
Noncommutative motives

Maxim Kontsevich

Abstract

Talk at the conference on the occasion of the sixty first birthday

of Pierre Deligne, October 17-20, 2005

Plan:

• Noncommutative algebraic geometry

• Examples of saturated spaces

• Hodge and de Rham cohomology

• NC pure Hodge structures pure and mixed motives over C

• Zp-case; Frobenius isomorphism, Euler factors, L-functions

1 Basic “derived” noncommutative algebraic

geometry

Definition. A noncommutative space X is a small triangulated category
CX , which is Karoubi closed (= every projector splits) and appropriately
enriched either

• by spectra: HomCX
(E ,F [i]) = π−i HomCX

(E ,F), or

• by complexes of k-vector spaces: HomCX
(E ,F [i]) = H i(HomCX

(E ,F)).
Here X is k-linear, where k is a field, so we write X/k

Remark. One can define X/R for every commutative ring R. In that
case, we rather enrich over complexes of R-modules which are cofibrant.

Definition. X/k is algebraic if for every dg-algebra A/k such that CX is
equivalent (in enriched sense) to the category Perf(A−mod). By definition,
Perf(A − mod) is the closure of one-object full subcategory {A} by shifts,
cones and direct summands in appropriate triangulated category A−mod.
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Theorem. (Bondal-van den Bergh) If X/k is a scheme of finite type,
then X is algebraic in noncommutative sense. Here, by definition, X is re-
placed by CX := Perf(X), the category of perfect complexes of quasicoherent
sheaves. CX has a split-generator E , and A = RHom(E , E)op.

Example. (A. Beilinson) X = Pn
k

A = End(O(0) ⊕ . . .⊕O(n))op

Db(CohX) = Perf(X) = Db(fin.gen. A−mod) = Perf(A−mod)

Definition. Algebraic noncommutative space X/k is

• proper if
∑

i∈Z rkH i(A, d) < +∞

• smooth if A ∈ Perf(A⊗ Aop −mod)

Theorem. The notions of properness and smoothness of noncommutative
spaces do not depend on the choice of generator A, and they coincide with
the usual properness and smoothness for schemes of finite type.

Examples of algebrasA (in degree 0) such that ′′ SpecA′′, where C′′ Spec A′′ =
Perf(A−mod), is smooth:

• O(X) where X is smooth affine scheme over bfk

• T (V ) = ⊕n≥0V
⊗n, rkV <∞ (free finitely generated algebra)

• Uqg Drinfeld-Jimbo quantized enveloping algebra

Finiteness for sheaves:
If X/k is proper then ∀E ,F ∈ CX , such that

∑

i∈Z Hom(E ,F [i]) < +∞,
there is a bilinear form χRHom : K0(CX) ⊗ K0(CX) → Z (which is neither
symmetric nor skew-symmetric).

– a noncommutative version of Riemann-Roch theorem
We have a correspondence

{Objects in CX/iso} ↔ k-points in a
∐

countable(k-schemes of finite type)/ ∼

where ∼ is an equivalence relation of a similar nature.
Finiteness for spaces

{smooth proper X/k /equiv. of cats.CX ∼ CX′} ↔ k-points in...

Definition. A noncommutative space is said to be saturated if it is smooth
and proper. (The name comes from saturated categories of Bondal and
Kapranov)
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Manipulations with saturated spaces
X 7→ Xop is given by CXop := Cop

X , AXop := Aop
X

X, Y 7→ X ⊗ Y is given by AX⊗Y = AX ⊗k AY

X, Y 7→ Maps(X, Y ) := Xop ⊗ Y where CMaps(X,Y ) := Funct(CX → CY )

Glueing f : X → Y 7→ (X
f→ Y ) where f is given by a bimodule

M ∈ AY −mod−AX and A
(X

f
→Y )

=

(

AX 0
M AY

)

. Glueing is analogous to

cones in triangulated categories. Pn
k is glued iteratively from (n+ 1) points.

Braid group acts on { iterated glueings }.
Duality theory
For every saturatedX there is a canonical Serre functor SX ∈ Maps(X,X)

Hom(E ,F)∗ = Hom(F , SX(E)) (in schematic case SX := KX [dimX]⊗).

