
A N  EXTENSION OF THE THEORY 

OF FREDHOLM DETERMINANTS 

by DAVID RUELLE 

Abstract. - -  Analytic functions are introduced, which are analogous to the Fredholm determinant, but may have 

only finite radius of convergence. These functions are associated with operators of the form ]* ~z(dc0) -~co, where 

. ~ ' ~ ( x )  = ~po~(x).~(~bo~x), ~ belongs to a space of H61der or C r functions, ~o~ is H61der or C r, and ~co is a 
contraction or a C r contraction. The results obtained extend earlier results by Haydn, Pollicott, Tangerman and 
the author on zeta functions of expanding maps. 

1. A s s u m p t i o n s  and s t a t e m e n t  o f  resu l t s  

T h e  theory  of  F redho lm de terminants  (see for instance [1O]) has been extended 

by Gro thend ieck  [5] and  applies to l inear  operators  ~ in cer ta in  suitable classes. One  

associates with ~U an ent ire  analyt ic  funct ion d~, called the Fred.holm de te rminant ,  

such that  

( 1  - -  zz, ' ,~) - t  = . i V ' ( z ) l d x ( z  ) 

where.A/" is an entire analyt ic  opera tor -va lued  function.  In  what  follows we shall obta in  

results of  the same type.  The  radius of  convergence of  the " de te rminan t  " will possibly 

be finite ra the r  than  infinite, but  larger than  the inverse of  the spectral  radius o f  ~r 

T h e  type of  extension that  we shall obta in  concerns operators  ~ with a kernel  

K( x , y )  which is al lowed to have  ~-singularities of  the type q~(x) 8 (y  --  +(x)), where 

and  ~ have  certain smoothness propert ies  and  ~ is a contract ion.  Opera tors  of  this sort 

arise in the theory  o f  an expanding map  f (or more  general ly o f  hyperbol ic  dynamica l  

systems), and  the F redho lm de te rminants  ar~ then re la ted (as we shall see) to dynamica l  

zeta functions which coun t  the periodic points o f f ,  with cer ta in  weights. I t  is desirable 

to unders tand  the analyt ic  propert ies  of  the zeta funct ion and  F redho lm de terminants  

because they are closely related to the ergodic propert ies  of  the dynamica l  system defined 

by f (see [13]). T h e  hyperbol ic  case of  cont rac t ing  or expanding maps considered here  

is tha t  for which the most detai led results are known,  bu t  extensions to non_hyperbolic 

situations are possible, as the work of  Baladi and  Kel ler  [1] on one-dimensional  systems 

indicates. 
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Let  ~ >  0, 0 <  0 < 1, and let X be a compac t  metric space. We denote  by 
C ~ = C~(X) the Banach space of  (uniformly) ~-H61der functions X ---> C with the usual 
norm.  We assume that V C X, ~b : V ---> X and q~ ~ C ~ are given such that  + is a contraction:  

d( x, <<. o d(x,y) 

and  ~ has its suppor t  in V. A bounded  linear opera tor  5a on C" is then defined by  

l q~(x).O(+x) if x EV,  
(oLd~ (x) = 0 i f x C V .  

The  operators  ~ which will interest us are integrals of  operators of  the form .LP: 

(1.1) ~ = f~(do~) *~q'o 

where  .oqr is defined with V,~, qb,o, q~,o as above,  and where ~z is a finite positive measure 
(which we may  take to be a probabi l i ty  measure).  The  following will be standing 

assumptions: 

(i) f~(d~o) II ~o II < ~ 

where  II II is the norm in C ' ;  
( i i )Tkere is $ > 0 such that,  for all co, Vo, contains the 3-neighborhood of  the sup- 

por t  o f  q~o,; 
(iii) co ~--~V,~, +o, ~0,o are measurable.  (Using (ii), and  possibly changing 3, we 

may  assume that there are only finitely many  different V~'s, and that they are compac t  
subsets of  X. We may take as measurabi l i ty  condit ion the assumption that  o~ ~ V,o , 
(~, x) v.-+ +,o(x), q~,~(x) are Borel functions.) 

We write 

(1.2) ~,, = fEz(de01) . . .  or(d%,) ~O,m(X(~)) ~,~m_,(+,omX(~O)) . . .  ~'~,(+'~2"'" +'~ x(G))'  

where the integral extends to values of  ox, . . . ,  o , ,  such that  +,~ + ~ . . .  +,o,, has a 
fixed point,  which is then necessarily unique,  and which we denote  by x(G). A zeta function 
is then defined through the following formal power  series 

~o Zm 

(1.3)  ~(z) = e x p  Z - - ~ , , .  
m = l  m 

1.1.  Theorem. - -  Let t a~g'l denote the operator obtained when ~,~ is replaced by ] q~,~ t in 
the definition of  X' ,  and let e ~ be the spectral radius* of [.9U [. The spectral radius of ~U is then 
~< e P, and the part of  the spectrum of X" contained in { X : ] X ] > 0 ~ e e ) consists of isolated eigen- 
values of finite multiplicities. Furthermore, 1/~(z) converges in 

(1.4)  { z : l z [ O ~ e V <  1} 

* T h e  p roo f  (section 2.5)  shows that  e P is also the spectral  radius of  [ ,xr" [ taken wi th  respect to t h e "  uni form " 
norm I I I I �9 
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and its zeros in this domain are precisely the inverses o f  the eigenvalues of  ~ ,  with the same multi- 
plidties. We may thus write 

( 1  - = 

where .A/" is a holomorphic operator-valued function in (1.4) .  

The  p roo f  of  this theorem is given in Section 2. 

1 .2 .  Remarks. - -  a) We see that 1/~(z) plays the role of  a Fredholm determinant .  

