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We shall describe a program here relating Feynman diagrams, topology of
manifolds, homotopical algebra, non-commutative geometry and several kinds
of “topological physics”.

The text below consists of 3 parts. The first two parts (topological sigma
model and Chern-Simons theory) are formally independent and could be read
separately. The third part describes the common algebraic background of both
theories.

Conventions

Later on we shall use almost all the time the language of super linear algebra,
i.e., the word vector space often means Z/2Z-graded vector space and the degree
of homogeneous vector v we denote by v̄.

In almost all formulas, one can replace C by any field of characteristic zero.
By graph we always mean finite 1-dimensional CW-complex.
For g ≥ 0 and n ≥ 1 such that 2g + n > 2, we denote by Mg,n the coarse

moduli space of smooth complex algebraic curves of genus g with n unlabeled
punctures.

1 Associative algebras and moduli spaces of al-
gebraic curves: Two constructions

Let V be a differential associative algebra over C with an even scalar product
on it. This means that V = V0 ⊕ V1 is a super vector space endowed with the
structure of associative algebra such that

Vi · Vj ⊂ Vi+j(mod 2) ,

with an odd derivation d, d2 = 0 and a scalar product ( , ) on each V0, V1

satisfying conditions

(1) (xy, z) = (x, yz),

(2) (x, dy) = (−1)x̄(dx, y).
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Denote by H(V ) := Ker(d)/Im(d) the space of (co)homologies of the complex
V . Then H(V ) is again an associative super algebra endowed with the induced
scalar product.

The first construction associates any differential algebra V with the scalar
product (as above) such that

1◦ dimH(V ) < ∞, and

2◦ the induced scalar product on H(V ) is not degenerate,

cohomology classes in Heven(Mg,n,C) for all g, n. In a sense the initial data for
this construction is a kind of “non-commutative” homotopy type with Poincaré
duality.

The second construction associates any differential algebra V with the scalar
product such that

1◦ dim(V ) < ∞,

2◦ the scalar product on V is not degenerate,

3◦ H(V ) = 0,

homology classes in Heven(Mg,n,C) for all g, n.
We will describe here the first construction. The idea arose on my reading

[23]. It goes through some generalization of the notion of differential algebra
invented by Jim Stasheff [24] many years ago.

A
∞

-algebras

By definition, an A∞-algebra (or, in other terms, strong homotopy associative
algebra) is a collection (V, m1, m2, . . .) where V is a super vector space and

m1 : V → V is an odd map,

m2 : V ⊗ V → V is an even map,

m3 : V ⊗ V ⊗ V → V is an odd map,

. . .

satisfying the higher associativity condition:

for any n ≥ 1, x1, . . . , xn ∈ V0 ⊔ V1

∑

1≤k≤i,1≤j
i+j=n+1

±mi(x1⊗x2⊗. . .⊗xk−1⊗mj(xk⊗. . .⊗xk+j−1)⊗xk+j ⊗. . .⊗xn) = 0 ,

where the sign is given by the formula

± = (−1)j(x̄1+...+x̄k−1)+(j−1)k .

Actually the associativity condition is an infinite sequence of bilinear equa-
tions on the multiplications mi.
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Examples

n = 1 : the corresponding equation is m1 ◦ m1 = 0. Hence m1 is a differential
and V is a complex.

n = 2 : then m2 : V ⊗ V → V is a morphism of complexes. V is a differential
but not necessarily an associative algebra.

n = 3 : the third equation means that m2 is associative up to homotopy given
by the map m3.

We see that differential associative algebras are just A∞-algebras with m3 =
m4 = . . . = 0. Conversely, for any A∞-algebra one can construct (applying
the bar construction and then the cobar construction) a differential associative
algebra which is in a sense homotopy equivalent to the initial A∞-algebra. The
advantage of A∞-algebras is the possibility of transfering A∞-structures across
quasi-isomorphisms of complexes (“perturbation theory” in differential homo-
logical algebra, V.K.A.M. Gugenheim and J. Stasheff [11]). In particular, one
can construct a (non-unique!) structure of A∞-algebra on H(V ) which encodes
all Massey operations arising on the space of cohomologies.

A
∞

-algebras with scalar products

By definition, an A∞-algebra with a scalar product is a finite-dimensional A∞-
algebra V with a fixed nondegenerate even scalar product on V such that for
any n ≥ 1, the (n + 1)-linear functional (mn, ) : V ⊗(n+1) → V ,

x1 ⊗ x2 ⊗ . . . ⊗ xn+1 7→ (mn(x1 ⊗ . . . ⊗ xn), xn+1)

is cyclically (i.e., Z/(n + 1)Z) symmetric (in the graded sense) for n odd and
cyclically antisymmetric for n even.

We developed [16] a perturbation theory for the case of algebras with scalar
products and obtain higher multiplications on H(V ) obeying cyclicity conditions
as above for a non-commutative differential algebra V with Poincaré duality
(i.e., H(V ) is finite-dimensional and the induced scalar product on it is non-
degenerate).

We shall construct for any A∞-algebra with a scalar product an even co-
homology class on the moduli space of curves Mg,n. It is based on a certain
combinatorial model for Mg,n developed by J. Harer, D. Mumford and R. Pen-
ner, ([12], [19]).

Stratification of decorated moduli spaces

By definition, the decorated moduli space Mdec
g,n is the moduli space of pairs

(C, f) where C is a compact connected complex algebraic curve of genus g and
f : C → R≥0 is a non-negative function which takes positive values exactly at
n points. It is clear that the rational homotopy type of Mdec

g,n is the same as

of Mg,n. The space Mdec
g,n has a stratification with the strata equal to quotient
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spaces of euclideean spaces of some dimensions modulo actions of some finite
groups.

