AN EXTENSION OF THE THEORY
OF FREDHOLM DETERMINANTS

by Davip RUELLE

Abstract. — Analytic functions are introduced, which are analogous to the Fredholm determinant, but may have
only finite radius of convergence. These functions are associated with operators of the form J- p{dw) L, where

Lo P(x) = pu(*). P *), O belongs to a space of Holder or C functions, @ is Hélder or C7, and ¢, is a
contractjon or a CT contraction. The results obtained extend earlier results by Haydn, Pollicott, Tangerman and
the author on zeta functions of expanding maps.

1. Assumptions and statement of results

The theory of Fredholm determinants (see for instance [10]) has been extended
by Grothendieck [5] and applies to linear operators )¢ in certain suitable classes. One
associates with ¢~ an entire analytic function d, called the Fredholm determinant,
such that

(1 = 22)7 1 =N (2) ]y ()

where A" is an entire analytic operator-valued function. In what follows we shall obtain
results of the same type. The radius of convergence of the * determinant > will possibly
be finite rather than infinite, but larger than the inverse of the spectral radius of 4.

The type of extension that we shall obtain concerns operators ¢ with a kernel
K(x, ») which is allowed to have 3-singularities of the type ¢(x) 8(y — ¢(x)), where ¢
and ¢ have certain smoothness properties and y is a contraction. Operators of this sort
arise in the theory of an expanding map f (or more gencrally of hyperbolic dynamical
systems), and the Fredholm determinants are then related (as we shall see) to dynamical
zeta functions which count the periodic points of £, with certain weights. It is desirable
to understand the analytic properties of the zcta function and Fredholm determinants
because they are closely related to the ergodic properties of the dynamical system defined
by f (see [13]). The hyperbolic case of contracting or expanding maps considered here
is that for which the most detailed results are known, but cxtensions to nonhyperbolic

situations are possible, as the work of Baladi and Keller [1] on one-dimensional systems
indicates.
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Let >0, 0<68< 1, and let X be a compact metric space. We denote by
C* = C*(X) the Banach space of (uniformly) «-Holder functions X - C with the usual
norm, We assume that VC X, ¢ : V — X and ¢ € CG* are given such that ¢ is a contraction:

d(bx, 99) < 0 d(x,y)
and ¢ has its support in V. A bounded linear operator .% on C* is then defined by
p(x).OPx) if xeV,

(£ @) = if x ¢V,

The operators #” which will interest us are integrals of operators of the form #:
(1.1) A = fp.(dco) £,

where .#,, is defined with V , 4, ¢, as above, and where y is a finite positive measure
(which we may take to be a probability measure). The following will be standing
assumptions:

(i) [u(do) || @q | < o
where || || is the norm in C*;

(i1) There is 8 > 0 such that, for all o, V, contains the 3-neighborhood of the sup-
port of o;

(iii) w =V, ., ¢, are measurable. (Using (ii), and possibly changing 3, we
may assume that there are only finitely many different V s, and that they are compact
subsets of X. We may take as measurability condition the assumption that @ >V,
(o, ) > (%), @,(x) arc Borel functions.)

We write
(1.2) Cn =fu(dw1) e p(doy) 9, (2(0)) o (Y, #(0)) « -+ P (Ga, - -+ Yo, (@),

where the integral extends to values of @, ..., ®, such that ¢, ¢, ... ¢, has a
fixed point, which is then necessarily unique, and which we denote by x(w). A zcta function
is then defined through the following formal power series
X0 zm
(1.3) {z) =exp X —C,.
m=11Mm
1.1. Theorem. — Let | A | denote the operator obtained when ¢, is replaced by | ¢, | in
the definition of ', and let e be the spectral radius* of | A |. The spectral radius of A s then

< €, and the part of the spectrum of XA~ contained in { X : | N | > 0% ¥ } consists of isolated eigen-
values of finite multiplicities. Furthermore, 1[(z) converges in

(1.4) {z:]2]0%F <1}

* The proof (section 2.5) shows that ¢P is also the spectral radius of | X" | taken with respect to the * uniform
norm || || .
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and ils zeros in this domain are precisely the inverses of the eigenvalues of A, with the same multi-
plicities. We may thus write

(1 — 247)7" = §(2) #(2)

where N is a holomorphic operator-valued function in (1.4).
The proof of this theorem is given in Section 2.

1.2. Remarks. — a) We see that 1/{(z) plays the role of a Fredholm determinant.
However, {(z) depends on the decomposition (1.1) and not just on the operator X'
We shall obtain a  truc” dcterminant in the differentiable case below.

b) Let E be a finite-dimensional «a-Hélder vector bundle over X (i.e., E is trivia-
lized by a finite atlas, and the transition betwcen charts uses matrix-valued a-Holder
functions). We assume that ¢, : E — E is an adjoint vector bundle map over ¢, for
every o (i.e., ¢ (x): E(¢, ) — E(x)). We can then define the operator X~ as before; it
now acts on the Banach space C§ of «-Hélder scctions of E. We also define

L= [lde,) ... p(do,) Tr @4 (#(6)) @upy (Vo (©) - - - 2y (Ysy - - - Y, ¥(®))

v

where Tr is the trace on E(x(w)).