However ,  ~(z) depends  on the decomposi t ion (1.1) and not  just  on the operator  ~ .  
We shall obta in  a " true " de te rminant  in the differentiable case below. 

b) Let  E be a finite-dimensional e-H61der vector  bundle  over X (i.e., E is trivia- 
lized by a finite atlas, and the transition between charts uses matr ix-valued e-H61der 
functions). We  assume that  q% : E -+ E is an adjoint  vector  bundle  map  over d/,~ for 
every co (i.e., q%(x): E(+~, x) ~ E(x)). We can then define the operator  ~{" as before; it 
now acts on the Banach space C~ of e-H61der sections of  E. We also define 

~m = f~t(dc~ [x(dco,~)Tr c2om(x(~))%,m_~(+~mX(~O)).., c~,~x(d/o.., d?,omx(co)) 

where  Tr  is the trace on E(x(~)) .  
Let  [ r l be the norm of  p~(x) for some metric on E, and  I.~F I the opera tor  

on C ~ obta ined  by  the replacement  of  q% by I q~ I in the definition of  .~T'. Finally, let e r 
be the spectral radius of  I~/" ]. I t  is easily seen from the proofs that, with these new 
definitions, Theo rem 1.1 remains true. [For a sharper result, let [.YC"* [ be ob ta ined  by 

the replacement  of  q~'~m "" " q~'~l by I q%,, " '"  ~'~1 I in ~ " ,  and take 

P = lim 1 l o g  ]I]JT"'~]II.] 
m 

Theorem 1.3 below can similarly be extended to differentiable vector bundles. In 
part icular ,  this permits the t rea tment  of  the operators  jg-ct) corresponding to .;U but  

acting on g-forms; see Corol lary 1.5. 
c) Let  r =  (r ,a)  with integer r/> 0 and  0~< a ~  1. W e  denote  by C r = C ' (X)  

the Banach space (with the usual norm) of  functions X ~ C which have continuous 
derivatives up  to order  r, the r-th derivative being uniformly a-H61der. We shall write 

r~> 1 ifr~> 1, and  I r l  = r-~- ~. 

1 .3 .  Theorem. - -  Let X be a smooth compact Riemann manifold. We make the 
same assumptions as in Theorem 1.1, but with %,, +,~ of  class C', r >t 1.  We require that 

f ~(do~) II %, II < 0% where I[" ][ is now the C" norm, and let ~g" act on C r. With these assumptions, 

the part of  the spectrum of  Og" contained in { X : ] X I > 01" I e P } consists o f  #olated eigenvalues of  

finite multiplicities. 
23 
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Define tr 3U "~ by 

tr.,~g"~ = f~t(d~x) . . .  ~(d~, , ) (de t (1  --D=r +,~x " ' "  t~,~,,)) -~ 

~o.(x(~)) ~=._,(+~. x(~)) . . .  a,~(+~, . . .  + , ~ ,  x(~)) 

(where D,  + denotes the derivative of  d/ at the fixed point x),  and write 
oo Zra 

d(z) = exp - -  Z - - t r o g  "'~. 
m = l  m 

Then, d(z) converges in 

(1.5) {z:lz I 01"VeP< 1 } 

and its zeros there are precisely the inverses o f  the eigenvalues o f  .~g', with the same multiplicities. 
We may therefore write 

( 1  - z ~ )  - ~  = n(z)/d(z) 

where n is a holomorphic operator-valued function in (1.5) .  

The  p roo f  of  this theorem is given in Section 3. 

1 .4 .  Remarks. - -  a) Th eo rem 1.3 also holds if we take r ----- (0, ~), = > 0, bu t  assume 
that  the +~, are differentiable. In  that  case z ~-* ~(z) d(z) is analytic and wi thout  zero 

in (1.4) .  
b) The  assumption that  X is compac t  is for simplicity. I t  would  suffice to assume 

that  [.J,~ V,o and [.J~ qb,~ V,~ are conta ined in a compac t  subset o f  a finite-dimensional 

(non-compact)  manifold.  

1 .5 .  Corollary. - -  Under the conditions o f  Theorem 1.3,  define an operator ~ acting on 

the space of  l-forms of  class C " -  a on X by 

~,t, f w(d~) ~e,t, 
l~(x)  .At(T:  + ) .~ (+=  x) 

where (.~,t, dO) (x) = 0 

Let also 

if  x e V,~, 

if  x r V~,. 

tr ~ 't'" = f ~t(do~x) . . .  ~t(&o,,) [det(1 - -  D ~ ,  +~, . . .  +,~.,)]-1 

where Tr  t is the trace of  operators in At(T=c~ X) and 
oo Zra 

d~t~(z) = exp - -  Z - -  tro'~ It)". 
m ~ l  m 

With these definitions ~ o ~  = ~ ,  dr = d(z), and the spectral radius o f  ;~(~tj is <<. 0 t e r. 
Furthermore, i f  t >>. 1, the essential spectral radius of  ~ct)  is <~ 0 I' L+t-a e x,, dCt~( z) converges in 

( z :  E zl 01"l+'-leP< 1} 

and its zeros there are precisely the inverses of  the eigenvalues o f  jg-ct), with the same multiplidties. 
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To obtain the corollary, we have to use the extension of Theorem 1.3 to vector 
bundles (here the cotangent bundle) as explained in Remark  1.2 b). It  is clear that  the 
spectral radius of a~U t~ is ~< 0 t e e. Note also that  when t >/ 1, the degree of differentia- 
bility r has to be replaced by r -  1. From this, the corollary follows. (For the case 
where r -  1 < 1, use Remark  1 .4  a).) 

1.6.  Corollary. - -  Under the conditions of  Theorem 1.3, we may write 

z) = II z) ] `-  ''t+', 

where t ranges from 0 to dim X, so that the zeta funetion (1.3) is meromorphic in (1.5). 

This follows from the identity 
dlmX 

--0 

where ~,  was defined in (1.2). 

1.7.  Corollary. - -  a) Let ~ 1  and .'~"2 be operators on C'1 and C's defined by the same 
$(do~), V,o and d/,•, 9,0 of  dass C "1, with rx > ra. Then, in the domain, 

( x :  Ix I >  0 Ir'[ eP } 

the operators ~e" I and .~a have the same eigenvalues with the same multiplicities and the same gene- 
ralized eigenspaces (which consist of  C'1 functions). I f  qb~, o?o , are C ~, it therefore makes sense 
to speak of  the eigenvalnes and eigenfunctions of :,"g" acting on C ~, and d( z) clearly is an entire 

function*. 
b) I f  [~'l > OI �9 let', the elements of  the generalized eigenspace of  the adjoint fig" of Yg" 

corresponding to the eigenvalue X are distributions in the sense of  Schwartz, of order s for all 

P - log t x I 
s~> 

I log 0 [ 

To prove a) note that  the generalized eigenspace olaF1 maps injectively by inclusion 
in the generalized eigenspace o f ~ 2 ,  but  both have the same dimension given by the 
multiplicity of a zero of d(z). From a), one derives b) easily. 

