is antisymmetric, B1(f ⊗ g) = −B1(g ⊗ f). It follows
from the associativity that B1 is a bi-derivation, i.e. a bivector field, and also it satisfies
the Jacobi identity. The conclusion is that B1 gives a Poisson structure on X .

Any symplectic manifold (a natural object in classical mechanics) carries non-degener-
ate Poisson structure and could correspond via term B1 to a non-commutative algebra
(observables in quantum mechanics). It was one of motivations 20 years ago for Bayen,
Flato, Fronsdal, Lichnerowitz and Sternheimer to start the study of star-products. A star-
product modulo the gauge equivalence (G-action) is called a deformation quantization of
manifold X . In 80-ies De Wilde, Lecompte and (later) Fedosov constructed a canonical
gauge equivalence class of star-products on all symplectic manifolds. We think nevertheless
that the whole line of ideas was based on slightly unnatural assumptions. First of all, the
Euler-Lagrange equation in classical mechanics gives a closed 2-form, not a Poisson bracket.
In degenerate cases one can not relate 2-forms and bivector fields. Also, there is no intrinsic
reason in quantum mechanics to have an associative algebra of observables.

In the next section we will describe all deformation quantizations in geometrical terms.
The proof of our main result is based on ideas from string theory. It seems that associa-
tive algebras are most closely related with open string theories, not with the quantum
mechanics.

2. Classification of star-products

Theorem. For any manifold X one can canonically identify the set of gauge equivalence

classes of star-products on X with the following set:

{α(h̄)| α(h̄) = α1h̄ + α2h̄
2 + . . . ∈ Γ(∧2TX)[[h̄]], [α(h̄), α(h̄)] = 0}/G̃



where [·, ·] : Γ(∧2TX)⊗Γ(∧2TX)−→Γ(∧3TX) is the Schouten-Nijenhuis bracket on polyvec-

tor fields, and G̃ is the group of formal paths starting at idX in the diffeomorphism group

of X :

G̃ := Maps ((Spec(R[[h̄]], 0)−→(Diff(X), idX)) .

We remind that bivector field α ∈ Γ(∧2TX) gives a Poisson structure on X iff [α, α] =
0.

As an immediate corrolary of our theorem we conclude that any Poisson structure
α1 ∈ Γ(∧2TX) is canonically quantazible. The deformation quantization corresponds to
the path α(h̄) := α1h̄.

3. Explicit formula for X = RN

Let α =
∑

αij(x)∂i ∧ ∂j be a Poisson structure on RN , ∂i = ∂/∂xi, i = 1, . . . , N .
First few terms for the star-product corresponding to α are following:

f ⋆ g = fg + h̄
∑

i,j

αij ∂if ∂ig +
h̄2

2

∑

i,j,k,l

αij αkl ∂i∂kf ∂j∂lg +

+
h̄2

3

∑

i,j,k,l

αij ∂iα
kl (∂j∂kf ∂lg − ∂j∂kg ∂lf) + O(h̄3) .

In the full formula terms are naturally labeled by certain oriented graphs. It is con-
venient to encode graphs of degree n ∈ Z≥0 (giving terms proportional to h̄n) by two
maps

a1, a2 : {1, . . . , n}−→{1, . . . , n + 2}

such that for any k ∈ {1, . . . , n} three numbers k, a1(k), a2(k) are pairwise distinct.
Graph Γ associated with (a1, a2) has n + 2 enumerated vertices. First n vertices

correspond to bivector field α, the (n + 1)-st vertex corresponds to function f , and the
(n + 2)-nd vertex corresponds to function g. Edges of Γ are oriented. The complete list of
edges is

{k−→a1(k), k−→a2(k)| k = 1, . . . , n} .

The expression in our formula corresponding to Γ is

BΓ(f, g; α) :=
∑

i1,...,in
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In short, functions BΓ(f, g; α) are all possible GL(N,R)-invariant expressions con-
structed form partial derivatives of functions f, g and of coefficients of bivector field α by
contractions of upper and lower indices, without making an assumption that [α, α] = 0.

The general formula for the star-product is

f ⋆ g =
∑

n≥0

h̄n

n!

∑

graphs Γ
of degree n

cΓ · BΓ(f, g; α)

where cΓ ∈ R are constants defined in the next section. The associativity of star-product
follows form certian non-homogeneous quadratic relations between numbers cΓ.

4. Integral formula for cΓ

Let H = {z ∈ C| Imz > 0} be the standard upper half-plane, H := H∪R ⊂ C be its
closure in C. We define a map

φ : H×H \ diagonal−→R/2πZ

by the formula

φ(z, w) = Arg(z − w) − Arg(z − w) .

The meaning of this formula is that φ(z, w) is equal to the angle between lines (z, w) and
(z, +i∞) in the Lobachevsky geometry.