2 Examples of saturated spaces

2.1

• smooth proper schemes

• smooth proper algebraic spaces

• smooth proper Deligne-Mumford stacks – particularly those which are
locally crossed products k[Γ]#OX , where Γ is a finite group acting on
X and chark = 0

• (X,α) where X/k is a smooth proper scheme, and α ∈ Br(X) is a class
of Azumaya algebra A/X. In that case, C(X,α) := Perf(A−mod)

• deformation quantization of smooth projective variety X/k, chark =
0. Here the following data: ample line bundle L = O(∞) → X ;
homogeneous Poisson structure γ ∈ Γ(L − X,Λ2TL)Gm – under the
assumption H1(X,OX) = H2(X,OX) = 0 – give rise to a quantized
space Xq/k((~)) with the star-product f ⋆ g = fg+ ~〈γ, df ⊗ dg〉+ . . ..

Subexamples are Feigin-Odesski “elliptic” projective spaces, quan-
tized del Pezzo surfaces etc.

• Artin-Zhang noncommutative projective spaces
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2.2 Landau-Ginzburg models

(name comes from topological B-strings)
Definition. A Z/2Z-graded noncommutative space X is CX together

with an isomorphism [0] ∼ [2]. The notions of algebraic, smooth and proper
noncommutative space extend to the Z/2Z-graded case.

Suppose we are given a smooth scheme X over k and f : X → A1 (or
view as f ∈ O(X)). This datum gives rise to a Z/2Z-graded space (X, f).

Locally, C(X,f) is a category of supervector bundles E = E0 ⊕ E1 with a

“differential” dE ∈ End(E)odd, d2
E = f · IdE . The inner homs are given as

follows:

Hom((E , dE), (F , dF)) :=

{

HomOX
(E ,F), with differential d = d(E,F)

dφ = φ ◦ dE − dF ◦ φ, d2 = 0

Globally (D. Orlov) Assume f 6≡ 0 at each component of X. Then

C(X,f) := Db(CohZ)/PerfZ, where Z = f−1(0).

We expect that C(X,f) is saturated whenever X0 := Crit(f) ∩ f−1(0) is
proper. Moreover, X can be a formal smooth thickening of X0.

Example. f – a germ of an analytic function in Cn, with f(0) = 0 and
isolated singularity.

3 (Co)homology theories

In this section A is a unital associative algebra over a field k,
Definition. Homological Hochschild complex

−2 −1 0

C•(A,A) = . . .→ A⊗ A⊗ A
∂→ A⊗ A

∂→ A

(the top row shows the degrees) where ∂(a0 ⊗ . . . ⊗ an) =
∑n−1

i=0 (−1)ia0 ⊗
. . . aiai+1 ⊗ . . . an + (−1)nana0 ⊗ a1 ⊗ . . .⊗ an−1

Analogously one defines the reduced Hochschild complex Cred
• (A,A). This

is certain quotient complex of the Hochschild complex, which is actually
quasiisomorphic to C•(A,A).

−2 −1 0

Cred
• (A,A) = . . .→ A⊗ A/1 ⊗ A/1

∂→ A⊗A/1
∂→ A

Theorem. (Hochschild-Kostant-Rosenberg) For A = O(X), where
X is a smooth affine variety over k
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H−i(C•(A,A)) = Ωi(X/k)

Theorem. (Charles Weibel [10], in other formulation) For a smooth
scheme X over k where chark = 0 or chark > dimX,

Hn(C•(A,A)) = ⊕i−j=nH
i(X,Ωj)

Definition. For every algebraic noncommutative space X Hodge cohomol-
ogy H•

Hodge(X) is simply the Hochschild homology H•(A,A).
There is also an intrinsic definition in terms of CX . For saturated X

H•
Hodge = RHomMaps(X,X)(IdX , SX)

Definition. Connes’ operator B acting on Cred
• (A,A), of degree −1, is given

by

B(a0 ⊗ . . .⊗ an) =
n

∑

i=0

(−1)ni1A ⊗ ai ⊗ ai+1 ⊗ . . .⊗ ai−1

(here ai ⊗ ai+1 ⊗ . . . ⊗ ai−1 is obtained by a cyclic permutation of tensor
factors in a1 ⊗ . . .⊗ an). The following holds: B2 = 0, B∂ + ∂B = 0.

