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Abstract We provide a notion of algebraic rational cell with applications to intersection
theory on singular varieties with torus action. Based on this notion, we study Q-filtrable
varieties: algebraic varieties where a torus acts with isolated fixed points, such that the
associated Białynicki-Birula decomposition consists of algebraic rational cells. We show
that the rational equivariant Chow group of any Q-filtrable variety is freely generated by the
classes of the cell closures. We apply this result to group embeddings, and more generally to
spherical varieties.
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1 Introduction and motivation

Let k be an algebraically closed field. The most commonly studied cell decompositions in
algebraic geometry are those obtainedby themethodofBiałynicki-Birula [1]. IfGm � k∗ acts
on a smooth projective variety X with finitely many fixed points x1, . . . , xm , then X = ⊔

Xi ,
where

Xi =
{

x ∈ X | lim
t→0

t x = xi

}

.
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Moreover, the cells Xi are isomorphic to affine spaces. From this one concludes e.g. that the
Chowgroups of X are freely generated by the classes of the cell closures Xi ⊆ X . This is quite
notable, because the Chow groups of smooth varieties need not be finitely generated (consider
e.g. a smooth projective curve of genus one). Ifk = C, then this decomposition implies that X
has no singular cohomology in odd degrees, and that the cycle map clX : A∗(X) → H∗(X)

is an isomorphism, to mention just a few interesting applications. The BB-decomposition
makes sense even if X is singular, but the cells may no longer be so well-behaved.

In [12] we study the BB-decompositions of possibly singular complex projective varieties,
assuming that the cells are rationally smooth (i.e. rational cells). Recall that an algebraic
variety X is rationally smooth if, for every x ∈ X , the local �-adic cohomology Hi

(x)(X) is

zero for all i �= 2 dim X , and H2 dim X
(x) (X) is isomorphic toQ�. Such varieties satisfy Poincaré

duality [7]. When k = C, we may replace �-adic cohomology by singular cohomology
with rational coefficients, cf. [5]. If Xi as above is a complex rational cell, then P(Xi ) :=
(Xi\{xi })/Gm is a rational cohomology complex projective space.Many important results on
the equivariant cohomology of complex projective T -varieties admitting aBB-decomposition
into rational cells are provided in [12]; for instance, such varieties have no cohomology in
odd degrees and their equivariant cohomology is freely generated by the classes of the cell
closures.

The purpose of this paper is to provide analogues of such results in the context of intersec-
tion theory for schemeswith an action of a torus T (i.e. T -schemes). For this, we introduce the
notion of algebraic rational cell. Concisely, let X be an affine Gm-variety with an attractive
fixed point x . Then X is an algebraic rational cell if P(X) := [X\{0}]/Gm satisfies

A∗(P(X))Q � A∗(Pn−1)Q,

where n = dim(X). The definition applies to actions of higher dimensional tori as well
(Definition 3.1). Algebraic rational cells are modelled after (topological) rational cells [12],
although the resulting objects are not equivalent. In what follows, we show that algebraic
rational cells are a good substitute for the notion of affine space in the study of Chow groups
of singular varieties. This has applications to embedding theory (Sect. 5) and the geometry
of spherical varieties (Sect. 6). In addition, some links between our present approach and that
of [12] are built (Theorems 5.4, 5.8, and 6.3). The techniques are mostly algebraic, and no
essential use of the cycle map is made, except in Sect. 6.

Here is an outline of the paper. Section 2 briefly reviews equivariant Chow groups of
T -schemes. We also recall the notion of equivariant multiplicities at nondegenerate fixed
points. The section concludes with some inequalities relating Chow groups and fixed point
loci. In Sect. 3 we study the intersection-theoretical properties of algebraic rational cells
(Proposition 3.4, Theorem 3.5, Corollary 3.10). Next, in Sect. 4, we introduce the concept
of (algebraically) Q-filtrable spaces: projective T -varieties with isolated fixed points, such
that the associated BB-decomposition is filtrable, and consists of algebraic rational cells
(Definition 4.1). The key result is Theorem 4.4. It asserts that the rational equivariant Chow
group of any Q-filtrable variety is freely generated by the classes of the cell closures.

Having developed the theoretical framework for the study of Q-filtrable varieties, we
devote the last two sections to examples and applications. Let G be a connected reductive
group. Recall that a normal G-variety X is called spherical if a Borel subgroup B of G has a
dense orbit in X . Then it is known that G and B have finitely many orbits in X . It follows that
X contains only finitely many fixed points of a maximal torus T ⊂ B, see e.g. [27]. These
features make spherical varieties especially suitable for applying the techniques of this paper.
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Algebraic rational cells and equivariant intersection theory 81

In Sect. 5 we apply our methods to a remarkable subclass of spherical varieties, namely,
group embeddings. (We refer to that section for a definition of this key notion, and that of
reductive monoids.) In this context, Theorem 5.4 states that reductive monoids which are
algebraic rational cells are characterized in the same way as rationally smooth monoids [22].
The second half of Sect. 5 deals with projective group embeddings (i.e. projectivizations of
reductive monoids). The outcome (Theorem 5.8) provides an extension of [12, Theorem 7.4]
to equivariant Chow groups.

Finally, in Sect. 6, we study complex spherical varieties. The purpose there is to compare
the two notions of Q-filtrable varieties, the algebraic one (Sect. 4) and the topological one
[12]. Roughly speaking, themain results of that section assert that if X is a sphericalG-variety
which is Q-filtrable in the sense of [12], then it is also Q-filtrable in the sense of the present
paper. Moreover, for such (possibly singular) X , the T -equivariant and non-equivariant cycle
maps are isomorphisms. See Theorems 6.2 and 6.3 for precise statements.

2 Preliminaries

Conventions and notation

Throughout this paper, wework over an algebraically closed fieldk of arbitrary characteristic
(unless stated otherwise). All schemes and algebraic groups are assumed to be defined over
k. By a scheme we mean a separated scheme of finite type. A variety is a reduced scheme.
Observe that varieties need not be irreducible. A subvariety is a closed subscheme which is
a variety. A point on a scheme will always be a closed point.

We denote by T an algebraic torus. A scheme X provided with an algebraic action of T
is called a T -scheme. For a T -scheme X , and a closed subgroup H of T , we denote by XH

the fixed point subscheme and by iH : XH → X the natural inclusion. For a scheme X , the
dimension of the local ring of X at x is denoted dimx X . We denote by Δ the character group
of T , and by S the symmetric algebra over Q of the abelian group Δ. We denote by Q the
quotient field of S. Equivariant Chow groups are always considered with rational coefficients.

In this paper, torus actions are assumed to be locally linear, i.e. the schemes we consider
are covered by invariant affine open subsets. This assumption is fulfilled e.g. by T -stable
subschemes of normal T -schemes [26].

2.1 The Bialynicki-Birula decomposition

The results in this subsection are due to Bialynicki-Birula [1,2] (in the smooth case) and
Konarski [18] (in the general case). For our purposes, it suffices to consider the case of torus
actions with isolated fixed points.

Let T be an algebraic torus. Let X be a T -scheme with isolated fixed points. Then XT is
finite and we write XT = {x1, . . . , xm}. Recall that a one-parameter subgroup λ : Gm → T
is called generic if XGm = XT , whereGm acts on X via λ. Generic one-parameter subgroups
always exist, due to local linearity of the action. Now fix a generic one-parameter subgroup
λ of T . For each i , define the subset

X+(xi , λ) =
{

x ∈ X | lim
t→0

λ(t) · x = xi

}

.

Then X+(xi , λ) is a locally closed T -invariant subscheme of X . The (disjoint) union of
the X+(xi , λ)’s might not cover all of X , but when it does (e.g., when X is complete),
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82 R. P. Gonzales

the decomposition {X+(xi , λ)}mi=1 is called the Bialynicki-Birula decomposition, or BB-
decomposition, of X associated to λ. Each X+(xi , λ) is called a cell of the decomposition.