1.8.  Expanding maps. - -  The case where the +~ are local inverses of a map f :  X -+ X 
has relations to statistical mechanics and applications to Axiom A dynamical systems and 
hyperbolic Jul ia  sets. Various aspects of this case have been discussed by Ruelle [12], 
Pollicott [9], Tangerman [15], and Haydn [6], and a general review has been given 
in [13]. Note that  the conjectures A and B of [13] are proved in the present paper. The  
real analytic situation, not  considered here, has been discussed in Ruelle [11], Mayer [7], 
and  Fried [3], and leads to Fredholm determinants in the sense of Grothendieck [5]. 

* It  would be interesting to es t imate  the growth of d(x) a t  infinity. 
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Note that an erroneous statement about  the growth of determinants in [4] and [11] has 

been corrected by Fried [3]. For piecewise monotone one-dimensional maps see Baladi 
and Keller [1]. 

The case of an expanding map f is analysed by using a Markov partition (for 
which, see Sinai [14] and Bowen [2]). In the more general situation discussed here, there 
are no Markov partitions. Our  proofs will make use, instead, of  suitable coverings of  X 
by balls. The present treatment is completely self-contained, but  reference to [13] is 
interesting in providing for instance an interpretation of the spectral radius e P as expo- 
nential of  a topological pressure. 

1.9.  Other examples. - -  A class of examples where the results of  the present paper 
apply is described as follows. Let X be a compact  manifold, X its universal cover, and 
rc : I~ -+ X the canonical map. We assume that ~ : 32 -+ I~ is a contraction, such that 
d(~x, ~y) <~ O d(x,y) and that ~ : X -+ C is of class C' arid suitably tending to zero at 

infinity. Define 

( ~ )  (x) = : ~ , ~ _ , ,  ~(y) ~(~?~y). 

It is not hard to see that J s  is of  the form discussed above, and we have 
0o Zm 

~(z) = exp Z - -  Z,,, ..... ,,, ~(Y,~) . . .  ~(Y,) ~(Ya) 
m ~ l  m 

where the second sum is over m-tuples such that 

=yl  = . . . ,  =y -i = = yo, = y ,  = = yl. 

I f  X = R/Z and ~y -= 0y, then din(z) : d(Oz), so that ~(z) -= d(Oz)]d(z). 

2. P r o o f  o f  T h e o r e m  1 .1  

2.1.  Coverings of X by balls. - -  The following construction involves the constants 0, 8 
of Section 1 and a constant K which will be selected later; for the moment we only assume 
that 0 < K ~< 1. Let (x,)~ x be a finite (K/2) 8(1 -- 0)-dense family of  points of  X. In 

particular, the balls 

X, = { x :d(x, x,) < 8/2 } 

cover X. For each j ,  ~ with X~ C V~ we choose measurably u(j ,  ~) such that 

a(+~, xj, x,xj.o, ) < (K/Z) 8(1 - o) 

and therefore 

+~ Xj c X~cj, ~.  

For each integer m t> 0 we shall now define a finite set J~)  and a family ( X ( a ) ) ~  j(.,) 

of  open balls in X. We choose O' such that 8 ( O' ( 1, and we shall define j~m)and (X(a)) 

by induction on m, 
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First, J~~ = {(i) : i ~ I }, and we let X~ = X~ be as before the balls of radius 8/2 
and centers x~ = x~ forming a ( * : ] 2 ) 8 ( 1 -  0)-dense set in X. For m~> 1, let 
similarly (X~) be a finite family of open balls of radius 80"~[2 and centers x~ 
forming a (* : /2)8(0 ' - -0)0 'm-l -dense  set in X. We put 

jo~, = { ( i ,  . . . , k , t )  : (i, . . . , k )  e J  C**-1' and d ( x ' r , x ' ~ - l ) < ~ l r  

Choose now ,: = (I --  0')[2.  I f  a = (i, . . . ,  k ,g)  eJ~'~ we have X~C X~ -1, and by 
induction 

X~ C . . .  C X~. 

We shall write x(a) = x~', X(a) = X~, We define p :jcm~ __~j~-l~ by 

p(i ,  . . . ,  k, t )  = (i, . . . ,  k).  

G i v e n  b = (i', . . . , k ' ) e j c , , - a )  and co such that X e C V o ,  we define 
v(b,  co) = (i, . . . ,  k ,g)  by 

i = u( i ' ,  co), 

(i, . . . ,  k) = v(pb, co) if m >  1, 

and g is chosen measurably such that 

a ( + ~  x~, - ~ ,  x~') < ( , : /2)  8(0'  - -  0) 0 " - - ' .  

We have thus 

pv(  (i'), co) = u(i ' ,  co), 

pv(b,  co) = v(pb, co) for m >  1, 

+~ x ( b )  c X(v(b,  co)). 

9..9.. Lemma. - -  We  have v(b, co) E J ~"~. 

We write b = (i', . . . , j ' , k ' ) .  We only have to check that 

d( ,q ,  ~'-~ .,-i) .,-~ x~ ) <. d ( x L  +~ x~, + 

.< (~/2) ~(0' - -  O) 0 '~*-1 + 0 ~ 0  '" -~  + (K/2) 8(0' - -  O) 0 " - "  

.< *:8(0'  - -  O) 0 ' ' - ~  + *:800 ' ' - ~  = *:80 ' ' - ~  

for m > 1, and a similar inequality for m = 1. 

9..3. The operator ~ .  ~ We define 

l l if X~CV,o and i = u ( j ,  co), 

":J*(co) = 0 otherwise. 

