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maps of intervals of R. In particular the analyticity of a sharp determinant Det#(l —2zM)
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1. AN IDENTITY BETWEEN POWER SERIES.

1.1. Sharp trace and sharp determinants for transfer operators and related
operators.

Let F be a compact subset of the complex plane which we assume fixed throughout.
We shall consider the algebra A of transfer operators M defined on the vector space of
complex measures by

ME(x) =Y gu(w) B(Pu(x)) (1.1)

we

where 2 is a finite set, each g, : C — C is C°° with nonempty compact support, and each
1), is a holomorphic diffeomorphism from an open set A, C E onto its image ¥, ,A, C E,
with supp g, € A,. (At the cost of additional assumptions the smoothness requirement
on g, could be somewhat weakened — see also the last subsection of this section — and
the setting may be generalized to the case where ) is countable, or where )  is replaced
by an integral.) In later sections, we shall restrict M to Banach subspaces of the space
Boo(E) of measures with support in E. Note for the moment that M in fact maps the
space of measures into Boo(F).

We start by the important observation that the representation (1.1) of an operator
M € A is essentially unique (because the v, are holomorphic). To make this remark
more precise, we say that a representation M® = >, 7> o g, ® o1, is finer than
MO =3 7 g; P o if each 1, is a restriction of the corresponding 1; to some subset,
and ) cq, Jv = gi- Two representations are called equivalent if there is a third one which
is finer than both. The precise claim is now that any two representations of M € A are
equivalent. (To prove this, write the difference of the two representations and then use
the fact that it represents the zero operator on Byp(FE) in particular on ® which are Dirac
measures, noting that whenever v, and ¢/, do not coincide on some open connected set,
the set of z € (A, NAL,) with ¢, (x) =, (z) is finite, and that when they do coincide a
partition of unity may be used to produce an associated refinement.)

We define the sharp trace of M € A to be the Cauchy principal value of the integral

T M = Z/(Jé(gw(m))a(¢w(m) ~w)da, (1.2)

weN

where Of(z) = 1/2(6%1]”(:“ + iz) + ia%Qf(a:l + ix2)) in the sense of distributions, the
measure dx is Lebesgue measure on the complex plane, and

1
o ={57 220,

(We shall also use the notation df (z) = 1/2(8%11"(331 +ixg) — i%f(a:l +ix3)).) Observe
that the terms in (1.1) with 4, the identity do not contribute to the sharp trace. Obviously,
two equivalent representations of M produce the same value for the sharp trace, so that

Tr#* M does not depend on the choice of a representaion by the above remarks.
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Note that if M is such that for all w
O, (z) #1 whenever ,(z) =2 for x € suppg.,, (1.3)

it would suffice to assume that the g, are C! in order to define the sharp trace. (Warning:
Property (1.3) is not preserved by taking powers M™ of M.) See the end of this section
for an explicit formula for the sharp trace as a sum over fixed points of the 1, when the
“simple fixed points property” (1.3) holds.

We now extend the domain of definition of the sharp trace. For this, we introduce the
linear operator

59(a) = [ ola=1) By, (1.4

which sends distributions with compact support to distributions, measures with compact
support to measures, and C*° functions with compact support to C° functions. Note for
further use the property that 9 is the identity map on compactly supported distributions,
and in particular on measures supported in E. (To prove this, use that Jo is the Dirac mass
at 0, a proof of this well-known equality may be found, e.g., in [3, p. 34].) A consequence
of 0S® = ® is that S maps measures with compact support to measures without atoms.
Observe that M € A maps any atomless measure to an atomless measure in By (E).

We write A° for the algebra of operators which are linear combinations of finite
alternating products of transfer operators A and operators S, with at least one factor S, and
denote by A7, respectively A% those elements of A such that the leftmost (respectively
rightmost) factor is different from S. Operators in A7 act on Byo(E), and operators in
A3, or more generally A°, map Byo(F) to measures.

Lemma 1.1. For an operator K in A° there is a unique kernel Kzy : C x C — C such
that:

(L5 a) K&(z) = [o Kuy ®(y) dy for all & € Byo(E),

(1.5 b) lCmy is a finite sum of terms h(z) - h(y) - o(px — py) where h, h are C func-
tions, 1, w are local holomorphic diffeomorphisms on open sets A, respectively A
containing the supports of h, respectively h, and h, respectively h, has compact

- s : s
support if KK € A3, respectively A%p.

Proof of Lemma 1.1: We consider a summand in K and prove the result by induction
on the number of factors in the summand, starting the decomposition from the right.
The existence of a representation (1.5.a.b) is clear for S, and also for SM and MS with
M € A, since

SMd(z) :/ ¥ Y gu(y) (y)) dy

wEN
/waw(A) o(z =15 (2) 90 (W5 (2)) [0 ) () ®(2) 2 (1.6)
weN
MSB() = 3 gul / Yo () — ) ®(y) dy
weN



The kernel representation property (1.5.a.b) is preserved when multiplying on the left by
M e A:

M) = [ 3 0,(0) Ko 0 B00) do. (1.7)

wEN

Multiplication to the left by S is slightly more delicate. By Fubini, we have

SK®(x // oz —y) Ky, B(2 dzdy—// oz —y) Ky dy®(z)dz.  (1.8)

Let us now study the kernel [ o(z —y) Ky, dy of SK defined by (1.8), using the induction
assumption (1.5.a.b) on K,,. First note that, since do is the Dirac measure at zero, we
have for any holomorphic diffeomorphism W:

O(o o W)(z) = dg o 1p - OV (x)

= dy-1(0) [D(T 1) (0) > 9T(¥(0)) (1.9)
by
~ w0

Therefore, for any C'*° functions h, B, with A compactly supported (recall that no compo-
sition S? is allowed), any local holomorphic diffeomorphism 1 : A — C, and any points
u € P(A), x € A, with ¢(z) # u, we get, since h = dSh

/c h(y)o(z —y)o(P(y) —u)dy =
(Sh) (= (w)) o(z — = (u)) | (1.10)

O (=1 (u))

(Sh)(x) o((z) —u) -

To check that (1.10) makes sense, we observe that since Sh is holomorphic outside of
the support of h, and since Sh(z) goes to zero as |z| — oo by construction, Sh must
have support contained in the support of A (and in particular in A). Formula (1.10) for
u = 9(z) defines a summand of the new kernel (SK),, except on a set of points (z, z)
of zero two-dimensional complex Lebesgue measure: for fixed z (1), @/;), there are at most
finitely many x such that ¢(x) = 9 (z) (and similarly, at most finitely many such z for
each x, 1, ¥). Note also that the factor h(z) implicit in both sides of (1.10) has compact
support if K € A3,

We define the left-hand side of (1.10) to be zero when ¢(x) = u, in other words we
extend formula (1.10) to such points z, u. (Note that the Cauchy principal value of the
left-hand-side of (1.10) does not always vanish when v (z) = u. An easy counterexample
can be obtained with ¢ the identity map, assuming that S dh does not vanish at x.) Our
definition is legitimate in that it is consistent with the action of SIC on By (F) (because
the ambiguity only concerns a set of two-dimensional complex Lebesgue measure zero).

(Although we shall not need this, we note that when applying (1.10) inductively at
an intermediate S factor, the choice for the case 1 (z) = u we just made is unconsequential
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for the kernel since the concerned set is of zero measure and will be washed out by next
integration.)

By induction we thus prove the existence of a representation (1.5.a.b) for K € A%.
If K, K' € A and K& = K'® for all € Byo(E) then the kernels K,y and K/, in (1.5)
must coincide as functions on C x C. (Using ® the Dirac mass at an arbitrary point yg
one sees that the difference of the densities of the image measures Py, (z) = Kqy, — K7,
vanishes for Lebesgue almost all z. Since P, is C°° except at finitely many points where
it vanishes, it must vanish identically.) [

If K € A7 + A3 has kernel Kzy as in (1.5.a.b) then the function K, is a finite sum
of terms h(z)o (U (x)) where h(z) is C™, with compact support, and ¥(z) is holomorphic
(and therefore vanishes to finite order if not identically). In particular the Cauchy principal
value of fc Kz dx is well defined for K € Af + A}g{. Therefore, we may define the sharp
trace of K € AZ + A%, to be this Cauchy principal value:

T&«#K:/ Koy d . (1.11)
C

Before we proceed with our extension of the domain of the definition of the sharp
trace, we note that if M + K, with M € A and K € A? + A%, vanishes as an operator
mapping Boo(FE) to measures, then M, and therefore also K, must vanish. (To show this,
consider the Dirac measure d,, at zo in C. If M # 0, then the measure MJ,,, has atoms for
xo well-chosen in function of a given representation (1.1). However, Kd,, is an atomless
measure for any zg by above considerations.) We now extend the definition linearly to
A= A® (A7 + A3), using (1.2). By the uniqueness statement in Lemma 1.1, we have
that Tr# K only depends on K € A’ as an operator mapping Boy(F) to measures.

Although A’ is not an algebra, both A}, = A® A7 and A = A® A3 are algebras.
In particular, if £ € A} (or A%y), then K™ € A (respectively A7) for all m > 1.

We note the following “almost-trace properties” of Tr:

Lemma 1.2.
(1) Let K belong to AS. Then Tr#* KM = Te# MK for any M € A.
2) Let K belong to A7 N A%. Then Tr? SK = Tr* KS.
L R

In Lemma 1.6, we shall see that that Tr# MiMs = Tr# MoM for My, My € A.

Proof of Lemma 1.2: For the first claim, we use (1.6-1.7) (and the analogue of (1.7) for
KM) and write

¥ KM = /C S X 0 Koyt 90 (05 @)) [0(5 1) (@) da

wEN

- /C > Koty 9o(y) dy = Tr# MK

wEN



In the above equalities, we used the fact that the standard change of variables formula
holds for Cauchy principal values, whenever the change of variables is holomorphic. Since
antiholomorphic maps are harmonic, this can be proved by induction on m > 2 as follows
(g is a compactly supported C*° function, and ¢~! is a holomorphic diffeomorphism on
the support of g):

(m—l)/cyimg(y)d :/Cyml_l dg(y) dy

(pz)m=1
= 1m_1 {8g(¢$) O(x) 0P (x) + g(Yx) 00y (x) | d
c (Yz)
O(z) 5,
(m—1) / () SR)O0() da

For the second claim, use (1.8) (and the equivalent formula for IS) to get

Tr#SIC:/ / o(z —y) Kyy dy dx Tr# KS = //ICWU x) dydz,
CcJC

where it is implicit (from the definition given after (1.10)) that we have suppressed from
Kzy all terms of the form h(x)h(y)o(ha — y) with ¢ and ¢ identical on some open set,
taking finer presentations if necessary (note that the suppressed terms are the same for
both traces). To finish, apply Fubini. [

We can obviously extend additively the sharp trace from the vector space A’ to the
vector space A" = A7 + A} with A, = A[[z]] ® A3,[[2]] where A’;[[2]] is the algebra of
formal power series with coefficients in Af/‘, for M = L, R. We use the same notation for

this extension
# . A" — Cl[#]] -

We define the sharp determinant of KC(z) € z A/ or zAY, by the following formal power
series:

Det# (1 — — exp — Z I&«# ™ e 1+ CJ[z]]. (1.12)

1.2. The kneading operator D(z) and the main identity.
We associate to M € A an operator N' = N (M) € A defined by

= > 9gu(@) B(u(2)), (1.13)

we

which sends measures to measures supported in E. (Note that A/(M) only depends on M
as an operator on Byo(FE).)