Definition 2.1 Let X be a T -scheme with XT finite. Let {X+(xi , λ)}mi=1 be the BB-
decomposition associated to some generic one-parameter subgroup λ of T . The decom-
position {X+(xi , λ)} is called filtrable if there exists a finite increasing sequence�0 ⊂ �1 ⊂
· · · ⊂ �m of T -invariant closed subschemes of X such that:

(a) �0 = ∅, �m = X ,
(b) � j\� j−1 is a cell of the decomposition {X+(xi , λ)}, for each j = 1, . . . ,m.

We will refer to � j as the j-th filtered piece of X . In this context, it is common to say that X
is filtrable. If, moreover, the cells X+(xi , λ) are isomorphic to affine spaces, then X is called
T -cellular.

Theorem 2.2 ([1,2]) Let X be a complete T -scheme with isolated fixed points, and let λ be
a generic one-parameter subgroup. If X admits an ample T -linearized invertible sheaf, then
the associated BB-decomposition {X+(xi , λ)} is filtrable. Further, if X is smooth, then X is
T -cellular.

2.2 Review of equivariant Chow groups: localization theorem

Let X be a T -scheme of dimension n (not necessarily equidimensional). Let V be a finite
dimensional T -module, and letU ⊂ V be an invariant open subset such that a principal bundle
quotient U → U/T exists. Then T acts freely on X × U and the quotient scheme XT :=
(X × U )/T exists. Following Edidin and Graham [8], we define the i-th equivariant Chow
group AT

i (X) to be the usual Chow group Ai+dimU−dim T (XT ), if V \U has codimension
more than n − i . Such a pair (V,U ) always exists, and the definition is independent of the
choice of (V,U ), see [8]. Finally, set AT∗ (X) = ⊕i AT∗ (X). If X is a T -scheme, and Y ⊂ X is
a T -stable closed subscheme, then Y defines a class [Y ] in AT∗ (X). If X is smooth, then so is
XT , and AT∗ (X) admits an intersection pairing; in this case, A∗

T (X) denotes the corresponding
ring graded by codimension. The equivariant Chow ring of a point A∗

T (pt) identifies to S,
and AT∗ (X) is a S-module, where Δ acts on AT∗ (X) by homogeneous maps of degree −1.
This module structure is induced by pullback through the flat map pX,T : XT → U/T .
Restriction to a fiber of pX,T gives i∗ : AT∗ (X) → A∗(X). See [8] for details.

Next we state Brion’s presentation of the equivariant Chow groups in terms of invariant
cycles [3, Theorem 2.1]. It also shows how to recover the usual Chow groups from equivariant
ones.

Theorem 2.3 Let X be a T -scheme. Then the S-module AT∗ (X) is defined by generators [Y ]
where Y is an invariant irreducible subvariety of X and relations [divY ( f )] − χ[Y ] where
f is a rational function on Y which is an eigenvector of T of weight χ . Moreover, the map
AT∗ (X) → A∗(X) vanishes onΔAT∗ (X), and it induces an isomorphism AT∗ (X)/ΔAT∗ (X) →
A∗(X).

The following is a slightlymore general version of the localization theorem for equivariant
Chow groups [3, Corollary 2.3.2]. For a proof, see e.g. [14, Proposition 2.15].

Theorem 2.4 Let X be a T -scheme. If H ⊂ T is a closed subgroup, then the S-linear map
iH∗ : AT∗ (XH ) → AT∗ (X) becomes an isomorphism after inverting finitely many characters
of T that restrict non-trivially to H.
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Algebraic rational cells and equivariant intersection theory 83

Let X be a T -scheme. In many situations, Theorems 2.3 and 2.4 combined yield a relation
between the dimensions of the Q-vector spaces A∗(X) and A∗(XT ).

Lemma 2.5 Let X be a T -scheme. If A∗(X) is a finite-dimensional Q-vector space,
then the inequality dimQ A∗(XT ) ≤ dimQ A∗(X) holds. Furthermore, dimQ A∗(XT ) =
dimQ A∗(X) if and only if the S-module AT∗ (X) is free.

Proof The degrees in AT∗ (X) are at most the dimension of X , so by the graded Nakayama
lemma [9, Exercise 4.6], the S-module AT∗ (X) is finitely generated. The content of the corol-
lary is now deduced from applying Lemma 2.6 and Remark 2.7 below toM = AT∗ (X), taking
into account that dimS/m(M/mM) = dimQ(A∗(X)) (Theorem 2.3), dimQ(M ⊗S Q) =
dimQ(AT∗ (XT ) ⊗ Q) (Theorem 2.4), and observing that this corresponds to dimQ A∗(XT ),
since AT∗ (XT ) = A∗(XT ) ⊗Q S. �
Lemma 2.6 Let S be a Noetherian positively graded ring such that S0 is a field (e.g. S =
A∗
T (pt)). Let m be the unique graded maximal ideal and suppose M is a non-zero finitely

generated, graded, S-module. Suppose further that S is an integral domain. Then M is a free
S-module if and only if

dimS/m (M/mM) = dimQ(M ⊗S Q),

where Q is the quotient field of S.

Proof If M is free, then clearly the equation above holds. Conversely, denote by n the
common value of the two sides of the equation above. By the graded Nakayama lemma, M
has a system {x1, . . . , xn} of homogeneous generators. Now the elements x j ⊗ 1 generate
the vector space M ⊗S Q over Q. But as by hypothesis this space is of dimension n over
Q, the elements x j ⊗ 1 are linearly independent over Q. It follows that the x j are linearly
independent over S and so they form a basis of M . �
Remark 2.7 The proof of Lemma 2.6 shows that that if M is a finitely generated, graded,
S-module, then dimS/m (M/mM) ≥ dimQ(M ⊗S Q), as we can refine the generating set
{x j ⊗ 1} to get a basis of M ⊗ Q.

An important class of schemes towhichLemma2.5 applies is the class of T -linear schemes
[14, Definition 2.3]. These are the equivariant analogues of the linear schemes considered
by [17,28]. It is known that if X is a T -linear scheme, then AT∗ (X)Z is a finitely generated
SZ-module, and A∗(X)Z is a finitely generated abelian group (see e.g. [14, Lemma 2.7]).
The class of T -linear schemes contains all schemes where a connected solvable group acts
with finitely many orbits [14, Theorem 2.5]. In particular, Schubert varieties and spherical
varieties are T -linear.

2.3 Nondegenerate fixed points and equivariant multiplicities

Let X be a T -scheme. A fixed point x ∈ X is called nondegenerate if all weights of T in the
tangent space Tx X are non-zero. A fixed point in a nonsingular T -variety is nondegenerate
if and only if it is isolated. To study possibly singular schemes, Brion developed a notion
of equivariant multiplicity at nondegenerate fixed points [3], generalizing previous work by
Rossmann [24]. The main features of this concept are outlined below.

Theorem 2.8 ([3, Theorem 4.2]) Let X be a T -scheme with an action of T , let x ∈ X
be a nondegenerate fixed point and let χ1, . . . , χn be the weights of Tx X (counted with
multiplicity).
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84 R. P. Gonzales

(i) There is a unique S-linear map ex,X : AT∗ (X) → Q such that ex,X [x] = 1 and that
ex,X [Y ] = 0 for any T -invariant irreducible subvariety Y ⊂ X which does not contain
x. Moreover, the image of ex,X is contained in (1/χ1 . . . χn)S.

(ii) For any T -invariant irreducible subvariety Y ⊂ X, the rational function ex,X [Y ] is
homogeneous of degree − dim(Y ) and it coincides with ex,Y [Y ].