Let cI),, (~cI))~ denote the restrictions of ~,  DUO to X t and Xj respectively. We may 
then write 

(2.1) ( a ' e ) ,  (x) = X, f~(dco) x,,(co) ~ ( x )  O,(+o x). 
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If  ~ e  z X~ is the disjoint sum of the X,, we may write 

G ,  C~(X,) = C ' (EX, )  

and define an operator ~ '  on that  space by 

(.K.)~ (.) = E,f~(do)  .~(~0) ~ ( , )  , , ( + ,  ,) .  

This is the same formula as (2.1), but  the ~,  may now be chosen independently on the 

various X,. I f  we identify C~(X) with a subspace of (~,  C~(X~), we see that  the res- 
triction of ~ to C ' (X)  is .~s Note that  

(2.2) (..~"O)~, (x) -- E~ ..... ~._, f~(do,,) . . .  t~(do~=) .q,,,=_t(o~,,) . . .  , 'r  

~=(x) . . .  % ( + ~  . . .  + ~ ) a , ~ ( + ~  . . .  +~. x). 

2.4 .  The operators .At ~ .  - -  For m >1 1 we define an operator 

by the formula 

(2.3) ( ~ ' ~ ' , )  ~ (x) = f ~(~,o~) ... ~ ( ~ )  

where v(j, ~) = o(o(.., v((j), o~=), ...) o~i). Define 

o_2": @,~ i  c~(x,) -~ @,~,c-~ c~(x(a)) 

as the restriction operator such that  

(02"' o)o = o,  I x(a),  

when p=a  = (i). In view of  (2.2), (2.3), we have 

We shall also need the operator 

T"~' : ( ~ . e  ~1=)C'(X(a)) --+ t~)ae~(m)C'(X(a)) 

such that  
( T'~' *)4 = *(x(a)).  

We define the norm on (~,  G=(Xr by 

11 r II = max~eI (sup, [ O,(x) [ + sup**,  

and similarly for (~aea(=)C'(X(a)) .  
Note that, with these norms, 

II 02 =' [I <- 1, II T"~' I[ <-. 1. 

I *,(xl - *,(y/I~ 
7/xTy  / 
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2 .5 .  Proposition. - -  a) The spectral radius o f  d l  (and thus .~f') is <. the spectral radius e P 

o f l X l .  
b) Given r > O, we have 

(2.4) II .A6'*' - -  .A ''~, T 'm II ~ const(0 '"  el'+') ' '  

and therefore the essential spectral radius o f  ~ (and thus .,Y') is ~ 0 ~ e r. 

Using  (2.2)  we have  

1 ( . ~ " ~ )  (x) - -  ( . ~ " * )  (Y)I 
a(x,y)" 

-< II -~'~ Iio II �9 II + const ~ I1.~ ~-'  Iio II - ~ ' - ~  I1o II ~' Iio, 
/c-1 

so tha t  

l i r a  (11 ~ "  II) ~'" = lirn| (11 ~ "  IIo) *'~ 

~< lima (111~ I" IIo) '~' 

---- ~mo ( I l i a "  I" l llo) ~' '  

and a) follows f rom the spectral  radius  formula.  

= ~im (11 I ~  I ~ 1 Ilo) ''~ 

= U m  ( l l l ~  I" Ilo)' ,  

Using  the defini t ion (2.3)  and  the est imate [ l~  --  T " ' ~  I[0~< II~l[  ( ~ " [ 2 )  ~, 
we have  also 

I(X,-,(1 - T '=') o )  (x) - -  (.A"='(1 --  T ''~') O) (Y)I 
d(x,y)"  

~< [[.ag'='[[o [[ �9 [[(~0=) ~' + const  ~ C ( k ) . [ [ ~  [[ ( ~ ' ' 1 2 ) "  

where  the const  comes f rom the H61der n o r m  of  9 and  C(k) is est imated,  taking absolute 
values, by 

C(k) <. II ]./t' ]~-11 Ilo.]l I~' I'~-~ 1110 

-< II IX" I H  I1.111xr I=-* II. 

F r o m  this the es t imate  (2.4) follows, and  b) results f rom Nussbaum's  essential spectral 
radius  formula  [8]. 

9.. 6. The operators ~',  and ~ " .  - -  I f  k >/0,  we shall define an  opera tor  .At, on 

~3,~ ..... ,k, c~ (x~  • - "  • x,k) 

where  the sum extends over the set I ,  of (k + 1)-tuples i = (i0, . . . ,  ik) such tha t  
i o <  . . . < i ~  and  X ~ c ~ . . .  c~X**4 q~. Let  u(j,o~) = (U(jo, O ~ ) , . . . , u ( j ~ , ~ ) )  and  

1 ( o r - - 1 )  if  X i o , . . . , X ~ k C V , o  and  u(j ,  to) is an  even 
-rp(~) = (or odd)  p e r m u t a t i o n  of i, 

0 otherwise.  
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W e  wr i te  t hen  

L e t  n o w  

~ , . .  ..... .k, C' (X(a , )  c~ . . .  c~ x ( ~ , ) )  

be the sum ove r  those (k + 1)-tuples o f  e lements  o f J  ~ such t ha t  X(a0) n . . .  n X(a , )  4= 

a n d  p'~ a o = (io), . . . , p ' ~  a~ = (ik) , w i th  i o < . . .  < i k. W e  def ine  then  

o ~ " .  O , ~ . . .  ..., , c ~ ( x ~  . . . .  n x , , )  - ~ O , ~  o . . . . . .  ~,C~(X(ao) n .. n x ( a ~ ) )  

so tha t  O ~  ) is the  res t r i c t ion  f r o m  Xlo n . . .  m X,~ to X(ao) n . . .  n X(a~). 