Finally, we define the formal kneading operator D = D(z) € A7[[z]] associated to
M e A by

D(z)=2N(1—2M)"'S = Z HFNMFLS, (1.14)
k=1
The point is that for |z|~1 larger than the spectral radius of M on Boo(E), we may
view D(z) as acting on Boo(E), and we shall see in Section 3, restricting to a Banach
subspace of Boo(E), that the operator D?(z) is almost trace-class so that one should be able
to relate its sharp determinant to a classical reqularized determinant. We hope that this
informal comment shows the importance of the main result of this section:

Proposition 1.3. For any M in A, and D(z) defined by (1.13-1.14), we have the following
identity between formal power series

1
Det# (1 — zM)

Det* (1 +D(2)) = (1.15)

One way to show Proposition 1.3 would be to adapt the proof of the formally identical
result on transfer operators acting on functions of bounded variation on R in [1, Proposition
3.1] (using the fact that 1/(mz) is the complex analogue of the function (1/2)sgn () used
there). We shall give here a more streamlined proof. We first need a lemma and its
corollary:

Lemma 1.4. For any M in A and the associated operator N (M) € A, we have
Tr# M = Tr* NS = Te# SN .

Proof of Lemma 1.4: The second equality is a consequence of the first claim of Lemma
1.2, so that it suffices to check the first one. By definition

NS®(a / 59 () o (o — ) B(y) dy.
wEQ

Therefore

Tr# NS = Z/@gw oc(Ypx —x)de =Tr* M. O

wEN

Corollary 1.5. For any M € A and the associated operator N (M) € A, the operator
M=M-SN ¢ A2 has the property that Tr* (M) = 0 for all integer £ > 1.

Proof of Corollary 1.5: We only need to check that
MEM = ML (1.16)
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in the sense of operators fi from Byo(E) to measures, for all £ > 1. (Indeed, using the

representation (1.5) for (M)% € Az and M e Az, it follows that Tr#(M)! = Tv# M
which vanishes by Lemma 1.4 applied to M*.) We write A} for the transfer operator

associated to M¥, so that M?¢ = M* — SN,. We also associate to M € A an operator
M071 € A defined by

Mos®(x) = Y gu(r) 0o (z) @(u(x)) (1.17)

weN

noting that for £ > 1 the chain rule implies (M%)g1 = (Mo1)* (we simply write M§ ).
Since each 1), is holomorphic we have by the Leibniz rule, and because 9S = S0 is the
identity on compactly supported distributions, for all £ > 1:

M= ME = SNy = SME 13, (1.18)

in the sense of operators from Byo(F) to measures. Using again that S is the identity on
distributions with compact support, we thus get

MEM = SMG08Mo 10 = SMG Mo 10 = MEFL O

Proof of Proposition 1.3: Let M; = L or R, « = 1,2,3. We first note that when-
ever Ky and Ko are two elements of A7, U {S} with ;K> € , KoKy € Ay, and

v (1K) = Tr# (KokCy)™ for all m > 1 then
Det#(l + lCle) = Det#(l + ’Czlcl) . (119)

If, additionally, K(7) = KImKJm* .-k is in AY or A} for all integer m > 1, and
je > 0 for 0 < £ < m, with > ,.,.7¢ > 1, and if Tr# KC(7) is invariant under circular
permutations of 7, then o

Det# (14 K1) Det (1 + K3) = Det™ (1 + K1) (1 + K2)) . (1.20)

(See, e.g., [5, Appendix A] for a proof.) We now have by Lemma 1.2, (1.19-1.20) and
Corollary 1.5:

Det# (1 + D(z)) Det* (1 — 2M) = Det*
= Det#
= Det#
= Det#

1+ 2N (1 — 2M)~LS) Det* (1 — 2M)
14+ 2SN (1 — 2M)™1) Det®(1 — 2M)
1 —2M + zSN)
1—2zM)=1. O

~~ /N /N A/

As a consequence of our computations, we are able to prove:
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Lemma 1.6. For any M, P in A we have Tr# (MP) = Te# (PM).
Proof of Lemma 1.6: We shall use Lemma 1.4, which tells us that
Tr# (MP) = To# SN(MP) and Te#(PM) = Te# SN (PM),
with A'(Q) as in (1.13). By definition and the Leibniz rule we have
N(MP) =N(M)P + Mo N(P), (1.21)

with Mg 1 defined in (1.17). Now, using once more that 95 is the identity on Byo(E) to
apply (1.18), we get the following equality between operators from Byo(E) to measures:
SMo 1N (P) = SM 105N (P)
= (M —=SN(M))SN(P) (1.22)
= MSN(P) — SN(M)SN(P).
Putting (1.21) and (1.22) together, and applying Lemma 1.2 (1) yields

Tr# SN (MP) = Tr# SN (M)P + Tr# MSN (P) — Tr# SN (M)SN (P)
= Tr# PSN (M) + Te# SN (P)M — Tr# SN (P)SN (M)
= Tr#* SN (PM),
as desired. [

1.3. The kneading operators D).

We introduce yet another linear operator sending compactly supported distributions
(or measures) to distributions (measures),

S0y ®() = /C o (z — ) B(y) dy,

for integer r > 0, where we set og(z) = o(x), o1(x) = log(|z|) /7 for  # 0, and 01(0) = 0,
and generally o, for » > 2 a solution of do,. = 0,1 which we choose to be continuous
and zero at the origin (for example, o2(z) = z(log |z| — 1)). By definition 0”0, = 0. Note
also that ogoxg is in LP for all p < 2, o1 xg is in L? for all ¢ < oo, where xg denotes the
characteristic function of E, and o, is continuous for all » > 2. Introducing the notation

S"® = 05,)P, (1.23)

for ® € Byo(E), and integer r > 0 it is not difficult to check that 9"S™ = S79" is the
identity on Byo(E).

For M € A we now define the associated operators D,y (z) € 20" A[[z]]S(,) for integers
r > 0, following [6], by

Dy (2) = 0"D(2)S" = 20" N (1 — 2M) ™1 S, . (1.24)
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(Recall that "= N (M) was defined in (1.13).) Clearly, D(g)(z) = D(z).

By definition of Sy, if z_i is outside of the spectrum of M acting on the space B,.; of
distributions ® and such that 00" ® is a measure (use that o, € B;1), the operator D(,)(z)
has a chance to be well-behaved when acting on a suitable Banach subspace of By (E).
The main point (see Lemma 1.7 below) is that the sharp determinant is preserved by the
modifications (1.24), where we first need to extend the sharp determinant to 0" A[[2]]S ),
i.e., to define the sharp trace of powers of operators in 9" A[[2]]S(;). To do this, we first
write K = 0" MS,) (for M € A) in kernel form:

(1.25)

_ /C Y (78") (920.) (@) 9" (0 (Y — 4)) By) dy

w s=0

= /Kmyé(y) dy

with /Czy a finite sum of terms h(z) - o (¢Yx — y), for 0 <t < r, where h is a C*° function
with compact support, and 1 is a local holomorphic diffeomorphism on an open set A,
containing the supports of h. When constructing inductively a kernel £, for £ a finite
product of operators of the type (1.25), we are confronted with integrals of the type

/C h(y)ow(u — y) oa(by — v) dy (1.26)

where h is a C*° function with compact support, and v a local holomorphic diffeomorphism
on an open set A containing the support of h, and the integers r and s are both nonnegative.
If r = s = 0, we define the new kernel by the same rule as in (1.10), thus collapsing the two
0p in (1.26) and producing two terms with just one o factor. If r-s = 0 but r+s > 0, since
Sth is a well defined C* function supported in E for ¢t > 0 (just conjugate the arguments
following (1.10)) we may 9,-integrate by parts in (1.26) (using that 0*S* is the identity)
and thus choose on which side (left or right) we want the o factor to be. Applying these
remarks, we end up for £,, with a sum of terms of two types: either a single

ho(x) hi(z) o0(¥1(x) — ¥1(2)) (1.27)

or an integral

ho(l‘) hj+1(z) /CX,__XChl (yl) Osy (@blx - ¢1y1) h2(y2) Osy (¢2y1 B ¢2y2) (1.28)

o, (YY1 — i2) dyr - dyj—a

where j > 2, and all the s; except perhaps the second one sy are strictly positive (the h;
are C'°° with compact support, and the 1;, ¥; local holomorphic diffeomorphisms on open
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sets as usual). Because of the properties of the o;, the Cauchy principal value of [ L, dz
is thus well defined and we may set Tr* £ to be this value. The result can now be stated:

Lemma 1.7. For M € A and D(,(z) defined by (1.24), we have for all integers r > 0
Det# (14 Dy, (2)) = Det® (1 4+ D(2)).

Proof of Lemma 1.7: By definition of the sharp determinant, we must check that for
any P € A3 N A7 and integer r > 1

Tr# PS = Tr* 9"PSS”. (1.29)

Clearly, it suffices to verify that for all operators K = 9*PSS*~! with P € A% N A7 and
integer s > 1 we have B B
Tr# KS = Tr* SK. (1.30)

(Both sides of (1.30) are well defined since KS = 9*PSS* and SK = 95~ 'PSS*~1) We
first observe that since SO = S is the identity on Byo(E), we have

50 () = /C 5z — ) B(y) dy,

with &(z) = o(x) having the property that 0 is the Dirac mass at 0. By (1.25-1.28) we
know that the operator K appearing in (1.30) acting on Byg(E) can be written in kernel
form with Ky, a finite sum of terms

h(x) - h(y) - o1 (Y — dy) (1.31)
where 0_; = do (apply 0, to terms (1.27)) and terms

/C . hi(y1) 05,1 (17 — P1y1) - o, (Y51 — $i2) dyr - - dyj_1 (1.32)

with s; — 1,82 > 0 and the other s; > 0 (apply 9, to (1.28)). If (1.32) contains two oy
factors we proceed as described above to define its value. Using this kernel K5, and (1.30)
we write

KSD(a // Gy —2)0(2)dzdy  SKD(a // 2 — y)Kys B(2) dz dy.

(1.33)
We claim that we can use the expression [ K, o(y — z)dy from (1.33) for the kernel of
KCS without problems (and similarly for SK). The only summands of K, which require
some care are those of the form (1.31), for which we may legitimately use (since 07 is the
Dirac mass at the origin)

/ R(y) o1 (b — D) 5(y — ) dy =

_he) o Oh(y)Y' (y) — h(y)y" (y)
= G oot + [ :

b‘

oo(Yz — Py) 5y — 2) dy .



(A similar computation exists for SK.) Finally, we just apply Fubini and get:

Tr#ICS:/ / ICwy6(y—a:)dyda::/ / 7(x — y)Kye dy dz = Tr¥ SKC,
cJC CcJC

as required. [

1.4. The half-adjoint, a functional equation, and the kneading operator 73(2)
We associate with M another operator in A (the half-adjoint of M) defined by

M(z) = YoV w) Dy z). (1.34)

(We assume that supp g, C 9,A,.) Note that M is independent of the representation of

M of the form (1.1). Clearly is an involution. Since each 1, is a local holomorphic
diffeomorphism,
Tr#ﬂzf (22 oyt) o(v5 (x) — ) de
C 8¢w
— [0 ) ) 00T 05 o)~ )
C a'@[}w
99w , = 1.35
— [ S e @) 905 w) 005 o)~ ) d (13
C 8¢w
99, -
= | 57 (y) 095 (o (1) 0% () P o (y — buy) dy
C a'@[}w
= —Tr* M
Since Mmz = M\zﬂl we have T‘r#(ﬁ/l\)" = —Tr# M" for all integers n > 1. We
therefore obtain the functional equation
Det# (1 — zM) Det#(1 — zM) = 1. (1.36)

Replacing M by M and (M) by N (M) in (1.9) we may define an operator D(z) € A"
Using the functional equation (1.36) and the above properties of |, we may now write a
more complete version of Proposition 1.3:

1 1
Det®(1—2M)  Det#(1+D(2))

Det#(1 +D(z)) = Det#(1 — z2M) = (1.37)

We also define operators ﬁ(r)(z) for integers r > 0 by 20" N'(M)(1 — zM\)_IS(T) and note
as in Lemma 1.7 that Det# (1 + ﬁ(T)(z)) = Det#(1 + D(z)) for all 7.
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1.5. Simple fixed points: a formula for the sharp trace of a transfer operator.