(iii) The point x is nonsingular in X if and only if χ1 . . . χnex [X ] = 1.

For any T -invariant irreducible subvariety Y ⊂ X , we set ex,X [Y ] := ex [Y ]. Following
Brion [3], we call ex [Y ] the equivariant multiplicity of Y at x . See op. cit. for a detailed
discussion of this key notion and its relation to Rossmann’s equivariant multiplicity.

Next we consider a special class of nondegenerate fixed points. Let X be a T -variety. Call
a fix point x ∈ X attractive if all weights in the tangent space Tx X are contained in some
open half-space of ΔR = Δ ⊗Z R, that is, some one-parameter subgroup of T acts on Tx X
with positive weights only. Denote by χ1, . . . , χn the weights of T in Tx X . Let Δ∗ be the
lattice of one-parameter subgroups of T , and let Δ∗

R be the associated real vector space. We
set

σx := {λ ∈ Δ∗
R | 〈λ, χi 〉 ≥ 0 for 1 ≤ i ≤ n}.

Then σx is a rational polyhedral convex cone in Δ∗
R with a non-empty interior σ 0

x . The
following result is of importance to us. For a proof, see [3, Proposition 4.4] and [5, Proposition
A2].

Theorem 2.9 Let x ∈ X be an attractive T -fixed point. Let λ ∈ σ 0
x .

(i) The set Xx := X+(x, λ) is independent of λ, and this set is the unique open affine
T -stable neighborhood of x in X. Furthermore, Xx admits a closed T -equivariant
embedding into Tx X.

(ii) The rational function ex [X ], viewed as a rational function on Δ∗
R, is defined at λ and its

value is the multiplicity of the algebra of regular functions on Xx graded via the action
of λ. In particular, ex [X ] �= 0.

2.4 Local study: some inequalities relating Chow groups and fixed point loci

Let X be an affine T -variety with an attractive fixed point x . It follows from Theorem 2.9
that X = X+(x, λ) for any λ ∈ σ 0

x . Also, {x} is the unique closed T -orbit in X , and X admits
a closed T -equivariant embedding into Tx X . Observe that dimx X = dim X , because x is
contained in every irreducible component of X .

Choose λ ∈ σ 0
x . Then all the weights of the Gm-action on Tx X via λ are positive. Hence

the geometric quotient

Pλ(X) := (X\{x})/Gm

exists and is a projective variety. In fact, it is a closed subvariety of the weighted projective
space Pλ(Tx X). On the other hand, by [5, Proposition A3], there is a Gm-module V and a
Gm-equivariant finite surjective morphism p : X → V such that p−1(0) = {x} (as a set).
This allows to estimate the size of the Chow groups of Pλ(X) in various cases.

Lemma 2.10 In the situation above, p induces a surjection

p∗ : Ak(Pλ(X)) → Ak(Pλ(V ))

for all k ≥ 0. Consequently, Ak(Pλ(X)) �= 0 if 0 ≤ k ≤ dim (X), and Ak(Pλ(X)) = 0
otherwise.
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Algebraic rational cells and equivariant intersection theory 85

Clearly, p∗ : A∗(X) → A∗(V ) is also surjective. Observe that if X is equidimensional and
d is the degree of p, then ex [X ] = d ·e0[V ],where ex [X ] (resp. e0[V ]) is theGm-equivariant
multiplicity of X at x (resp. of V at 0) [3, Proposition 4.3].

Notice that there are only finitely many subtori H ⊂ T of codimension one such that
XH �= XT (indeed, such a subtorus is contained in the kernel of a weight of T in Tx X ). The
next result is our motivation for the material in the forthcoming section.

Proposition 2.11 Let X be an affine T -variety with an attractive fixed point x. Let
H1, . . . , Hr denote the finite list of all codimension one subtori satisfying XHj �= XT .

(a) The following are equivalent.

(i) dim X = ∑r
j=1 dim XHj .

(ii) There is a T -module V and a T -equivariant finite surjective morphism π : X →
V such that π−1(0) = {x} and V T = {0}. In particular, for all 1 ≤ j ≤ r ,
the restriction of π to X Hj , denoted π j , induces a T -equivariant finite surjective
morphism π j : XHj → Vj , where Vj := V Hj .

(b) Let λ ∈ σ 0
x . If dimQ A∗(Pλ(X)) = dim X, then conditions (i) and (ii) of (a) hold.

Moreover, there is a chain of equalities

dimQ A∗(Pλ(X)) =
r∑

j=1

dimQ A∗(Pλ(XHj )) =
r∑

j=1

dimQ A∗(Pλ(Vj )) =
r∑

j=1

dim XHj = dim X,

and the maps π and π j from (a) induce isomorphisms

π∗ : Ak(Pλ(X))
∼−→ Ak(Pλ(V )),

π j ∗ : Ak(Pλ(X
Hj ))

∼−→ Ak(Pλ(Vj )),

for all j and k.

Proof Since x ∈ X is an attractive T -fixed point, we may assume, without loss of generality,
that x is an attractive fixed point of XHj for the action of Gm � T/Hj . Hence, as in
Lemma 2.10, there are T -equivariant finite surjective maps p j : XHj → Vj , where Vj

is some T -module with a trivial action of Hj . Moreover, by [5, Theorem 1.4], we have∑r
j=1 dim XHj ≥ dim X .
To prove (a), we follow closely the argument in [5, proof of Theorem 1.2]. Assume that

(i) holds. Then we can synchronize the maps p j above as follows. Given that XHj is T -stable
and closed in X , we can extend p j to an equivariant morphism π j : X → Vj . Let V denote
the product of all the Vj , and let π : X → V be the product morphism. Then π(x) = 0 and
V T = {0}, by construction. Notice that x , being an attractive fixed point, lies in the closure of
all the T -orbits in X . In particular, x is contained in all the irreducible components of π−1(0)
[i.e.π−1(0) is connected].We claim that themapπ is finite. Indeed, by the gradedNakayama
lemma, π is finite if and only if π−1(0) = {x}. Now observe that the latter condition holds,
for otherwise π−1(0)would contain a T -stable curve uponwhich T acts through a non-trivial
character [5, Proposition A.4]. But this is impossible, because π restricts to a finite morphism
on each XHj . Finally, by construction, dim V = ∑

j dim Vj = ∑
j dim X j = dim X . Thus

the map π is dominant, and hence surjective. Conversely, assume that (ii) holds. Consider
Hj and a point y ∈ V Hj . Since Hj is connected, it acts trivially on the (finite) fiber π−1(y).
This implies that the induced T -equivariant map π j : XHj → V Hj is finite and surjective.
Hence, dim X = dim V = ∑

dim V Hj = ∑
dim XHj .

Finally, to prove (b), we record below a few elementary inequalities (assuming
dimQ A∗(Pλ(X)) < ∞):
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(1) dim A∗(Pλ(X)) ≥ dim A∗(Pλ(X)T ), by Lemma 2.5.
(2) Because Pλ(X)T = ⊔

Hj
Pλ(XHj ), we have

dimQ A∗(Pλ(X)T ) =
∑

Hj

dimQ A∗(Pλ(X
Hj )).

(3) From theproperties of themaps p j : XHj → Vj given above,weget dimQ A∗(Pλ(XHj ))

≥ dimQ A∗(Pλ(Vj )), which in turn yields

r∑

j=1

dimQ A∗(Pλ(X
Hj )) ≥

r∑

j=1

dimQ A∗(Pλ(Vj )).

Equality holds if and only if the p j ’s induce isomorphisms on the Chow groups.
(4) Since each Pλ(Vj ) in (3) is a weighted projective space, we get

r∑

j=1

dimQ A∗(Pλ(Vj )) =
r∑

j=1

dim Vj =
r∑

j=1

dim XHj ,

where the last equality stems from the fact that each p j is finite and surjective.