W e  also def ine  

~ ' :  ~ ,~o ..... .~ ,C'(X(ao)  n . . .  n X(a~)) ~ |  ..... ,,, c ~ ( x ~  n . . .  n x,~) 

by  

( ~ , ~  ..... ok,(+~, " ' "  +~.  x)), 

where  ~, a n d  ao, �9 �9  ak ~ jo , )  a re  d e t e r m i n e d  as follows. I f  p "  V(jo, ~o), . . . ,  p "  o(j~,  ~)  
are  no t  all d i f ferent ,  wr i te  ~ = O. Otherwise ,  let  ~ be the  p e r m u t a t i o n  wh ich  a r r anges  these 

indices  in increas ing  o rder ,  and  wr i te  ~ = sign 7:, (a0, . . . ,  as) = n(V(jo,  ~) ,  . . . ,  v( .~,  ~ ) ) .  
Final ly ,  we choose  an  a r b i t r a r y  po in t*  x(a) ~ X(a0) n . . .  c~ X(ak) for  eve ry  

(k + l ) - t up l e  a = (ao, . . . ,  ak) a n d  def ine  an  o p e r a t o r  T~ "~ on  

@~o . . . . . .  ,, C ' (X(ao )  n . . .  n X(ak) ) by  (T~'~'~),  = ~ ( x ( a ) ) .  

Wi th  these def ini t ions  we h a v e  

l] O ~ '  l[ ~< 1, 11T& =' ]l ~< 1 

N o t e  t ha t  for  k = 0 the  ope ra to r s  Jr 'k,  0~"' ,  .~r r e d u c e  to ,.~', O~ "~, ~ ' " ~ .  

2 . 7 .  Proposition. - -  a) The spectral radius of  Jdk is <~ e P. 

b) Given ~ >  O, we have 

11 ~ , ? ,  ~ , , - ,  T , - ,  e ~+ ' )  - - ~ " ~  --k [[ < cons t (0 ' "  

and therefore the essential spectral radius o f  J d  k is <<, 0 ~ e P. 

T h e  p r o o f  is essential ly the  same as t ha t  o f  P ropos i t ion  2 .5 .  

2 . 8 .  Lemma. - -  Suppose that ~bo~ t . . .  +o,~ has a fixed point x (~)  e s u p p o r t  *?Om" Then 

(2 .5 )  X , ( - -  1) '  X,o . . . . .  'm-, e 'k "% ' , .- ,(%.) " ' "  "h,',(~ "the(c%) = 1. 

* W h e n  k = O, take x(a0) to be the center  of  X(ao) as before. 
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Let I* = {j  : Xj e V,~ m }and a : I* --+ I be the map such that there exist il, . . . ,  i~_1 
for which 

. . .  = 1 .  

By assumption I* 4= ~, and clearly ~I* C I*. Let I be the set of all a-periodic points in I*, 
and ~ the restriction of ~ to I. Then 1 4 = e and ~ is a permutation of I. Let ~ consist 
of c (disjoint) cycles. Then, the non-zero terms of the left-hand side of (2.5) are those 
for which i o consists of the elements of /cyc les  of ~, with g >i 1. The value of such a term 
is thus 

(--  1) k (--  1 )*+l - t  = (-- 1) t+ '  

and the sum is 

(2.6) 

Then 

~ 1 > I 1 ( - -  1) t+l ( c - - t ) l t !  
c! ----1. 

2 . 9 .  Corollary. - -  Write 

~m,lf = E l  0 . . . . .  Ira--1 e Ik f P'(dC~ " ' "  ['t(dc~ 

(~101m_l(60CZ~) ~9o~m(X(~))) o*" (%'11]0(601) q~o~l(+r 2 �9 " + o r e  

= i )  * 

2 .10 .  Proposition. ~ The power series 

00 Z m 

dk(z ) : exp - -  Z - - ~  
m = l m  

converges for  ] z [ 0 ~ e e < 1, and its zeros in this domain are the inverses o f  the eigenvalues o f  dgk, 

with the same multiplicities. 

Before proving this result, we note the following consequence. 

2.11. Corollary. - -  The power series 

00 Z~t~ 

l/~(z) = e x p - -  X - -~ , ,  
m = l  m 

converges for  [ z [ 0 ~ e r < 1, and its zeros in this domain are the inverses of  the eigenvalues o f  J%#, 

with the same multiplicities. 

Corollary 2.9 yields 

1/~(z) = H~>o [dk(z)] c-x~k. 

Corollary 2.11 therefore results from Proposition 2.10 if we can prove that, for [ ), [ > 0 ~ d ,  

(2.7) ~(X) = ]~k~>0 (--  1) * mk(X) 

24 
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where N(X) and mk(X ) are the multiplicities of X as eigenvalues of.X" and .,/d, respectively. 
To derive this result, let 

C~ = ~*o  . . . . .  ~o C~(X~ c~ . . .  n X~) 

and define coboundary operators a , : C ,  ~ C,+~ in the usual manner  (i.e., 
k + l  

= Y, (-- 1)tr [X~t ). The  existence of a C" parti t ion of 
( ~  r  (~ . . . . .  ~+~  t = 0 .. . .  *~t . . . . .  ~ + ~  

unity associated with the covering (X,) ensures that  the following is an exact sequence: 

r162 
0 -~ c~ (x )  s Co ~ c ,  - ~ . . .  ~ c~ --, c~+~ - ~  . . . ,  

where [~ is the natural  injection and C, = 0 for sufficiently large k. We also have 

Let P x = ~ - ~  ~ resp. 

circle centered at X. Then,  Px 
the generalized eigenspace of 

P~o ~ = ~Px, 

~kw,  = ~ , + ~  ~ , .  

Pxk = ~ z - - ~ '  where the integral is over a small 

(resp. P~) is a linear projection of C~(X) (resp. Ck) onto 
.W (resp. ~'k) corresponding to X. Furthermore 

P~+~ % = %Px,. 

We therefore have an exact sequence 

0 -+ im Px ->~ im Pxo -~ im Pxl --> . . .  ---> 0 

so that 
d im im Px =- ~k>~0 (-- 1) ~ dim im Px, 

which is precisely (2.7). 

2.12.  Proof of Theorem 1.1.  - -  Theorem 1.1 follows from Proposition 2 .7  and 
Corollary 2.11. We are thus left with Proposition 2.10 to prove. 