Let | 9,(x)| be the norm of ¢,(x) for some metric on E, and | | the operator
on C* obtained by the replacement of ¢, by | ¢, | in the definition of J¢". Finally, let ¢
be the spectral radius of | %" |. It is easily seen from the proofs that, with these new
definitions, Theorem 1.1 remains true. [For a sharper result, let | ™ | be obtained by
the replacement of o, ... ¢, by | ¢, ... @, | In #™, and take

1 Y agrmt 1)
P=lim—logi|{o™||]
m

Theorem 1.3 below can similarly be extended to differentiable vector bundles. In
particular, this permits the treatment of the operators %™ corresponding to % but
acting on /-forms; see Corollary 1.5.

¢) Let r = (r, «) with integer 7> 0 and 0< a< 1. We denote by C" = C'(X)
the Banach spacc (with the usual norm) of functions X — C which have continuous
derivatives up to order 7, the 7-th derivative being uniformly a-Hoélder. We shall write
r>lifr>1,and 7| =7+

1.3. Theorem. — Let X be a smooth compact Riemann manifold. We make the
same assumptions as in Theorem 1.1, but with o, ¢, of class C, r> 1. We require that

J‘p.(dco) || 9o || < o0, where ||. || is now the C" norm, and let A act on C'. With these assumptions,

the part of the spectrum of A contained in {A: |\ |> 0171 6% } consists of isolated eigenvalues of
[inite multiplicities.

23
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Define tr X™ by
™ = [u(de)) ... pldo,) (det(l — Dy b, -+ $0)) !
Pon(¥(©)) Pap (Yo, #(@)) -+ @4, (do, - -+ bo, %(w))
(where D, § denotes the derivative of  at the fixed point x), and write
d(z) = exp — X Y wom,
m=1m
Then, d(2) converges in
(1.5) {z:]z|6l"1P< 1}
and its zeros there are precisely the inverses of the eigenvalues of X', with the same multiplicities.
We may therefore write
(1 — 22)7" = n(2)[d(2)

where n is a holomorphic operator-valued function in (1.5).
The proof of this theorem is given in Section 3.

1.4. Remarks. — a) Theorem 1.3 also holds if we take r = (0, «), « > 0, but assume
that the ¢, are differentiable. In that case z > {(z) d(z) is analytic and without zero
in (1.4).

b) The assumption that X is compact is for simplicity. It would suffice to assume
that U, V, and U, ¢, V, are contained in a compact subset of a finite-dimensional
(non-compact) manifold.

1.5. Corollary. — Under the conditions of Theorem 1.3, define an operator X" acting on
the space of ¢-forms of class C'~' on X by
A = [p(de) 29,
o(%).A(T;9).®(4, %) if xeV,,

where (ZD D) (x) = 0 £ xeV

Let also
tr o “m = [u(doy) .. p(do,) [det(l — Dy by, - -+ $0,)] 7
Tr, A (Do Yay -+ Yap) Pup(*(©)) Py (Y () - Py (Yasg 2+ Y, #(0))
where Tr, is the trace of operators in A (T,g X) and
d¥(z) = exp — E} Z tr o0,
m=11M
With these definitions H'® = A", d®(2) = d(z), and the spectral radius of H'® is < 6/ .
Furthermore, if ¢ > 1, the essential spectral radius of # is < 8171 +1=1 &% dO(2) converges in
{z:]z|BIrI+-1 P 1}

and its zeros there are precisely the inverses of the eigenvalues of X", with the same multiplicities.
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To obtain the corollary, we have to use the extension of Theorem 1.3 to vector
bundles (here the cotangent bundle) as explained in Remark 1.2 4). It is clear that the
spectral radius of ¥ is < 6/ ¢®. Note also that when ¢ > 1, the degree of differentia-
bility r has to be replaced by r — 1. From this, the corollary follows. (For the case
where r — 1< 1, use Remark 1.4 a).)

1.8. Corollary. — Under the conditions of Theorem 1.3, we may write
Ua) = M{a ()],
where ¢ ranges from O to dim X, so that the zeta function (1.3) is meromorphic in (1.5).

This follows from the identity
dim X
L= X (— Ditrogom
t=0
where ¥, was defined in (1.2).