Combining items (1) to (4), and the fact that
∑r

j=1 dim XHj ≥ dim X , we obtain the
chain of inequalities

dimQ A∗(Pλ(X)) ≥
r∑

j=1

dimQ A∗(Pλ(XHj )) ≥
r∑

j=1

dimQ A∗(Pλ(Vj )) =
r∑

j=1

dim XHj ≥ dim X.

From this analysis the assertions in (b) are easily deduced. �

3 Algebraic rational cells

This section is devoted to the study of our main technical tool: algebraic rational cells. We
thank M. Brion for leading us to the following definition.

Definition 3.1 Let X be an affine T -variety with an attractive fixed point x , and let n =
dim X . We say that (X, x), or simply X , is an algebraic rational cell if and only if, for some
λ ∈ σ 0

x , we have

Ak(Pλ(X)) =
{
Q if 0 ≤ k ≤ n − 1,
0 otherwise.

We abbreviate this condition by writing A∗(Pλ(X)) � A∗(Pn−1).

Algebraic rational cells are such T -varieties forwhich Proposition 2.11 (b) holds. In principle,
Definition 3.1 depends on a particular choice of λ ∈ σ 0

x . But, as we shall see next, it is
independent of λ: if A∗(Pλ(X)) � A∗(Pn−1) holds for some λ ∈ σ 0

x , then it holds for all
λ ∈ σ 0

x .

Lemma 3.2 Let X be an affine T -variety with an attractive fixed point x, and let n = dim X.
Then (X, x) is an algebraic rational cell if and only if

Ak(X) =
{
Q if k = n
0 if k �= n.

In particular, if (X, x) is an algebraic rational cell, then it is irreducible.
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Algebraic rational cells and equivariant intersection theory 87

Proof Let Gm act on X via λ. Recall that we have a short exact sequence

0 → AGm∗ (x) → AGm∗ (X) → AGm∗ (X\{x}) → 0,

which stems from the localization theorem (Theorem 2.4). As in Sect. 2.4, there exists a
Gm-equivariant finite surjective map p : X → An such that p−1(0) = x , andGm-acts on An

with positive weights only. This map induces the commutative diagram:

0 �� AGm∗ (x)
i∗ ��

p∗
��

AGm∗ (X)
j∗ ��

p∗
��

AGm∗ (X\{x})
p∗

��

�� 0

0 �� AGm∗ (0)
i∗ �� AGm∗ (An)

j∗ �� AGm∗ (An\{0}) �� 0.

The left vertical map is clearly an isomorphism. We claim that the other two vertical maps
are surjective. Indeed, since p : X → An is finite and surjective, the induced map of mixed
spaces p : XGm → An

Gm
inherits both properties, by descent [8, Propositions 2 and 3].

Hence, p∗ : AGm∗ (X) → AGm∗ (An) is surjective. For the right vertical map, observe that
AGm∗ (X\{x}) � A∗(Pλ(X)) by [8, Theorem 3]. So this map represents p∗ : A∗(Pλ(X)) →
A∗(Pn−1

λ ),whose surjectivity is alreadyknown (Lemma2.10).Weconclude from theprevious
analysis that the right vertical map is an isomorphism if and only if so is the middle one.
But the latter happens if and only if A∗(X) � A∗(An) � Q (one direction is guaranteed by
Theorem 2.3; for the other one, if A∗(X) � Q, then Lemma 2.5 shows that AT∗ (X) � S.
Thus p∗ : AT∗ (X) → AT∗ (An), being a surjective map of free S-modules of the same rank,
is an isomorphism). This yields the first assertion of the lemma.

Finally, the second assertion follows from Lemma 3.3 below. �
Lemma 3.3 Let X be a variety. Let X1, . . . , Xm be the irreducible components of X. Then
the classes [Xi ] ⊂ A∗(X)Z are linearly independent. Here A∗(X)Z denotes the integral
Chow group of X.

Proof Simply observe that the pullback to the open (irreducible) subscheme Ui =
Xi\⋃

j �=i X j sends [X j ] to 0 if j �= i , and [Xi ] to the generator of Adi (Ui ) = Z, where
di = dim Xi . �

Lemma 3.2 hints to a more general structural property of algebraic rational cells, with
respect to the T -action.

Proposition 3.4 Let X be an affine T -variety with an attractive fixed point x, and let λ ∈ σ 0
x .

Let n = dim X. Then the following conditions are equivalent.

(i) A∗(Pλ(X)) � A∗(Pn−1).
(ii) A∗(X) � A∗(An).
(iii) AT∗ (X) � AT∗ (pt) = S.
(iv) AT∗ (Pλ(X)) � A∗(Pn−1) ⊗Q S

Proof The equivalence (i) ⇔ (ii) follows from Lemma 3.2.
The equivalence (ii) ⇔ (iii) follows from Lemma 2.5.
The implication (iv) ⇒ (i) is deduced from Theorem 2.3 and Lemma 2.10.
Finally, we dispose of the direction (i) ⇒ (iv). Recall that (i) yields the existence of

a T -equivariant finite surjective morphism π : X → V , such that the induced map
π∗ : A∗(Pλ(X)) → A∗(Pλ(V )) is an isomorphism [Proposition 2.11 (b)]. By the graded
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Nakayama lemma, the corresponding map π̃∗ : AT∗ (Pλ(X)) → AT∗ (Pλ(V )) is surjective.
We claim that π̃∗ is also injective (hence an isomorphism). Indeed, choose a basis z1, .., zn
of A∗(Pλ(V )). Now identify that basis with a basis of A∗(Pλ(X)), via π∗, and lift it to a
generating system of the S-module AT∗ (Pλ(X)). This generating system is a basis, since its
image under π̃∗ is a basis of AT∗ (Pλ(V )). �

Next, we exhibit some additional features of algebraic rational cells. The result is an
algebraic counterpart of [4, Theorem 18].

Theorem 3.5 Let X be an irreducible affine T -variety with an attractive fixed point x. Then
the following are equivalent.

(i) For each subtorus H ⊂ T of codimension one, (XH , x) is an algebraic rational cell,
and dim X = ∑

H dim XH (sum over all subtori of codimension one).
(ii) For each subtorus H ⊂ T of codimension one, (XH , x) is an algebraic rational cell,

and

ex [X ] = d
∏

H

ex [XH ],

where d is a positive rational number. If moreover each XH is smooth, then d is an
integer.

Furthermore, if (X, x) is an algebraic rational cell, then conditions (i) and (ii) hold.

Proof Recall that there is only a finite collection of codimension one subtori, say H1, . . . , Hr ,
for which XHj �= XT . The required equivalence is obtained arguing exactly as in [4, Theorem
18]. Indeed, if (i) holds, then there exists a T -equivariant finite surjective map π : X → V ,
where V is a T -module [by Proposition 2.11 (a)]. So ex [X ] = de0[V ], where d = degπ . But
then de0[V ] = d

∏
Hj

e0[Vj ], because V is a T -module [Theorem 2.8 (iii)]. In turn, the last

expression identifies to d∏
j d j

∏
j ex [XHj ], where d j = degπ j and π j is as in Proposition

2.11 (a). Condition (ii) is thus attained. Conversely, if (ii) holds, then the XHj ’s are irreducible
(Lemma 3.2). As X is irreducible by assumption, the equality ex [X ] = d

∏
Hj

ex [XHj ] yields
dim X = ∑

Hj
X Hj by Theorem 2.8 (ii).

Finally, if (X, x) is an algebraic rational cell, then condition (i) is deduced at once from
Proposition 2.11 (b). �

In general, it is not true that properties (i) or (ii) of Theorem 3.5 characterize algebraic
rational cells. Here is an example, cf. [5, Remark 1.4].

