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Abstract. States of physical systems may be represented by states on B*- 
algebras, satisfying certain requirements of physical origin. We discuss such 
requirements as are associated with the presence of unbounded observables or 
invarianee under a group. I t  is possible in certain cases to obtain a unique de- 
composition of states invariant under a group into extremaI invariant states. Our 
main results is such a decomposition theorem when the group is the translation 
group in v dimensions and the B*-algebra satisfies a certain locality condition. An 
application of this theorem is made to representations of the canonical anticommuta- 
tion relations. 

1. In t roduc t ion :  B* . a lgeb ra s  and states 

The  m a i n  purpose  of th i s  p a p e r  is to  p rove  a t heo rem yie ld ing  an  
in tegra l  r ep resen ta t ion  of i n v a r i a n t  s ta tes  on a B*-a lgebra  in  t e rms  of 
e x t r e m a l  i n v a r i a n t  s ta tes .  The  theo rem a n d  re l a t ed  resul t s  a re  p resen ted  
in Sect ion  3 to  which  t h e  r eade r  m a y  proceed  d i rec t ly  1. This  first  and  
the  second sect ions are  devo ted  to  m o t i v a t i o n  and  some ba c kg round  
in format ion .  Sect ions 4 a n d  5 conta in  t he  proof  of the  t heo rem of Sec- 
t ion  3 a n d  Sect ion 6 an  app l i ca t ion  to  canonica l  a n t i e o m m u t a t i o n  
re la t ions .  Other  appl ica t ions ,  to  the  s ta tes  of equi l ib r ium s ta t i s t i ca l  
mechanics ,  will  be p resen ted  in  a fo r thcoming  paper .  

The  use of C*-algebras  in  physics ,  p roposed  b y  SEGAL and  HAAG, 
has  been m o s t l y  r e s t r i c t ed  to  t he  s t u d y  of canonical  c o m m u t a t i o n  
re la t ions  a n d  field theory .  Other  domains ,  l ike s t a t i s t i ca l  mechanics ,  a re  
however  po t en t i a l  fields of appl ica t ion .  

1 After a first version of this paper was completed, I benefited from conversa- 
tions with K~STL~g and ROB~SO~. These authors and DO:eLICHER ([4], Section 5) 
have obtained, independently, results corresponding roughly to Corollary2, 
Section 3, of the present paper. Furthermore, ROBINSON [6] has obtained important 
generalizations of Lemma 4, Section 4, and Corollaries 1 and 2, section 3. Contrary 
to what is done here, ROBrNSO~ makes systematic use of Hitbert space methods. I 
am greatly indebted to KAST~g and ROBrNSO~ for discussing with me their 
results, a large part of which is not yet written down [6]. These discussions have 
prompted me to make a few changes to the original version of this paper, notably 
by replacing "local" by "asymptotically Abelian" [4] B*-algebras and appending 
two remarks (after the theorem in Section 3 and after Lemma 4, Section 4) which 
relate the present work to the forthcoming paper [6] of KASTLER and RoBr~S0~. 
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If  "observables" of a physical system are given as a collection of 
bounded self-adjoint operators A~ in some Hflbert space, one may think 
of describing a physical state of the system by giving the expectation 
values <Ai} which it  associates with these observables. In  concrete 
examples it  is seen however tha t  the expectation values <A 1 . . . A~> of 
products are also physically relevant and describe correlations between 
measurements. Naturally enough the expectation value of the identity 1 
is 1 and the expectation value of a positive operator is positive. A state 
is thus described as a linear functional <. >, positive and normalized by 
< 1 > -  1, on the algebra ~ with identity I generated by the A s. The 
uniform closure of 91 is a self-adjoint uniformly closed algebra 9/ of 
bounded operators in a complex Hilbert  space, i.e. a C*-algebra. A state 
<. > on ~ continues uniquely to a functional ~ on 91 which is again linear, 
positive and normalized and such a functional is called a state on the 
C*-algebra 91, it is necessarily continuous. 

An interesting feature of C*-algebras is tha t  they can --  as B*- 
algebras -- be described abstractly i.e. without reference to operators 
acting on a Hilbert space. A B*-algebra 91 with or without an identity 
is an algebra over the complex numbers with a norm: A -+ ItAll and a,n 
involution A -> A* satisfying the following conditions: 

1. As a normed vector space 9/is a Banach space. 
2. ][ABt] ~ HAll. i]BH, i.e. 9/is a Banach algebra. 
3. The involution is a conjugate linear ((A -t- )~B)* = A* + ~.*B*), 

involutary (A**=A), antiautomorphism ((AB)*= B'A*) which 
preserves the norm (]IA*[] = ]JAIl ). 