1.7. Corollary. — a) Let A"y and Ay be operators on C™ and C'* defined by the same
w(dw), V, and §,, @ of class G, with ry > ry. Then, in the domain,

{r:|n]|>0lnsl Py

the operators Ay and Ay have the same eigenvalues with the same multiplicities and the same gene-
ralized eigenspaces (whick consist of C functions). If &, @, are C®, it therefore makes sense
to speak of the eigenvalues and eigenfunctions of A acting on G, and d(z) clearly is an entire
Junction®.

b) If | n|> 67V e®, the elements of the generalized eigenspace of the adjoint X™* of A
corresponding to the eigenvalue \ are distributions in the sense of Schwartz, of order s for all
P —log|Aj

>
’ | log 6|

To prove a) note that the generalized eigenspace of ", maps injectively by inclusion
in the generalized eigenspace of 2, but both have the same dimension given by the
multiplicity of a zero of d(z). From a), one derives b) easily.

1.8. Expanding maps. — The case whcre the ¢, are local inverses of a map f: X - X
has relations to statistical mechanics and applications to Axiom A dynamical systems and
hyperbolic Julia sets. Various aspects of this case have been discussed by Ruelle [12],
Pollicott [9], Tangerman [15], and Haydn [6], and a general review has been given
in [13]. Note that the conjectures A and B of [13] are proved in the present paper. The
real analytic situation, not considered here, has been discussed in Ruelle [11], Mayer [7],
and Fried [3], and leads to Fredholm determinants in the sense of Grothendieck [5].

* It would be interesting to estimate the growth of d(2) at infinity.
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Note that an erroneous statement about the growth of determinants in [4] and [11] has

been corrected by Fried [3]. For piecewise monotone one-dimensional maps see Baladi
and Keller [1].

The case of an expanding map f is analysed by using a Markov partition (for
which, see Sinai [14] and Bowen [2]). In the more general situation discussed here, there
are no Markov partitions, Our proofs will make use, instead, of suitable coverings of X
by balls. The present treatment is completely self-contained, but reference to [13] is
interesting in providing for instance an interpretation of the spectral radius ¢ as expo-
nential of a topological pressure.

1.9. Other examples. — A class of examples where the results of the present paper
apply is described as follows. Let X be a compact manifold, X its universal cover, and
n: X — X the canonical map. We assume that § : X - X is a contraction, such that

d(x, 39) < 0 d(x, ») and that 3: X — C is of class C" and suitably tending to zero at
infinity. Define

(H'D) (x) = Zyen1q 8(9) D(wd).

It is not hard to see that ¢ is of the form discussed above, and we have
m

W) =exp B SNy, 80) - 8(00) B0

where the second sum is over m-tuples such that
1=, ey Dy =W, T = TP
If X = R/Z and $y = 0y, then d¥(z) = d(02), so that {(z) = d(82))d(z).

2. Proof of Theorem 1.1

2.1. Coverings of X by balls. — The following construction involves the constants 6, §
of Section 1 and a constant x which will be selected later; for the moment we only assume
that 0 < k< 1. Let (x,);cy be a finite (x/2) 8(1 — 0)-dense family of points of X. In
particular, the balls

X, ={x:d(x,x) <382}

cover X. For each j, o with X,CV,_ we choose measurably u(j, &) such that
d($y %55 %us, ) < (€/2) 3(1 — 0)

and therefore
bo X5 C Xy, 0

For each integer m > 0 we shall now define a finite set J*™ and a family (X(4)), ¢ ym
of open balls in X. We choose 6’ such that 8 < 6’ < 1, and we shall define J* and (X(a))
by induction on m.
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First, J' = {(i) : 1 €1}, and we let X? = X be as before the balls of radius /2
and centers xf = x; forming a (x/2) 3(1 — 0)-dense set in X. For m>1, let
similarly (X7) be a finite family of open balls of radius 80'"/2 and centers xJ
forming a (x/2) 3(6’ — 6) 6’ !-dense set in X. We put

J™ ={@ .., kt):(§, ..., k) eJ™ P and dEFHaPT) <™,
Choose now x = (1 —8)/2. If a = (4, ..., %,¢) €J™ we have XPC X" and by
induction

XpCcXr-ic...CX,.
We shall write x(a) = &7, X(a) = XP. We define p: J™ — J™~1 by

P, .. R = (I, ..., k).

Given. b = (¢, ..., k) eJ™ " and o such that X,CV,, we define

0(b, w) = (i, ..., k,¢) by
i =u(t, w),

(G, ..., k) =0(ph, ®) I m>1,
and ¢ is chosen measurably such that

(b, xp ™7, 27) < (x/2) 3(0" — 0) 6"
We have thus

(), ©) = u(i’, @),

po(b, o) = v(ph, ) for m > 1,

b, X(8) € X(2(8, @))-

2.2. Lemma. — We have v(b, ) € J™.

We write b = (¢, ...,j', k). We only have to check that
AP, AP ) < A, B ) F Ay 50 Yo 23D 4 d{dy 23S Y
< (x/2) 8(6' — 6) 6™~ + Bk 30'™ "% 4 (x/2) 3(6' — 6) 6'™ 2
< k30 —0)6™ 2 4 300’2 = k30’1

for m> 1, and a similar inequality for m = 1.