Define a ribbon graph (or a fatgraph in other terms) as a graph with fixed
cyclic orders on the sets of half-edges attached to each vertex. One can associate
an oriented surface with boundary to each ribbon graph by replacing edges
by thin oriented rectangles (ribbons) and glueing them together at all vertices
according to the chosen cyclic order. A metric on the ribbon graph is a map
from the set of edges to the set of positive real numbers R>0.

Denote by Rg,n the moduli space of connected ribbon graphs with metric,
such that the degrees of all vertices are greater than or equal to 3 and the
corresponding surface has genus g and n boundary components.

Theorem 1.1 Rg,n is isomorphic to Mdec
g,n.

This theorem follows from results of K. Strebel and/or R. Penner (see [25],
[19] or an exposition in [12]).

It is clear that Rg,n is stratified by combinatorial types of underlying ribbon
graphs. This stratification was used before for the computation of the orbifold
Euler characteristic of Mg,n ([13], [20]) and in the proof ([15]) of Witten’s
conjecture on intersection numbers of standard divisors on the Deligne-Mumford
compactification Mg,n (see [29]).

The space Rg,n is a non-compact but smooth orbispace (orbifold), so there
is a rational Poincaré duality between its cohomology groups and homology
groups with closed supports with coefficients in the orientation sheaf. Hence
one can compute the rational cohomology of Mg,n using the complex generated
as a vector space by equivalence classes of co-oriented strata.

State model on ribbon graphs

Let V be an A∞-algebra with a scalar product and denote by v1, . . . , vN an or-
thogonal base of V (here N = dim(V )). We can encode all data in the sequence
of cyclically (anti)-symmetric (in the graded sense) tensors with coefficients:

Ti1,...,in
= (mn−1(vi1 ⊗ . . . ⊗ vin−1

), vin
) , 1 ≤ i∗ ≤ N n ≥ 2 .

Each ribbon graph defines a way to contract indices in the product of copies
of these tensors. In other words, V defines a state model on ribbon graphs.
The partition function Z(Γ) of a ribbon graph Γ is the sum over all colorings of
edges of Γ into N colors of the products over vertices of Γ of the corresponding
coefficients of tensors T∗. For example, the partition function of the skeleton of
a tetrahedron is equal (with appropriate corrections of signs) to

∑

1≤i1,...,i6≤N

Ti1i2i5 Ti2i3i6 Ti1i4i3 Ti4i5i6 .

Actually the partition function is defined only up to a sign because, for odd n,
the tensors T∗ are cyclically anti-invariant. One can check that the sign is fixed
by a coorientation of the stratum corresponding to Γ.
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Theorem 1.2
∑

Γ

Z(Γ)Γ is a well-defined cochain on Mdec
g,n. It follows from the

higher associativity conditions that this cochain is closed.

The proof of this theorem is a simple check. In a sense our construction
of cohomology classes of Mg,n starting from an A∞-algebra with a scalar pro-
duct is analogous to famous constructions of knot invariants (see, for example,
[21]). One can check that the resulting cohomology class does not depend on
the choices in the construction and is a homotopy invariant of the differential
associative algebra with a scalar product such that the induced scalar product
on the cohomology space is non-degenerate.

There is a simple series of A∞-algebras with scalar products. The underlying
vector space is an even one-dimensional space C1. The scalar product is (1, 1) =
1 and higher multiplications mk are zero for odd k and arbitrary linear maps
C⊗k → C for even k. We have proved that the linear span of classes obtained
from these algebras is the space of all polynomials in Morita-Miller-Mumford
classes (the proof will appear elsewhere).

One could expect that it is possible to produce all classes of H∗(Mg,n)
from the above construction. It would be interesting to construct examples of
A∞-algebras giving some new classes.

Also we expect that the structure of an A∞-algebra with a scalar product
appears naturally in the Floer homology of the space of free paths on almost any
complex manifold and the corresponding cohomology classes are restrictions of
the classes on Mg,n arising from the nonlinear sigma-model [29].

At the moment we don’t know what kind of algebraic structure gives co-
homology classes of the Deligne-Mumford compactification Mg,n. We hope
that further development will lead to a better understanding of topological
non-linear sigma-models, mirror symmetry and relations with matrix models
of two-dimensional gravity.

Dual construction

We describe here a way to produce homology classes on Mg,n. The starting
ingredient is a finite-dimensional differential associative algebra V with a non-
degenerate odd scalar product and trivial cohomology.

The right inverse to the scalar product can be considered as an odd element
δ of V ⊗ V . It follows from the compatibility of the scalar product with the
differential that δ is closed. From the triviality of H(V ) it follows that there
exists ω ∈ V ⊗V such that dω = δ. We can use ω as a “propagator” and tensors
T(k) : V ⊗k → C

T (v1 ⊗ . . . vk) = (v1v2 . . . vk−1, vk)

as “interactions”. Again, we obtain a state model on ribbon graphs. Now we
will consider the complex which is dual to the cochain complex from the previous
section.

Theorem 1.3
∑

Γ

Z(Γ)Γ is a well-defined chain and it is closed. Its homology

class does not depend on the choice of ω.
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The proof of this theorem is again a simple check.
One can compute the pairing between cohomology classes arising from A∞-

algebras and homology classes arising from differential associative algebras. The
corresponding number will be the sum over all ribbon graphs of the product of
two partition functions. One can identify this sum with the decomposition over
Feynman diagrams of a finite-dimensional integral (see [3] for an introduction
to Feynman rules for mathematicians). Theoretically it gives a way to check
non-triviality of classes arising from A∞-algebras.