We assume for a moment that condition (1.3) holds for M, but relax the smoothness
assumption on the g, requiring only that they are C!' with support in £. With these
assumptions, each dg,, () o (1), (z) —x) is in fact integrable. Recalling (1.9), and observing
that there are only finitely many points z € C with v, (z) = = (because (1.3) excludes the
case where 1), is the identity map), we get the explicit formula:

TrmM=-Y Y _gul®) (1.38)

weR z:), (v)=x 0% (.’17) -1

When (1.3) does not hold, i.e. when 01, (z¢) = 1 for some zy = 1, (x) in the support
of g.,, then either ¢, is the identity, or the tangency is of finite order, i.e., 0%, (z) # 0
for some k£ > 2. In the second case, one may thus use 0 integration by parts to obtain
a formula for the principal value of [dgy (7)o (¢pz — ) dz. The formula will involve in
general the derivatives of 97g,, at xo of order 0 < j < k — 1. We just consider a simple
example, where t,,(z) = x + ax? with a € C (o # 0) and g, is C?. Then:

/Cﬁgw () o(Ypx — x)dx = /Cagw (z) o(ax?) de = /C 009, (z) o(ar) dz

— / 009, () o(ax) dr = _aqwi@).
C

(0%

2. SPECTRAL PROPERTIES

2.1. The spaces Bkr,.

For K, L > 0, let Bx, be the Banach space of distributions & with support in a fixed
bounded set B C C and 0% 0Y® = a measure. We write ||®|| 5z = mass of |05 9L ®|. We
shall generally use a functional notation for the elements ® of Bx . Note that 9% 0% is a
canonical isomorphism of Bk, to a subspace of the space of measures with support in B.

If §y is the unit mass at 0 € C, the equation 0“0Y¢ = &, has a fundamental solution
puv such that go1(2) = =, ¥10(2) = 7=, v02(2) = &, eu(2) = zloglz], wa(z) =
= .. pa1(z) = Z(log|z| + 1), etc. Therefore

Bk CLP(B) forallp<2if K+L=1
Bir CL®(B) ifK+L=2and KL=0
Bgr C LY(B) forallg<oo if K=L=1
Bir C Co(B)  (continuous functions on C vanishing outside of B) if K + L > 3.

In fact one can prove that Bog N By N By C Co(B) [2].

Note that Bi/, C By if K' > K, L' > L. Also, since 8“5”8[{[, C BK—'u,7L—'u for
u < K, v < L, we have ready information on spaces in which these derivatives lie.
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2.2. The operators Mkﬁ,ﬂkg.
For k,0 € Z, let

My ® = Zgw(%)k(%)z(@ o 1y,)

Mie® =Y (g 05 Y)- (0, 0 3P (0, 0 w5 H) (B oy Y.

wEN

We assume that Q is finite, g, € Co(B), and that 1, is an invertible holomorphic map
A, — ¥ ,A, with open A, D suppg, and A,, ¥ ,A, C B. [At the cost of making more

complicated assumptions below, one could take 2 countable infinite, or replace > by an
w

integral, or assume only that g, vanishes outside A,].

Let us say that the family (g,,) is Bxr, adaptedif g, € Bgr and K+L > 3. f K+L = 2
we require 0% 0Lg,, € L" for some r > 1. If K + L = 1 we require 050%g,, € L" for some
r > 2. Note that if K’ < K, L' < L and (g,) is Bk adapted, then (g,) is also B
adapted.

With the above definition, if (g,,) is Bk adapted then Mgy, M\ke : Bk — Bxr are
bounded operators for all k,£. [This is readily checked by expanding 0¥ 0¥ Mg ® and
using the properties of the spaces Bgr, obtained in Section 2.1].

We may also let My, act on Co(B); we let ng,ﬁkg be the corresponding spectral
radii: y
R = lim_ (| (Mg)™ )™

Ry = n}ijnoo(ﬂ(ﬂu)mﬂoo)l/m-
Let us assume that (g,) is Bgr adapted and ® € Bi . We may write
O OF (M ®) = M*0K 01D + M'0¥ 0F @
where M* and M’ act on measures. The operator M* is given in functional notation by

(M®)(2) = D gu - (L) FF WL (W o)

i.e., formally, M* = My k o4+ We turn now to the definition of M’. If we act repeatedly
on the measure ¥ by convolution with the fundamental solution ¢g1 or @19 and multipli-
cation by a smooth function X with compact support and equal to 1 on B we obtain
terms W, with u < K, v < L such that when ¥ = 9¥ 5L<I>, the V¥, are the lower order
derivatives 9% 0V®. We obtain M’V by adding the ¥, o v, multiplied by appropriate
derivatives of g, ., ¢! and summing over w. For K + L —u — v = 1,2, > 3 the maps
¥ — ¥, are found to be compact from measures to LP (with p < 2), L9 (with ¢ < c0) or
Co (supp X); from this it follows that M’ (acting on measures) is compact.
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Similarly o . ) - B
8K 8L(Mk;£q)) — M*aK 8L®+M/8K 8L(I)

where M* and M’ act on measures; M* is given formally by M* = M\k_ K —1 and M
is compact.

2.3. Theorem. Let (g,) be BKL adapted. Then the essential spectral radius of My
(resp. ng) acting on Bir, is < Rk+K 1,040—1 (resp. < Rg_k41.0-1+1)-

Indeed, a direct computation shows that M* (respectively M\*) is the adjoint of
M\k+K_1,g+L_1 (resp. Mp_k+1¢-1+1) acting on continuous functions. Therefore the
spectral radius of M* (resp. M\*) is < §k+K_1,g+L_1 (resp. < Rg_k+1¢-r+1). The
theorem results from the fact that a compact perturbation does not change the essential

spectral radius, and from the fact that oK o maps Bxr,_isometrically into the measures,
replacing My, (resp. Mkz) by M* + M’ (resp. M*+ M ). O

2.4. Theorem. Let (g,) be Biy adapted and K + L > 2.

(a) The spectral radius of My (resp. M\kg) is < max(ﬁk_FK_LHL_l,ng) (resp.
< max(Re—k+1,6—-1+1, Rie).

(b) The generalized eigenfunctions corresponding to eigenvalues X satisfying |A| >
Riix—1,041-1 (resp. > Ri_k+14—1+1) are continuous.

Let p be the spectral radius of My, acting on Bgr,. It suffices to prove (a) under the
assumption p > Riirx—1¢4r—1. This assumption implies that My, has an eigenvalue A
with |A] = p and a corresponding eigenfunction ® € By . If (b) holds then ® is bounded
hence p = |A| < Ry, proving (a).

Since Bgr, C Co(B) when K+ L > 3, it suffices to prove (b) for K +L = 2. Let A, with

A > Riyx—1,0+1-1, be an eigenvalue of My, acting on Bk, and ® be a corresponding
eigenfunction. We have thus

(M* = N)oE 9LD = —~M'9K 9L D

and the right hand side is in L"(B) for some r > 1 because My, is Bi adapted. The
spectral radius of M* acting on L’ is < §k+K_1,g+L_1 (as noted in the proof of theorem
2.3) hence < |A|, and M* is also bounded on L*. Using the Riesz-Thorin interpolation
theorem we therefore see that the spectral radius of M* acting on L" becomes < |A| if r
is sufficiently close to 1. We can now conclude that

K OL® = —(M* = \) "MK 9L

isin L", and ® is thus in Cy(B). Generalized eigenfunctions are treated in similar manner,
and this completes the verification of (b).

The case of M\M is handled by the same arguments. [
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Remark. Let (g,) be B adapted, with K+ L = 1. If ® is a (generalized) eigenfunction

of Mye to an eigenvalue A with |A| > ﬁkJrK_LHL_h we have as above 0¥ 9L® e L" for
some r > 1. Therefore ® € LP for some p > 2.

2.5. Theorem. Let g, > 0, (gw) be Bir, adapted with K + L > 2, and §k+K Lk+L—1 <
Ry (resp Ri_rki1k—rn4+1 < Rkk) Then Ry is an eigenvalue of My acting on Bgp,

(resp. Rkk is an eigenvalue of ./\/lkk acting on By ) and there is a corresponding eigen-
function ® > 0.

A very similar result has been proved in a related situation [4]. We give here again a
complete proof.

We shall use the notation M = My, R = Ry, ||| = |||k We can take x smooth
such that y takes values in [0, 1], has support in B, and is 1 on the 1), supp g.,.

The spectral radius p of M acting on Bk, is the same as the spectral radius of the
operator M* 4+ M’ acting on the space 0K 0FBg of measures (the operators M*, M’
are defined as earlier). Therefore

spectral radius of M* + M’
acting on 0% 0L Bxr N L < p.

Writing
o = limsup ||[M™x]|/Y/™

m—00

- x nm oK 3L L/m
= lim sup (H(M + M™% 0 XH1)

m—00

we also have o < p.

Because (g,,) is Bx 1, adapted, M’ is bounded L' — L" for some r > 1 and so M*+ M’
is bounded L" — L". Therefore, given € > 0, we can find (using the Holder inequality)
s > 1 such that

limsup (||(M* + M)™9K 35| )™ < o +e.

m— 00
We have (using the positivity of the g,,)

R = lim (norm of M™ acting on L°°)L/™

m— 00

= Tim (| M™x]l) /™

< lim sup (const . HaK 5L(MmX)Hs)1/m

m— 00

= limsup (|| (M* +M)"0K 3% x| )™

m— 00

< og+e.

Hence R < o < p and, if R > §k+K_1,k+L_1, Theorem 2.4 gives p < R. Therefore
oc=p=R and
lim sup |M™x||'/™ = R.

m— 00
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Replacing everywhere lim sup by lim inf we see that

lim [M™x[|V"™ =R (1)
m— 00

We may write

XZ‘I’JFZ‘I’J' (2)

where, for each j, A; is an eigenvalue of M (acting on B) with |A\;| = R and V; is in the
corresponding generalized eigenspace; V¥ is such that

my
lim “'A/Nlin =

m—00 /\m

0

with 0 < A < R. In view of (1) the VU, do not all vanish. Write the restriction of M to the
generalized eigenspaces corresponding to the A; in Jordan normal form: it is then readily
seen that there is an integer £ > 0 such that

1
hm I sT— Mm\I/] = (I)j

and
MB; = \D;
for all j, and ®; # 0 for some j. From (2) we get

0< = ;
- Rmmk Rmmk /\;.nm"’

R

J
Therefore
)\ . m
(%) 5z-en ®)
J
where both sides of this inequality are real functions € B and

M™P AN\ [ MY
= A A
4 Rmmk+Z<R> (A;.nmk J)

J

Note that ¢,, — 0 in B, hence in L4 for q < oo.

M-1

Let (), denote the average lim - >, and write Ag = R (with ¥y = ®¢ = 0 if
M —+oco m=0

Ao is not an eigenvalue of M). For arbitrary real a, (3, we have

e

> —((1+sin(ma+3))em),

m
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hence
)\. m
Dy + <sin(ma + ) Z (ﬁ) ®j> > 0.
J m

If we had ®9 = 0, taking 8 =0, 3, , 37” would give

<eima Z (%)m q>j> =0

J m

implying that ®; = 0 for all j contrary to our assumptions. Therefore \y = R is an
eigenvalue and (taking g = 0, 7)

by + <sinmaz <)\—}%> <I>j> >0
J

m

so that &y > 0, and P is not identically 0. [

3. TRACES AND DETERMINANTS — EXISTENCE.

In this section we want to justify the existence of the traces and determinants of some
of the operators which arise in this paper. We begin with some attention to the function
spaces on which we shall work.

Given a compact set £ C C, let B(E) = By 2(E) denote the space of distributions f

on C such that supp f C E and GR [ (taken in the sense of distributions) is a finite measure
on C. We define the B-norm of f by

nmszzgﬁﬂ, (3.1)

and we use this norm for all the spaces B(E).