The value of cΓ is given by the following integral:

cΓ =
1

(8π2)n

∫

(z1,...,zn)∈Hn

zi 6=zj for i6=j

n∧

k=1

(
dφ(zk, za1(k)) ∧ dφ(zk, za2(k))

)

where we define zn+1, zn+2 as points 0, 1 ∈ H respectively.
The integral from above is absolutely convergent. Probably, all numbers cΓ are ratio-

nal, although we cannot prove or disprove this statement at present.
The proof of quadratic relations between numbers cΓ is essentially an application of the

Stockes formula. In order to clarify the combinatorics of the proof, and also to construct
star-products on general Poisson manifolds, we have to introduce general notions and
constructions from the deformation theory.

5. Deformation theory and quasi-isomorphisms

Let g∗ be a differential Z-graded Lie algebra (DGLA) over field k of characteristic
0. The deformation functor Defg∗ associates with any finite-dimensional Artin algebra A

over k the following set:

{α ∈ g1 ⊗ mA| dα +
1

2
[α, α] = 0 ∈ g2 ⊗ mA}/G(A)



where mA ⊂ A is the maximal ideal of A, and group G(A) is the nilpotent group associated
with the nilpotent Lie algebra g0 ⊗mA. The action of G(A) on the set of solutions of the
Maurer-Cartan equation is in infinitesimal form

α̇ = dγ + [γ, α], γ ∈ g0 ⊗ mA .

One of most familiar examples is the deformation theory of complex structures on a
complex manifold M . In this case k = C, and the DGLA controlling the deformation
theory is

g∗ =
⊕

k≥0

gk, gk = Γ(M, T 1,0 ⊗ ∧k
(
(T 0,1)dual

)

with the differential equal to the usual ∂-operator and with Lie bracket coming from the
usual Lie bracket on vector fields and from the cup-product on differential forms. The set
Defg∗(A) is the set of equivalence classes of flat morphisms of complex analytic spaces

M̃−→Spec(A), endowed with an identification of the special fiber M̃ ×
Spec(C)Spec(A) with

M .
Let g∗

1 , g
∗
2 are two DGLAs. We are going to introduce a structure (a quasi-isomorphism

between g∗
1 and g∗

2) which identifies deformation functors Defg∗

1
and Defg∗

2
.

Definition. An L∞-morphism T from g∗
1 to g∗

2 is an homomorphism of differential graded

cocommutative coassociative coalgebras

T :
⊕

k≥1

Symk(g∗
1[1])−→

⊕

k≥1

Symk(g∗
2[1]) .

In the formula from above symmetric powers are constructed in the tensor category
of Z-graded vector spaces (i.e. using the Koszul rule of signs). The graded space g∗[1] is
obtained from g∗ by the shift of degrees by 1:

(g[1])n := gn+1 .

The differential in the “chain complex” C∗(g
∗) :=

⊕
k≥1 Symk(g∗[1]) of any DGLA g∗ is

defined by usual formula using the differential and the Lie bracket in g∗. Geometrically,
one can think about coalgbera C∗(g

∗) as of an object encoding an infinite-dimensional
formal Z-graded supermanifold. The reason is that the dual space to C∗(g

∗) is the algebra
of formal power series. The differential on C∗(g

∗) can be viewed as an odd vector field
Q on a supermanifold such that [Q, Q] = 0. An L∞-morphim gives a Q-equivariant map
between formal supermanifolds.

One can reformulate the definition of the deformation functor in geometrical terms
(i.e. for odd vector field Q). Any L∞-morphim induces a natural transformation between
deformation functors.

Definition. An L∞-morphism T from g∗
1 to g∗

2 is called a quasi-isomorphism iff its com-

ponent T (1,1) which maps g∗
1 [1] to g∗

2[1] is a quasi-isomorphim of complexes.

Below we state a well-known result in slightly new form:



Theorem. Any quasi-isomorphism induces an isomorphism between deformation func-

tors.

6. Formality

Let X be a manifold, A be the algebra of functions on X . We define two DGLAs over R

associated with X . The first algebra D∗(X) is related with the deformation quantization.
For each n ≥ −1 we define Dn(X) by the formula

{Φ : A⊗(n+1)−→A|Φ(f0 ⊗ f1 ⊗ . . . ⊗ fn) is a polydifferential operator in f∗} .

The differential and the bracket in D∗(X) are given by standard formulas for the differential
and the bracket in the Hochschild complex. We define a bilinear operation (Φ1, Φ2)−→Φ1◦
Φ2 on D∗(X) for Φ1 ∈ Dm(X) and Φ2 ∈ Dn(X)

(Φ1 ◦ Φ2)(f0 ⊗ . . . ⊗ fn+m) :=

m∑

k=0

±Φ1(f1 ⊗ . . .⊗ Φ2(fk ⊗ . . .⊗ fk+n) ⊗ . . .⊗ fn+m) .

