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1 The classical Tian-Todorov theorem

Recall the classical Tian-Todorov theorem (see [4],[5]) about the smoothness of the moduli

spaces of Calabi-Yau manifolds:

Theorem 1.1 If X is a compact Kähler manifold with c1(X) = 0 ∈ Pic(X), then the Kuran-

ishi space of deformations of complex structures on X is smooth of dimension hn−1,1(X) :=

rk Hn−1,1(X) where n = dim(X). Manifold X with deformed complex structure is again a

Kähler manifold with c1(X) = 0 ∈ Pic(X). Similarly, if X is projective and ω ∈ H2(X, Z)

is an ample class, then the Kuranishi space of deformations of X which polarization ω is

also smooth, of dimension rk H
n−1,1
prim (X) of the primitive cohomology. Moreover, any choice

of a splitting of the Hodge filtration on Hn(X) (resp. of Hn
prim(X)) defines an analytic affine

structure on the Kuranishi space.

The goal of my talk is to explain that there are many generalizations of this theorem.

First, I present a sketch of a proof.

2 Smoothness via dg BV algebras

Definition 2.1 A differential graded Batalin-Vilkovisky algebra A (a dg BV algebra for a

short) over C is a commutative unital super-algebra endowed with two odd operators d, ∆

satisfying

• d2 = ∆2 = d∆ + ∆d = 0,

• d(1A) = ∆(1A) = 0,

• operator d is a differential operator of order ≤ 1,
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• operator ∆ is a differential operator of order ≤ 2.

The vector space g := ΠA obtained from A by the changing of parity, carries a natural

structure of Lie super-algebra:

[a, b] = ∆(ab) − ∆(a)b − (−1)deg aa∆(b) .

Operators d, ∆ on g are odd derivations with respect to the Lie bracket.

Proposition 2.2 Let us assume that H•(A[[u]], d + u∆) is a free C[[u]]-module, where u is

a formal even variable. Then the formal moduli space associated with dg Lie algebra (g, d) is

smooth. Any trivialization of C[[u]]-module H•(A[[u]], d+u∆) gives a formal affine structure

(“flat coordinates”) on the moduli space.

The proof of the above proposition can be found e.g. in [3], (also see [1] for a slightly

weaker result). The Tian-Todorov theorem follows from the Proposition, applied to

AX := Γ(X, Ω0,• ⊗OX
∧•TX)

which is the algebra of ∂̄-forms on X with values in polyvector fields. The differential d is

∂̄, and the operator ∆ is the divergence with respect to the holomorphic volume form on X.

The freeness property of the cohomology with respect to the deformed differential follows

from the ∂∂̄-lemma.

3 Generalizations

Instead of an individual Calabi-Yau manifold X we can consider:

1. a pair (X, D) where X is smooth projective variety (typically X is Fano), and D ⊂ X

is a divisor with normal crossing such that [D] = −c1(X) ∈ Pic(X),

2. a pair (X, D) where X is a Calabi-Yau manifold, c1(X) = 0 ∈ Pic(X), and D ⊂ X is

a divisor with normal crossings,

3. a triple (X, (Di)i∈I , (ai)i∈I) where X is a smooth projective variety, (Di)i∈I is a finite

collection of irreducible divisors whose union is a divisor with normal crossings, and

(ai)i∈I is a collection of rational numbers 0 < ai < 1 ∀i ∈ I such that

∑

i∈I

ai[Di] = −c1(X) ∈ Pic(X) ⊗ Q
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4. a pair (X, W ) where X is a smooth quasi-projective variety with c1(X) = 0 ∈ Pic(X)

and W : X → A1 is a proper map.

5. “broken Calabi-Yau variety” X, a singular projective scheme which is a reduced divisor

with normal crossing in a larger smooth non-proper variety Y with c1(Y ) = 0, given

by X = W−1
Y (0) where WY : Y → A1 is a proper map.

All these examples can be merged together, i.e. one can consider broken non-compact

X with a proper map to A1 and a fractional divisor with weights in [0, 1] ∩ Q representing

−c1(X) in Pic(X) ⊗ Q.