In the case A = O(X), where X is a smooth affine scheme over k, B
induces the de Rham differential on Ω−• = H•

Hodge(X).
Everything generalizes to dg-algebras and to the Z/2Z-graded case. For

example, we have C•(A,A) = ⊕n≥0A⊗ A[1]⊗n etc.
Definition. Periodic cyclic cohomology for algebraic noncommuta-

tive space X/k is given by

HP •(X) := HP•(A) := H•(Cred
• (A,A)((u)), ∂ + uB)

Here ∂ + uB is the differential, Cred
• (A,A)((u)) and HP •(X) are k((u))-

modules, where u is an even variable, with deg u = +2 in Z-graded case.
Furthermore, in Z-graded case, HP i(X) = HP i+2(X) for all i, hence it gives
rise to a Z/2Z-graded space over k. Now HP (X) = HP even(X)⊕HP odd(X);
if X/k is smooth and if either chark = 0 or chark > dimX, then

HP even(X) = ⊕H2i
dR(X), HP odd(X) = ⊕H2i+1

dR (X).

HP is a noncommutative analog of de Rham cohomology.
Finiteness: for saturated Z-graded or Z/2Z-graded X, we have

+∞ > rktotal H
•
Hodge(X)/k ≥ rkHP •(X)/k((u)) ≥ 0

Definition. For algebraic noncommutative space X/k the spectral se-
quence Hodge ⇒ de Rham collapses at E1 if ∀n ≥ 1 n < +∞

H•(Cred
• (A,A)[u]/(un), ∂ + uB)
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is free (= flat) k[u]/(un)-module,
For saturated X this is equivalent to the statement

rktotalH
•
Hodge(X)/k = rkHP •(X)/k((u))

Conjecture. For saturated X over a field k, with chark = 0 Hodge ⇒
de Rham collapses.

This is true for schemes, quantum deformations, stacks, Azumaya alge-
bras, (X, f) Landau-Ginzburg models.

In the commutative case there are 2 types of proofs: those using Kähler
geometry and those which are finite characteristics (Deligne-Illusie) or p-
adic (Faltings). There is a good chance in noncommutative case (discussed
below).

Assume conjecture
Then we have a super-vector bundle Hu over k[[u]] with Sections =

H•(Cred
• (A,A)[[u]], ∂ + uB).

Furthermore, there is a canonical connection ∇ on Hu, u 6= 0:

• in Z-graded case: it comes from Gm-equivariance λ ∈ k×, u 7→ λ2u;
the monodromy, which is equal id on HP even and id on HP odd has 1st
order pole at u = 0. This is equivalent to a filtration by 1

2
Z on H•

dR(X).

In the case of schemes, FqH
n
dR(X) = ⊕n/2−p=aF

pHn
dR(X)

• in Z/2Z-graded case: it comes from Gauβ-Manin connection onHP •(Xλ)
where (Xλ)λ∈Gm

is the orbit of RG (renormalization group) flow acting
on {Z/2Z − graded spaces }.
In Z/2Z-graded case the connection ∇ has a second order pole at u = 0
(this follows from an explicit formula), still with regular (?) singularity
and with quasi-unipotent (?) monodromy.

A′ = Aλ = A as a space over k; a ·′ b = ab, d′(a) = λda.

We obtain here
(, ) : Hu ⊗H−u → k (1)

– a non-degenerate ∇-covariant pairing (neither symmetric nor antisymmet-
ric).

Example. When (X, f) is a Landau-Ginzburg model, with Crit(f) ∩
f−1(0) proper,

Γ(k[[u]], Hu) = H•(XZar,Ω
•
X/k[[u]], differential u · ddR + df∧)
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= H(XZar, e
f/uΩ•

X/k[[u]], uddR).

In this case, for the degeneration of Hodge ⇒ de Rham spectral sequence,
there are 3 proofs

1) S. Barannikov and M. K. using harmonic theory for ef/u

2) C. Sabbah, using M. Saito’s Hodge modules
3) V. Vologodsky, A. Ogus, proof a la Deligne-Illusie

An application of collapse Hodge ⇒ de Rham

Construction







• algebraic B-model
• generalization of Deligne’s conjecture

on cohomological operations
INPUT: Saturated Z/2Z-graded NC space X such that
1) Hodge ⇒ de Rham s.s. collapses
2) X is even or odd Calabi-Yau; there is an isomorphism SX ∼ IdX or

SX ∼
∏

IdX

+ some choices:
1’) trivialization of bundle Hu compatible with the pairing (, ) from (1),
2’) choice of isomorphism SX ∼ IdX or SX ∼

∏

IdX with “higher homo-
topies”; this is equivalent to some purely cohomological data ∈ Γ(k[[u]], Hu)
satisfying some non-degeneracy.

OUTPUT: Cohomological 2dTQFT in the sense M.K.-Yu.Manin.
H := H•

Hodge(X) ∀g, n ≥ 0 2 − 2g − n < 0 H⊗n → H•
Betti(Mg,n(C),k).