Lemma 3.2. If f € B(E), then f is in fact represented by a bounded measurable function
(which we also denote by f) and we have that

2 —2
£l < 2 [ @11 (3.3
C
To see this we first recall that
— 1 —2.T
0 (;) =ndp and O (;) = 7o (3.4)

in the sense of distributions on C, where dy denotes the Dirac mass at the origin. The
first equation is well-known, and the second equation follows from the first. (Note that %
is locally integrable on C.)
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Let f € B(FE) be given, and define F' by

mmzlfx‘_aﬂ> (3.5)

™ X —

.. . . =2, . .
This is a bounded measurable function on C, since 0" f is a finite measure, and we have
that

1 =2
1Pl <+ [ @51 (3.6

We also have that 9 F =9 f (in the sense of distributions), because of (3.4). Thus F'— f is
holomorphic, and it is therefore constant, since F'is bounded and f has compact support.
This constant is bounded by ||F||, and (3.3) follows. This proves Lemma 3.2.

Lemma 3.7. If E C C is compact and f € B(E), then 0f (taken in the sense of
distributions) is an integrable function on C which is given by

éﬂmzlf 71(y). (3.8)

T™Tr—Y

Also, f — Of defines a bounded linear operator from B(E) into LP(E) for all p < 2.

Indeed, if f € B(F) and F is defined by (3.5), then we saw above that F' — f is
constant. Thus f = OF. This permits us to derive (3.8) from (3.5) by standard arguments
in distribution theory. Of course 0f = 0 on C\E, since supp f C E. The last part, about
J0f € LP(E), follows from the fact that % = e L} for all p < 2. This proves Lemma 3.7.

In the next lemmas we accumulate some facts about linear operators acting on B(E).

Lemma 3.9. Let E be a compact subset of C. Suppose that

g s a continuous function on C,
the second derivatives of g are locally integrable, (3.10)
and Vg € LT for some p > 2.

(All these derivatives of g are taken in the sense of distributions.) Then f — g f defines
a bounded linear operator on B(E). If the support of g is contained in some compact set

W C C, then f — g f defines a bounded linear operator from B(E) into B(W).

According to the Leibniz rule we have that

(gf)=(@9) [+2@g) @) +g(@)). (3.11)

Since we are working with distributional derivatives we should be a little bit careful. This
identity would be a standard tautology from distribution theory if g were C°°. In general
the right hand side makes sense as a measure because of (3.10) and Lemmas 3.2 and 3.7,
and it can be derived from the case where g is C*° by a standard approximation argument.
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Lemma 3.9 follows easily from the identity (3.11) and the bounds in Lemmas 3.2 and
3.7.

Recall that if n € L1(C) and if h € LP(C) for some p,1 < p < oo, then nx h € LP(C)
and

1% Ally < flnll ([72]lp-

Here 7 x h denotes convolution between n and h. The next lemma provides an analogous
result for the B spaces.

Lemma 3.12. Suppose that g satisfies (3.10) and has support contained in the compact
set W, and let 6 be a locally integrable function on C. Then f — g (0% f) defines a bounded
linear operator from B(E) into B(W) for every compact set E C C. This operator is also
compact, and in fact it can be approrimated in the operator norm by finite rank operators
of the form f — 3. ga;(f,b;), where {a;},{b;} are finite sequences of polynomials, and
(-,-) denotes the standard pairing of functions on C.

Consider first the part about the boundedness of the operator. The main point is that

convolution commutes with differentiation, so that 529 x f =60 % (52 f), etc. This permits
us to control @« f and its first two 0 derivatives in terms of f and its first two 0 derivatives,
and then we can get g (6 = f) into B(W) using the same argument as in Lemma 3.9.

Now consider the second part, about compactness. Given any compact set K in C, we
can approximate 6 by polynomials in L!(K). By choosing K correctly we can approximate
our operator f — g (6 * f) in the operator norm B(E) — B(W) by operators of the same
form, but with 6 replaced by polynomials. This uses the fact that if n € Lj, ., then the
operator norm of f — g (nx* f), as an operator from B(E) into B(W), is controlled by the
LY(K) norm of 7 if we choose K correctly. This fact can be checked using the argument of
the preceding paragraph. A simple computation shows that f — ¢ (6 x f) is a finite rank
operator of the desired form when 6 is a polynomial.

This proves Lemma 3.12.

Let us call a linear operator acting on functions on C a transfer operator if it can be
expressed in the form

MO(z) =Y gu(2) oy (). (3.13)

weN

As before we assume that Q is finite, that each g, is at least a continuous function with
compact support, that each 1, is a holomorphic diffeomorphism from an open set A, C C
onto its image, and that A, DO supp g,. Although ® o, (x) is not defined for all z, it is
defined on the support of g, and we can simply interpret ® o ¢, (z) to be 0 when x does
not lie in the domain of .

Note that these transfer operators are well-defined on Lj . functions, for instance,
because the 1,’s are diffeomorphisms (on their domains) and preserve sets of Lebesgue
measure 0 in particular. We shall frequently use the fact that transfer operators are
bounded on L°°.

Lemma 3.14. Let E and W be compact subsets of C. If M 1is a transfer operator as
in (3.13), if each g, satisfies (3.10), and if supp g, C W for each w, then M defines a
bounded linear operator from B(FE) into B(W).
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In order to deal with this in a reasonable way it is helpful to establish first a technical
fact about membership in B(W).

Sublemma 3.15. An integrable function f on C lies in B(W) if and only if there is a
sequence of smooth functions {f;} such that f; — f in the L* norm, sup, || fjlls < oo, and
the supports of the f;’s shrink to a subset of W, in the sense that for each open set U O W
there is an | such that supp f; C U when j > [.

The proof of this is standard. If f € B(W), then we can get a sequence {f;} as
above by convolving f with an approximation to the identity with supports shrinking to
{0}. The resulting functions will have supports shrinking to a subset of W, and the B
norms will remain bounded because derivatives commute with convolution, and because
the convolution of an L! function with a measure is again an L! function whose L' norm
is bounded by the product of the L' norm of the original function and the total variation
of the measure. Conversely, suppose that f is integrable and that there exists an approxi-

. . =2 =2, .
mating sequence {f;} as in the sublemma. Then we have that 0" f; — 0" f in the sense of

.. . . . . -2
distributions. Our assumptions on {f;} imply a uniform mass bound on 0" f;, and hence

52f must be a finite measure. Since f is certainly supported in W we get that f € B(W),
as desired. This proves Sublemma 3.15.

Let us come back now to the proof of Lemma 3.14. If we assume that ® is smooth, or
if we compute formally, then we can get that [|[M®||z < C||®||5 for some constant C' which
does not depend on ®. This uses a Leibniz computation like (3.11) and our assumptions on
the g,’s to reduce the problem to one of having estimates for ® o1, and its 0 derivatives
on the support of g, in the same way as in the proof of Lemma 3.9. The holomorphicity
of the 1,,’s permits us to compute 0 derivatives of ® o), in terms of 0 derivatives of ®,
with extra multiplicative factors coming from the derivatives of the 1,’s. Composition
with v, and multiplication by its derivatives do not disturb integrability properties, at
least if we remain within the compact subset supp g, of the domain of v, as we do here.
Thus we can bound ||[M®||z = ||52M<I>||1 in terms of ||®||z, using also Lemmas 3.2 and
3.7. Once we have this bound for all smooth functions ® with compact support we can use
Sublemma 3.15 to get that M actually maps B(E) into B(W). This proves Lemma 3.14.

Another operator that we shall be interested in is the operator S defined by

1 1
Sf(x)= — dy. 3.16
F@) = [ sy (3.16)
This operator sends integrable functions with compact support to locally integrable func-
tions on C, or, more generally, it sends distributions with compact support to distributions.
It is the inverse to 0, in the sense that

9(Sf)=f and S@Of) =7F (3.17)

for all distributions f on C with compact support. These equations come down to the first
formula in (3.4), by the standard tricks in distribution theory. (That is, the distributional
interpretation of (3.17) converts these equations, via duality, to their counterparts for test
functions, which can then be reduced to (3.4).)
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We shall also want to have a nice one-parameter family of regularizations of S. Fix a
C*° function v on C, once and for all, with

1
v(r) =1 when || >1 and v(z)=0 when |z| < 3" (3.18)
Define an operator S; for ¢ > 0 by
1 1 T —y
S, = — dy. 3.19
@) = [ = sy (3.19)

Again this operator acts on functions or distributions with compact support. Notice that

1 — 1
y(x y): when |z —y| > t,
Ty t Ty (3.20)

=0 when |z —y| < t/2.

Thus S; approximates S but its kernel has no singularity.
In practice one should think of ¢ as being small, or at least not large, and for simplicity
we shall restrict our attention to ¢ < 1.

Lemma 3.21. Suppose that g satisfies (3.10) and has support contained in the compact
set W. Then f+— g(Sf) and f > g (Sif) define bounded linear operators from B(FE) into
B(W) for every compact set E C C and for every t € (0,1]. Moreover, the second operator
converges to the first one ast — 0 in operator norm (defined using || - ||z). In fact, the
operator norm of gS — ¢Sy is O(t).

The boundedness of these operators follows from Lemma 3.12, because they are given
in terms of convolutions of locally integrable functions. The convergence in the operator
norm follows from the fact that %V(E) converges to % as t — 0 in L' on any compact

t
subset of C. In fact
1 =z

/ |l — —v(=)|dz = constant - t,
cr x 't
as one can easily check. This implies that ¢S — ¢S; has norm = O(t), because the norm
of the operator described in Lemma 3.12 is controlled by the L' norm of the function
given there. This proves Lemma 3.21.

One of our main goals in this section is to show that certain operators constructed
from S are trace class. Let us recall the definition.

If X and Y are Banach spaces, then we say that a linear operator T': X — Y is trace
class (or nuclear) if it can be represented as a sum of rank one operators,

Tu = Z Ajwj(u,vj), (3.22)
J

where the w;’s are elements of the unit ball of Y, the v;’s are elements of the unit ball of the
dual space of X, (-,-) denotes the pairing between X and its dual space, and the A;’s are
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scalars which satisfy >, |A;| < oo. The infimum of . [A;| over all such representations
of T is called the trace norm of 7.

Note that the composition of a bounded operator and a trace class operator (in either
order) is trace class.

Unfortunately operators like g .S are not trace class, the singularity in the kernel is too
strong. We shall see that products of S’s and commutators with S’s can give rise to trace
class operators in a natural way. Or almost anyway; we shall see that products of S;’s
and commutators with S;’s give rise to trace class operators whose trace norm is bounded
uniformly in .

Let us begin with a general criterion for an integral operator to be trace class.

Lemma 3.23. Let X be a Banach space and let E be a compact subset of C. Suppose
that H : E — X is continuous (using the norm topology for X ). Define an operator
T:L>*(E)— X by

rf = [ H ) dy. (3:24)
C
Then T 1is trace class, and
trace norm T < |E| - sup ||H (y)||x, (3.25)
yer

where |E| denotes the Lebesque measure of E.

This result is pretty standard, but let us prove it for the sake of completeness. We
need to approximate 7' by finite rank operators, and so we approximate the integral in
(3.24) by Riemann sums.

Incidentally, H is uniformly continuous on F, since F is compact, and this ensures
that there is no funny business in defining the integral in (3.24). This will be made explicit
in the argument that follows.

Fix a square Q¢ in C which contains E. For each j = 0,1,2,... let A(j) denote the
obvious decomposition of g into 2%/ subsquares of Qq, each of size 277 times the size of
Qo, with sides parallel to the same axes as for g, and with the elements of A(j) having
disjoint interiors. Thus when j = 0 we simply get Qo back again, when j = 1 we get the
usual decomposition of ()¢ into four pieces, etc.

If @ is any square in C, let v(Q) denote its center.