4. For all A  91: IIA*AII = tIAP. 
I t  is seen easily tha t  a C*-algebra is a B*-algebra. Conversely it  can 

be shown that  a B*-algebra may always be realized as a C*-algebra of 
bounded operators on a complex tIflbert space. 

If  L is a locally compact space, the algebra ~o (L) of complex con- 
tinuous functions vanishing a£ infinity on L is, with respect to the 
uniform norm and involution given by complex conjugation, an Abelian 
B*-algebra. Conversely, every Abelian B*-algebra 91 is isomorphic to 
~o (L) for suitable L (this is the Gel'fund isomorphism). L is compact if 
and only if 9/has  an identity. 

One defines an order on a B*-algebra 91 by writing A => 0 if A = B* B. 
A state Q on 91 is then a positive linear functional on 91 such that  

IleI] = sup le(A)I = 1.  
llAI[ ~ 1 

If 9/ has an identity 1, this last condition is equivalent to Q(1)= 1. 
Given a g a t e  ~ on 91, the standard construction of Gel'fand-Segal 

yields the following results 
1. A complex Hilbert space ~q. 
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2. A homomorphism ~r e of 92 into the bounded operators on ~)~. 
3. A normalized vector Q E~q such that  ~ (92)~  is dense in 0~ 

(cyelieity) and for all A E 92: 

e(A) = (~, z~(A)Q). 
The states on an Abelian B*-algebra correspond via the Gel'land 

isomorphism to the positive measures of norm (= total  mass) 1 on a 
locally compact space s . 

While it is natural and useful to represent states of a physical system 
by states on a C*- or B*-algebra, in general only part  of the mathematical 
states are of physical interest for a given problem. For instance, a physical 
theory has in general an invariance group and one may like to restrict 
one's attention to invariant states. This problem is considered in the 
next  section. 

Another type of restriction on physical states comes about if some 
observables of the physical theory are represented by  unbounded self- 
adjoint operators. Let  H be such an unbounded operator on 5/f, and let 
92 be the C*-algebra on 5/z generated by the observables. We may assume 
that  for every complex continuous function / vanishing at infinity on the 
real line, / E~0(R), the operator Af ~-/(H) belongs to 92. We have then 
a homomorphism h of ~o(R) into 92 

h:/--+Aj,. 
Any state @ on 92 defines then, by  restriction to h(~o(R)), a positive 
linear functional @h on ~0(R). This is a positive measure /~ on the 
spectrum of H, with obvious probabilistie interpretation. However, 
while it is clear tha t  tI#ll g 1 it is quite possible tha t  II/~]I < 1, i.e. tha t  
the total  probability of finding some point of the spectrum be strictly 
less than 1. This occurs for instance if H is a particle number operator 
and @ describes a system with an infinite number of particles. 

I t  may  be that  for a given physical problem one is interested only in 
the states @ which correspond to a measure of norm 1 on the spectrum 
of the unbounded operator H. If this is the case one has to require tha t  
the restriction of @ to the subalgebra h (~o (R)) has norm 1. If instead of a 
C*-algebra one has a B*-algebra 92, one may think of defining an un- 
bounded operator "abstract ly" by  a homomorphism h : / -~ A I of ~0(R) 
into 92. One may then ask if, for a state @ with restriction of norm 1 to 
h(~0(R)) , there exists a self-adjoint unbounded operator Hq in De such 
that  

~q(h (/)) = ] (He) 

where gq is the canonical homomorphism of 92 into the bounded operators 

For a more detailed introduction to the mathematical theory of B*-Mgebras 
the reader is referred to §§ 1., 2. of the book [2] of DIX~ER or to lectures [5] by 
KADISO~. 
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on Oe. Under certain assumptions a positive answer to this question is 
given in the Appendix. 

2. Invariant  states 

Let  92 be a B*-algebra with an identi ty 1. The set E of all states on ~l 
is a convex weakly compact subset of the dual 02' of OA (see [2]). We 
remind the reader tha t  an extremal point 0 of E is one which cannot be 

1 1 
writ ten in the form 0 = -~ 01 + ~" 0~ with 01, 02 E E and 0i 4: 02. The 

theorem of Krein-Milman asserts tha t  a convex compact subset of a 
locally convex topological vector space is the closure of the convex hull 
of its extremal points. This applies in particular to E, the extremal 
points of E,  or extremal states, are called pure states. 