2.3. The operator #. — We define
1 if X;,CV, and ¢ = u(j, ),

Tl = .
#(©) 0 otherwise,

Let @,, (A'®), denote the restrictions of ®, #'® to X, and X respectively. We may
then write

(2.1) (D), (x) = Z, [ 1(d0) 74(0) @u(x) B,(d, 2).
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If oy X, is the disjoint sum of the X;, we may write
D, c*(X) = C(EX))

and define an operator .4 on that space by
(AD), (x) = T, [ u(do) 74(w) @u(*) Db, ).

This is the same formula as (2.1), but the @, may now be chosen independently on the

various X,. If we identify C*(X) with a subspace of ,C%X,), we see that the res-
triction of 4 to C*(X) is ). Note that

(2.2) (MmO, (1) = By, o, [ulden) ... wldoy) w, (o) - Ty g(or)
q)mm(x) e (Po)l(q’w, b 4’@,,, x) (Dlo(q)ah s q’m. x)'

2.4, The operators M#'™. — For m > 1 we define an operator

M D, ¢ g C(X(a) - D e,0%(X)
by the formula

(2.3) (H™D), (x) = [(dey) ... p(do,)
Pioy(%) Py (Vg %) oo+ Py (bsg + o+ Py ) Pogs, 3 (b +«+ Y,y %)

where o(J, ®) = 0(o(... 2((J), ©,), -..) ®1). Define

Q™: D,c; C(X) > B, e sm C(X(a))
as the restriction operator such that

Q™ @), = @, | X(a),
when p™a = (7). In view of (2.2), (2.3), we have

M QI — ™,
We shall also need the operator

T : B, yim C*(X(a)) » D sm C*(X())

such that
(T™ @), = ®(x(a)).

We define the norm on D, C¥X,) by

(D4 _ (Di
101 = maxc (s, 1049 | + sup,., 2D =)
and similarly for D, jm C*(X(a)).

Note that, with these norms,
Q™i<1, ||T™| <L
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2.5. Proposition. — a) The spectral radius of M (and thus X ) is < the spectral radius e®
of 1.
b) Given e > 0, we have

(2.4) || A — A T™ || < const(0"® T+
and therefore the essential spectral radius of M (and thus X°) is < 0% ¢F.

Using (2.2) we have
[(A" D) (¥) — (4" D) ()|
457)" )
<A™ {lo | @ ]| 4 const Z {|.4*7 [lo || 4™ lo || © lo,

so that
Tim (|| () = lim (]| ™ ]}
< lim (|[ |4 ™))™ = lim (][ |4 ™1 {])*™
= lim (|| |2 |™ 1[|p)"™ = lim (| |2 ["{[)*™,

and a) follows from the spectral radius formula.
Using the definition (2.3) and the estimate ||® — T™ @ || < [|D|] (36'™/2)%,
we have also
(A1 — T™) D) (x) — (A" — T™) D) (N
&z 7)° )
< | Ao || @ [|(38™)* + const X C(k). || @] (36"/2)"

where the const comes from the Hélder norm of ¢ and G() is estimated, taking absolute
values, by
CE) < |-#F " Llo- |1 | A "7* 1o

1o F=2 A1 15

VANa

From this the estimate (2.4) follows, and &) results from Nussbaum’s essential spectral
radius formula [8].

2.8. The operators M, and M\™. — If k> 0, we shall define an operator .4, on
69(«,. cer b C“(X«, N...N X@

where the sum extends over the set I, of (k8 + 1)-tuples i = (3, ..., %) such that
< ...<ig and X, n...NnX, +0. Let u(j, o) = (2o, ©), ..., 8(J,»)) and

1 (or —1) if X,,...,X, CV, and u(j,w) is an even
Ty(w) = (or odd) permutation of i,

0 otherwise.
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We write then
(M, 0)y () = Z, [ u(do) 7y(0) @u(%) By(d, #).
Let now

Do . ap CX(X(ag) N ... N X(a))

be the sum over those (¥ 4- 1)-tuples of elements of J*™ such that X(ag) N ... NX(q,) + »
and p™ay, = (i), . .-, p™ @, = (3,), with i, < ... <1,. We define then

QP: D, . WC XN nX) =B L, C(X(a) ... 0 X(a)

so that QfY is the restriction from X; N ... N X, to X(a) N ... N X(q).
We also define

A DG (X(ag) Mo nX(g) > Dy, CH(X N X))

0
by
(A D)y () = [w(doy) ... 1(doy) 9o, (®) -+ @uy(Yuy - -+ Py #)

(sq)(ao ..... a/,)(“pwl v qlmm x))’
where ¢, and g, ..., g, € J™ are determined as follows. If p™ v(jp, @), . .., p™0(f;, ®)
are not all different, write ¢ = 0. Otherwise, let = be the permutation which arranges thesc
indices in increasing order, and write ¢ = sign =, (49, . . ., &) = ®((Jg, @), - . ., 0(Ji, ©))-

Finally, we choose an arbitrary point* x(a) € X(a,) N ... N X(g,) for every
(k 4 1)-tuple a = (a, ..., a,) and define an operator T{™ on

D C*X(a)) N ... " X(a)) by (T™d), = O(x(a)).