2.13.  Proof of Proposition 2.10.  - -  There is a finite number  of eigenvalues X~ o f~ '~  
such that  [ Xa [ > 0 '~ e e. I f  mj is the multiplicity of  Xj, we may write 

Y~a mj(Xj) '~ ----- ~ )'7 ]~v a~v(S~v) = ~Jv a~v(..g/~ S~v) 

where (%v) and (Sjv) are dual bases of the generalized eigenspaces of ..~'~ and .Me, res- 
pectively for the eigenvalue Xa. Therefore 

where Car has the constant value S~r(x(a)) on X(a0) c~ . . .  n X(a~). 
Using Proposition 2.7 we have 

(2.9) I X,v , ,((~'~'~'  -- .~'L '~' T~ '~') O~ '  S,~) [ ,< const(0'" el'+') '~. 

Let X, be the characteristic function of  X(ao) n . . .  n X(al, ) as an element of  

|  . . . . .  o,, c ' ( x ( ~ o )  n . . .  n X ( a ~ ) ) .  
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T h e n  

(2.10) 23~v %v(.Jt'~ =' Cjv)" = Zjv Y~, Sjv(x(a)) %vk~* k /~" '  Z,) 
= X,((1 - ~ )  zc,m, v_~ z.)(x( , , ) )  

where #~ is the projection corresponding to the par t  of  the spectrum of  ..r k in 

{x: I xl.< 0'-~') .  
The  r ight -hand side of  (2.10) is the sum of  two terms. The first can be writ ten as 

Z , (X ' ; " '  Z.) ('~(")) 

= Xc~ . . . . .  'k' ~ Xk Z . o :  ." .o  = ~, " '"  Z . k :  =".k = ~k f ~t(&%) . . .  [x(do~.,) 

2~,, (sign •) 8((ao, . . . ,  ak) , n(v((io) , ~) ,  . . . ,  v((ik) , G))) 

~om(X(a)) . . .  q~,~1(+~,2 . . .  +comX(a)) 

= ZiO . . . . .  ,m_l~ikf~L(d(.o1) . . .  [s *loim_l(fDm) . . . "Cl211(fD2) "t'ilio(0.)l) 

q~'om(X(] v(i0' ~)])) " '"  ?'~x(+'~, " '" +~=X([ v(io, ~)1)) 

where Iv(i, ~)[ is the permuta t ion  of (V(io, ~o), . . . ,  v(ik, ~)) such that p'~ [ v(i, co)] -- i. 
I f  we replace in the r ight -hand side x(I v(i0, ~)]) by the fixed point x(~) of +,~a . . .  +,~=, 
the error is bounded  by const(0 '" eP+') m (using the same sort of  estimates as in the proof  

of  Proposition 2.5).  Therefore,  by the definition (2.6) of  ~,,~, we have 

(2.11) ] ]~.(dt'~ '~) X,) (x(a)) - -  ~,~ [ ~< const(0 '~ eP+") '~. 

We are left with the study of  

X . ( ~ ' ,  ~' z.) (x(~)). 

R e m e m b e r  that  the sum is over the set J~'~ of  those a = (a0, . . . ,  ak) ~ (J"~)*-~ such 
t h a t p " a =  (io, . . . , i , )  with i 0 <  . . .  < i k. Note that, if0~<g~< m, we may  write 

X&~J~rn)(~r  m) )(at) (X(P m - I  a) )  = Xb~kt)(~J~c2--l*/~c~t)Xb) (X(b))  

Clump together those a such that  p,~-t  a = b). Therefore  

~ & ( ~ t n )  ~ )  (X(a.)) - -  ~-]~! EIk( #~*~r ~..1) ix( i))  

= ~ y~.((~,x':', z.) ( x ( f " - '  ..)) - (~,x';", z.) (x(p " - '+~  ,.))) 
/=1 

= ~ Y ~ , , ( ( ~ 7 - t ~ f f '  z~)(~(b)) - ( ~ . - ' . ~ ' ,  z~)(x(~b))).  
/=1  

From this we get, using (2.13) below, 

(2.12) I ]E,(~-A'~ ") 7~) (x(a)) I ~< const II ~ "  I1 

+ const 2~ II ~ - t  ll.~b~a~,, [[..g[~,, Xb II.d(x(b), x(pb)) ~ 
/=1  

~< const [(O"e~+~) " + Z (O"ee+*)'~-t(eX'+')to't~] 
t = l  

<. const m(O '~ ee+~) ". 
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Putt ing together  (2.8),  (2.9),  (2.10), (2.11), (2.12) we obtain 

I ]~J mj(X~)" - -  ~ .~ I < const  m(0 '~ eP+')  '~ 

and  therefore 
00 ~m 

l o g (  d~( z) /l 'I j(1 - -  X s z)'~i = Z - -  ( E j  mj(~.~) '~ - -  ~.~) 
m ~ l  m 

converges for I z I 0'~ e~+* < 1, proving Proposition 2.10. 
In  deriving (2.12) we have used the inequali ty 

(2.13) ]g, ea~ t ' I I  ~L"  z, II -< const(eP+") t 

which we shall now prove. 
Given [3 > 0 we set ~,~ = [ % ] - t  ~ 11% I}" In  the def ini t ion--Sect ion 2.6---of  

dt'~ t~ if we replace q0,~ by q~,~ and  suppress the factor r = 4- 1 we obtain an opetaror  ~,~t) 

tt, f t z ( d % )  �9 bt(do~t) (Mk~ r  (x) . . . .  