Let  G be a topological group with identi ty e. We assume tha t  for 
every g E G an automorphism ~g of 92 is given such tha t  

1. The mapping g -+ ~g is a homomorphism o/G into the automorphisms 
o / ~ .  

2. I /  A C 02, g ~ e implies ll~:gA - All-+0. 
I f  /C  0A' is a continuous linear functional on 02, we define T~] by  

7:'g/(A)--/(~gA), all A C ~  
! 

I f  r g / =  ] for all g C G we say tha t  / is G-invariant. 
Let  ~ be the subspace of ~I generated by  the elements of the form 

A - vgA and 
~± = (/C92':A E 2 ~  /(A) = 0}. 

Then, an element / of Og' is G-invariant if and only if i t  belongs to the 
weakly closed subspace ~± .  Notice tha t  if ~ is the closure of £ in 02, 
~± is isomorphic as Banach space to the dual of ~2/~. The G-invariant 
states on ~1 are precisely the elements of the convex (weakly) compact  
set E ~ ~ ± . 

I f  one performs the Gel'fand-Segal construction starting with an 
invariant  state ~ E E ~ ~± ,  it can be shown a tha t  there exists in ~ a 
strongly continuous uni tary representation U of G such tha t  for all 
gEG, A EOA 

u (g)f2 = ~ ,  u (a) ~ ( A )  U (g)-~ = :~(T~A) . 

One can see tha t  if G is compact or Abelian, E f~ £ i  is not empty.  
I f  G is compact and 0 E E the state ff defined by  

~ ( A ) = o [ f ~ g A d g  ] all A E ~  

is indeed G-invariant. I f  G is Abelian, the existence of a G-invariant 
state follows from the theorem of M A ~ K o v - K A K v ~ I  (see DoPI,IC~m~ 
[3] Proposition I). 

a See SEG~ [9] or D 1 x ~  [2] 2.12.11. 
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We know by  the theorem of K~n~-M_mMA~ tha t  every Q E E c~ ~.L 
is the weak limit of convex linear combinations of extremal points of 
E c~ ~ ±  (i.e. extremal  invariant  states). An interesting ease is tha t  in 
which ~ can be writ ten as an integral over extremal  points, i.e. is the 
resultant  of a measm'e over extremal  points, specially if this measure is 
unique. I n  tha t  last case the s tudy of G-invariant states on 92 is effectively 
reduced to tha t  of extremal G-invariant states. 

Le t  us first suppose tha t  G is reduced to the identi ty so that. 
E c~ ~ ±  ---- E. I n  tha t  case an element of E does not  in general have a 
unique integral representation in terms of extremal states (pure states). 
However, if 92 is Abelian the set of pure states is compact and identical 
to the space L of the Gel ' land isomorphism. I n  tha t  case the desired 
integral representation exists and associates with ~ ~ E a measure/z  on 
L as explained in Section 1. 

For  a discussion of the existence and uniqueness of integral represen- 
tations on a convex compact set K in a locally convex topological vector 
space, we refer the reader to an article by  CHoQu~T and ]~I~:E~ (see [1]). 
Le t  us however mention some results which we shall use. An order 
relation < among the positive measures on K is defined such tha t  
Pa "</z2 ~ / z l ( ~ )  ~- #~(~) for all convex continuous functions ~0 on K. 
I f / z  1 -</z~ then/~1 (F) = #3 (~P) for all continuous linear functions ~v on K, 
in particular #1 and tz~ have the same norm. In tu i t ive ly /z  I </~z means 
that/~2 is "concentrated nearer to the boundary of K "  t h a n / ~ .  We shall 
say tha t  # is maximal  if it is maximal  for the order -<. Let  8Q be the unit 
measure at  ~ E K, then we may  look for an integral representation of 

b y  trying to find a maximal /z  such tha t  ~e "</z. Such a # always exist 
([1 ], theorem 3) but  need not be unique or concentrated on the extremal 
points of K. We shall use the fact tha t  if K is metrizable a measure / t  is 
maximal  if and only i~ i t  is concentrated on the set ~ (K) of extremal  
points of K (see [1], Corollary 14) and tha t  in any  case a measure con- 
centrated on d ~ (K) is maxim al ([1 ], proposition 15). 