(ag, - ... ap)
With these definitions we have
QP II< 1, T ]< 1
M QP = 7.

Note that for £ = 0 the operators .#,, Q'™, .#'™ reduce to .4, Q™ 4™,
P k k k s >

2.7. Proposition. — a) The spectral radius of M, is < €&,
b) Given £> 0, we have

|| MM — 4™ T || < const(*eF*e)m
and therefore the essential spectral radius of M is < 0% ¢F.
The proof is essentially the same as that of Proposition 2.5.
2.8. Lemma. — Suppose that ¢, ... b, has a fixed point x(w) € support ¢, . Then
(2.9) Zk(_ 1)* Zlo, vl €Y Tl _l(mm) 1'1,11(‘1)2) Tlllo(ml) = L

* When % = 0, take x(ay) to be the center of X(ay) as before.
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LetI"={;: X; eV, }and «:I" —1I be the map such that there exist ¢,, ..., 1
for which

m—1

Tﬂm-x(mm) o Tap(og) = L

By assumption I* + o, and clearly «I*C I*. Let T be the set of all a-periodic points in I,
and & the restriction of « to 1. Then T # @ and & is a permutation of 1. Let & consist
of ¢ (disjoint) cycles. Then, the non-zero terms of the left-hand side of (2.5) are those
for which i, consists of the elements of £ cycles of &, with ¢ > 1. The value of such a term
is thus
(_ l)k (_ 1)k+1—l — (__ 1)l+1
and the sum is
— )t
2yppa(— 1)’“‘(6—)‘— =1

c!
2.9. Corollary. — Write
(2.6) G = D oy | #(d00) - p(doy,)

(Tt 11 (Om) P (@) + oo (T 1p(01) Py (Vo - - - Yooy, %(@)))-
Then
U = Zi(— 1)} Ly

2.10. Proposition. — The power series

d(z) = exp — g St

m
m ™
converges for | z| 0% ¢® < 1, and its zeros in this domain are the inverses of the eigenvalues of M,
with the same multiplicities.

Before proving this result, we note the following consequence.
2.11. Corollary. — The power series

1/¢(z) = exp — Z ——C

m=1 M

converges for | z | 0% e¥ < 1, and its zeros in this domain are the inverses of the eigenvalues of A,
with the same multiplicities.

Corollary 2.9 yields
1/8(2) = Tz o [d(2)] .
Corollary 2. 11 therefore results from Proposition 2. 10 if we can prove that, for | A | > 6% ¢,
(2.7) m() = Lo (— D m(3)



186 DAVID RUELLE

where m(A) and m, () are the multiplicities of A as eigenvalues of £~ and .4, respectively.
To derive this result, let

G = EB(&.,. ip CXyn o N X))
and define coboundary operators o, : C, — G, in the usual manner (ie.,
k+1

l -~ . o .
(% D)y, ... 4400 =,§0(— D @ % . iew | Xiy)- The existence of a G partition of
unity associated with the covering (X;) ensures that the following is an exact sequence:

0>C*X) > C2C »... »CEC,— ...,

where B is the natural injection and G, = 0 for sufficiently large 2. We also have
A = 4,8, 0 My = M1 %

1 1 d
Let P, = §z dzg (resp. P,, = 9 § zj) where the integral is over a small
— T

2mi r — M,
circle centered at A. Then, P, (resp. P,;) is a linear projection of CG*(X) (resp. G,) onto
the generalized eigenspace of & (resp. .#,) corresponding to A. Furthermore

Py B = 8Py, Piv1 0% = % Py
We therefore have an exact sequence

0 >imP, >imP,, 3imP,, ... >0
so that

dimim P, = X5, (— 1)*dim im P,
which is precisely (2.7).

2.12. Proof of Theorem 1.1, — Theorem 1.1 follows from Proposition 2.7 and
Corollary 2.11. We are thus left with Proposition 2.10 to prove.