Example 3.6 Let X be the hypersurface of A5 with equation x2 + yz + xtw = 0. Note that
X is irreducible, with singular locus x = y = z = tw = 0, a union of two lines meeting
at the origin. Now consider the Gm × Gm-action on A5 given by (u, v) · (x, y, z, t, w) :=
(u2v2x, u3vy, uv3z, u2t, v2w). Then the origin of A5 is an attractive fixed point, X is T -
stable of dimension four and X contains four closed irreducible T -stable curves, namely, the
coordinate lines except for the x-axis. So X satisfies condition (i) of Theorem 3.5. Never-
theless, (X, 0) is not an algebraic rational cell. To see this, consider the Gm-action on A5

given by u · (x, y, z, t, w) := (x, uy, u−1z, t, w). Then X is Gm-stable and XGm is defined
by y = z = x2 + xtw = 0. Thus XGm is reducible at the origin. In fact A∗(XGm ) = Q ⊕ Q

(since XGm consists of the union of two copies of A2). Thus dimQ A∗(XGm ) = 2, and so
dimQ A∗(X) ≥ 2, by Lemma 2.5. Therefore, in view of Lemma 3.2, (X, 0) is not an algebraic
rational cell.
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Example 3.7 (Smooth rational cells) Let X be an affine T -variety with an attractive fixed
point x . If X is smooth at x , then X � Tx X, T -equivariantly. Thus (X, x) � (Tx X, 0) is an
algebraic rational cell. This agrees with the fact that Pλ(Tx X) is a weighted projective space.

Remark 3.8 Assume k = C. Let (X, x) be an algebraic rational cell. Using Proposition
2.11 one checks that the cycle map cl : A∗(Pλ(X)) → H2∗(Pλ(X)) is injective. In the
special case that Pλ(X) is smooth, a result of Jannsen [10] shows that the cycle map is an
isomorphism, so Pλ(X) is a rational cohomology complex projective space and (X, x) is a
(topological) rational cell. In general, however, Pλ(X) has singularities and (X, x) need not
be rationally smooth. For instance, let X ⊂ A3 be the surface with equation y2z = x3 + x2z.
The standard Gm-action by scalar multiplication makes (X, 0) an algebraic rational cell:
indeed, since P(X) ⊂ P2 is the singular nodal cubic curve, we get A∗(P(X)) � A∗(P1). But
H1(P(X)) = Q, so (X, 0) is not rationally smooth.

Remark 3.9 Let k = C. Let (X, x) be a (topological) rational cell. Then Pλ(X) is a ratio-
nal cohomology complex projective space, and one checks that the cycle map clPλ(X) :
A∗(Pλ(X)) → H2∗(Pλ(X)) is surjective. In this situation, a version of the generalized Bloch
conjecture predicts that clPλ(X) is injective too, see [29, p. 48]. In some important cases, e.g.
when (X, x) is a spherical variety, we confirm this prediction, so that (X, x) is an algebraic
rational cell, see Sects. 5 and 6. In general, the Bloch conjecture remains open.

We conclude this section by computing equivariantmutiplicities of algebraic rational cells.
Recall that a primitive character χ of T is called singular if Xker (χ) �= XT .

Corollary 3.10 Let X be an irreducible T -variety with attractive fixed point x. Let Xx be
the unique open affine T -stable neighborhood of x. If (Xx , x) is an algebraic rational cell,
then the following hold:

(i) ex [X ] is the inverse of a polynomial. In fact,

ex [X ] = d

χ1 . . . χr
,

where the χi ’s are singular characters, r = dim X, and d is a positive rational number.
(ii) Additionally, if the number of closed irreducible T -stable curves through x is finite,

say �(x), then dim X = �(x). Furthermore, we may take for χ1, . . . , χr the characters
associated to these curves.

Proof Replacing X by Xx we may assume that X is affine. Then (i) follows at once from
Theorem 3.5 and its proof. As for (ii), simply use (i) and Theorem 3.5 to adapt the argument
of [5, Corollary 1.4.2] and [12, Corollary 5.6]. �

In general, if X is an affine T -variety with attractive fixed point x , and �(x) as above is
finite, then dimx X ≤ �(x) [5, Corollary 1.4.2].

4 Q-filtrable varieties and equivariant Chow groups

We aim at an inductive description of the equivariant Chow groups of filtrable T -varieties in
the case when the cells are all algebraic rational cells. Our findings provide purely algebraic
analogues of the topological results of [12].

Definition 4.1 Let X be a T -variety. We say that X is Q-filtrable if the following hold:
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1. the fixed point set XT is finite, and
2. there exists a generic one-parameter subgroup λ : Gm → T for which the associated

BB-decomposition of X is filtrable (Definition 2.1) and consists of T -invariant algebraic
rational cells.

In particular, X = ⊔
j X+(x j , λ). Also, observe that the fixed points x j ∈ XT need not be

attractive in X , but they are so in their corresponding algebraic rational cells X+(x j , λ). The
following technical result will be of importance in the sequel.

Lemma 4.2 If (X, x) is an algebraic rational cell, then the equivariantmultiplicitymorphism
eX,x : AT∗ (X) → Q is injective.

Proof By [3, Proposition 4.1] the map i∗ : AT∗ (x) → AT∗ (X) is injective. Moreover, the
image of i∗ contains χ1 . . . χn AT∗ (X), where χi are the T -weights of Tx X . Next, recall that
ex is defined as follows: given α ∈ AT∗ (X), we can form the product χ1 . . . χnα. Thus, there
exists β ∈ S such that i∗(β) = χ1 . . . χnα. Now let ex (α) = β

χ1...χn
. Since AT∗ (X) is S-free

(Proposition 3.4), it is clear from the construction that ex is injective. �
Let X be a Q-filtrable T -variety. Then, by assumption, there is a closed algebraic rational

cell F = X+(x1, λ) (using the order of fixed points induced by the filtration, cf. Definition
2.1). Moreover U = X\F is also Q-filtrable. We now proceed to describe AT∗ (X) in terms
of AT∗ (F) and AT∗ (U ). Let jF : F → X and jU : U → X denote the inclusion maps.

Proposition 4.3 Notation being as above, the maps jF∗ : AT∗ (F) → AT∗ (X) and j∗U :
AT∗ (X) → AT∗ (U ) fit into the exact sequence

0 → AT∗ (F) → AT∗ (X) → AT∗ (U ) → 0.

Proof It is well-known that the sequence

AT∗ (F)
jF∗ �� AT∗ (X)

j∗U �� AT∗ (U ) �� 0

is exact. Thus it suffices to show that jF∗ is injective. But this follows easily from the
factorization ex,F = ex,X ◦ jF∗. Indeed, since ex,F is injective (Lemma 4.2), so is jF∗. �

Arguing by induction on the length of the filtration leads to the following.

Theorem 4.4 Let X be a Q-filtrable T -variety. Then the T -equivariant Chow group of X is
a free S-module of rank |XT |. In fact, it is freely generated by the classes of the closures of
the cells X+(xi , λ). Consequently, A∗(X) is also freely generated by the classes of the cell
closures X+(xi , λ).

If X is aQ-filtrable variety, then each filtered piece �i is alsoQ-filtrable, and so Theorem
4.4 applies at each step of the filtration. Our approach, based on equivariant multiplicities,
is more flexible than the general approach which compares (equivariant) Chow groups with
(equivariant) homology via the (equivariant) cycle map. This flexibility will be illustrated in
the next sections.