For  the question of uniqueness of the integral representation, i t  is 
useful to consider tha t  K is the basis of a convex cone C with apex at  the 
origin, i.e. K is the intersection of C with a closed hyperplane not con- 
taining the origin and which intersects all the generating lines of C. 
Giving a convex cone C defines a (partial) order in the ambiant  locally 
convex space (x _>_ 0 ~ x E C). We say tha t  K is a simplex if C is a 
lattice for this order (i.e. any  two elements of C have a I. u. b. and a 
g. i. b.). The uniqueness problem is then solved by  the following theorem 
([1], theorem 11): K is a simplex if and only if for every ~ EK,  de is 
majorized by  a unique maximal  measure. 

Let  us come back to the case where K = E c~ ~ ±  is the set of G-in- 
variant  states on a B*-algebra 92. We asser~ tha t  i/9.1 is Abelian, then 
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each ~ E E A ~ l is majorized by a unique maximal measure on E ~ ~ ±. 
Let C be the cone of positive continuous linear functionals on 9/, H the 
hyperplane H =  ( l E g / ' : / ( 1 ) =  1}, then E - ~ C f ~ H .  Since G can be 
identified with the set of positive measures on a compact set L, and is 
thus a lattice for the ordinary order on these measures, E is a simplex. 
We have also E f~ ~± --- (C ~ ~±)  f~ H, and C f~ ~± is again a lattice 
for the order it  defines (the 1. u. b. and g. l. b. of two G-invariant elements 
of C is again G-invaxiant), hence E f~ ~ ±  is a simplex and our assertion 
follows from the theorem mentioned above. 

The main purpose of this paper is to prove uniqueness for a case 
where 9/is not abelian, but  G is now taken to be the translation group in 
v dimensions: R ~. The uniqueness theorem which we prove yields 
explicitly the integral representation of ~ E E f~ ~±  by  a maximal  
measure, and is based on a locality assumption for 9/. We collect this 
new assumption together with the conditions 1 and 2 on the action of G 
on 9/ in the definition below of an asymptotically Abelian B*-algebra [4] 
(with respect to Rv). 

3. Statement of results 

Definition. Let 91 be a B*-algebra with an identity 1. We assume that 
/or every x ERv an automorphism ~ o / 9 / i s  given such that 

(A1). The mapping x -+ T~ is a homomorphism o/the abelian group R ~ 
into the automorphisms o] 9/. 

(A2). I] A E 9/, x -+ 0 implies I[vxA - A][ -> 0. 
We shall say that 9 / i s  azymptotically Abelian i/]urthermore we have 
(A3). I / A  1, A 2 E 9-1, x -+ oo implies t] [A1, ~xA2]t[ -~ O. 
We a~tapt to the present situation G ---- R ~ the notations of Section 2: 

E is the convex and (weakly) compact set of states in the dual 9/' of 9/, 
is the subspace of 9/generated by the elements of the form A - T~A 

with A E 9/, x C R' ,  and ~ its closure. We write 

P-± --- { / E g / ' : A  E ~  / (A)  = 0} .  

Then E f~ ~± is the convex compact set of translationally invariant 
(i.e. R~-invariant) states. I f  A E g~ we define a complex continuous 
function A on E A ~ ± by  

A(e)=e(A), M1 eE~c~£±. 
We recall tha t  ~±  _--__ (9//'P.)', therefore a translationally invariant  state 
may  be viewed as a continuous linear functional on 9/]~. Let ~ : Oa -> 9//~ 
be the quotient mapping. The main idea of the theorem below is tha t  
can be approximated in some sense by  an averaging operation ~ : 9/-> 9/ 
where ~ a A x  commutes in the limit with ~aA~. for all A1, A z C 9/. Here 
a = (a x . . . . .  a ' )  E R" with a 1 > 0 . . . . .  a ~ > 0 and 

~ a  A = V (a) -~ f db z~A 
A(a) 
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where 
A(a)  = {x ~ R~: 0 < xi < at}, V (a) = / / a ~ .  

i = l  

The integral  in the definition of ~R~A makes sense in view of (A2). We 
shall write a-+ oo for a 1 -+ oo . . . . .  a ~ -+ oo. 