Given j > 0 define T} : L°(E) — X by

Tif(x)= Y H>xQ)) f(y)dy. (3.26)
QEA(]) QnE

Let us check that this finite-rank operator satisfies

trace norm T; < |E|-sup | H(y)| x. (3.27)
yek
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This comes down to the observation that

[ f(y)dy is a bounded linear functional on L*°(F)
QNE (3.28)

with norm < |Q N E|.
Next let us check that

lim trace norm (T} — T};) = 0. (3.29)
7,k—o0
Let j and k be large and given, with k& > j. Notice that every @ € A(k) has a unique

“ancestor” Q(j) in A(j), where Q C Q(j) but the interior of @ is disjoint from all other
elements of A(j). In other words the elements of A(k) can be obtained by subdividing the
elements of A(j). This observation leads us to the formula

T-T)f = Y HAQ) / fwdy— S HO®) [ fw)dy

QEA(K) QNE REA()) RNE
R (3.30)

- Y (HEH@) - HAOG)) / 7(y) dy.

QEA(k) QNE

This formula uses the fact that every element R of A(j) is the disjoint union of its de-
scendants in A(k) (so that [, . f equals the sum of the corresponding integrals for the
descendants @ of R in A(k)). On the other hand the (uniform) continuity of H implies
that

li H — H(Q())|lx = 0. 3.31
i - max I1H(v(Q)) — H(v(Q())llx (3.31)
It is easy to derive (3.29) from (3.30), (3.31), and (3.28).

Thus {T};} is a Cauchy sequence with respect to the trace norm. Of course {T}}
converges to 7" in the operator norm. Standard arguments imply that 7" is trace class and
that

trace norm 7' < liminf trace norm T < |E|-sup ||H (y)| x. (3.32)

This completes the proof of Lemma 3.23.

In practice we shall want to apply Lemma 3.23 with L>°(FE) replaced with B(FE), and
we can do that freely because of Lemma 3.2. We shall also normally take X to be some B
space.

Now we want to look at operators constructed from S, starting with the very smooth
St7S.

Lemma 3.33. Let E and W be compact subsets of C, and suppose that g is supported in
W and satisfies (3.10). Then f — g (Sif) defines a trace class operator from L*°(FE) into
B(W) for every t € (0,1], and the trace norm is O(t™1).

The hypothesis on g is not sharp, but it is adequate. We shall not try to get the
sharpest results here.
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As above, we can replace L>°(FE) with B(FE) for free, because of Lemma 3.2.

Let us first observe that we can reduce to the case where g is smooth. Indeed, let y be
a smooth function with support contained in some compact set W’ and with x = 1 on W.
Then we can view ¢Sy : L>°(FE) — B(W) as the composition of x S; : L®(E) — B(W')
and the operator of multiplication by g, which defines a bounded operator from B(W')
into B(W) (Lemma 3.9). This permits us to reduce to the case where W, g are replaced
with W', x. Thus we may assume that g is smooth.

We want to apply Lemma 3.23. We can write g S; explicitly as

@5)1@) = 1 [ at0) == v s dy (334
The mapping ) B
v gle) () (3.35)

defines a continuous map from C into B(W). This is easy to check, using the smoothness

of ﬁ v(*5%). Therefore g S; defines a trace class map from L*°(E) into B(W). We also

get that

1 —
trace norm ¢Sy < |E|-sup || g(x ) V(JJ ) 1%
ver o (3.36)
g|E|-sup/|a{g () de
yek
We want to show that the right hand side is O(¢t71).
Notice that
=2 1 T —y
0] g(2) —— (=)} = —— | T, { g(2) (=)}

< |5${g<x>v<”” SHE

since pray is holomorphic in x away from the pole 2 = y, and because v(*3¥) vanishes
when |z —y| < t/2, by (3.18). Therefore

r—y

2
trace norm g Sy < |F|- sup / — |8326{g($) v( )} dx. (3.38)
yeE Jo 't
Thus it suffices to show that
sup sup / |5i{g(aj)y($_y)}|da:< 0. (3.39)
0<t<1yeE JC

Let us first make some preliminary observations. Using (3.18) and calculus we get
that

0y y(m ; y) = 5925 1/(#) =0 when |z —y|>tor|z—y|< %, (3.40)
:suepC 0 V(JJ ; )| = :suepC ¢t |(8y)($ — y)| =0, and (3.41)
T,y T,y

—2 xTr — T _
sup [0, v(“— )| = swp 172|@ v) (L) = 0(7?). (3.42)

z,yeC z,yeC
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Hence

/ B (") = 0() and (3.43)
c t

/Wiuﬁ;yﬂzoa» (3.44)
C

To prove (3.39) one simply uses the Leibniz formula and remembers that g is smooth
and has compact support. When both d,’s land on ¢ the integral is bounded because v
is bounded. When one d, lands on g and one lands on the v we can control the integral
using (3.43). When both 0,’s land on v we use (3.44).

This proves (3.39), and Lemma 3.33 follows.

Lemma 3.45. Let E and W be compact subsets of C, and let g and h be functions on C
such that g satisfies (3.10), suppg C W, and

heC' and 52hELP

loc

for some p > 2. (3.46)

Then the operator g[h,St] : L (E) — B(W) is trace class for each t € (0,1], where we
identify g and h with their corresponding multiplication operators, and

sup trace norm g [h, S| < oo. (3.47)
0<t<1

To prove this we first observe that we may take g to be smooth. This follows from
the same argument as in the corresponding step of the proof of Lemma 3.33.
To show that g[h, S| is trace class we apply Lemma 3.23. We need to check that

1 T —y

v(

y = g(z) (h(z) = hy)) — i

) (3.48)

defines a continuous map from C into B(W), and we need to bound its supremum norm.
The factor of g(x) already ensures that these functions of z are supported in W, and so it
suffices to show that

1 r—y

v(

y = Dl 9(@) () = hy) = v(=

)} (3.49)

defines a continuous map from C into the finite measures on C (continuity with respect
to the total variation norm on the space of finite measures on C), and to bound the total
variations of these measures. In this case these measures are given by integrable functions,
because the v kills the singularity in ﬁ and because of our assumptions (3.46) on h, and
the continuity of (3.49) as a map into L*(C) is immediate. The issue is to control the L?
norms, i.e., to prove that

1 rT—y
v(
r—y

sup  sup /W 9,{ 9(=) (h(x) — h(y)) )} dw < oo (3.50)

0<t<1 yeE
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The computations are neither exciting nor difficult, but let us be a little bit careful.

. . =2 . ..
Notice first that we can pull the m% outside the 0, because —1— is holomorphic in = away
y -y

from y and because v(*3¥) vanishes for  in a neighborhood of y (by (3.18)). Thus we

can reduce to showing that

Sup sup /W |$iyﬁi{g<x> (h(x) = h(y) v(=)} do < . (3.51)

At this stage one simply has to use the Leibniz formula and treat the various terms.
Consider first the term

1 —2 T —y
@) @) ) (3.5

Since g and v are bounded this is controlled by our assumption (3.46), Holder’s inequality,
and the fact that L lies in L (C) for all ¢ < 2. Next consider

loc

1 — T—y

e @ah() D ()

)b, (3.53)

We can ignore 0, h(z), because it is bounded on the compact set W by (3.46). Thus we
are faced with estimating

/W A @ug(e) o) + () Do) (3.54)

The 0,g(x) term is easily controlled because g is smooth, so that d,g(x) is bounded on
W, and because v is bounded. For the remaining piece we use the boundedness of g and
(3.40), (3.41) to get that

1 _ _
sup sup / | 3331/(33 y)| dx < o0. (3.55)
t>0 yeE Jw T —Y ¢

Thus we conclude that (3.54) is bounded in ¢.
It remains to show that

h(z) — h(y) = —
sup sup / |M ai{g(ag) y(u)}| dx < oo. (3.56)
t>0 yeE JW r—y t
Notice first that " "
sup sup |M| < 0, (3.57)
TeW yeE r—yY

since we are assuming that h is C!. Therefore (3.56) reduces to

sup sup / |§i{g(a:) I/(m _ y)}| dx < 0. (3.58)
t>0 yeE Jw ¢
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Using Leibniz again we are faced with three terms. The first is (Eig(:c)) v(¥Y). This is
bounded on W since g is smooth and v is bounded, and hence the integral is bounded. The
second term is (0,9(x)) (0¥ (*5%)). The integral of this is bounded because of (3.43) and

the boundedness of dg. Similarly, we can control the contribution of the g(x) giy(%)
term to (3.58) using (3.44). Thus we get (3.58), and hence (3.56).

This proves (3.50), as desired, and Lemma 3.45 follows.

It would be nice if the commutator between S; and a transfer operator had bounded
trace norm, at least under suitable conditions. There is a result like this, but unfortu-
nately we cannot quite take the commutator, we have to convert one transfer operator into
another, and we also get an annoying error term that comes from the truncation in S;.

Given a transfer operator M as in (3.13), define My ; by

Mo1®(x) = gu () P, () D 0, (x). (3.59)

wEN

Lemma 3.60. Suppose that g, ., etc., are as in the paragraph after (3.13), and suppose
also that each g, satisfies (3.46). Let E and W be compact sets in C, and let x be a
smooth function on C which is supported in W. Then the operator x (M Sy — Sy Mo 1) :
B(E) — B(W) is trace class for every t € (0, 1], and we can write it as Ty + Uy, where T}
and Uy are trace class operators from B(E) into B(W') which satisfy

sup trace norm T} < 0o and (3.61)
0<t<1
operator norm Uy = O(t). (3.62)

We are not asserting a uniform bound on the trace norms of the error terms U;. The
proof will give a bound of O(t~!), but we shall not need this. These error terms are an
unfortunate consequence of our truncations, they are not truly natural. In our applications
of Lemma 3.60 these error terms will not be so bad, because there will be another factor
of S, and the good estimate for the operator norm of the error term in (3.62) will balance
out the bad estimate for the trace norm in Lemma 3.33.

Before we begin the proof of Lemma 3.60 in earnest let us dispense with some prelim-
inary reductions.

We may as well assume that {2 has only one element w, so that we can get rid of the
sum in our transfer operator.

Let us show that we can replace the function g, with something smooth. Let h be a
smooth function with compact support such that A =1 on supp g, and supph C A, (the
domain of v¢,). We may as well assume that E D supp h, since otherwise we can simply
enlarge F/, which strengthens the conclusion of the lemma.

Let us write 1 for v,,, to simplify the notation. Define a transfer operator A by

N ®(z) = h(z) P op(x). (3.63)
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Also, as in (3.59), define Ny ; by

Noa ®(x) = h(z) ¥ (z) ® o p(x). (3.64)
Thus M = g, N and Mg 1 = g, Nop,1. We can rewrite our operator as
X (M Sy — S Mo 1) = g x NV St — St No1) + X [9us St] No 1 (3.65)

The last term is trace class, with bounded norm, because of Lemma 3.45 (with g, playing
the role that & did there), and because the transfer operator Ny 1 is bounded on L*°. Thus
we need only show that the first term on the right hand side satisfies the conclusions of the
lemma. For this we may forget about the g, in front, because multiplication by it defines
a bounded linear operator on B(W), by Lemma 3.9.

In summary, it suffices to show that the operator x (N Sy — St No 1) : B(E) — B(W)
is trace class, and that we can write it as a sum of two trace class operators, where one
has uniformly bounded trace norm and the other has operator norm which is O(t).

We need to compute the kernel of x (V'S — Sy Np,1). By definitions we have that

5Nt (@) =+ [ = ) W ) £l . (3.66)

We can make a change of variables to get

SN (o) =+ [ I ) 0 ) Sy (367

(Don’t forget about the jacobian.) We are abusing our notation somewhat here; when
y ¢ 1 (supp h) one should interpret h(¢)~!(y)) and the whole integrand as being 0, and we
shall follow this convention throughout these computations. We can now write

(VWS = SeNo)) (o) = = [ Kl F0) do, (3.63)
where
K(w.9) = (o) {hle) s (M=)
vy ' 3.69)
WY o), ¢
_$_¢_1(y) V( t ) (d} (y))}
It is easy to see that
y — K(z,y) (3.70)

is a continuous map from E into B(W). Indeed, we have that K(z,y) = 0 when = ¢ W,
since x is assumed to be supported in W, and we also have that K(z,y) is smooth,
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since x and h are smooth and the v kills the singularity in w—iy Therefore our operator

X (N Sy =S¢ Np,1) is trace class, by Lemma 3.23. From Lemma 3.23 we also get the estimate

1
trace norm x (N Sy — S No1) < |E| - Slll; 1K (- y)lls
ye

X ; (3.71)
< 1B sw [ @K ()| d
T yeE JW
Unfortunately we shall not get a uniform bound (in ¢) for
sup / 02K (2, y)| da. (3.72)
yeE JW

The problem stems from the two different ways in which v appears in (3.69). Before we
get to the heart of this we should deal with some preliminary issues. We should do some
bookkeeping concerning the singularity of K(z,y).