2 Perturbative Chern-Simons theory

Before the discussion of more complicated subjects we want to show the reader
a simple formula for an invariant of knots in R3 which arises naturally from
perturbative Chern-Simons theory.

Denote by ω(x) the closed 2-form 1
8π ǫijk

xidxj∧dxk

|x|3 on R3\{0} (= standard

volume element on S2 written in homogeneous coordinates). This form appears
in the Gauss formula for the linking number of two nonintersecting oriented
curves L1, L2 ⊂ R3:

# (L1, L2) =

∫

x∈L1,y∈L2

ω(x − y) .

Theorem 2.1 For a knot K : S1 →֒ R3 where S1 = [0, 1]\{0, 1} the following
sum

∫

0<l1<l2<l3<l4<1

ω(K(l1) − K(l3)) ∧ ω(K(l2) − K(l4))

+

∫

0<l1<l2<l3<1,x∈R3\K(S1)

ω(K(l1) − x) ∧ ω(K(l2) − x) ∧ ω(K(l3) − x) −
1

24

is an invariant, i.e., does not change when we vary continuously K in the class
of embeddings. This invariant is an integer number and it is equal to the second
coefficient of the Conway polynomial of the knot K(S1).

This theorem follows from the study of certain compactifications of domains
of integration and general properties of Vassiliev invariants (see below).

Overview of Chern-Simons theory

Let M be a closed oriented 3-dimensional manifold and let G be a compact Lie
subgroup of the group of unitary matrices U(N). Denote by A a 1-form on
M with values in the Lie algebra G of the group G. We can consider A as a
connection in the trivial G-bundle over M .
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The Chern-Simons functional of A is given by the formula

CS(A) =
i

4π

∫

M

Tr

(

AdA +
2

3
A3

)

.

This functional is invariant under infinitesimal gauge transformations δA =
dX + [A, X ] for X : M → G. The quantity eCS(A) is invariant under all gauge
transformations

A 7→ g−1Ag + g−1dg , g : M → G

and also could be defined fro connections in nontrivial bundles.
Formally we can write the integral over the quotient space of the space of

all connections in G-bundles over M modulo gauge transformations (for any
integer k):

Zk =

∫

(

eCS(A)
)k

DA , k ∈ Z .

Witten [30] in 1988 described a way to “compute” the numbers Zk (for k 6= 0)
starting from conformal field theory. These numbers are algebraic numbers
belonging to cyclotomic fields. To compute Zk, one has to decompose M into
some simple pieces. Also one needs to know R-matrices for a quantum group
with parameter q equal to a root of unity. Then the decomposition of M defines
a way to contract indices in some tensor products of R-matrices and some other
auxiliary tensors. The result of the computation will be Zk. For a precise
description see [22].

If one believes in the existence of Feynman integrals, then one expects a cer-
tain asymptotic behaviour of the complex numbers Zk for large k. The integral
must be concentrated near critical points of CS, i.e., near flat connections. Let
us suppose for simplicity that there are only finitely many conjugacy classes
of group homomorphisms π1M → G. Conjecturally, there is an asymptotic
formula of the following form:

Zk ∼
∑

ρ:π1M→G

ekCS(ρ) kdρ

R(ρ)
exp

(

∞
∑

n=1

an,ρ k−n

)

, k → +∞

where dρ, R(ρ) can be computed from the Reidemeister torsion and the dimen-
sions of the cohomologies of the adjoint local system ad(ρ), and an,ρ are higher
term corrections to the Gauss approximation.

This expansion was checked (without higher corrections) for some cases,
where explicit formulas for Zk exists, see [9], [14], and for some more complicated
cases using computer simulations in [6].

Recipe for perturbation theory

Here we shall describe a way to define coefficients an,ρ in the conjectural asymp-
totic expansion of Zk. Let us fix a flat connection ∇ in a G-bundle on M and
denote by g the corresponding local system of Lie algebras (arising from the

7



adjoint representation of G). Suppose for simplicity that g is infinitesimally
irreducible and rigid,

H0(M, g) = H1(M, g) = 0 .

It follows using Poincaré duality that g is acyclic.
Connections near the flat connection ∇ can be written as ∇+ A where A is

a 1-form with values in g.
The first step in the standard physical approach to the computation of in-

tegrals over spaces of fields modulo gauge transformations is to add Faddeev-
Popov ghost and anti-ghost fields. For mathematicians it means that we consider
0 and 2-forms with values in g as odd (= fermionic) fields.

The second step is to define a so-called gauge fixing. It is enough, for exam-
ple, to choose a Riemannian metric on M . The gauge fixing gives a propagator
which can be considered as a 2-form ω on M2 with values in g⊗ g. This form is
smooth and closed outside the diagonal Mdiag ⊂ M × M . The exterior deriva-
tive of ω on all of M2 must be equal to the product of the delta-form on Mdiag

times the inverse to the scalar product on g. If M is a Riemannian manifold
one can fix ω uniquely as a harmonic form outside Mdiag (in other words, ω will
be a Green form).

The third and the last step is to compute integrals corresponding to Feynman
diagrams. Let Γ be a finite nonempty connected graph with all vertices having
degree 3 and without simple loops (that is, edges attached at both ends to one
vertex). Such a graph has 2n vertices and 3n edges for some n ≥ 1. Suppose that
all vertices and all edges of Γ are numbered from 1 to 2n and to 3n respectively,
and all edges are oriented. All these data can be encoded into two vectors
l∗, r∗ of length 3n, where li and ri are labels of the left and the right vertex
respectively attached to the edge i.

the integral corresponding to Γ is given by the formula

ZΓ =

∫

. . .