The proof of the classical Tian-Todorov theorem presented in the previous section, ex-

tends immediately to all cases. The dg BV algebra in cases 1,2,3 is

AX,D := Γ(X, Ω0,• ⊗OX
∧•TX,D)

where TX,D is the sheaf of holomorphic vector fields on X preserving D. The differential d is

given by ∂̄, and operator ∆ is the divergence with respect to a (multi-valued) holomorphic

volume form on X \ D. The contraction of these polyvector fields with the volume form

gives the ∂̄-resolution of the sheaf of holomorphic forms on X which either have poles of

first order on D (case 1), vanish on D (case 2), or take values in a local system with finite

monodromy (case 3). The freeness property of cohomology follows from the theory of mixed

Hodge structures.

The mirror symmetry for Calabi-Yau manifolds generalizes to some of our examples.

The case 1 with smooth D is dual to the case 4, e.g. X = CPn with a smooth anticanonical

hypersurface D ⊂ X of degree n + 1, is mirror dual to (X∨, W∨) where X∨ is a partial

compactification of Gn
m endowed with a function

W (x1, . . . , xn) = x1 + · · ·+ xn +
1

x1 . . . xn

.

Similarly, the case 2 with smooth D is dual to the case 5, e.g. the pair (X, D) where X is

an elliptic curve and D ⊂ X is a collection of k points, it mirror dual to a singular elliptic

curve X∨ with double points, which is a wheel of k copies of CP1. One of the corollaries

of the mirror symmetry is that the mapping class group of the open surface X − D acts by

automorphisms of Db(Coh(X∨)) (modulo powers of the shift functor).

I do not know what are mirror partners for cases 1 and 2 with a non-smooth divisor D,

and also for the case 3.
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4 Non-compact Calabi-Yau manifolds

Let X be a smooth projective manifold with a section of its anti-canonical bundle which

vanish with multiplicities strictly > 1 at a divisor D ⊂ X with normal crossings. On

the complement X \ D we have a non-vanishing holomorphic volume element Ω. We can

define a dg BV algebra associated with X and Ω to be a subalgebra of AX,D consisting of

such elements for which the contraction with Ω produces a form with logarithmic poles at

D. Hence we obtain again certain smooth moduli spaces. Here is one important class of

examples: let f = f(x, y) be polynomial defining a smooth curve in C2. We associate with

it a non-compact 3-dimensional Calabi-Yau manifold Y ⊂ C4 given by the equation

uv = f(x, y) .

One can show that Y can be represented as a complement X \ D of the type described

above. Hence we obtain a smooth moduli space. E.g. for the case of hyperelliptic curve

f(x, y) = y2 + a0 + a1x + · · ·+ a2gx
2g + x2g+2 the universal family is obtained by variations

of coefficients a0, . . . , ag. The flat coordinates on the moduli space are associated with an

appropriate splitting of the Hodge filtration, and are exactly those which appear in the

matrix models, see e.g. [2].

5 Speculations about Calabi-Yau motives

The construction presented above gives many examples of variations of (mixed) Hodge struc-

tures of Calabi-Yau type over smooth bases. This leads to the following question, which I

formulate for simplicity only in the pure case.

Question 5.1 Let H be an absolutely indecomposable pure Hogde structure of weight w of

algebro-geometric origin with coefficients in a number field (i.e. H is a direct summand of

the cohomology space of some smooth projective variety), and such that there exists k ∈ Z

such that H is of Calabi-Yau type, i.e.

rk Hk,w−k = 1, Hk′,w−k′

= 0 ∀k′ > k .

Does there exists a smooth universal family of variations of H of an algebro-geometric origin,

of dimension equal to rk Hk−1,w−k+1?
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There are many examples supporting this, e.g. one can take H to be the primitive part

of the middle cohomology of hypersurface X ⊂ CPN−1 of degree d|N . The proof of the

generalized Tian-Todorov theorems does not apply in this case, but still the dimension of

the moduli space and of the corresponding Hodge component match. It would be wonderful

if the answer to the question is positive. It means that we have nice smooth moduli stacks of

Calabi-Yau motives (generalizations of Shimura varieties). With any pure Hodge structure

H one can associate another Hodge structure of Calabi-Yau type (maybe decomposable), by

taking the exterior power ∧mH where m ∈ Z+ is the dimension of a term F lH of the Hodge

filtration of H , i.e. m = rk⊕k′≥lH
k′,w−k′

. In the case H = H1(C) where C is a smooth

projective curve of genus g, the absolutely indecomposable summand H ′ of ∧gH containing

the one-dimensional component ∧gH1,0, is a Hodge structure of Calabi-Yau type varying over

an appropriate Shimura variety. One can check that the dimension of this variety always

coincides with the corresponding Hodge number of H ′.
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