~t~(*) - "  ~ . ~ ( ~ , " "  + ~ t ~ ) % 0  ..... . , , ( % . ' "  +~t'-) 
where ( a 0 , . . . ,  a~) is a permuta t ion  of (V ( jo ,  d ) , . . . ,  v ( j k ,  G)). In  par t icular  

II-~"~" z, I1o -< I1 "~'" 

I f  x , y  E Xjo n . . .  r~ Xjk , we also have 

Zb), (x) --  ( . . .~"  Z,), (Y)[ < j t z (d%)  . . .  ~(doat) 

%or(x) " ' "  %~,(+,~, " "  +,or x) - -  *O,~t(Y) " ' "  %,,(+0,,  " "  +otY) l 

' f  <~ Y~ ~*(d%) . . .  t z ( d % )  ep,~t~(x) . . .  ~ , ~ i + , ~ ( + o i + ,  " "  ~bot x)  

~,~('+,~,§ " " +o,t x)  - -  ~o,,(+o,+, . . . +o, t Y )  [ 

% , - t ~ ( ~ b ~ , i " "  +,~tY) " ' "  % , ~ ( + , o , . . .  +,~tY)" 

where the integrals are restricted to those (cot, . . . ,  ~ for which b is a permuta t ion  
of (V ( jo ,  ~), . . . ,  v (L ,  ~)) .  We may  write 

I % ( + ~ , ,  . . .  +~tx)  - ~ ( + ~ ,  . . .  +~tY)l  

~< I[ ~~ II ( Or- '  d ( x , Y ) )  ~ <~ const ?oip(hb,~i., . . .  ~b,~ t x) 0 " r 1 7 6  d ( x , y ) "  

and  similarly 

(2.14) 

Therefore  

hence 

(2.15) 

% ~ ( + ~ , ,  "" +-tY) "< % d +  .... , - . .  +,or x) (1 + const o'~t-"). 

I(,-g~ t' zb)j (x) - ( , ~ t ,  z~), (Y)I 
d(x ,y)"  

~< const t ]1 x,fm �9 , ~  z, Iio 

II .~,L~, z, II < c(p) .e II ~,~,,, �9 . -~ z, I[o. 
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From (2.14) we also obtain 

~'*~ zb)j (x) 

where C'(~) does not depend o n / .  Therefore 

�9 . ~  z~ IIo< c'(~) E| sup= I(Mkt~ 1)j (x)l .< C"(f~) II M~% Ill0 

and with (2.15) this gives 

Y~.~r II ~,t ,  z~ II -< o(p) c"(p) e II -.-k~r 1 ]lo ~ C'"(~) (eX~'+"~) t 

where e ~'cp~ is the spectral radius with respect to the [] []0 norm of the operator .At'p 
obtained if we replace %, by q~,~p in the definition of dr'. Note that .At'~ is close to [ .At' [ 
for ~ small: 

I 1 ~ ' ~ -  I ~  I II0- < ~ f~ (d~)I I  ~ II. 

Using the upper semicontinuity of the spectral radius we may thus choose [~ such that 

i.e., (2.13) holds as announced. 

3. P r o o f  o f  T h e o r e m  1 . 3  

3 .1 .  The essential spectral radius o f  o~g'. - -  We shall follow the proof of Theorem 1.1 
in Section 2, and note what changes have to be performed to deal with the differentiable 

situation. 
First of all, we make a choice of charts for the balls X,, which will thus be identified 

in what follows with subsets of Euclidean space. We may assume that the bails X, have 
small radii and that the Riemann metric is closely approximated by the Euclidean 
metric. Confusion between the two metrics is then inconsequential. The linear structures 
which we have chosen will allow us to define Taylor expansions. 

Replacing C ~ by C v everywhere, we define r162 ~ " " ,  O~"', Mt'~, ..#t'~"', O~ '  as 

before. The operator T ~'~ on @,cac,,~ C'(X(a)) is now defined by 

(T r * ) ,  = Taylor expansion of order r of * at x(a) 

and similarly for --kTr We have then 

II r - T':',X, Iio.< const II r II 0.- , , l .  

Following the arguments of Sections 2.5, 2.6, 2.7 with obvious changes, we get 

(3.1) II-r - ..gt'~', T~" ]l ~< e~ 0'l'l er+')  " 

and therefore the essential spectral radius of dt'~ is ~< 0 Irl e P. In particular, the same 

estimate holds for the essential spectral radii of .At' and 2U. 
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3 .2 .  Proposition. - -  Define 

Tr.~r = / ~ ( d o x )  . . .  vt(do,~) (det(1 --  D.,~, +,o~ . . .  + , , , ) ) -x  

(~._~(~o.) ~ . (x (~) ) )  . . .  (%~(,o~) ~ ( + ~ ,  . . .  +~ ,  x(~))). 
Then, the power series 

oo Z m 

d~~ = exp - -  Y. - -  Tr.Ar 
m = l m  

converges for  [ z ] 0 l" I e v < 1, and its zeros in thb domain are the inverses of  the eigenvalues of  . ~ k ,  
with the same multiplicities. 

Before proving this result, which corresponds to Proposit ion 2 .10,  we note that  it 
allows us complete  the demonst ra t ion of  Theorem 1.3. We  have indeed 

a(z) = II,~> o (a?'(z)) ~-~  

by L e m m a  2.8 .  The  p roof  of  Corol lary 2.11 again applies, and  yields that  the zeros of  d(z) 
in (1.5) are precisely the inverses of  the eigenvalues of.f t ' ,  with the same multiplicities. 

3 .3 .  Remark. - -  Before embarking in the demonst ra t ion  of  Proposit ion 3.2,  we 
0" 

prove a necessary estimate. Let  n = (nl, . . . ,  na~x) be a multi-index, ~ the corres- 

ponding derivative,  and n! = nil . . .  hoax!.  We  assume that  ] n [ = nl + . . .  + na~x-< r. 
Define then 

E (") = E/o f~L(Ks176 ~L(d~m) 'I'~O,m_t(O)m) '~(110(s ~x~S , .-., i m - x  . . . . . .  

and  assume that  ~ e X(v(i  0, g))  for k 1, 2, 3. Replace  in v~,~ the expression 

0- 
O x ; ( . . . )  by its Taylor  expansion a round  ~3(i0, ~) ,  keeping derivatives of  total order up  

to r, and  then pu t  x = ~(io, ~).  The  error thus made  is bounded  by 

const (0,,~)lr 1--I-I. (ev+*)= (0',~)l-[ = const(eP+. 0' Irl),~. 