∫

(x1,...,x2n)∈M2n\diag

Tr
3n
∏

i=1

ω(xli , xri
) ,

where “Tr” denotes the tensor product over all vertices of skew-symmetric in-
variant 3-linear functionals on g:

X1 ⊗ X2 ⊗ X3 7→ Tr (X1X2X3 − X3X2X1) .

Here we use an isomorphism (g⊗2)⊗3n ≃ (g⊗3)⊗2n arising from the labeling of
vertices and edges of Γ.

The n-th term in the perturbation expansion of Zk must be equal to

an,ρ =
(c)n

(2n)!(3n)!

∑

Γ

ZΓ

for some constant c 6= 0.
The factorial factors in the denominator come from counting of numberings

of edges and vertices of Γ.
There are two basic problems here:
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(1) why the integrals converge, and

(2) why an,ρ does not depend on the choice of the form ω?

There are two slightly different solutions (1991) of these problems, by Axelrod-
Singer [1] and by Kontsevich [16]. The first solution uses Green functions and
Riemannian metrics, the second solution is softer in some sense but uses the
triviality of the tangent bundle to M . We will describe here our approach.

Compactification of the configuration spaces

Let now M denote a compact manifold of arbitrary dimension. Denote by
Confn(M) the space of configurations of n labeled distinct points in M ,

Confn(M) = Mn\all diagonals.

We shall construct a certain compact manifold with corners (i.e., a space looking
locally like a neighbourhood of a point in the closed cube) Confn(M) containing
Confn(M) as the interior.

The idea is to make all real-analytic blow-ups along all the diagonals Mk ⊂
Mn, 1 ≤ k ≤ n − 1. For example, Conf2(M) = Conf2(M) ∪ SM is a manifold
with the boundary ∂ Conf2(M) equal to the total space SM of the spherical
bundle associated with the tangent bundle TM .

In general, Confn(M) is quite complicated. One can describe it as a set
using the following notation:

Let V be a finite-dimensional vector space over R and m an integer greater
than 1. Denote by Cm(V ) the quotient space of Confm(V ) modulo the action
of the semi-direct product of the group V of translations and the group R∗

+ of
positive dilatations. The space Cm(V ) is smooth because the action is free.

As a set, Confn(M) is equal to the disjoint union of some strata. Each
stratum is a bundle over a configuration space Confk(M) for some k, 1 ≤ k ≤ n.
The fiber of this bundle over the point (x1, . . . , xk) ∈ Confk(M) is a product
over some index set A of spaces Cmα

(Txiα
), α ∈ A. More precisely, strata

correspond to abstract oriented forests with endpoints numbered from 1 to n
and k connected components (trees). A is the set of vertices which are not
endpoints, iα denotes the subtree containing α ∈ A, mα is equal to the number
of immediate successors of the vertex α.

One can check that the evident forgetful maps Confn(M) → Confm(M) for
n > m can be prolonged to smooth maps Confn(M) → Confm(M). Another
important fact is the list of codimension one strata in Confn(M). They are in
one-to-one correspondence with subsets S ⊂ {1, 2, . . . , n} with the cardinality
# (S) ≥ 2. Geometrically such a stratum corresponds to the situation when
points with labels from S are coming close to each other.

An analogous construction in the context of algebraic geometry was invented
by W. Fulton and R. MacPherson [8]. It gives a resolution of singularities of the
union of all diagonals in the product of several copies of an algebraic variety.
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Let us return to the problem with integrals appearing in the Chern-Simons
perturbation theory. First of all, we fix a trivialization of the tangent bundle
TM . It gives a decomposition

∂(Conf2(M)) = SM = S2 × M .

Define ω on ∂(Conf2(M)) as the product of the standard volume element on
S2 by the inverse of the scalar product in g. It follows from acyclicity of g that
there exists a closed 2-form ω globally on Conf2(M). Then the convergence of
integrals is evident, because we integrate now a smooth form over a compact
manifold with corners Conf2n(M).

Topological invariance of the sum of integrals follows from Stokes formula
and the following general lemma:

Lemma 2.2 Let ω ∈ Ωd−1(Sd−1) = Ωd−1(C2(R
d)) denote any (anti)-symme-

tric volume element on Sd−1 (for example, the standard rotation invariant
volume element). For any integer N ≥ 3 and for any two sequences li, ri,
i = 1, . . . , L of integers li 6= ri, 1 ≤ li, ri ≤ N and for dimension d ≥ 3 the
integral

∫

(x1,...,xN )∈CN (Rd)

L
∏

i=1

ω(xli , xri
)

has value zero.

The proof of this lemma is the following:
The dimension of the integration space (Nd − d − 1) must be equal to the

degree of the form (d − 1)L. It follows that in the graph associated with two
vectors l∗, r∗ there exists a vertex with degree ≤ 2. If the degree of this vertex
is 0 or 1, then the form vanishes. If the degree of this vertex is equal 2, then
fixing all vertices except this one we obtain the integral

∫

y∈Rd

ω(x, y)ω(y, z)

considered as (d − 2)-form on the configuration space of 2 points x, z in Rd.
This integral vanishes due to the involution

y 7→ x + z − y

changing the sign. �

It follows from the lemma that only the simplest components of the boundary
of Conf2n(M) give nonzero contribution to the variation of integrals, namely,
they correspond to 2-element subsets in the set of indices. Then the Jacobi
identity guarantees cancellation of all boundary terms.
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The graph complex

Let us analyse the proof of topological invariance of an,ρ in the case of trivial
ρ. Of course, this case is not realistic because for a nonempty manifold M or
nonzero g, the cohomology group H0(M, g) is nontrivial. Nevertheless, imagine
such a situation. It is clear that for any graph Γ the corresponding integral ZΓ

is decomposed into the product of two factors,

ZΓ = ZΓ,G × ZΓ,M ,

where the first factor depends only on the Lie algebra G with nondegenerate
scalar product and the second factor depends only on the manifold M .