2.13. Proof of Proposition 2.10. — There is a finite number of eigenvalues A, of A,
such that | A; | > 0'* %, If m, is the multiplicity of A;, we may write
Zymy(0)™ = ;07 By 0y(Syy) = 2y 0 (AT S,)
where (o,,) and (S,,) are dual bases of the generalized eigenspaces of .4} and .4, res-
pectively for the eigenvalue A;. Therefore
(2.8) 2, m0 )™ = By o (AW — AP TP QP S,) + By op(A Ciy)
where G, has the constant value S, (x(a)) on X(gy) N ... N X(a).
Using Proposition 2.7 we have
(2.9) | 2y, 05 (A — 4™ T QI S, )| < const(8™ P He)™,
Let y, be the characteristic function of X{a,) N ... N X{(a,) as an element of
Y, C*(X(ap) N ... N X(a)).

(ag, ..., ag)
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Then
(2.10) Sy (M Cp) = By, B, S, (x(8)) 0,y ( A 3,)
= 2,((1 — 2) A" 1) (x(a))
where & is the projection corresponding to the part of the spectrum of .4, in
{nA:|n]<0*F )
The right-hand side of (2.10) is the sum of two terms. The first can be written as
(A 1a) (x(m))
= z“(io, L EXR Zao:p"'ao==io e Eag:»’"ak=ikf“'(dwl) R p'(d(’*)m)
Eﬂ (Sign TC) 8((“(}: A ak): Tt(l)((io), _(*—))’ A v((ik)a a)))
me(x(a)) ¢t prl(“pmz te "})wm x(a))
= Zio, ...,4,,,_151,:".9-(0"01) o pldoy,) Ty, (04) o T (@) T 5 (0)

Pu (3 ([ 000, ©)])) - -+ 90y (Vg - -+ Yo, %(] 2(g, @)

where | (i, @)| is the permutation of (2(4y, @), ..., (4, ®)) such that p™|v(i, )| = i.
If we replace in the right-hand side x(| 2(i,, ®)|) by the fixed point x(w) of ¢, ... ¢, ,
the error is bounded by const(6'* ¢f **)™ (using the same sort of estimates as in the proof
of Proposition 2.5). Therefore, by the definition (2.6) of ¢,,, we have

(2.11) | Zy (A x) (2(a)) — €| < const(0* eFHE)™,
We are left with the study of
(P4 1) (x(a)).
Remember that the sum is over the set Ji™ of those a = (ag, ..., ) € (J™)*! such
that p™a = (iy, ..., 1) with 4, < ... <1g,. Note that, if 0 << m, we may write
T, e o (PA 1) (247 2)) = Ty g (PoAT™ A 1) (x(B))
(lump together those a such that p”~‘a = b). Therefore
Z(PAD 1) (2(8) — Tue (PAT 1) (x(3)

m

= X B0 1) (4771 2) — (PAP ) (0 )))

m

=z Dy 0 (PAR~" ML 1) (2(B)) — (PMT™' M ) (x(£D))).

From this we get, using (2.13) below,
(2.12) | 2,(ZA4 1) (x(a))| < const || P4 ||

m
+ const T || AT |- Tag o || A0 1] d((B), x(pB))°

< const [(eru eP+s)m + z (Bra eP+s)m—l(EP+c)l er[a]
{=1

< const m(* eF T5)™,
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PUtting tOgCther (28)> (29): (210): (211)’ (212) we obtain
| Ei mi()‘j)m ~ Lok I < const m(6 eP+t)m
and thercfore

log(d()TL(1 — A 2)™ = B —(Sym(a)" — L)

converges for | z | 6% ¢f+¢ < 1, proving Proposition 2. 10.
In deriving (2.12) we have used the incquality

(2.13) Zye o || M vy || € const(e )
which we shall now prove.

Given B> 0 we set 9,3 = | 9,| 4- B || ¢, || In the definition—Section 2.6—of
M if we replacc ¢, by ¢, and suppress the factor € = 4 1 we obtain an opetaror M,‘fg:

(MA®), (x) = [w(doy) ... p(do)
Parp(¥) -+ Paya(Pay -« Yoy ¥) Pugg, ..., (b - -+ by ¥)
where (ag, - .., ) is a permutation of (v( jy, ®), - .., 2(J;, ®)). In particular
A s 1o < 1 MG s Mo

If v, yeX; Nn... nX,, we also have

ig?