As explained in Section 2, a partial  order ~ is in t roduced among the  
positive measures on E f', ~±  such t h a t  /6  < #~ means t h a t  for  all 
convex continuous functions 9 on E f~ 1~±, ffl(q~) =< #2(9).  I n  part icular  
ff (x)=ff tA) and llfflH =f f~(1)=f f~(1)= t!ff ll, we say t, h a t #  is 
maximal  if it is maximal  for the  order 4 .  ~re look for an  integral  re- 
presentat ion of ~ E E A !~a by  t ry ing  to find a maximal  measure fro > do 
where d o is the uni t  mass at  Q. I n  part icular  we have for all A C 91 : ~(A) 
= A(O) = de(A ) = #o(A). We shall show t h a t  #o is unique and, in the 
good eases (see par t  5 of the theorem) concentra ted on the extremal  
points of E f~ ~ z .  

Theorem. Let the B*-algebra 9.1 be asymptotically Abelian with respect 
to R ~, v > O. 

1. To every ~ E E f5 1~ ± there corresponds a positive normalized measure 
/.to on the compact set E r~ .~± such that i / A  I . . . . .  A 1 ~ 91, then 

~0(A~ . . . . .  A~) = ~im O ( ~ , A ~  . . . . .  ~ , A ~ ) .  

2. Let ~1 . . . . .  ~ C E f~ £ ±  and a 1 . . . . .  an be positive numbers such 
that ~ ~l = 1, then i / ~  = ~ ~i ~i we have 

i 

ff~ = Z ~if fo, .  
3. ff~ "is the unique maximal  measure on E f~ 9.± which ma]orizes the 

unit  mass d e at ~ E E r5 ~ ±. 
4. Let (91~) be a countable/amily o] sel]-ad]oint subalgebras o] 91, and 

let ~I be the subset o / E  f~ 1~ ± ]ormed by the elements ~ such that the re- 
striction o] ~ to 91~ has norm 1 ]or each a. Then, pte is concentrated on ~ i] 
and only q e ~ ~. 

5. With the same assumptions, let there exist a countable ]amity (Ai) 
o/ elements o] 91 such that i ] e  ~ ~ and a ~ E f~ ~±,  e 4 = a, then -~i (e) 4= 
4= ~ ~ (a) /or some i. Let ~ (E f~ 1~ ± ) be the set o/extremal points o / E  r5 ~ ±. 
I /  ~ ~ ~I, then fie is concentrated on dP(E r~ 9.± ) r~ ~t. Conversely i/ the 
measure ff > 0 o / n o r m  1 on E ~ 1~ ± is concentrated on # (E ~ 1~ ± ) r5 ~, 
then # = #o ]or some ~ ~ E f~ ~ ±. 

The theorem remains t rue  if R ~ is replaced by  a closed subgroup 
(~0) .  The consideration of states which have a restriction of norm 1 to  
cerbMn subalgebras is of interest  for instance if there  exist unbounded  
observables (see Section 1 and Appendix).  

Remark. I t  is of eourse a problem of interest  to  ex tend the  above 
theorem to more general locally compact  groups G. 3¢Iost of our arguments  
are actual ly  independent  of the assumption G = R" and the only delicate 
10 Commun. math. Phys., ¥ol. 3 
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point is the generalization of Lemma 4 in Section 4. Such a generalization 
has been obtained by  ROBINSON [6], permitting the extension of the 
machinery of our theorem to various groups of physical interest, provided 
that  a physically meaningful "asymptotic Abelianness" may  be postu- 
lated. 

Before starting the proof of the theorem we mention some of its 
consequences. 

Corollary 1. Let 92 be asymptotically Abelian with respect to R ~ and let 
q ~ E f~ ~±.  We recall that in the space Oq o/the Gel'/and-Segal construction 
there exist a representation A-+ 7~q(A) o/ ~[, a unitary representation 
x -+ U (x) o / R  ~, and a normalized vector $2 cyclic/or gq (~) such that 

e(A) = (•, ~ ( A ) Q ) ,  U(a )~  = Q 

U(x) ~ ( A )  U ( - x )  = ~(T~A)  . 

We assert that the commutant o] ge (OA) ~j U (R ~) is Abelian. 
Let  A C 92 and let C~, C~ commute with 7~ (~) and U (R~), we want to 

show that  
(gO (A) ~2, C 1 C 2 5¢~) = (Tgq (A) f2, C~ C~ 9 )  

where we may assume that  A, C1, C~ are self-adjoint of norm ~ 1. Given 
e > 0 we may choose self-adjoint A1, A~ E 92 such that  

for i = 1, 2, hence also 

We have then 

[(ge(A)~2, C~Cu~2) - (~e(A)f2, CuCif2)] 

= [ (O1~ , zo(~aA)G2D) - (C~D, :~o(~A)CJ2)I < 

< I ( % ( ~ A x ) D ,  7~q(T~A) 7eo(TR~A2)~Q ) - 

= ]O(~r2l~At. ~ A .  ~ A ~ )  - O(TRaA~. ~ I~A .  ~ A ~ ) ]  + 4 e .  