The numbers ZΓ,G, ZΓ,M depend also on some choices, namely, the choices
of the cyclic order of 3-element sets of half-edges attached to each vertex. Both
numbers change their sign when one changes the cyclic order at one vertex. We
shall call an orientation of a 3-valent graph a choice of cyclic orders of all vertices
up to an even number of changes. Thus ZΓ,G, ZΓ,M are both odd functionals
on oriented 3-graphs.

The only property of ZΓ,G which we use in the proof is a kind of Jacobi
identity:

ZΓ1,G + ZΓ2,G + ZΓ3,G = 0

for triples of 3-graphs Γi obtained from a graph Γ′ with all vertices except
one having degree 3 and the exceptional vertex having degree 4. Graphs Γi,
i = 1, 2, 3 are obtained by “inclusion” of one edge in Γ′ instead of the exceptional
vertex.

Let us define the graph complex as an abstract vector space over Q generated
by equivalence classes of pairs (Γ, or) where Γ is a connected nonempty graph
such that the degrees of all vertices are greater than or equal to 3 and (or) is
an orientation of the real vector space R{edges of Γ} ⊕ H1(Γ,R). We impose the
relation

(Γ,−or) = −(Γ, or) .

It follows that (Γ, or) = 0 for every graph Γ containing a simple loop. The reason
is that such graphs have automorphisms reversing the orientation in our sense.
One can check that for 3-valent graphs we have the same notion of orientation
as above.

Define a differential d by the formula (for Γ wihtout simple loops):

d(Γ, or) =
∑

e∈{edges of Γ}

(Γ/e, induced orientation).

Here Γ/e denotes the result of contraction of the edge e, the “induced
orientation” is the product of the natural orientation on the codimension-one
co-oriented subspace R{edges of Γ}/e ⊂ R{edges of Γ} and the orientation on
H1(Γ/e,R) ≃ H1(Γ,R). One can easily check that d2 = 0.

The differential d preserves the dimension of H1(Γ) (“number of loops” in
physical language). Thus the graph complex is decomposed into the direct sum
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of its subcomplexes Cn,∗, n ≥ 1 consisting of graphs Γ with dim(H1(Γ)) = n+1,
the degree ∗ being equal to the number of vertices of Γ. Each subcomplex Cn,∗

is finite-dimensional at each degree and has a finite length.
The homology of the graph complex is called graph homology. It is a chal-

lenging problem to compute it. We shall show now that graph homology consists
of a kind of characteristic classes for diffeomorphism groups of odd-dimensional
manifolds. It is clear that there are at least some nontrivial classes arising from
Lie algebras with nondegenerate scalar products.

There exists a version of the graph complex which works for even-dimensional
manifolds. One has to replace the vector space R{edges of Γ} ⊕ H1(Γ,R) by
R{edges of Γ} in the definition of the orientation of a graph Γ.

Application of graph homology

Let M be compact oriented manifold of odd dimension d ≥ 3 which has the
rational homotopy type of a sphere, that is H∗(M,Q) = H∗(Sd,Q). Remove
one point p from M and consider the result as Rd with the topology changed
in a compact subset. Suppose that there exists a trivialization of the tangent
bundle of M\{p} which coincides with the standard trivialization of TRd near
infinity.

Denote by B̃DiffM a base of a universal smooth bundle with fibers diffeo-
morphic to M , with a section p and a trivialization of the tangent bundle to the
fibers outside p having the same behaviour near p as above. We choose such
notation because the homotopy type of this space differs from the classifying
space of the diffeomorphism group Diff M by something quite simple.

Using the same technique as for Chern-Simons theory, we can construct

differential forms on B̃DiffM integrating products of copies of a suitably chosen
form ω over the union of configuration spaces of fibers. These forms are labeled
by graphs with orientations in our sense. One can check that we obtain a
morphism of complexes

Cn,∗ → Ωdn−∗(B̃DiffM) .

Thus graph homology maps to the cohomology of B̃DiffM .
In the case d = 3 any top-degree class in H∗(Cn) gives a zero-degree coho-

mology class of B̃DiffM , i.e., just a real number, which is an invariant of M .
For example, the simplest non-zero class represented by a graph with 2 vertices
and 3 edges connecting both vertices gives an invariant of a homology 3-sphere
with spin structure. The formula for this invariant is

∫

C2(M\{p})

ω3 .

Theorem 2.3 This invariant is also invariant under homology trivial spin
cobordisms.

This theorem was proven by Cliff Taubes [26].
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Problems

(1) find a geometric construction of these invariants,

(2) prove (or disprove) that graph homology maps to cohomology classes with
rational coefficients,

(3) generalize all this to the case of nonhomology spheres with nontrivial tan-
gent bundles and try to incorporate also the group algebra of the funda-
mental group.

Knots invariants and Vassiliev’s theory

Let us use the same notations for Chern-Simons theory as before. For a simple
closed oriented curve L in a 3-manifold M and for a finite-dimensional unitary
representation ρ of the group G, denote by Wρ,G the gauge-invariant functional
(Wilson loop) on the space of connections given by the formula

Wρ,G(A) = trace in ρ of the monodromy of the connection A along L.

Then for any family of loops Li and representations ρi, i = 1, . . . , n and for any
k one can write the Feynman integral

Zk((L1, ρ1), . . . , (Ln, ρn)) =

∫ n
∏

i=1

Wρi,Li
(eCS(A))k DA .

Witten [30] gave rules to compute this integral assuming that the curves Li do
not intersect and are also framed (the normal bundles to L∗ are trivialized).
One can write down terms in the perturbation series for these integrals as well.