5 Applications to embedding theory

We now furnish our theory with its first set of examples:Q-filtrable embeddings of reductive
groups. We show that the notion of algebraic rational cell is well adapted to the study of
group embeddings.
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Further notation

Let G be a connected reductive linear algebraic group with Borel subgroup B and maximal
torus T ⊂ B. The Weyl group of (G, T ) is denoted by W . An affine algebraic monoid is
called reductive if it is irreducible, normal, and its unit group is a reductive algebraic group.
See [20] for details. Let M be a reductive monoid with unit group G. We denote by E(M)

the idempotent set of M , that is, E(M) = {e ∈ M | e2 = e}. Likewise, we denote by E(T )

the idempotent set of the associated affine torus embedding T , the Zariski closure of T in
M . One defines a partial order on E(T ) by declaring f ≤ e if and only if f e = f . The
Renner monoid R ⊂ M is a finite monoid whose group of units is W and contains E(T )

as idempotent set. Any x ∈ R can be written as x = f u, where f ∈ E(T ) and u ∈ W .
Denote by Rk the set of elements of rank k in R, that is, Rk = {x ∈ R | dim T x = k }.
Analogously, one has Ek ⊂ E(T ). For e ∈ E(M), set Me := {g ∈ G | ge = eg = e}. Then
Me is an irreducible, normal reductive monoid with e as its zero element [6].

5.1 Group embeddings

An irreducible variety is called an embedding of G, or a group embedding, if it is a normal
G × G-variety containing an open orbit isomorphic to G itself, where G × G acts on G by
left and right multiplication. When G is a torus, we get back the notion of toric varieties.
Due to the Bruhat decomposition, group embeddings are spherical G × G-varieties. Affine
embeddings of G are exactly the reductive monoids having G as group of units [23].

Let M be a reductive monoid with zero and unit group G. Then there exists a central
one-parameter subgroup ε : Gm → G, with image Z , such that limt→0 ε(t) = 0. More-
over, the quotient space Pε(M) := (M\{0})/Z is a projective embedding of the quotient
group G/Z . Notably, projective embeddings of connected reductive groups are exactly the
projectivizations of reductive monoids [19,27].

5.2 Algebraic monoids and algebraic rational cells

Lemma 5.1 Let ϕ : L → M be a finite surjective morphism of normal, reductive monoids.
Then ϕ is the quotient map by the finite group ker(ϕ|GL ), where GL is the unit group of L.

Proof Let μ = ker(ϕ|GL ). Because μ is a finite and normal subgroup of the connected
reductive group GL , it is central. Hence μ ⊂ TL (for the center of GL is the intersection
of all its maximal tori). It follows that the induced map ϕ̃ : L/μ → M is bijective and
birational. But M is normal, so ϕ̃ is an isomorphism. �
Corollary 5.2 Let ϕ : L → M be a finite dominant morphism of normal algebraic monoids.
Then ϕ induces an isomorphism of (rational) Chow groups, namely, A∗(L) � A∗(M).

Proof By Lemma 5.1 and [11, Example 1.7.6] we have (A∗(L))μ � A∗(M). Now, since the
action ofμ on A∗(L) comes induced from the action ofGL on A∗(L), we have (A∗(L))GL ⊂
(A∗(L))μ. ButGL is a connected linear algebraic group, so (A∗(L))GL = A∗(L) [16, Lemme
1]. Hence (A∗(L))μ = A∗(L). �

Let M and N be reductive monoids. Following Renner [21], we write M ∼0 N if there
is a reductive monoid L and finite dominant morphisms L → M and L → N of algebraic
monoids. One checks that this gives rise to an equivalence relation. The following basic
result, a consequence of Corollary 5.2, states that rational Chow groups are an invariant of
the equivalence classes.
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Corollary 5.3 If M ∼0 N, then A∗(M) � A∗(N ).

Now let M be a reductive monoid with zero and unit group G. Recall that T × T acts on
M via (s, t) · x = t xs−1 and 0 is the unique attractive fixed point for this action (see e.g.
[6, Lemma 1.1.1]). The number of closed irreducible T × T -invariant curves in M is finite
(all of them passing through 0), and it equals |R1|. Indeed, each closed T × T -curve of M
can be written as T xT , where x ∈ R1, for they correspond to the T × T -fixed points of
Pε(M), see [13, Theorem 3.1]. Hence, dim M ≤ |R1|. Similarly, T is an affine T -variety
with 0 as its unique attractive fixed point and with finitely many T -stable curves. The number
of these curves equals |E1|, so dim T ≤ |E1|. Next we provide combinatorial criteria for
showing when M is an algebraic rational cell (for the T × T -action). This adds to the list of
equivalences from [21,22].

Theorem 5.4 Let M be a reductive monoid with zero and unit group G. Then the following
are equivalent.

(a) M ∼0
∏

i Mni (k).
(b) If T is a maximal torus of G, then dim T = |E1|.
(c) T ∼0 An.
(d) (T , 0) is an algebraic rational cell.
(e) (M, 0) is an algebraic rational cell.
(f) dim M = |R1|.

Proof The equivalence of (a), (b) and (c) is proven in [21, Theorem 2.1] (no use of rational
smoothness is made there). The implication (c) ⇒ (d) follows from Corollary 5.3 and
Proposition 3.4. On the other hand, condition (d) implies (b) because of Corollary 3.10
and the fact that |E1| is the number of T -invariant curves of T passing through 0. Hence
conditions (a), (b), (c) and (d) are all equivalent.

Certainly (a) implies (e), by Corollary 5.3 and Proposition 3.4. In turn, (e) yields ( f )
due to Corollary 3.10 and the fact that the number of closed irreducible T × T -curves in M
equals |R1|. So to conclude the proof it suffices to show that ( f ) implies (b). For this we
argue as follows.

Assume ( f ) and recall that each closed T × T -curve in M can be written as T xT , with
x ∈ R1. Moreover, if we write x = ew, with e ∈ E1 and w ∈ W , then T × T acts on T xT
through the character (λe, λe(int(w))), where λe : T → eT � k∗ is the character sending t
to et .

Now, for each x = ew ∈ R1, we can find a finite T × T -equivariant surjective map
πx : T xT → kx . Here, T × T -acts on kx � k via (λe, λe(int(w))). Since T xT is T × T -
invariant and closed inM , we can extend πx to a T ×T -equivariant morphism πx : M → kx .
Synchronizing efforts via the product map, we obtain a T × T -equivariant map

π : M → V =
∏

x∈R1

kx , m �→ (πx (m))x∈R1 .

By construction, π is finite [cf. proof of Proposition 2.11 (a)], and given that dim M = |R1|,
it is also surjective.

Let ΔT ⊂ T × T be the diagonal torus. We know that the fixed point set MΔT equals T
(see the proof of [20, Theorem 5.5]). Let us look at the restriction map

π : T → VΔT .
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We claim that dim VΔT = |E1|. Indeed, it is clear that for e ∈ E1, the T × T -invariant curve
ke ⊂ V is fixed by ΔT , since tet−1 = e (recall that T is commutative). Hence

∏

e∈E1

ke ⊂ VΔT .

Thus,

|E1| = dim
∏

e∈E1

ke ≤ dim VΔ(T ) = dim T .

But, in general, dim T ≤ |E1|. Hence dim T = |E1|. As this is condition (b), the proof is
now complete. �
Remark 5.5 Let M be a reductive monoid with zero. Theorem 5.4 gives a converse to Corol-
lary 3.10 (ii): (M, 0) is an algebraic rational cell if and only if dim M = |R1|.

Theorem 5.4 and [22, Theorem 2.4] immediately give the following. Notice that the cycle
map is not needed in the proof.

Corollary 5.6 Letk = C. Let M be a reductivemonoid with zero, and let T be the associated
affine toric variety. Then M (resp. T ) is rationally smooth if and only if M (resp. T ) is an
algebraic rational cell.

5.3 Q-filtrable projective group embeddings

We start by recalling [21, Definition 2.2].

Definition 5.7 A reductive monoid M with zero element is called quasismooth if, for any
minimal non-zero idempotent e ∈ E(M), Me satisfies the conditions of Theorem 5.4.