Since this inequality holds for all a we see, using part  1 of the theorem, 
that  the left-hand side is < 4 e, hence vanishes, which proves the corollary. 

Corollary 2. With the notations and assumptions o[ corollary 1, let On 
be the subspace o/Oq/ormed by the vectors invarian$ under U (R"). The 
]ollowlng conditions are equivalent 

1. 0 is an extremal point o[ E ~ 2. ± . 
2. For all l and A x . . . . .  A~ ~01, 

l 

]Jm O(~/~aA1 . . . . .  ~aA~) : I I  o(Ai) . 
a ~ . . . , a l - - - > o o  i ~ 1 

3. For all sel]-ad]oint A ~ 92, lim e ( (~aA)  ~) = (e(A)) ~. 
~---> 00 

4. On is one-dimensional (spanned by ~).  
5. The set % (Off) ~J U (R ~) is irreducible. 
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Conditions 2. and 3. are weak "cluster properties" while 4. is usually 
referred to as "uniqueness of the vacuum" in field theory. 

1. ¢~ 2. From par t  1 of the theorem it  follows tha t  2. is equivalent to 
l t 

/~Q ( 2 t l  . . . . .  A1) = I I  e (A i )  = I I  A i ( e )  = 6~(A1 . . . . .  Az) 
i = l  i : l  

hence to/~q = ~e, hence to the maximal i ty  of 5Q, hence to 1. 
2. ~ 3. is obvious. 
3. ~ 4. I f  4. does not hold, there exists v 2 E ~ such tha t  Jill[ = 1, 

(~, ~ )  = 0; then for self-adjoint A E 02 

I(~, =~(A)12)12 + ] ( ~ , ~ ( A ) ~ ) I ~ =  I ( ~ , ~ ( ~ A ) ~ ) I 2 +  [(~,=~(~oA)~2)? =< 

_-< (9,  [ ~ ( ~ o A ) ] ~ )  

or t(~, =~(A)9)I  ~ <= e ( ( ~ o A ) ~ )  - (e (A))~ and 3. ~ p n e s  that  (~, ~ ( A ) 9 )  
= O, hence ~ = O, a contradiction. 

4. ~ 5. Let  C be in the eommutant  of ~ (OA) ~j U (R ~) ; then C ~  E ~a.  
I f  4. holds, for some scalar c we have C/2 = c~2 and, since ~ is cyclic 
for g~ (02), C is a multiple of the identity:  5. holds. 

5. ~ 1. Let  ~ = 1/2 (~1 ÷ ~ )  with ~ ,  ~ E E f~ ~±  ; there exist then 
(D1xY~R [2], 2.5.1.) self-adjoint operators Cx, C 2 in the commutant  of 
z~ (9,1) such tha t  

e~(A) = (~Q, g0(A) C , ~ ) .  

Since ~i (A)  = ~ i ( ~ _ z A ) ,  we have 

(~, ~ ( A )  C,~)  = (~, =~(A) U(x) C, U(-x)~) 
hence C~, C~ belong to the commutant  of ~e (OA) ~ U (R'). I f  1. does not 
hold we may  choose ~ =~ ~ hence C~ # Cu and 5. does not hold. 

4. Preliminary lemmas 

Lemma 1. I] A 1, A s E 9.1 and T I A  1 = ~ A 2 ,  then 

l im ][~aA1 - ~aAu[I = O . 
a --~ oo 

By assumption A 1 - A s E ~ hence, given ~ > 0, there exists A 0 E 2~ 
such tha t  []A1 - As - A0[] < e, and therefore 

[ l~aA1 - ~2~aA2[ t < []~aAo][ -{- ~ .  

We m a y  write A 0 as a finite sum of terms of the form A - ~ A  and if 
Za is the characteristic function of A (a) we have 

TI~(A - ~ A )  = V(a)  -1 f db[g~(b) - z~(b - x)]~bA 

lira H ~ a ( A -  ~zA)l[ < HAil l lm V ( a ) - i i f d b [ z ~ ( b  ) - - g a ( b -  x)] I -= 0 ,  
tg---> oO a - + o o  

which proves the lemma a. 