(AL 1)y (7) — (AL 1)y ()] < f w(dey) .. . u(day)

[ q’m[('x) M (‘pml(q"mz ce (‘pm[ x) - q)m[(.y) M (Pml(q)ma Lt 4’0{)’)'
4

< i§1 y’(d(")l) v (.L(d())k) cpm( B(x) e Qm;,lﬁ(q)mh, e 4’0[ x)

l Qm,‘("pmiﬂ s "pwl x) - (Pm,-(“pm,'” L q)m[.y)l
(pm,'_lﬂ(q)m; e “pm[.},) e (Pmlﬁ(qu)z e (pm[.y)‘
where the integrals are restricted to those (o, ..., ) for which b is a permutation
of (2(jg, @), - -+, 0(Jp, ®)). We may write
I cpm,'(q)miu e “pw( x) - cpw,'(‘pw;,l T "pm[.y)l
< Il a1 (6 d(5,))% < CONSE Doyl - g ) 6%~ (5, )"
and similarly
(2.14 PuysWory -+ Yo 2) < Pua,a¥rsy -+ Yy #) (1 + const 0%¢=7).
Therefore
[(AY )5 (¥) — (A 1)y ()]
d(x, »°

< const || Mg x |lo

hence
(2.15) | ALy 1] < CB) £ || MB 1 [l
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From (2.14) we also obtain
(M 2); (9) < G'(8) (M )y (%)
where C'(B) does not depend on ¢. Therefore
Zyeap | MG llo< C'(B) Zysup, |(Mg 1), (x)] < C"(8) || Mig L [lo
and with (2.15) this gives
Zhean || A 11l < GB) C7(B) € || MG 1]lg< C7'(B) 5O+’

where ¢ is the spectral radius with respect to the || ||, norm of the operator .4,

obtained if we replace @, by .5 in the definition of .#. Note that £ is close to | # |
for § small:

| #e— | lo< B [0do) || 0 I

Using the upper semicontinuity of the spectral radius we may thus choose 8 such that

Syeat || #0311 < C(B) (2

i.e., (2.13) holds as announced.

3. Proof of Theorem 1.3

3.1. The essential spectral radius of #". — We shall follow the proof of Theorem 1.1
in Section 2, and notc what changes have to be performed to dcal with the diffcrentiable
situation.

First of all, we make a choice of charts for the balls X, which will thus be identified
in what follows with subsets of Euclidean space. We may assume that the balls X; have
small radii and that the Riemann metric is closely approximated by the Euclidean
metric. Confusion between the two metrics is then inconsequential. The linear structures
which we have chosen will allow us to define Taylor expansions.

Replacing C* by C" everywhere, we define .4, 4™, Q™ #,, A", QP as
before. The operator T on €D, . ym C’(X(a)) is now dcfined by

(T*™ @), = Taylor expansion of order r of @ at x(a)
and similarly for T{™. We have then
|® — T™® ||, < const || @ |] 6™,
Following the arguments of Sections 2.5, 2.6, 2.7 with obvious changes, we get

(3.1) || A — A T || < const(B17! 2 +e)m

and therefore the essential spectral radius of ., is < 68/"!¢®. In particular, the same
estimate holds for the essential spectral radii of .# and X .
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3.2. Proposition. — Define

Tr AP = [u(doy) ... p(do,) (det(l — Dug b, - - - Yo,))
(Tt 1 (Om) P (® (@) + -+ (1 (92) P Yy - - Y #(@)))-

Then, the power series

d®(2) = exp — E —Tr.,l"'

m=1

converges for | z | 0171 ¥ < 1, and its zeros in this domain are the inverses of the eigenvalues of M,
with the same multiplicities.

Before proving this result, which corresponds to Proposition 2.10, we note that it
allows us complete the demonstration of Theorem 1.3. We have indeed

d(z) = Hk?o (dlim(z))(—l)k

by Lemma 2.8. The proof of Corollary 2. 11 again applies, and yields that the zeros of d(z)
in (1.5) are precisely the inverses of the eigenvalues of 7, with the same multiplicities.

3.3. Remark. — Before embarking in the demonstration of Proposition 3.2, we
n
prove a necessary estimate. Let n = (n;, ..., fy,x) be a multi-index, P the corres-
x
ponding derivative, and n! = n,! ... ny, x!. Weassumethat [n| ==y 4 ... + fgx< 7.
Define then

By = S0 o f w(der) - . p(doy) Ty (0n) - T (©2)
al

%™ ((Pm,,,( ) . q)ml(\p(oz v q)mm x) (‘pml e ‘pw,,,x - El(iO’ 6)),.) |z=E,((o,'¢B)

and assume that &, € X(v(f, w)) for 2 =1,2,3. Replace in E); the expression

——(...) by its Taylor expansion around £4(7,, ®), keeping derivatives of total order u
Py y Yy p 0 pmg p

to 7, and then put x = £(iy, ©). The error thus made is bounded by
COnSt(Q'm) --|{ni (eP-Hz)m (erm)lnl — const(e"*" el|r|)m.
Define now

EE = zn:|”|<f E(") i.e.,

(5.2 e = Zogaiar D, ot B00) - B(d0) iy (0) - Ty)

1 o7 . —
n| :x (q"wm( ) - cpml(lpwz v “I’mmx) (q)ml Tt l'l)mmx - E(’O’w))”)lz-i(h,a)'
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Introducing limited Taylor expansions as explained above in each term of E; , we simply
obtain Eg . Therefore

(3.3) | B, — Eg, | < const(ePt0'Irl)m,

3.4. Proof of Proposition 3.2. — We shall prove the proposition for (= 4)
rather than .#,. (This simplifies notation, and the general case is easily recovered by
reference to Section 2.13.)