4 Noncommutative pure Hodge strutcures,

k = C

Pre-Definition. (putative) A noncommutative pure Hodge struture is given
by

• (Hu) holomorphic super vector bundle over {u ∈ C | |u| << 1}

• ∇ – flat connection on u 6= 0 with the second order pole at u = 0 and
with regular singularity

• Ktop
u – a local system over u 6= 0 of finitely generated Z/2Z-graded

abelian groups, together with a ∇-flat isomorphism of super spaces
over C: Ktop

u ⊗ C ≃ Hu.

MAIN PROBLEM: How should we define lattice Ktop
u ? The answer is

clear in (almost)-commutative examples, e.g. in LG model.
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Vague idea (in general Z-graded case): ∃ (?) another “algebraic” noncom-
mutative space, with nuclear (?) algebra A′ together with a map φ : X ′ → X
such that

1) φ induces an isomorphism HP •(X)
∼→ HP •

cont(X)
2) K-theory of X ′ has Bott perioditicty Ki(X

′) ≃ Ki+2(X
′)

3) ∀i ≥ 0 Chern character ch : Ki(Xi) → HP i
cont(X

′) induces an isomor-
phism Ki(X

′) ⊗ C ≃ HP i
cont(X

′)
E.g. for a smooth proper scheme X/C we can take A′ := C∞

C (X(C)).
Fact: for any C∞-manifold X
HP •

cont(X) ≃ H•
dR(X)

image of K0(X) in HP even
cont (X) is (up to finite torsion)

⊕n∈Z(2π
√
−1)n ·H2n(X,Z)

image ofK1(X) inHP odd
cont(X) divided by

√

2π
√
−1 is (up to finite torsion)

⊕n∈ 1
2
+Z(2π

√
−1)nH2n(X,Z)

Hodge conjecture: For saturated Z/2Z-graded noncommutative space
Q⊗ (image of K0(CX) in Γ(C[[u]], Hu) by Chern character)

= Q ⊗ HomNCpure Hodge str.(1, H
•(X));

here H•(X) is equipped with the structure coming from the formal bundleHu

canonically extended to |u| << 1, because of regular singularity + putative
lattice Ktop

u .
Theorem (L. Katzarkov, M. K.) For LG model (X, f) this “Hodge

conjecture” follows from the usual Hodge conjecture.

Polarizations
Definition. A poolarization of a noncommutative Hodge structure H =

(Hu,∇, Ktop
u ) at radius r.0, r ∈ R is an isomorphism Ψ : H

∼→ (Hop)∨ of
noncommutative Hodge structures satisfying certain symmetry and positivity
condition.

The operation (Hop
u )∨ = H∨

−u corresponds to X 7→ Xop.

Suppose we are given the following data:

holomorphic vector bundle
H
↓

CP 1

holomorphic pairing ψH : Hu ⊗Hσ(u) → C, where σ(u) = −r2

ū
such that

1) H is holomorphically trivial H ∼= ⊕O
2) ψH induces positive Hermitean form on Γ(CP 1,H)
Such H can be constructed from H and ψ

H||u|≤r ≃ H||u|≤r
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pairing ψH|S1:|u|=r is given by ψ composed with complex conjugation u 6= 0 :
Hu → H̄u, associated with R-structure Ktop

u ⊗ R ⊂ Hu.
Recent results of C. Sabbah imply that in LG model there is a polar-

ization for all sufficiently small r.

Conjecture. For saturated X/C polarizations on H•(X) exist.
They should come from certain endofunctors F : X → X (as ch(F ));

presumably F is something like ⊗O(n), n >> 1.

If there exist a polarization on H•(X) then the image of K0(X) in H•(X)
equals K0(X) modulo the numerical equivalence; in this setup this is defined
to be the kernel of the canonical pairing χRHom : K0(X)⊗K0(X) → Z. Here,
using SX , one observes that it is irrelevant wheather we take the kernel in
left or right factor.

Definition. For every field k, the category of pure motives over k is the
Karoubi envelope of “effective motives”.

Objects: saturated X/k

HomEM(X, Y ) = Q ⊗K0(Maps(X, Y ))/numerical equivalence

Previous conjectures ⇒ noncommutative pure motives over a field of
char k = 0 is a semisimple rigid tensor category.

Corollary. (By Tannakian reconstruction) we get a pro-reductive group
over Q.