• We may remark that if A E 92, then lira [[TI, A[[ ----- llT/IA[]. This follows from 
a ---~ oo 

Lemma 1 upon noticing that  []~.A]] g ]fAIl and using the definition of the norm 
~/~. 

10" 
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L e m m a  2. I / A  1, A 2 E ~A and e > 0, there exists a o ERv such that 

i / a s  > %, independently o/ a 2. 
This is an  immedia te  consequence of (A3). 
L e m m a  3. Let A sel]-ad]oint belong to Tt and Q E E A ~ J-, then the 

/ollowing limit  exists and is finite 

lira 0 ( ~ A  . T I ~ A )  . 

Le t  us write 

ltAh = [5 (A~)?J~ 
and,  for Lebesgue measurable  A C R ~ 

A (A) = f db ~:~A . 
A 

For  disjoint A1, A2 we have  b y  the  Sehwarz inequal i ty  

I[A (A~) + A (A2)h < ]IA (A1)h ÷ IIA O2)112. (1) 
Define 

X = inf V(a)-~j[A(A(a))ti~.  (2) 
a > 0  

For  all e > 0 there  exists a 0 > 0 such t h a t  

V(ao)-XI]A(A(ao))h < i + E 

and since V(b)-lllA(A(b))h is a continuous funct ion of b, there  exists 
> 0 such t h a t  if [b i - .a~l < ~ for i = 1 . . . . .  v; t hen  

V(b)-~[IA(A(b))H2 < X + e .  (3) 

Fo r  sufficiently large a, we m a y  choose b and  integers ]~1 . . . . .  ]~" such 
t h a t  Ib ~ - a~[ < 6 and  a i = k~b ~. There  exist~ ~hen a par t i t ion  of A(b)  

y 

i n t o / / k  ~ t ransla tes  A~ of A (b), and  (1) yields 

HA(A(a))[], < Z [[A (A~)h 

= ~,' tlA(A(b))lI < ~,~ V(b) (X + e) ~- V(a) (X + e) (4) 
g g 

where we have  used the  t rans la t ional  invar ianee  of 0 and  (3). F r o m  (4) 
and  (2) we obtains  thus  

lira 0((~I~A) 2) = X~.  (5) 

Denot ing b y  - A ( a )  the  symmet r i c  of A(a)  with respect  to  the  
origin of R ~, we define 

~ _ ~ A  = V (a) -~ f db % A  
--A(a) 

~2~la A = T2I_ ~ TI~ A . 

Notice t h a t  b y  t rans la t ional  invar iance  of ~ we have  

Q ( ( ~ b A )  ~) = Q ( ~ A .  A ) .  
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On the other hand 
~ m  ] l ~ _ ~ A  - ~ ; ,Al [  = 0 

O, --)- O0 

therefore (5) gives 

lira lira 0 (T I ;A .  E I~A)=  lira lira e(!~/l_fi~ll;A. A) 
a - - ) o o  b---~oo a - - + o o  b - - > o o  

(6 )  
= b-*~lim O(TlgA. A) = bll~n O((~II~A) ~) = X ~ 

and we have 

lim sup ~((TI~A) ~) _ lira sup [sup ~('ra1911bA. z~ TlbA)] g 
b + ~  b - + ~  Lal, a.  J (7) 

____ ] i ra  Q ( ( ~ o A )  ~ ) =  X ~ .  
b - - ~  oo 

The lamina results from the following formula derived from (5), (6), (7) 

tim sup [ ~ ( ~  A .  ~ A )  - x~l 
~1, a z - - ~  oo 

= lira sup 2 ~  [Q [(i~l~ A - ~ l l g A ) .  i~l~ A][  < 
a l ,  a z - - ~  o~ 

lim lim ~ [ ( ~ a A  - ~ f ~ A ) 2 ] I / 2 X  = O .  
al --.-> c~ b .--~ ov 

Lamina 4. I / A  1 . . . . .  A~ E O.l and ~ E E f~ ~ ±, then the limit 

l~m O(Tla AI . . . . .  TIa, Az) (8) 

exists, i/ finite, depends only on the classes ~llA 1 . . . . .  TIA~ and is in- 
variant under permutations o / A  1 . . . . .  Az. 

We may assume that  A 1 . . . . .  A, are self-adjoint. We write 

X~ = TlalA 1 . . . . .  911aj_ A~_I, X~' = 9/l~+ A~+ 1 . . . . .  911a~A~. 