Let us restrict ourselves to the case M = S3. Witten showed that these
integrals are just versions of Jones invariants of links (see also [21]). Because
π1S

3 = 1 there is only one critical point for the Chern-Simons functional, the
trivial connection. Thus, integrals corresponding to Feynman diagrams will be
the product of algebraic and geometric factors.

We can replace S3 by the non-compact space R3 and use as the propagator
the Gauss form

ω(x, y) =
1

8π
ǫijk

(xi − yi) d(xj − yj) ∧ d(xk − yk)

|x − y|3
.

The simplest invariant of knots obtained in this way gives a formula which we
presented just before the review of Chern-Simons theory (cf. Theorem 2.1).
It is hard to say who wrote this formula first, probably D. Bar-Natan or E.
Guadagnini, M. Martellini and M. Mintchev [10]. It is quite strange that this
simple formula (just a generalization of the Gauss formula for the linking num-
ber) was invented so late (1988-1989), and not by topologists, but by physicists.
Until 1991 (S. Axelrod–I.M. Singer and my work) it was not clear whether higher
order integrals converge or not.

13



It was recognized by D. Bar-Natan and myself that perturbative Chern-
Simons theory for knots is closely related with Vassiliev invariants (see [27],
[28]).

In 1988-1989 V. Vassiliev introduces a class of knot invariants using an idea
absolutely independent from Witten’s. His approach was the following:

Let us consider the space of embeddings as the complement in the infinite-
dimensional vector space of all maps from S1 to R3 to the closed subspace of
maps with the self-interesting or singular image. We intersect both spaces – the
space of knots and its complement, with an appropriate generic family of finite-
dimensional vector spaces with increasing dimensions. For example, the spaces
of trigonometric polynomial maps of fixed degrees will do. Then it is possible
to apply the usual Alexander duality. Of course, we can generalize this to the
case of embeddings of an arbitrary manifold into Euclidean space of arbitrary
dimension.

The main technical invention of V. Vassiliev is a very simple simplicial re-
solution of singularities of the space of non-embeddings, which allows one to
compute its homology groups with closed support. This technology can be ap-
plied to a very broad class of situations, and in good cases it gives a complete
description of the weak homotopy type of some function spaces. The case of
knots turns out to be borderline. The spectral sequence arising in Vassiliev’s
approach does not converge well. The zero-degree part of its limit is a certain
countable-dimensional subspace in the continuum-dimensional space of all co-
homology classes. In particular, the space of knot invariants considered as the
0-degree cohomology group of the space of embeddings contains a countable-
dimensional subspace of Vassiliev invariants.

We now give their definition. For any knot K : S1 →֒ R3 and any family of
nonintersecting balls

B1, B2, . . . , Bn ⊂ R3

such that the intersection of any ball with K(S1) looks from above like one
line passing over another, one can construct 2n knots. These knots will be
labeled by sequences of +1 and −1 of length n. The knot Kǫ1,...,ǫn

obtained
from K = K(S1) by replacing for all i such that ǫi = −1 the part of the knot in
the interior of Bi by another standard sample with the first line passing under
the second line. Of course, K+1,+1,...,+1 is the initial knot K.

Let Φ be a knot invariant with values in an abelian group A (for example,
A = Z,Q,C, . . .).

Definition. Φ is an invariant of degree less than n if for all K and B1, . . . , Bn

as above the following equality holds:

∑

ǫ1,...,ǫn

ǫ1 . . . ǫn Φ(Kǫ1,...,ǫn
) = 0 .

For k = 0, 1, . . . denote by Vk the vector space of Q-valued invariants of
degree less than k+1. The space of all Vassiliev invariants V =

⋃

k

Vk is the space
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of invariants of finite degree. There is an evident generalization of the notion
of Vassiliev invariants to the case of knots and links in arbitrary 3-dimensional
manifolds.

We want to mention here several features of these invariants (see [2], [18],
[27], [28]):

(1) All terms in the perturbative Chern-Simons theory are invariants of finite
order.

(2) The space of invariants of a fixed degree is finite-dimensional, there exists
an a priori upper bound on its dimension. Moreover, this space is algorith-
mically computable. Unfortunately, the only known method to compute
this space for a fixed degree takes super-exponential time.

(3) For any Vassiliev’s invariant, there exists a polynomial-time algorithm for
computing this invariant for arbitrary knots.

(4) It is not hard to prove that if all Vassiliev’s invariants for two knots coin-
cide, then their (Alexander, Conway, Jones, Kauffman, HOMFLY, etc.)-
polynomial invariants coincide.

(5) The class of Vassiliev invariants coincides with the class of invariants aris-
ing from the work of V. Drinfel’d [5] on quasi-Hopf algebras.

One can show that every Vassiliev invariant has a representation as a finite-
dimensional integral over some configuration space associated with the pair of
manifolds K(S1) ⊂ R3 of a product of copies of the Gauss form. We pro-
posed in [18] also another integral formula for Vassiliev invariants based on [5].
Conjecturally both integral formulas give the same answer.

Vassiliev invariants could be considered as top-degree homology groups of
a complex closely related with the graph complex. Exploiting Vassiliev’s ideas
and perturbative integrals we proved the following fact:

Theorem 2.4 For n ≥ 4 let Xn be the space of embeddings of S1 into Rn.
There exist finite-dimensional vector spaces over Q,

V i,j
0 , V i,j

1 , 0 ≤ j ≤ i

such that for any n ≥ 4, k ≥ 0

Hk(Xn,Q) =
⊕

(n−3)i+j=k

V i,j
n(mod 2) .