Let A = A, denote the domain of 1, an open set which contains the compact set
supp h. Choose r > 0 so that

uw€ A when v € supp h and |u — v| < 10r. (3.73)

Of course r does not depend on t. Let H;, M;, ¢« = 1,2, 3, denote the compact sets defined
by
H; = {u e C:dist (u,supph) <ir}, M; = ¢(H;). (3.74)

We can find a constant s > 0 (depending on r but not ¢) so that s < r,

x € supp h and [¢Y(z) —y| <s imply y € M;, and (3.75)
y € p(supph) and |z — ¢ (y)| < s imply z € H;. (3.76)

(Actually, (3.76) follows from (3.73), since s < r.)

The point of this parameter s is that we do not need to worry about ¢ > s and we have
some useful localizations when ¢t < s. The first assertion is made precise by the observation
that

sup sup/ |5iK(x,y)|dx<oo. (3.77)
s<t<1 yeE Jw

Indeed, as long as t is bounded away from 0, everything in (3.69) is smooth, with uniform
estimates. Thus we conclude that (3.71) is bounded for ¢ > s, and so we automatically
have the decomposition that we seek when ¢ > s (with no error term). ;From now on we
restrict ourselves to t < s.

Let I’ denote the operator 7 x (NSt — St Mp.1). In the argument that follows we shall
successively decompose I' into pieces, peeling away the simplest terms until we get to the
main part.
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Let 6(y) be a smooth function on C which satisfies # = 1 on M; and suppf C Mo.
Let us split I into T’y + I's, where T'y(f) = T'(0f) and T'a(f) = T'((1 — 0)f). Let us check
that 'y : B(E) — B(W) is trace class and that

sup trace norm I'y < oo. (3.78)
0<t<s

The kernel of 'y is just K(x,y) (1 —6(y)). Lemma 3.23 implies that I's is trace class (since
K (z,y) is smooth) and that (3.78) will follow if we can prove that

sup sup / |52K($, y) (1 —0(y))|dx < oo. (3.79)
o<t<s yeE Jw

The formula (3.69) for K(z,y) implies that

=2

D2K (2,y) (1— 0(y)) = 0o{x(x) h(z) Dr-o),  (3.80)

1 P(r) —
Y(z) —y t

because h(¢)~!(y)) vanishes on the support of 1 — f. (Remember our convention from
(3.67).) The right side of (3.80) will be different from 0 only when = € supp h and y ¢ Mj.
For these z, y we have that |[¢)(x) —y| > s, because of (3.75). This means that |¢(x)—y| >t
for the t’s that we are considering, and so V(W) = 1 on a neighborhood of such an
x, by (3.18). Thus we may ignore it in (3.80). We conclude that (3.80) remains bounded
when x € supp h, y ¢ My, and t < s, since |p(z) — y| > s in this case, and this keeps us
away from the singularity. This proves (3.79) and therefore (3.78).

In order to finish the proof of Lemma 3.60, it suffices to show that

we can decompose I'y : B(F) — B(W) into a sum of two operators
for each 0 <t < s, where one is trace class with bounded trace norm (3.81)

and the other has operator norm = O(t).

(Remember the reductions which preceded (3.66).)

Let us split I'; into two more pieces, corresponding to x near or far from supp h. Let
n(z) be a smooth cut-off function on C which satisfies n = 1 on a neighborhood of H; and
suppn C Hs. Define operators I'1; and I'15 by

P (f) =ala(f) =nl(0f), Twa(f) = @ =n)T(f) = (1 —n)TOf). (3.82)

Thus Fl = F11 + Flg.

Let us check that I'yp defines a trace class operator from B(F) into B(W) with
trace norm which is uniformly bounded in ¢, 0 < ¢ < s. The kernel of I'j5 is just
(1—n(z)) K(z,y) #(y). This kernel is smooth, and so we can apply Lemma 3.23 to conclude
that it is trace class. To bound the trace norm it suffices to show that

oup sup /W 10,{(1 = n(2)) K(z,y) 0(y)}] dz < o. (3.83)
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The z’s that are relevant for this integral all lie outside Hy (since n = 1 on a neighborhood
of Hy), and in particular they all lie outside the support of h. For these z’s we have that

9,41~ n(@)) K(2.9) 0(y)} =
~9,{(1 - n(x)) x(x) ;ﬁ w)—l(?(z)

This quantity vanishes unless y € ¢ (supp h), because of the h(¢)~1(y)). For these z’s and
y’s —ie., x ¢ Hy, y € (supp h) — we have that |z — 1) ~1(y)| > s, because of (3.76). Thus

|z —~1(y)| > t for the t’s that are relevant to (3.83), and so V(%_l(y)) = 1 for these
x’s and y’s and on neighborhoods of these x’s and y’s, because of (3.18). This means that
we can ignore the v part of (3.84). What remains in (3.84) is uniformly bounded for the
relevant x’s and y’s, because of our bound |z — ¢ ~!(y)| > s and the smoothness of the
various functions. Therefore (3.83) holds, and we conclude that I';2 defines a trace class
operator with uniformly bounded norm.

We have now reduced Lemma 3.60 to the problem of showing that I'1; : B(E) — B(W)
can be decomposed into a sum of two operators for each 0 < ¢ < s, where one is trace class
with bounded trace norm and the other has operator norm which is O(t).

The kernel associated to I'yy is given by n(x) K (z,y) 8(y). Define new kernels J;(z, y),
i=1,2,3, by

z— 9~ (y) (3.84)

() = (@) x(@) hiz) ———— (PO Ty, TV W g0 (3.85)

(@) —y t t
e L @Y )
(e, ) = (o) x(@) (i) = o)) P T (P o). (3

We can pretend that 1 ~1(y) is always defined in these formulae, because @ is supported
in My C 9(A). One can compute directly from (3.69) that

n(z) K(x,y) 0(y) = Ji(w,y) + Ja(2,y) + J3(z,y). (3.88)

These kernels J;(x,y) are all smooth and they all vanish when z € C\W, and therefore
they define trace class operators from B(E) into B(W), by Lemma 3.23. It remains to get
estimates. It turns out that the trace norms of the operators which correspond to Ja(z,y)
and Js(z,y) are bounded, while Jy(x,y) is our long-awaited error term.

Let us first check that the trace norm of the operator corresponding to Jo(z,y) is
bounded. In view of Lemma 3.23 it suffices to show that

sup sup/ |5§J2(m,y)|d$< 0. (3.89)
o<t<s yeEJw

The main point for this term is that

(3.90)



is smooth (and even holomorphic) for x € A and y € 9(A). To see this it is a little more
pleasant to set y = 1(z), so that (3.90) becomes

1 A
(@) —Y(z) -2

This uses also the identity (1) (¢(2)) = 9'(2)~. The smoothness (and holomorphicity)
of (3.91) is a standard exercise. (The poles cancel.) For (3.89) we only care about z’s in
supp 17, which is contained in the compact subset Hs of A, and we only care about the
y’s in supp 0, which is a compact subset of ¥(A). Thus (3.89) only involves (3.90) on a
compact subset of its domain. We conclude that we can write J(z,y) as

x— 1~ (y)
¢

(3.91)

Jo(z,y) = L(z,y) v( ), (3.92)
where L(z,y) is smooth and has compact support, and where L(z, y) also does not depend
on t. It is not hard to verify (3.89) using (3.92), the Leibniz rule, the boundedness of v,
and the estimates (3.43) and (3.44). Thus the operator that corresponds to Jz(x,y) has
bounded trace norm.

To check that the trace norm of the operator that corresponds to J3(z,y) is bounded
it suffices to show that

sup sup/ |5§J3(m,y)|d$< 00, (3.93)
o<t<s yeEJw

because of Lemma 3.23. We can rewrite this as

sup  sup / |5§J3(m,y)|d$<oo, (3.94)
0<t<s yeENM, Jw

since supp 8 C Ms. Set

1 r—z

N(e.2) = (@) x(@) {A(z) ~ )} —— (" 2) 00 (2)) (3.95)
In order to prove (3.94) it suffices to show that
sup sup / |5iN(a:,z)|da: < 0. (3.96)
0<t<s z€H> JW

Let us check this. In passing from Js(z,y) to N(z,z) we have made two changes. The
first is that we dropped the (¢»=!)(y), which does not matter because it is bounded and

pulls through the gi (since it does not depend on z). The second change was to replace

y with ¢(z). This is again trivial from the perspective of z and gi, and we accomodated
it in (3.96) by taking the supremum over z € Hs instead of y € E N M,. (Remember
from (3.74) that My = ¢(Hs).) Thus (3.96) will imply (3.94). To prove (3.96) one can use
exactly the same argument as used to prove (3.50). In fact (3.96) is practically the same
as (3.50), except that we have different functions now. The present situation is a little
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simpler, because 7, x, and h are smooth. At any rate we get (3.96) and hence (3.93), and
we conclude that the operator which corresponds to J3(x,y) has bounded trace norm.
It remains to deal with the operator J; given by

Jif(z) = /C Ji(z,y) f(y) dy. (3.97)

This will give us the error term U; described in Lemma 3.60, and we want to show that it

has norm = O(t) as an operator from B(F) into B(W). Let us begin by rewriting (3.85)
as

1 V(@) —y z -9~ '(y)

Ji(z,y) = alx v —v(——=)}0(y), 3.98

(@) = ae) 5o M) o (o). 6oy

where a(z) = n(x) x(x) h(z). Thus a(z) is a smooth function with supp o C W N supp h.

Set 4 =v — 1, where v is as in (3.18). Thus p is a C* function on C such that

p(z) =0 when |z|>1 and p(r)=1 when |z| < % (3.99)
We can rewrite (3.98) as
_ _ =1
Be) = ala) g =) w00, (3.100)
This is more convenient for localizing.
Let us now split the two u terms apart. Set
_ 1 P(x) —y
Tty = a(e) s M=) b0) (3.101)
=1
Tale.) = ale) oy — "= o) (3.102)

and let J1; and Jq2 denote the corresponding operators, as in (3.97), so that J; = Jy1 — Jia.
Sublemma 3.103. Jy; : B(E) — B(W) has operator norm = O(t).

To prove this we want to first peel off the 1) and the « into a separate operator. Define
a transfer operator £ by

Lf(x) = afz) f(¢(z)). (3.104)
Remember that supp a C supp h is a compact subset of the domain A of v, so that (3.104)
makes sense. Set bi(w) = % p(%), and define the multiplication operator © and the

convolution operator By by O(f) = 6f and Byf = by * f. We have that
J11 = ,COBtO@, (3105)
as one can compute from (3.101).
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Set E' = {u € C : dist(u, F) < s}. Note that,
supp Bif CE" when supp f C E. (3.106)

This follows from (3.99) and the fact that we are restricting ourselves to ¢ < s (since
(3.77)). The main point now is that By maps B(FE) into B(E") with norm < [|b¢]|1. Indeed,

as in Lemma 3.12, we have that gz(bt x f) = by x (52]”), and so our assertion about
B; : B(E) — B(E’) reduces to (3.106) and the standard fact that the convolution of an
L' function with a finite measure is an L' function, with the norm of the result being less
than or equal to the product of the norms of the input. On the other hand we have that

16¢]]1 = # [[b1]]1, (3.107)

by an easy scaling argument, and ||b1||1 < oo by direct computation. Thus we conclude
that By : B(F) — B(E’) has norm = O(t).