There is now a finite number of eigenvalues A; of 4 such that |a,|> 6’171,
Let m, be the multiplicity of A, and (s;,), (S;,) be dual bases of the generalized eigen-
spaces of A" and .# respectively for the eigenvalue ;. Then
(3 '4') Ei m,(l,)"‘ = ZIY o',-.f(.,l’” SIY)

— Zi? c,,{((l("‘) — M T(m)) Q-(m) S”) + zﬁ O',Y(J('") CIY)

where C,, | X(a) is the Taylor expansion to order r of S, at x(a). Note that (3. 1) gives
(3.5) | Z,, 00y ((A™ — ™ T™) Q™ S, ) < const(6'7] F+e)m,

Let y, denote the characteristic function of X(a) and write 8¢ for the derivative of order

n= (ny, ..., Ngnx) cvaluated at £&. We have

1
(36) zh Gjy(j(m) CH) = ZJY za zn:lnls r F a:(a) Sh GI*{("I(M)(( ¢ = x(a))" X.a))

= B, Tustair g Bal(l — 2)A™(+ — 5@)" 1)

where & is the projection corresponding to the part of the spectrum of 4 in
{A:|r]|< 0’171 P} Further,

(5.7) %, o A (- — 5(@)" 1)
= 5.3, [uldoy ... ulday) (s, o0" 0, )

_a_‘ (q’m,(x) et CP‘.,I(%, b q}“’m x) (4’m1 e 4)‘%: x — x(a))“) |z-=(¢)

ox"

= Ty g [ B - ) Ty (@0) - (o)
1 9

» ;_! 5;,; (Qm,,(x) Tt q)ml(q)w, s "pm- x)

(4’«.,, cee %,,, x — x(0(ip, ®)))") Iz-z(ouo.an
= EEl
where we have used the notation (3.2) with (i, @) = x(v(3y, ©)). If we choose
Eyliy, @) = #(@), we get
(3.8) | Eg, — Eg, | < const(0’ 7! £+ eym
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in view of (3.3). Furthermore, since x() is a fixed point of ¢,, ... ¢, ,

ey = By | 001 - 8(d0) T (00) - - Tygl) 1
‘Pwm(x(a)) v q’ml(q)w, s q"m,,, x(a)) 2»:I»ISr ;l_! ‘Fn'

where ¥, is « polynomial of order | n| in the elements of the matrix D,g)({,, - - - $o_)
of derivatives at x(w), and X¥,/n! is invariant under linear changes of coordinates.
It is easily recognized that ¥, /n! is the development of (det(1 — D,z I N
to order r (take D to be in Jordan normal form). Therefore

(3.9) | Bg, — tr 4™ | < const(67+! 5 +5)™,
From (3.7), (3.8), (3.9) we get

(3.10) Z 2, = a:(.,y.«‘-"’(( — %(a))* 3,) — tr A™ | < const(0'171 Fte)m,

There remains to estimate

1
EasE»:lﬂlSr al z(a)ga"l(m(( — x(a))" 2,)-

Note that, if 0< /< m, we may write
1
Toesm X, = Oyt gy PA™((- — 2(p™ " )" %)

1
= zbea"’ znﬁ Oz PM" MO — x(8))" %)
Thus
1
"l Ota) PM™((+ —x(a))" %) — Zielz a"ﬂj’"((-—x‘)”xi)

Eae J(M)E n ' x5
— é‘l 20 2, % (@2, PA™ O+ — ()" x,)
— Oiopy PM™E MO((- — %(p]))" 1))

The absolute value of the right-hand side can be estimated in terms of Taylor expansions
(as in Remark 3.3). Using also (3.12) below, we get a bound

i 1
const lZ PIETID — d(x(), x(pb))Ir1=1n!
=1 M
| 2= || [| A — 5(8))" 2

< const Z 2, (6")1’1 Lol (grIrl 2reym—2 (P+eyl (getyinl

= const m(6’!"! eP“)"'.
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Therefore
1
(3 11) Za En ,7 a:(a) gj(m)((, — x(a))n Xa) < const m(er|r| eP+:)m.

1]

From (3.4), (3.5), (3.6), (3.10), (3.11) we conclude that
| 2;m;(A;)™ — tr A™| < const m(6'I7} FHe)m,

Therefore
log(d? (AL — %, %) = % = (Tm,0)" — r.m
me=1

converges for | z| 617! &+ < 1, proving Proposition 3.2.
We have used the inequality

(3.12) Ty gt || AO((- — x(8))" x, || < const(eF %) ()1
which is proved like (2.13).
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