The proof is organized as follows:

(1) the second term of the Vassiliev spectral sequence gives an estimate above
for cohomology groups of Xn,

(2) Feynman diagrams give differential forms on Xn, so produce a lot of co-
homology classes,
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(3) using combinatorial arguments we show that cohomology of the complex
of Feynman diagrams coincide with the second term of the Vassiliev spec-
tral sequence. Thus estimates above and below coincide and the spectral
sequence collapses here.

The proof shows that
⊕

i V i,0
1 is equal to the space V of Vassiliev knot invariants.

Complete exposition of this theorem will appear elsewhere.

3 (Non)commutative symplectic geometry

Here we will show relations between parts 1 and 2 which appear to be very
different.

Three infinite-dimensional Lie algebras

Let us define three Lie algebras. The first one, denoted by ln, is a certain
Lie subalgebra of derivations of the free Lie algebra generated by 2n elements
p1, . . . , pn, q1, . . . , qn. By definition, ln consists of the derivations acting trivially
on the element

∑

[pi, qi].
The second Lie algebra an is defined as the Lie algebra of derivations D

of the free associative algebra without unit generated by p1, . . . , pn, q1, . . . , qn

satisfying the condition D(
∑

(piqi − qipi)) = 0.
The third Lie algebra cn is the Lie algebra of polynomials F ∈ Q [p1, . . . , pn,

q1, . . . , qn] such that F (0) = F ′(0) = 0, with respect to the usual Poisson bracket

{F, G} =
∑

(

∂F

∂pi

∂G

∂qi
−

∂F

∂qi

∂G

∂pi

)

.

One can define cn also as the Lie algebra of derivations of a free polynomial
algebra Q[p∗, q∗] preserving the form

∑

dpi ∧dqi and the codimension one ideal
(p1, . . . , pn, q1, . . . , qn).

Our aim is computation of the stable homology (with trivial coefficients) of
these Lie algebras. The spirit of the (quite simple) computations is somewhere
between Gelfand-Fuks computations (see [7]) and cyclic homology.

If we denote by hn one of these three series of algebras, then we have a
sequence of natural embeddings h1 ⊂ h2 ⊂ . . . ⊂ h∞ where the last algebra
corresponds to the case of countable infinite number of generators. Of course,
H∗(h∞) = lim

−→
H∗(hn).

For the limit algebras h∞ we have a structure of Hopf algebra on its homology
(as is usual in K-theory). The multiplication comes from the homomorphism
h∞ ⊕ h∞ → h∞ (∞ + ∞ = ∞ in set theory) and the comultiplication is dual
to the multiplication in cohomology.

This Hopf algebra is commutative and cocommutative. Thus H∗(h∞) is a
free polynomial algebra (in the Z/2Z-graded sense) generated by the subspace
PH∗(h∞) of primitive elements.
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In all three cases we have an evident subalgebra sp(2n) ⊂ hn consisting of
linear derivations. The primitive homology of sp(2∞) is well-known:

PHk(sp(2∞),Q) =

{

Q k = 3(mod 4)
0 k 6= 3(mod 4)

}

.

Now we can state our main result:

Theorem 3.1 For all three cases PHk(h∞) is equal to the direct sum of
PHk(sp(∞)) and

(1) (for the case l∞)

⊕

n≥2

H2n−2−k(OutFree (n),Q) ,

where OutFree (n) denotes the group of outer automorphisms of a free
group with n generators,

(2) (for the case a∞)

⊕

n>0,2−2g−n<0

H4g−4+2n−k(Mg,n,Q) ,

(3) (for the case c∞)
⊕

n≥2

(graph homology)
(n)
k .

The gradings on the homology groups arising from the natural grading on
h∞ are equal to (2n − 2), (4g − 4 + 2m) and (2n − 2), respectively.

Idea of the proof of Theorem 3.1

Recall that our Lie algebras hn are Z≥0-graded. Thus the standard chain com-
plex

∧∗
(hn) is graded. We consider the case when n is much larger than the

grading degree.
It is well known that every Lie algebra acts (through the adjoint represen-

tation) trivially on its homology. The algebra sp(2n) ⊂ hn acts reductively on
∧∗

(hn). Hence the chain complex is canonically quasi-isomorphic to the sub-
complex of sp(2n)-invariants. It is easy to see that this subcomplex stabilizes
when n → ∞.

We claim that for the case c∞ the subcomplex of invariants is a version of
the graph complex constructed from all not necessarily connected graphs with
degrees of all vertices ≥ 2.

The underlying vector space of the Lie algebra cn as a representation of
sp(2n) is equal to

⊕

j≥2

Sj(V ) ,
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where V = Q 〈p1, . . . , pn, q1, . . . , qn〉 is the defining 2n-dimensional representa-
tion of sp(2n).

Thus our chain complex as a representation of sp(2n) is equal to the sum

⊕

k2≥0,k3≥0,...

(∧k2 (S2(V )) ⊗ ∧k3(S3(V )) ⊗ . . .) .

Every summand is a space of tensors on V satisfying some symmetry condi-
tions.

From the main theorem of invariant theory, it follows that invariant tensors
are obtained by contraction of indices. Then one can easily identify all possible
ways to contract indices with appropriate graphs.

Consider the subcomplex consisting of all non-empty connected graphs. It
contains as a direct summand the complex of graphs with degrees of all vertices
equal 2. This part gives the primitive stable homology of sp(2∞). The rest is
quasi-isomorphic to our standard graph complex using some spectral sequence
arguments. This proves Theorem 3.1 for the commutative case.

In the associative and the Lie case we need some explicit description of the
corresponding Lie algebras:

Theorem 3.2 Let V denote a standard symplectic vector space Q2n.