In other words, M is quasismooth if and only if Me is an algebraic rational cell, for any
minimal non-zero idempotent e ∈ E(M).

Now consider the projective group embedding Pε(M) = (M\{0})/Z (as in Sect. 5.1).
When k = C, it is worth noting that M is quasismooth if and only if Pε(M) is rationally
smooth [22, Theorem 2.5].

Next is the second main result of this section. It is an extension of [12, Theorem 7.4] to
equivariant Chow groups.

Theorem 5.8 Let M be a reductivemonoidwith zero. If M is quasismooth, then the projective
group embedding Pε(M) is Q-filtrable (as in Sect. 4).

Proof The strategy is to adapt the proof of [12, Theorem 7.4] in light of Proposition 3.4
and Theorem 5.4. Recall that, by [21, Theorem 3.4], Pε(M) comes equipped with a BB-
decomposition

Pε(M) =
⊔

r∈R1

Cr ,

whereR1 identifies to Pε(M)T×T . (In fact these cells are B×B-invariant.) Given that Pε(M)

is normal, projective, and R1 is finite, this BB-decomposition is filtrable (Theorem 2.2). So
we just need to show that these cells are algebraic rational cells. Furthermore, since the Cr

are affine T ×T -varieties with an attractive fixed point [r ], Proposition 3.4 reduces the proof
to showing that A∗(Cr ) � Q.
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Bearing this in mind, we delve a bit further into the structure of these cells. Let r ∈ R1.
Write it as r = ew = w f , where e ∈ E1, w ∈ W , and f = w−1ew ∈ E1. By [21, Lemma
4.6andTheorem4.7], Cr is isomorphic to

Ue × C∗
r ×U f ,

where Ue and U f are affine spaces, and C∗
r = {y ∈ Ce | ey = ye}w. Note that C∗

r = C∗
ew.

Hence, by the Kunneth formula (which holds, because Ue and U f are affine spaces), we are
further reduced to showing that A∗(C∗

e ) � Q, for e ∈ E1.
Nowwe call the reader’s attention to [21, Theorem 5.1]. It states that if M is quasismooth,

then

C∗
e = feM(e)/Z ,

for some unique fe ∈ E(T ), where M(e) = MeZ , and Me is reductive monoid with e as
its zero. By hypothesis, we know that Me is an algebraic rational cell, that is, A∗(Me) � Q.
Since M(e)/Z is a reductive monoid with [e] as its zero, and Me ∼0 M(e)/Z , Corollary 5.3
yields A∗(M(e)/Z) � Q. Now, by [6, Lemma 1.1.1], one can find a one-parameter subgroup
λ : Gm → T , with image S, such that λ(0) = f and

feM(e)/Z = (M(e)/Z)S .

That is, feM(e)/Z is the S-fixed point set of M(e)/Z . But now we invoke Lemma 2.5 to get

dimQ A∗((M(e)/Z)S) ≤ dimQ A∗(M(e)/Z) = 1.

Hence, a fortiori

dimQ A∗((M(e)/Z)S) = dimQ A∗( feM(e)/Z) = dimQ A∗(C∗
e ) = 1.

This shows that A∗(C∗
e ) = Q, concluding the argument. �

It is well-known that for projective simplicial toric varieties (equivalently, rationally
smooth projective toric varieties) the equivariant cycle map is an isomorphism overQ. Below
we extend this result to all rationally smooth projective group embeddings.

Corollary 5.9 Let k = C. If M is a quasismooth monoid with zero, then the equivariant
cycle map

clTPε (M) : AT∗ (Pε(M)) → HT∗ (Pε(M))

is an isomorphism of free S-modules. Moreover, the usual cycle map

clPε (M) : A∗(Pε(M)) → H∗(Pε(M))

is an isomorphism of Q-vector spaces.

Proof By [12, Theorem 7.4] Pε(M) has no cohomology in odd degrees, and each cell is
rationally smooth, so H∗,c(Cr ) � Q and HT∗,c(Cr ) � S. Now Theorem 5.8 implies that the
cycle maps clCr : A∗(Cr ) → H∗,c(Cr ) and clTCr

: AT∗ (Cr ) → HT∗,c(Cr ) are isomorphisms.
Arguing by induction on the length of the filtration concludes the proof. �
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6 Connections with topology: spherical varieties

In this section we work over the complex numbers. The aim is to relate the results of this
paper with those of [12] in the case of spherical varieties.

For later use, we state a particular case of [28, Theorem 3].

Theorem 6.1 LetΓ be connected solvable linear algebraic group. For anyΓ -variety Y with
a finite number of orbits, the natural map

Ai (Y ) −→ W−2i H
BM
2i (Y,Q),

from the Chow groups into the smallest subspace of Borel-Moore homology with respect to
the weight filtration is an isomorphism.

Now let G be a connected reductive linear algebraic group with Borel subgroup B and
maximal torus T ⊂ B. For the proof of the main results in this section, the following
facts will be useful too. Given a one-parameter subgroup λ of T , we can define G(λ) =
{g ∈ G | λ(t)gλ(t)−1 has a limit as t → 0}. It is well-known that G(λ) is a parabolic
subgroup of G with unipotent radical RuG(λ) = {g ∈ G | limt→0 λ(t)gλ(t)−1 = 1}.
Moreover, the centralizer CG(λ) of the image of λ is connected, and the product morphism
RuG(λ) × CG(λ) → G(λ) is an isomorphism of varieties. Also, the parabolic subgroups
G(λ) and G(−λ) are opposite. Finally, G(λ) = B if and only if λ lies in the interior of the
Weyl chamber associated with B. See e.g. [25, Theorem 13.4.2].

Next we show that algebraic rational cells are naturally found on rationally smooth spher-
ical varieties.

Theorem 6.2 Let X be a G-spherical variety with an attractive T -fixed point x. Let Xx

be the unique open affine T -stable neighborhood of x. If X is rationally smooth at x, then
(Xx , x) is an algebraic rational cell.

Proof Because x is attractive, we may choose λ such that Xx = X+(x, λ) and G(λ) = B.
Since X is rationally smooth at x , so is the open subset Xx . Moreover, Xx is rationally smooth
everywhere, and so Xx is a rational cell [12, Definition 3.4]. By Theorem 6.1 we have

Ai (Xx ) � W−2i H
BM
2i (Xx ,Q) � H2i

c (Xx ,Q) =
{
Q if i = dimC Xx

0 otherwise,

where the last two identifications follow from the fact that Xx is a cone over a rational
cohomology sphere [12, Corollary 3.11]. �

Let X be a G-spherical variety. Recall that XT is finite. For convenience, we use the
following nomenclature. We say that

(a) X has an algebraic Q-filtration, if it satisfies Definition 4.1 for some generic one-
parameter subgroup λ of T .

(b) X has a topological Q-filtration, if there exists a generic one-parameter subgroup λ :
C∗ → T for which the associated BB-decomposition of X is filtrable, and consists of
rational cells [12].