The Lie bracket in D∗(X) is defined as

[Φ1, Φ2] = Φ1 ◦ Φ2 − (−1)mnΦ2 ◦ Φ1

and the differential as
dΦ = [mX , Φ]

where mX ∈ D1(X) is the product in A: mX (f0 ⊗ f1) = f0f1.
The second DGLA is denoted by T ∗(X). It is simply the cohomology of D∗(X) with

respect to the differential in D∗(X). The differential in T ∗(X) is defined to be zero. By a
version of Hochschild-Kostant-Rosenberg theorem graded components of T ∗(X) are spaces
of polyvector fields:

Tn(X) = Γ(X,∧n+1TX), n ≥ −1

and the bracket in T ∗(X) is the usual Schouten-Nijenhuis bracket.

Theorem. For any manifold X two DGLAs D∗(X) and T ∗(X) are quasi-isomorphic.

Solutions of the Maurer-Cartan equation in D∗(X) parametrized by Spec(R[[h̄]]) are
exactly star-products on X . Solutions in T ∗(X) are Poisson structures. Thus, we get a
canonical quantization for arbitrary Poisson structure.

Usually, a differential graded algebra quasi-isomorphic to its cohomology algebra, is
called formal. For example, the de Rham complex on any Kähler manifold is formal. Our
result means that DGLA D∗(X) is formal.

7. Few words about the proof

Firts of all, using a generalization of the construction with graphs as in sections 3,4 we
construct an explicit quasi-isomorphism from T ∗(RN ) to D∗(RN ) for any N . The check of
relevant identities uses the Stockes formula on certain compactifications of configurations
spaces of H, and the following lemma:



Lemma. Let M be a complex algebraic variety of dimension d ≥ 1, anf f1, . . . , f2d be

non-zero rational functions on M . Then the integral

∫

M(C)

2d∧

k=1

d Arg(fk)

is absolutely convergent and equal to zero.

This lemma is used in the study of certain degenerations when several points on H
move close to each other. The main step in the proof of the lemma is the following identity:

2d∧

k=1

d Arg(fk) =

2d∧

k=1

d Log|fk| .

The next step is to introduce a Gelfand-Fuks cocyle of the Lie algebra of formal
vector fields with coefficients in a module responsible for L∞-morphisms form T ∗(RN ) to
D∗(RN ). Fortunately, it can be done in essentially the same manner as for an individual
L∞-morphism. Vanishing of some integral over a configuration space of H guarantees that
this cocycle is a relative cocycle with respect to the Lie algebra gl(N,R) ⊂ V ect(Rn). The
rest is a generalization of standard constructions of characteristic classes associated with
Gelfand-Fuks cohomology.

8. Applications

There many of them. For example, any quadratic Poisson bracket on a finite-dimension-
al vector space admits a canonical quantization to a graded algebra with quadratic rela-
tions. It gives the positive answer to one of questions posed by Drinfeld.

Here is another application (which needs in fact an additional work with graphs and
integrals):

Theorem. Let g be a Lie algebra in a tensor category C which is a “finite-dimensional”

object of C, i.e. the dual object gdual exists and (gdual)dual = g. Then the center of

the universal enveloping algebra Z(Ug) = (Ug)g is isomorphic as an algebra in C to the

algebra (⊕k≥0Symk(g))g of ad∗-invariant polynomials on gdual.

In the classical case of the category of vector spaces this fact was proven by Duflo using
at certain essential step the classification theory of Lie algebras. In fact, the isomorphism
in our theorem is the one predicted by Kirillov and Duflo, and involves a kind of Todd
class for elements of finite-dimensional Lie algebras. The analogous statement for Lie
superlalgebras was unknown. Now we can say finally that the orbit method has a solid
background.

A parallel new theorem in algebraic geometry is

Theorem. Let M be smooth algebraic variety over a field of characteristic zero. Then

the graded algebra Ext∗M×M (Odiag,Odiag) is isomorphic to ⊕H∗(M,∧∗TX).

Another application is to the Mirror Symmetry, but we will not try to explain it here.



9. Motivations

The vague idea underlying our formula is the following: 1) a Poisson manifold gives af-
ter a doubling an odd symplectic manifold with the action of add vector field Q, [Q, Q] = 0,
2) few years ago in a joint paper with Alexandrov, Schwarz and Zaboronsky we constructed
a Lagrangian for a topological two-dimensional field theory, using as an input an odd
symplectic Q-manifold, 3) any topological two-dimensional field theory produces after a
coupling with gravity an A∞-category, a generalization of an associative algebra.

Our formulas seem come from standard Feynman rules in (string) perturbation theory.