(1) an is isomorphic to
⊕

k≥2(V
⊗k)Z/kZ as sp(2n)-module,

(2) ln is isomorphic to
⊕

k≥2(V
⊗k⊗Lk)

Σk where Lk is the (k−2)!-dimensional
representation of the symmetric group Σk with character

χ(1k) = (k−2)!, χ(11ab) = (b−1)! ab−1 µ(a), χ(ab) = −(b−1)! ab−1 µ(a)

and χ(∗) = 0 for all other conjugacy classes of permutations (µ is the
Möbius function).

For the proof of this theorem we developed a language of non-commutative
geometry. In a sense an and ln are Lie algebras of hamiltonian vector fields in
non-commutative associative geometry and Lie geometry respectively (see [17]).

In the associative case, the main theorem of invariant theory gives a version
of the graph complex consisting of ribbon graphs. Thus we can use stratification
of the moduli space of curves (Theorem 1.1) and obtain Theorem 3.2 for a∞.

Denote by G(n) for n ≥ 2 the set of equivalence classes of pairs (Γ, metric)
where Γ is a nonempty connected graph with Euler characteristic equal (1− n)
and degrees of all vertices greater than or equal to 3, (metric) is a map from
the set of edges to the set of positive real numbers R>0. One can introduce
a topology on G(n) using the Hausdorff distance between metrized spaces asso-
ciated in the evident way with pairs (Γ, metric). It is better to consider G(n)

not as an ordinary space, but as an orbispace (i.e., don’t forget automorphism
groups). We mention here that G(n) is a non-compact and non-smooth locally
polyhedral space. It has a finite stratification by combinatorial types of graphs
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with strata equal to some quotient spaces of Euclidean spaces modulo actions
of finite groups.

A fundamental fact about the topology of G(n) is the following theorem of
M. Culler and K. Vogtmann (see [4]):

Theorem 3.3 G(n) is a classifying space of the group OutFree (n) of outer au-
tomorphisms of a free group with n generators.

We can construct a finite cell-complex homotopy equivalent to B OutFree (n)
passing from the natural stratification of G(n) to its barycentric subdivision. The
corresponding cochain complex carries a filtration by graphs (by the minimal
graph corresponding to the strata attached to the cell). Computations show
that the spectral sequence associated with this filtration collapses at the second
term to the Lie version of the graph complex. �

Graph homology also has an interpretation in terms of the moduli space of
graphs:

Hk(Cn,∗) = Hclosed
k+n−1(G

(n), ǫ) ,

where ǫ is one-dimensional local system given by orientations of graphs.

Strong homotopy algebras and their characteristic classes

A structure of A∞-algebra (= strong homotopy associative algebra) on a super
vector space V is equivalent to an odd derivation d of the free associative super
algebra without unit generated by V ∗ ⊗ C0|1 satisfying the equation [d, d] = 0.
Also an A∞-algebra with a scalar product is the same as a homomorphism of
Lie superalgebras

C0|1 → ak|l ⊗ C .

Here ak|l denotes the Lie superalgebra constructed from the symplectic super

vector space Q2k|l in the same way as an is constructed from Q2n (see Theo-
rem 3.2).

One can define in an analogous way a strong homotopy Lie algebra with
a scalar product as a homomorphism C0|1 → c∗ ⊗ C and a strong homo-
topy associative commutative algebra with a scalar product as a homomorphism
C0|1 → l∗ ⊗ C. Mention here that the definition for strong homotopy Lie alge-
bras uses the commutative version of hamiltonian vector fields and vice versa.
In many senses the associative case is self-dual.

The homomorphism C0|1 → h∗⊗C composed with the inclusion h∗ →֒ h∞|∞

gives a map

C1 = H2k(C0|1) → H2k(h∞|∞) ⊗ C = H2k(h∞) ⊗ C

for all positive integer k.
Thus any strong homotopy algebra with a scalar product produces classes in

the corresponding version of the graph complex. As in the associative case, there

19



are two constructions starting from differential algebras with scalar products
giving characteristic classes.

Perturbative Chern-Simons theory near the trivial representation can be
reformulated as the pairing between characteristic class arising from a finite-
dimensional Lie algebra with a scalar product (considered as a differential alge-
bra with d = 0) and the class arising from a differential commutative algebra
(= the de Rham complex of a 3-manifold) with a non-degenerate odd scalar
product and trivial cohomology.

Topological applications

There are two obvious functors

{commutative algebras} → {associative algebras} → {Lie algebras} .

They give morphisms of the corresponding Lie algebras and maps between their
homology groups.

Thus we obtain maps

H∗(Mg,n) → H∗(B̃DiffM,R)

for any g, n ≥ 1 and for any 3-dimensional rational homology sphere M . In
particular, at degree zero, we obtain a number which is an invariant associated
with the topological type of an oriented surface with boundary and of the 3-
manifold M . Also one can increase the dimension of M and make some shift in
degrees.

Witten [31] proposed an “explanation” of this map. Let us choose a generic
Riemannian metric on M . Then the tangent space TM can be endowed with
an almost complex structure. Moreover, it is formally a 3-dimensional almost
Calabi-Yau manifold. It follows from the index theorem that (the virtual) di-
mension of the space of holomorphic curves in TM with boundary at the zero
section is equal zero. The “number” of such curves of genus g with n boundary
components must be the same number which we obtained using graphs. Also,
if one considers a cycle in BDiff M then one obtains a cycle in Mg,n.

Unfortunately, it seems at the moment that this construction will not work
well and must be improved.

Let us now consider the Lie algebra l∞. It is clear that it is a Lie analogue of
the Teichmüller group Tg,1 for large genus g → ∞. One can make this analogy
more precise and construct (using Theorem 3.1) maps

Hk(OutFree (n),Q) → H2n−2−k(M∞,Q) .

We don’t know what is the geometric or “physical” meaning of these maps.
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