To finish the proof of Sublemma 3.103 it suffices to observe that © : B(E) — B(E)
is bounded, because of Lemma 3.9, and that £ : B(E') — B(W) is bounded, because of
Lemma 3.14 (since suppa C W).

This completes the proof of Sublemma 3.103.

It remains to show that Ji2 has norm = O(t) as an operator from B(E) to B(W).
The argument will be similar in spirit to the proof of Sublemma 3.103, but the details will
be messier because the formulae are less convenient.

Let us first work towards peeling off the « from Jy2. Define Q(z,y) by

1 z— 1 (y)
P (z) —y“( ¢

when (z,y) € A x ¥(A), Q(x,y) = 0 otherwise. Remember that 6(y) # 0 implies that

y € My, a compact subset of 1(A), and notice that y € My = ¢(Hz) and u(%_l(y)) #0
imply that |z —~!(y)| < t and hence x € H3. (See (3.74), and remember that t < s < r.)
Thus Q(x,y) is smooth, since Hj is a compact subset of A. For the record, we have that

Qx,y) =

) 0(y) (3.108)

Q(z,y) #0 implies y € My and = € Hj. (3.109)

Define an operator () by

Qf(x) = /C Qe y) f(y) dy. (3.110)

Thus supp @f C Hs for all f, by (3.109). Since multiplication by « defines a bounded
operator from B(Hjz) into B(W), by Lemma 3.9 (and the fact that suppa C W), we are
reduced to showing that @ : B(F) — B(Hs) has operator norm = O(t). Since we know
supp Qf C Hj already, it suffices to show that

7o Q : B(E) — L*(Hs) has operator norm = O(t). (3.111)
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We would like to move the 11 from inside Q(z,y), essentially by making the change
of variables y = 1(z). Define P(x, z) by

1 Tr—z

v - M

when (z,2) € A x A, P(z,z) = 0 otherwise. Thus P(z,z) = Q(x,%(2)) [¢'(2)|?, modulo
technicalities. Again this is a smooth function, and we have that

Pz, z) = ) 0(¥(2) [ (2)[* (3.112)

P(xz,z) #0 implies that z € Hy and x € Hs, (3.113)

by (3.109). We can rewrite (3.110) as
Qf@) = [ Pla) f6(2) d (3.114)

For the purpose of computing distributional 0 derivatives the m singularity
in P(x,z) and its counterpart in Q(z,y) are slightly annoying. These singularities are
integrable (see also (3.124) and (3.125) below), and so there is no problem with using
these kernels to define our operators, but we should be slightly careful with differentiating
them. To avoid any problem let us approximate them by more regular kernels. Given
€>0,e<t, set

1
h(x) —p(2)

when (z,z) € A x A, P.(x,z) = 0 otherwise. The point here is that P.(z,z) = 0 when
|z — z| < €/2, because of (3.99), and so we have killed the singularity. Define operators Q.
by

P.(z,2) = )} 0((2)) [0 (2) (3.115)

{r(—=) = n(=

- /CPE(:U,,Z) F((2)) dz. (3.116)

We have that
Qf >Qf ase—0 (3.117)

in the L norm for all bounded functions f, for instance. (This uses the integrability of
the singularity in P(z,y).)
Let us compute 52 o ().. We have that

r—z

0,P.(z,2) = 52(

)~ u(E=E))) 0w () [ (=) (3.118)

t

— {n(=

on A x A. Notice that we are converting = derivatives into z derivatives. We have used
here the fact that m is holomorphic away from the singularity. Therefore

3Qf
pe e o (3.119)
/ S —a T~ H N BHIWE) W () d-

t
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for z € A and f € B(E). Let us be careful about what this last 52 expression really means.
Define a transfer operator 7 by

TF(z) = 0(p(2)) W' (2)]* f(¥(2)). (3.120)

More precisely, we view 0(1)(2)) here as a smooth function defined on all of C, and not just
the domain A of ¢, by setting it to be 0 on C\A. This is reasonable, because supp § C M,
is a compact subset of 1)(A), so that 6(¢)(z)) vanishes off of the compact subset Hy of A.
With this interpretation, and similar remarks for |1)’(2)|?, T is a transfer operator in the
sense of (3.13). Thus 7 maps B(F) boundedly into B(Hs), by Lemma 3.14. In particular,

52Tf is defined as a finite measure when f € B(E), and so we can rewrite (3.119) as

92Q.f(x) = {1 EVOUTF)(2) de. (3.121)

1
/c h(x) —p(2) t
) =2 .
Here 0,(T f)(z) dz denotes the measure 0 T f, which may or may not be absolutely con-
tinuous. Note that this measure is supported in Hs.
Before we take the limit as € — 0 we need to record an estimate.

Sublemma 3.122. Suppose that o is a nonnegative measure on Hs, and consider the
function of x defined on A by

/ T o), (3.123)

If t < s (as usual), then this is an integrable function supported on Hz whose L* norm is
bounded by a constant times t o(Hz).

The condition on the support comes from (3.99) and (3.74), as usual. For the L!
bound we observe first that there is a constant C' > 0 such that

l(z) —(2)| > C~ e — 2 when z € Hs, 2 € Hs. (3.124)

Once we have this inequality the L' bound follows from Fubini’s theorem and the fact that

|w| |,u( )| dw = constant - ¢. (3.125)

(Remember (3.99).) This proves Sublemma 3.122.
Let us check now that

1 xr—z —2

001w = [ St n D ETE) d: (3.126)

on A when f € B(FE). The point is simply to send ¢ — 0 in (3.121). Sublemma 3.122
(applied with ¢ replaced with €) implies that the right side of (3.121) converges to the right
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side of (3.126) in L'(A). On the other hand (3.117) implies that the left side of (3.121)
converges to the left side of (3.126) on A in the sense of distributions. This proves (3.126).
Next we want to check that

/C FQf () dz < Ct|f|s (3.127)

for some constant C when f € B(FE). We already know that supp @Qf C Hjz, and that Hg
is a compact subset of A, and so it is enough to consider the integral over A. Thus we can
use (3.126). Sublemma 3.122 implies that the left side of (3.127) is bounded by a constant

times ¢ times the total variation of the measure 52 (Tf). The total variation of 53(7 f) is
bounded by a constant times || f||5, since the transfer operator 7 maps B(F) boundedly
into B(Hs), by Lemma 3.14. This yields (3.127).

This proves (3.111), which implies in turn that J;2 maps B(E) into B(W') with norm
= O(t). This was the last step in the proof of Lemma 3.60, and so the proof of Lemma
3.60 is now complete.

Lemma 3.128. Let E, H, and W be compact subsets of C, and let g and h be functions
on C such that g satisfies (3.10), h satisfies (3.46), suppg C W, and supph C H. Then
the operator gSthSy : L (E) — B(W) is trace class for each t € (0, 1], where we identify
g and h with thewr corresponding multiplication operators, and

sup trace norm gS;hS; < 0o. (3.129)
0<t<1

To prove this we begin with some preliminary reductions. We may as well assume
that ¢ is smooth, since otherwise we can view ¢S;hS; as the composition of the operator
of multiplication by g and g¢S;hSt, where g¢ is some smooth function such that gy =1 on
supp g and supp gg C Wy for some compact set Wy O W. If we can prove the lemma for
smooth g¢’s, then we can prove it for goS;hS; (with W replaced by Wy), and then we can
use the fact that multiplication by g defines a bounded operator from B(Wj) into B(W)
(by Lemma 3.9) to get back to ¢S;hS;. Thus we may assume that ¢ is smooth.

Set F; = {z € C: dist(z, EUW) < i} i = 1,2. We may assume that h is a smooth
function which satisfies

h=1 on F;. (3.130)

Indeed, if not, let Hy be a compact subset of C which contains F3 and supp h in its interior,
and let hg be a smooth function which satisfies hg = 1 on F5 U supp h and supp hg C Hj.
Then

gSthSt = gSth h()St =g [St, h]host + thth()St. (3131)

The operator g [St, h|hoS; is trace class, with

sup trace norm g[S, h|hoSt < 00, (3.132)
0<t<1

38



because of Lemmas 3.45 and 3.21. If we can prove the lemma for gS;hoS; (with H replaced
by Hy), then we shall know that h gS;hoS; is trace class with bounded norm, since multi-
plication by h defines a bounded operator on B(W). This would then imply our original
gS:hS; is trace class with bounded norm.

Thus we may assume that h satisfies (3.130), and that g and h are both smooth.

Next, let us check that g(S — S¢)hS; : L®(E) — B(W) is trace class with bounded
norm. We know from Lemma 3.33 that hS; : L°°(F) — B(H) is trace class with norm
= O(t™1). We also know from Lemma 3.21 that g(S — S;) : B(H) — B(W) is a bounded
operator with norm = O(t). Therefore g(S — S¢)hS; is trace class with bounded norm.

Thus we are reduced to showing that gShS; : L>°(E) — B(W) is a trace class operator
with bounded norm.

We need to put S in a more convenient form. Define a convolution operator T by

71 = [ 2T fw)a. (3.133)

TT—Y

This makes sense for integrable functions with compact support, for instance. We have
that _
S=To0d (3.134)

as operators acting on, say, smooth functions with compact support. This is not hard to
check, using the fact that

1
)= — (3.135)

T

a(

818

in the sense of distributions.
Since hS; maps L°°(F) into smooth functions with compact support, we have that

gShS(f) = gT O(hSe(f)) = gT(0h)S:(f) + gTh(d o Sy)(f) (3.136)

when f € L>°(E). Here Oh means multiplication by the function 0h.

Sublemma 3.137. The operator gT(0h)S; : L= (E) — B(W) is trace class with bounded
trace norm.

It suffices to show that (0h)S; : L®°(E) — B(H) is trace class with bounded norm,
since g1 : B(H) — B(W) is bounded, by Lemma 3.12.
We can write (0h)S; as

((5h)90(f)0r)=:/L<70r,y)f(y)dy, (3.138)

where L1
J(z,y) = 9h(x) y(—

(See (3.19).) This is a smooth function of z and y, and J(z,y) = 0 when = ¢ H, since
supph C H. Thus y — J(-,y) defines a continuous mapping from E into B(H), and

). (3.139)

;a:—y
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Lemma 3.23 implies that (0h)S; : L=°(E) — B(H) is trace class and that its trace norm is
bounded by
=2
B1-sup | 1C,)ls = |l -sup [ [827(a,0)] do < . (3140)
yek yeEE JC
Let us check that

J(z,y) = Oh(z) =

e (3.141)
when ¢t < 1 and y € E, i.e., that we can drop the v. This is trivial when z ¢ supp Oh, since
both sides of (3.141) then vanish. If y € E and x € supp 0h, then |z — y| > 2 because of
(3.130). This implies that |z — y| > ¢ and hence that v(*3¥) =1 (by (3.18)), which gives
(3.141) in this case too. Thus (3.141) holds when ¢t <1 and y € E.

Using (3.141) we see that the (3.140) does not depend on ¢ when ¢ € (0, 1]. It is finite,
since J(z,y) is smooth, and so we conclude that it is bounded for ¢ in this range. This

proves Sublemma 3.137.
Next we consider gTh(0 o Sy).

Sublemma 3.142. gTh(0o S;)(f) = gT(00 S;)(f) when f € L>(E) and t € (0, 1].
Set By = {z € C: dist(x, F) <t}. Let us check that

supp (00 8;)(f) C E; when f € L™(E). (3.143)
Indeed,
= 1 1 - -y, ,_
= — — 144
@osor@) = [ 2= @ 1 (3.144)
by (3.19) and calculus. We also have that
Tu(u)=0  when [u| > 1 or [u| < % (3.145)

because of (3.18). This and (3.144) imply (3.143).

On the other hand, h = 1 on E; when t € (0, 1], because of (3.130). This implies
Sublemma 3.142.

To finish the proof of Lemma 3.128 it remains to show that ¢gT(d o S;) : L™(E) —
B(W) is trace class with bounded trace norm.