The noncommutative motivic Galois group such that there is a surjective

map GNC
mot

6=−→ Ker(Gmot → GL(1)) where Gmot is the usual (pure) motivic
Galois group and the map in brackets is the Tate motive representation.

There are interesting things in the kernel, e.g. the G. Anderson’s “t-
motives” ([1])

H = ⊕Hpq
p+q∈Z,p,q∈Q for Γ(t), t ∈ Q, . . .

Definition. Triangulated category of noncommutative mixed motives
over k := triangulated + Karoubi envelope of category enriched over spectra

Objects = saturated X/k
Morphism spaces

Hom(X, Y ) = K-theory spectrum of category CMaps(X,Y )

5 Frobenius isomorphism

Conjecture: For every saturated noncommutative space X/Zp ∃ canonical
Frobenius isomorphism
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H•(Cred
• ((u)), ∂ + uB) ∼ H•(Cred

• ((u)), ∂ ± puB)

of Zp((u))-modules, preserving the connection ∇.
Using holonomy of ∇ (it is not enturely canonical if the monodromy 6= id)

from u to pu we get operator Frp with coefficients in Qp.
Weil conjecture: Let (λa) be the eigenvalues of Frp are algebraic ⊂ Q̄ ⊂

Q̄p, and ∀l 6= p |λa|l = 1, λa|C = 1.
Example. (X, f) = (A1, x2). Frobenius comes from the intertwining

operator · exp(f + fp

p
); dimH(X, f) = 1, Frp = λ ∈ Q×

p . In fact, λ ∈ Z×
p

?? λ =
(

p−1
2

)

! mod pZp, λ
4 = 1

Why I am optimistic
Observation. (D. Kaledin, Spring 2005) For every associative algebra

A/Z/pZ ∃ a k-linear endomorphism of H0(A,A) given by [a] 7→ [ap], where
H0(A,A) = A/[A,A]. Moreover, it lifts to a map H0(A,A) → HP0(A). Here
[a] 7→ finite sum which is of the form

ap +
∑

i1+...+in=p

ci1,...,ina
i0 ⊗ . . . ain · un−1

2 , p > 2,

a2 + 1 ⊗ a⊗ a · u, p = 2.

The last term, when p ≥ 3, is
(

p−1
2

)

a⊗ . . .⊗ a · u p−1

2 6= 0.
Conjecture. For saturated X/Z/pZ, H•(Cred

• [u], ∂ + uB) is a coherent
Z/pZ[u]-module.

This is completely opposite to the case chark = 0:
H•(Cred

• [u, u−1, ∂ + uB) = 0,
H•(Cred

• [u], ∂ + uB) is ∞ torsion module over u = 0.
Conjecture. Let A/Z (no finiteness condition!) dg-algebra which is flat

over p; denote A0 := A⊗ Z/pZ then there is a canonical isomorphism

H•(Cred
• (A0, A0)[u, u

−1], ∂ + uB) ∼= H•(Cred
• (A0, A0)[u, u

−1], ∂)

of Z/pZ[u, u−1]-modules. The two above conjectures together imply the
degeneration Hodge ⇒ de Rham s.s.

D. Kaledin anounced the proof of the degeneration. Now paper [5].

Reason in favour of the second conjecture: use increasing filtration on
Cred

• (A,A):
Fil≤n := A⊗ (A/1)⊗≤(n−1) ⊕ a⊗ (A/1)⊗n
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On associated graded module gr for this filtration we get

∂ +B : V ⊗n
1−σ

,,

V ⊗n

1+σ+...+σn−1

ll

∂ : V ⊗n
1−σ

// V ⊗n

where σ is the generator of Z/nZ and V = H•(A/1)
(gr, ∂ +B) is acyclic complex if (n, p) = 1
if n = kp, canonically we have a quasiisomorphism
(gr, ∂) in degree k = n

p
: V ⊗k → V ⊗k

Works ∀ free Z/plZ-module V also.
L-functions
If monodromy equals (−1)parity (e.g. Z-graded case) then the L-factors

for HP odd, HP even are the usual Lp(s) normalized to have the eigenvalues of
Frobenius Frp in U(1).

Shift s 7→ s− weight
2

Beilinson conjectures: multiplicity of zero and leading term
K

(0)
0 := Ker( numerical ∼)

Leven(s) (picture)
Lodd(s) (picture)
It is quite possible that all noncommutative motives come from commu-

tative schemes X (in Z-graded case) and LG models (X, f) (in Z/2Z-graded
case). Still they have a potential use in Langlands correspondence

? H i(GL(n,Z)) related to natural NC spaces ??
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