Define now 

(3.2) 

1 E~ ----- 2~.:[.[~<, ~.. E ~  ~ i.e., 

= z . : l . , . < .  . . . . .  . . .  [~(&o,~) v~o,,,_x(%, ) . . .  * ,x~(Ol )  

1 0" 
,!  0x" ( ~ g x )  "" ~I(+~, '-" + ~ x ) ( % . . .  + ~ x -  ~(i0, ~))")1._~,~.~,. 
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Introducing limited Taylor expansions as explained above in each term of E~,, we simply 
obtain Et,.  Therefore 

(3.3) [E~x -- E~, 1~< const(d +* 0'lrl)% 

3.4. Proof of Proposition 3.2. - -  We shall prove the proposition for , ~ ' ( =  M(0) 
rather than ~r (This simplifies notation, and the general case is easily recovered by 
reference to Section 2.13.) 

There is now a finite number of eigenvalues Xj of ~r such that ] Xj ] > 0 'ltl e P. 
Let mj be the multiplicity of X~, and (%v), (S~v) be dual bases of the generalized eigen- 
spaces of.~r and ~r respectively for the eigenvalue Xi" Then 

(3.4) Zt  m~(X~)" = Zjv %v(~ r S jr ) 
= Zjv (~t,((.~ '(") - -  .At '(=' T '=') Q~") S n )  + Zjv  (~n(..s ('~) Cjv ) 

where C~v [ X(a) is the Taylor expansion to order r of Sjv at x(a). Note that (3.1) gives 

(3.5) ] ~ v  %v(('~'('~) -- "A~'(") T(')) O~') S~v) ~< c~ el'+=)=. 

Let ~ denote the characteristic function of X(a) and write 0~ for the derivative of order 
n = (nl, . . . ,  n~,..x) evaluated at 4. We have 

1 
�9 " s ,~  ~ , . ( .~ '  ( ( .  - ~(~))" ~ ) )  (3 6) Z~,  ~ . ( ~ ( " ~ '  C~,) = Z~.~ Z~ Z . : I . I . < , ~  " a=(., "'  

1 
= Z= Z,:I,I~< , n5 0"~(='((1 -- ~ )  "~"')((" --  x(a))'* Z,)) 

where ~ is the projection corresponding to 
{X: ]k[~< 0'lrl eZ'}. Further, 

(3.7) 

the part of the spectrum of ~ in 

1 2.  ~ , , , . , .  _ x(a))" ~ )  Z~ Z .  ~.. v . , ~  , , .  

= Z= Z .  ~.  ~(a,ol) . . .  ~ ( a , ~ )  ~(a, v(p" a, ~)) 

0 
ax-- ~ ( ~ . ( x )  . .  ~=~(+=, . . .  +~. x) (+=~ . . .  +=. x - ~ ( = ) ) ' ) I . - . , . ,  

l 0 
Z .  ~. F~" (~==(x) . . .  ~=~(+~, . . .  +~, x) 

( + 0 , . . .  +0= �9 - x(~(io, ~) ) )")I . -= , . ,~ ,~ , ,  
= E~I 

where we have used the notation 
~(i0, ~) = x(~), we get 

(3.8) I Er - 

(3.2) with ~t(io, ~) = x(v(io, ~)). I f  we choose 

E~ s l -  < const(O 'lrl d + ' )  '~ 
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in view of (3.3). Furthermore,  since x(~) is a fixed point  of +,~ . . .  d&~=, 

1 
~ . . ( x ( ~ ) )  . - .  ~o , (+ . ,  . . .  +~ .  x (~ ) )  ~ . . i . , - < ,  ~ ~ . .  

where iF, is ~ polynomial  of order [ n [ in the elements of the matrix D,~)(~b,~ 1 . . .  ~bo,,) 
of derivatives at x(~), and ~tt ' , jnl  is invariant under  linear changes of coordinates. 
I t  is easily recognized that  ~tF,Jn! is the development  of (det(1 --  D| ~ 1  . . .  ~,~m)) -1 
to order r (take D to be in Jordan  normal  form). Therefore 

(3.9) I E~, -- tr.~'m [ ~< const(0 '+a er+')  ". 

From (3.7), (3.8), (3.9) we get 

- -  x ( a ) ) "  X~) - -  tr'~r I 
1 I 

(3 .10)  Zo Y~. ~ .  o~., " ..g(,.~((. 
I 

~< const(O '1'1 er+') =. 

There remains to estimate 

1 

Note that, if 0 <. t <~ m, we may write 

1 
:Z.~ jc., :Z. ~. o2,,.-t., ~ " " ( ( -  - x(p " - t  a))" z,) 

1 

Thus 

z.  r  x, ,,/"z,/ 

-- ~ 52~za(t~ Y~n 1 ~d lm_t j l r  ( - , - 1  ~. (o,%) �9 - x(b))" x~) 

_ ~ .  ~ . ~ , . - t ~ , , ~ , ( ( .  _ x(pb))" z~)). 

The absolute value of the r ight-hand side can be estimatcd in terms of Taylor expansions 
(as in Remark  3.3). Using also (3.12) below, we get a bound 

1 
const ~ ]~be#t, Z ,  ~ d(x(b), x(pb)) I ' l-I"l 

, - a  II ~ r - - '  II. II at ,m(( .  - x(O))" z~)II 

co~st :~ Z .  1 (o,,)1,.-1-1. (o,l,I : + . ) , - - , .  (a '+ ') '  (o,')l-. 
t -1  n! 

= const m(O '1"1 el'+=) ~. 
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Therefore 

(3.11) 

F rom (3.4),  

Therefore  

1 
Y., ~ ,  ~. 0~"c, , ~Mr  --  x(a))" 7.,) <- const m(0 '1"1 eP+') ". 

* 

(3.5),  (3.6),  (3.10), (3.11) we conclude that  

[ 2~ mj(;~j)" - -  t r ~ r  [ ~< const m(0 'lrl e r+ ' )  ". 

co Zr~ 

log(d~ ~ (z)/Hj(1 - X s z)"/) = Y~ - -  (]~rnj(X~)" - tr . . / /") 
ra=l  7n 

converges for I z I 0' I r I e a" +, < 1, proving Proposition 3.2.  
We have used the inequali ty 

(3.12) Y~bc a 't) II Ml't)((" - -  x(b))" ;(b l] ~< c~ t (0't) I"1 

which is proved  like (2. I3). 
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