Theorem 6.3 Let X be a G-spherical variety. If X has a topological Q-filtration, then this
filtration is also an algebraic Q-filtration.
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Proof Let XT = {x1, . . . , xm}. By assumption, there exists a generic one-parameter sub-
group such that Xλ = XT , and the cells X j := X+(x j , λ) are rational cells. Consider
the parabolic subgroup G(λ). We claim that the cells X j are invariant under G(λ). Indeed,
G(λ) = Ru(λ) × CG(λ), and CG(λ), being connected, fixes each x j ∈ Xλ. Now let x ∈ X j

and write g ∈ G(λ) as g = uh, with u ∈ Ru(λ) and h ∈ CG(λ). Then

λ(t)g · x = λ(t)uhλ(t)−1λ(t) · x = λ(t)uλ(t)−1hλ(t) · x .
Taking limits at 0 gives the claim. Because X is spherical, it contains only finitely many
orbits of any Borel subgroup of G. Therefore, a Borel subgroup of G(λ) has finitely many
orbits in X j . Applying Theorem 6.1 to each X j yields

Ai (X j ) � W−2i H
BM
2i (X j ,Q) � H2i

c (X j ,Q) =
{
Q if i = dimC X j

0 otherwise,

noting that X j is a cone over a rational cohomology sphere [12, Corollary 3.11]. Therefore,
by Lemma 3.2, the cells X j are algebraic rational cells. This concludes the proof. �
Remark 6.4 Let X be a G-spherical variety, and let λ be a generic one-parameter subgroup.
Then the argument above shows that the cells X+(x j , λ) are T ′-linear varieties, where T ′ ⊂
G(λ) is a maximal torus of G.

Arguing by induction on the length of the filtration, using the fact that a T -variety with a
topologicalQ-filtrationhas no (co)homology inodddegrees, gives immediately the following.

Corollary 6.5 Let X be a spherical G-variety with a topologicalQ-filtration, say ∅ = �0 ⊂
�1 ⊂ · · · ⊂ �m = X. Then, for every j , both cycle maps, cl� j : A∗(� j ) → H∗(� j ) and

clT� j
: AT∗ (� j ) → HT∗ (� j ) are isomorphisms.

We should remark that Theorem 6.3 provides another proof of Theorem 5.8. However, in
the case of group embeddings, the approach taken in Sect. 5 is more intrinsic, for it uses the
rich structure of the Chow groups and the fine combinatorial structure of algebraic monoids.
Notice that the results of Sect. 5 are independent of Theorem 6.1. This shows how the notion
of algebraic rational cells is well adapted to embedding theory, and opens the way for further
work in this direction. For instance, the results of this paper, together with those of [14],
yield some characterizations of Poincaré duality for the equivariant operational Chow rings
of projective group embeddings and, more generally, T -linear schemes [15].

Finally, observe that, when looking for concrete examples, topological Q-filtrations are
slightly more approachable, for they are built using the classical topology of a complex
variety, and could be obtained e.g. via Hamiltonian actions. Our Theorem 6.3 guarantees
that the topological knowledge thus acquired gets transformed into algebraic information
about the Chow groups. This provides examples of singular spherical varieties for which the
cycle map is an isomorphism (e.g. rationally smooth group embeddings). It is worth noting,
however, that the study of algebraically Q-filtrable varieties can be carried out intrinsically,
via equivariant intersection theory.
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dation (DFG). I am further grateful to the referees for very helpful comments and suggestions that improved
the clarity of the article.

123



Algebraic rational cells and equivariant intersection theory 97

References

1. Bialynicki-Birula, A.: Some theorems on actions of algebraic groups. Ann. Math. 98(3), 480–497 (1973).
2nd Ser

2. Bialynicki-Birula, A.: Some properties of the decompositions of algebraic varieties determined by actions
of a torus. Bull. Acad. Pol. Sci. Sér. Sci. Math. Astron. Phys. 24(9), 667–674 (1976)

3. Brion, M.: Equivariant Chow groups for torus actions. Transfrm. Groups 2(3), 225–267 (1997)
4. Brion,M.: Equivariant cohomology and equivariant intersection theory. Notes by Alvaro Rittatore. NATO

Adv. Sci. Inst. Ser. C Math. Phys. Sci., 514, Representation theories and algebraic geometry (Montreal,
PQ, 1997), 1–37, Kluwer Acad. Publ, Dordrecht (1998)

5. Brion, M.: Rational smoothness and fixed points of torus actions. Transform. Groups 4(2–3), 127–156
(1999)

6. Brion, M.: Local structure of algebraic monoids. Mosc. Math. J. 8(4), 647–666 (2008)
7. Deligne, P.: Cohomologie Étale. Séminaire de Géométrie Algébrique du Bois-Marie SGA 4 1/2. Lecture

Notes in Mathematics, 569. Springer-Verlag (1977)
8. Edidin, D., Graham, W.: Equivariant intersection theory. Invent. Math. 131, 595–634 (1998)
9. Eisenbud, D.: Commutative algebra with a view toward algebraic geometry. Springer, Berlin (1995)

10. Esnault, H., Levine, M.: Surjectivity of cycle maps. Journées de Géométrie algébrique d’Orsay (1992).
Astérisque 218, 203–226 (1993)

11. Fulton, W.: Intersection theory. Springer, Berlin (1984)
12. Gonzales, R.: Rational smoothness, cellular decompositions and GKM theory. Geom. Topol. 18(1), 291–

326 (2014)
13. Gonzales, R.: Equivariant cohomology of rationally smooth group embeddings. Transform. Groups 20(3),

743–769 (2015)
14. Gonzales, R.: Equivariant operational Chow rings of T-linear schemes. Doc. Math. 20, 401–432 (2015)
15. Gonzales, R.: Poincaré duality in equivariant intersection theory. Pro Math. 28(56), 54–80 (2014)
16. Grothendieck, A.: Torsion homologique et sections rationnelles. Seminaire Claude Chevalley, 3 (1958),

Expose. No. 5
17. Jannsen, U.: Mixed motives and algebraic K-theory. Lecture Notes in Mathematics, vol. 1400. Springer-

Verlag, New York (1990)
18. Konarski, J.: Decompositions of normal algebraic varieties determined by an action of a one-dimensional

torus. Bull. Acad. Pol. Sci. Sér. Sci. Math. Astron. Phys. 26(4), 295–300 (1978)
19. Renner, L.: Classification of semisimple varieties. J. Algebra 122(2), 275–287 (1989)
20. Renner, L.: Linear algebraic monoids. In: Encyclopaedia of Mathematical Sciences, vol. 134, pp. xii+246

(2005)
21. Renner, L.: The H -polynomial of a semisimple monoid. J. Algebra 319, 360–376 (2008)
22. Renner, L.: Rationally smooth algebraic monoids. Semigroup Forum 78, 384–395 (2009)
23. Rittatore, A.: Algebraic monoids and group embeddings. Transform. Groups 3(4), 375–396 (1998)
24. Rossmann, W.: Equivariant multiplicities on complex varieties. Astérisque 173–174, 313–330 (1989)
25. Springer, T.: Linear Algebraic Groups, 2nd edn. Birkhäuser Classics, Boston, pp. xiv+334 (1998)
26. Sumihiro, H.: Equivariant completion. J. Math. Kyoto Univ. 14, 1–28 (1974)
27. Timashev, D.: Homogeneous spaces and equivariant embeddings. In: Encyclopaedia of Mathematical

Sciences, vol. 138, pp. xxii+253 (2011)
28. Totaro, B.: Chow groups, Chow cohomology and linear varieties. Forum Math. Sigma 2, e17 (2014)
29. Voisin, C.: Chow rings, decomposition of the diagonal, and the topology of families. Princeton University

Press, Princeton (2014)

123


	Algebraic rational cells and equivariant intersection theory
	Abstract
	1 Introduction and motivation
	2 Preliminaries
	Conventions and notation
	2.1 The Bialynicki-Birula decomposition
	2.2 Review of equivariant Chow groups: localization theorem
	2.3 Nondegenerate fixed points and equivariant multiplicities
	2.4 Local study: some inequalities relating Chow groups and fixed point loci

	3 Algebraic rational cells
	4 mathbbQ-filtrable varieties and equivariant Chow groups
	5 Applications to embedding theory
	Further notation
	5.1 Group embeddings
	5.2 Algebraic monoids and algebraic rational cells
	5.3 mathbbQ-filtrable projective group embeddings

	6 Connections with topology: spherical varieties
	Acknowledgments
	References