Define functions k(x) and b4(z) on C by

k() =

SHRS!

and bt(:c):%t_li(au)( ) (3.146)

A=

Thus T and 0 o S; are given by Tf =k * f and (00 S;)f = by * f. We also have that
be(r) =0 when |z| > ¢ and 1b]]o0 < C't72 (3.147)

for some constant C. These facts follow from (3.145) and the observation that dv is
bounded.
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Given f € L™(FE) we have that T(9 o S;)(f) = k * by * f, so that

(4T(@0 5))(f)(x) = /E 9(x) (k* b) (= — y) £ () dy. (3.148)

Note that b; and hence k x by are smooth. Remember also that suppg C W. We can use
Lemma 3.23 to conclude that ¢gT'(0 o St) : L (E) — B(W) is trace class with

trace norm gT(@ 0 ;) < |E| - suplg(*) (k) (- = 9) |
ye

<112 sup /C 9 {g(x) (k% be) (& — )} da (3.149)

— B sup /W T {g(a) (k # be) (@ — )} | da

yekE

In this last equality we have used the fact that ¢ is supported in W.
To estimate the integral in (3.149) we use the formula

Do{g(@) (kx be) (@ —y)} = (@ 9)(@) (k+ b) (& — y) + 2(Dg) (x) o (k byl — y))
+ () Bk * by(z — )

=<52g><m><k*bt>< —y) +2(9g) () (k) * by(z — )
+g(2) (@) * be(x — ).

These derivatives of k should be taken in the sense of distributions, and then the convolu-
tion with by makes everything smooth again, since b; is smooth.

Inserting the right side of (3.150) into the integral in (3.149) we get three terms to
estimate. For the first we have that

(3.150)

| 1@0)(@) b+ i) = ) do < [0l 5 bl W
W (3.151)

=2
< (197 glloo [[Elloo 102[11 [W].

Of course 529 is bounded (since g is smooth) and k is bounded (by inspection). We also
have that ||b¢||1 is bounded, uniformly in ¢, as one can check from (3.147). Thus the
contribution of this term to the integral in (3.149) is bounded.
For the second term on the right side of (3.150) we begin with the observation that
= 11
Ok(x) = — —. (3.152)

™

This is easy to check. For the relevant integral we have that
| 109)@) (@) + oo = 1)l do < [Pl [ 108 < bilo = )] da
w

o (3.153)
< ||3g||oo/ /  Jul |be(r — y — u)| dudz.



Remember that |z —y — u| < t when |bi(x —y — u)| # 0, because of (3.147). Let Z be a
compact set which is large enough so that u € Z whenever |z —y —u| < 1 for some z € W
and y € E. Using Fubini’s theorem we get that

1 1
/ / — |bt(x — y — u)| dudz < ||bt||1/ — du. (3.154)
wJc |ul z |ul

We have already seen that [|bs||; is bounded, uniformly in ¢, and this last integral over Z
is also finite. Thus we conclude that the contribution of the second term on the right side
of (3.150) to the right side of (3.149) is also bounded, uniformly in ¢.

The last term on the right side of (3.150) is g(x) ((Ezk) * by(x — y)). For this we use
the fact that d k is the Dirac delta function at the origin, as in (3.4). Thus

g(z) ((52k) xbi(x — 1)) = g(x) be(z — y). (3.155)

The relevant integral for (3.149) reduces to

[ lot@) b~ )l d < gl 1 (3.156)
w

Again this is bounded, uniformly in .
Thus we conclude from (3.149) and these estimates that

sup trace norm gT'(do Sy) < oo. (3.157)
0<t<1

This completes the proof of Lemma 3.128, because of (3.136) and Sublemmas 3.142 and
3.137.

Now we come to the main result of this section. For this we need to first set some
notation and assumptions.

Let M be a transfer operator as in (3.13). We assume that g,,,%,, and A, satisfy
the same conditions as in the paragraph just after (3.13). Fix a compact set B C C, and
assume that A, 1, (A,) C B for each w. We shall make the standing assumption that

g, and g, satisfy (3.46) for each w € €. (3.158)

This ensures that M defines a bounded operator on B(B), by Lemma 3.14.
Fix a compact set K contained in the interior of B such that

K 2 | J{supp g U o (supp g.,)}. (3.159)
we

Let K¢ be another compact subset of the interior of B which contains K in its interior,
and fix a smooth cut-off function n on C such that

supp n C K1 and n=1 on a neighborhood of K. (3.160)
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Note that

M(f)=0  on B\K (3.161)
M(n f) =nM(f) = M(f) (3.162)

for all functions f. Notice also that multiplication by 7 defines a bounded operator on
B(B), by Lemma 3.9.
Fix a complex number z, our spectral parameter. From now on we shall assume that

I —2zM s invertible on B(B). (3.163)
We can automatically extend (I — 2M)~! to the larger space
{feL>*(C):nfeBB)} (3.164)

by the formula
(I—2M) f =0 =n)f+ T —2zM)" nf). (3.165)

This is consistent with the original definition of (I — 2zM)™! on B(B) because of (3.162).
Note that the image of B(B) under S or an S; is always contained in (3.164), because of
Lemma 3.21.

Define the transfer operator A/ by

Na(r) = 3 (F92) () ® 0 tho(x). (3.166)

wEN

This enjoys the same sort of properties as M does — like (3.161) and (3.162) — since
supp g, C supp g,,. Our assumption (3.158) implies that N is bounded on B(B), because
of Lemma 3.14.

Given integers k and [ define a new transfer operator My, ; by

Mi®(@) = Y go(x) (0L (2)* (4, () @ 0 (). (3.167)

we

Again these transfer operators satisfy the analogues of (3.161) and (3.162). We define Ny
in the same manner, replacing g, with dg, as in (3.166). Notice that

gw (W)E @) and Dg,, (¥)* (.,)" satisty (3.46) for each w € Q. (3.168)

This is easy to check, using (3.158) and the holomorphicity and hence smoothness of 1,

(and the fact that supp g, is a compact subset of the domain of 1,,). A useful consequence
of this observation is that

the My, ;’s and Ny ;s are all bounded operators on B(B). (3.169)

This follows from Lemma 3.14.
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We are going to need to make the technical assumption that
I —2My,; is invertible on B(B) for at least one of [ =1, —1. (3.170)

Once we know that this operator is invertible on B(B) we can extend it to (3.164) as
before, using a formula like (3.165).
Define the kneading operators Dy = Dy(z) by

Dy = NI —2M)7'S,. (3.171)

We can think of this initially as mapping elements of B(B) to some functions on C, i.e.,
S; maps B(B) into the space (3.164), and then (I — 2M)~! and AN act on this space.
However, D; is actually a bounded operator on B(B). To see this note that

Dt = N(I — ZM)_ISt

_ _ (3.172)

=Ny —2M)"'S; =NI - 2M) 1S,
where we are identifying n with the associated multiplication operator. This identity
follows from the analogue of (3.162) for N and the fact that (I — 2M)~! commutes with
multiplication by n (because of (3.162)). Once we have this identity we may conclude that
D; is a bounded operator on B(B), and even a trace class operator, because 1 S; is a trace
class operator on B(B), by Lemma 3.33.

Theorem 3.173. Let M, g,, A, etc., be as above. Assume in particular that (3.158),
(3.163), and (3.170) hold. Then Dy is a trace class operator on B(B) for each t € (0,1],
and we have that

sup trace norm D7 < oo. (3.174)
0<t<1

It would be much nicer if the trace norms of the D;’s themselves were bounded, but
this does not seem to work.

The proof of the theorem is fairly simple given all of our previous lemmas. We already
noted above that the D;’s are trace class, and so the only issue is the bound (3.174). Using
(3.172) we can write out D7 as

D2 =NI - 2M) 'S NI — 2M)" 1 S,. (3.175)
To prove (3.174) it suffices to show that

sup trace norm 7Sy N'(I —2M)™1n S, < oo, (3.176)
0<t<1

since N'(I — 2M) ™! is a bounded operator.

The main point is that we have two n S;’s, so that we can try to use Lemma 3.128. We
have to commute an 1 S; around other operators, but we have a lot of lemmas for doing
precisely that.
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Lemma 3.177. (n St N — No —11St) (I — 2M)~tnS; is a trace class operator on B(B)
fort € (0,1], and it has bounded trace norm.

To see this we apply Lemma 3.60, with M replaced with My _1, so that My 1 should
be replaced with A/. We also take E = W = B and x = 7 in Lemma 3.60. Note that the
coefficient functions for Ny _; satisfy the requirements of Lemma 3.60, because of (3.168).
From Lemma 3.60 we get a decomposition of n(Np _1S: — SeN) @ B(B) — B(B) into
T; + Uy, where T; is trace class with bounded norm and Uy has operator norm = O(t).
Notice that

N07_1 ’I]St — ’I]StN = 77(/\[07_1St — StN) = Tt + Ut, (3178)

because 1 commutes with Ny _1 (as in (3.162)). Hence
(’I] StN - N07_1 ’I]St) (I — ZM)_l 775,5 = —(Tt + Ut) (I — ZM)_I 775,5. (3179)

The term with the T} is trace class with bounded trace norm because T; is and the other
operators are uniformly bounded. The term with the U; is also trace class with bounded
trace norm because 1 Sy is trace class with trace norm O(¢~!) (Lemma 3.33), because Uy
has operator norm O(t), and because (I — 2M)~! is a bounded operator which does not
depend on t. This proves Lemma 3.177.

To prove (3.176) it now suffices to show that

sup trace norm 7S (I —2zM)~'nS; < oo, (3.180)
0<t<1

because of Lemma 3.177 and because Ny _1 is a bounded operator on B(B), as in (3.169).

We want to commute an 7S; around (I — 2M)~t. We can do this either from the
left or from the right, and this corresponds to the ambiguity in (3.170). For the sake of
definiteness we commute it from the left.

Assume that we can take [ = —1 in (3.170). We want to analyze the operator

T'=nS; (I —2M)™"— (I —2Mo_1)" 1S (3.181)

We can write this as
D=(-2My_1) 'To(I—2M)"1, (3.182)

where

Fo = (I - ZM(]7_1) 775,5 - ’I]St (I - ZM) (3183)

We can rewrite I'y as
FO = —Z{Mo’_l ’I’]St — 7’]St M} (3184)

We apply Lemma 3.60 again, with the M in Lemma 3.60 replaced with Mg _;, so that
the My 1 in Lemma 3.60 corresponds to M here. As before, we are using (3.168) to know
that the hypotheses in Lemma 3.60 on the coefficient functions are satisfied, and we take
E =W = B and xy = n in Lemma 3.60. We conclude that

Ui (M07_1 St — St M) = Tt/ + Ut/7 (3185)
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where T} is trace class on B(B) with uniformly bounded trace norm, and U] is a bounded
operator on B(B) with norm = O(t). We also get

Ty = —2(T} + U}), (3.186)

because  commutes with Mg _1, as in (3.162). Using this and (3.182) we get a decompo-
sition
T =T1"+U/, (3.187)
where T}’ is trace class on B(B) with uniformly bounded trace norm, and U}’ is a bounded
operator on B(B) with norm = O(t).
Let us use this to prove (3.180). We have that

nS; (I —2M)" 1S =TnS;+ (I —2Mo_1)""(nSt)?, (3.188)

by algebra. The last term is trace class with bounded trace norm, because of Lemma

3.128 and the boundedness of (I — zM07_1)_1. The first term on the right splits into

T/ n Sy + U{'nS;. As usual, T{' n Sy is trace class with bounded norm because T}’ is, and

U/'n S is trace class with bounded norm because 7 S; is trace class with norm = O(¢™1)

and because U}’ has operator norm = O(t). This takes care of the right side of (3.188),

and so we conclude that the left side does have bounded trace norm, i.e., (3.180) holds.
If ] =1 in (3.170), then we perform a similar analysis of

(I—2M)"tnS —nS; (I —2Mgy) "t (3.189)

That is, we use Lemma 3.60 to prove that this operator admits a decomposition like (3.187),
and then we use this decomposition to prove (3.180) in practically the same manner as
before, using also Lemma 3.128.

This completes the proof of Theorem 3.173.
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