To prove the existence of (8), it is sufficient to show that  for each j and 
e > 0 there exists a 0 ~ R" independent of a~ . . . . .  ai_~, a~+~ . . . . .  a~ such 
that  

t ~ #  t l  [~(X}(Tqa'~A~ - Tla, A~)Xi )1 < e (9) 

if a~, a~' > a 0. By Lamina 2, for sufficiently large a 0 we have 

X '  [ e (  ~ ( ~ A ~  , ' . . . .  , - ~ ; , A ~ ) X ~  ) - 

and by  Lemma 3 

which proves (9). 
Lemma 1 shows that  (8) depends only on the classes !~/lA~ . . . . .  ~ A ~  

and Lemma 2 that  (8) is invariant under permutations of A 1 . . . . .  A~. 
Remark. The fact tha t  the limit (8) exists when a~ . . . . .  a~ tend 

independently to ~o and the fact tha t  Lemma 4 holds for asymptotically 
Abelian (rather than local) algebras turned up during discussions with 
RoBn~SO~ and KAS~LWR. ROBrSSO~ [7] has obtained a proof of our 
Lemma 4 which extends to locally compact groups more general than 
R ~ and to averages over regions A of rather general shape. Furthermore 
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he needs t h a t  02 is asymptot ica l ly  Abetian only  to  prove tha t  (8) is 
invariant  under  permutat ions  of A 1, . . . ,  A ~. 

Lamina 5. Let ~ E E ~ ~. ±. For sel/-adjoint A 1 . . . .  , A~ E 9A Let ~ be 
the algebra o /complex  polynomials in  the indeterminates TI  A v . . . ,  T I A  v 
A l inear/unct ional  ~ on ~ is defined by the condition that 

[(T/lA1) n~ . . . . .  (T IA3  n~] = lim ~ [(TlalA1) ~ . . . . .  (T~a~A3'~]. 
a l  , . . . , a l ---> c ~  

There exists then a positive measure m A .... ~ with compact support in  R ~ 
such that 

[P(Tl lA  1 . . . . .  TIA~)] = m A .... a , (P)  . 

Let  P be a product  P - - / )1  ® " " " ® P~ where Pi  is a polynomial  in 
the  i- th a rgument  of P .  Wi th  respect to  the  norms 

tlPill = m a x  IPi(t)I 
- - [ ] A i I ]  < :  t > ] I A , ] ]  

the  expression 

O[P( f22 IAI , . . . ,  TIA~)] = l i m e  [P~(!~2I~A1) . . . . .  Pa(TI~A~)] 
t% ---> OO 

is a continuous multi l inear form in P1 . . . . .  Pz because ]IPt(9~l~A~)ll <= 
_ I1PtH. I f  P ~ >  0 for i = 1 . . . . .  l there exis~ polynomials  Qi such t h a t  
P i  --- Q* Qi hence, with Q -- Q1 ® " " " ® Q~, we have 

0 [ P ( ~ A x ,  . . . ,  T I A 3 ]  

= lira e [Q(TI~AI  . . . . .  TI~A~)* Q(TI~A 1 . . . . .  TI~A~)] ->_ 0 .  

The complex continuous functions on the real line m a y  be approxi- 
ma ted  b y  polynomiMs with respect to  the  norms int roduced above, the  
positive functions by  positive polynomials.  This shows t h a t  t~he above 
multilinear functional  extends uniquely to  a multil inear functional  
M ( h  . . . . .  /~) on continuous functions, such t h a t  h > 0 . . . . .  [~ >= 0 
implies M (h . . . . .  /~) > 0. Separately in the i . th  variable, M is thus  a 
measure (with support  in [-tlA~II, + IIA~II]), hence a distr ibution and  b y  
Schwartz '  kernel theorem there exists a distr ibution m a .... a~ in R ~ such 
t h a t  

i ( h  . . . . .  h )  = m ~  .... ~ , (h  ® "'" ® h )  

if /1 . . . . .  ]~ E ~ (R). The distribution m A .... a~ has its support  in the 
product  of the intervals [-fIAtll,  + llAilI]. I f  0 < af ~ ~ (R) and ~ tends 
to  D m ~ c ' s  ~ measure for i = 1 . . . . .  l, regularization of ma  .... ~ by  
~ = ~  ® - - . @  ~ yields a positive Iunct ion mA .... a~,~ which tends 
weakly to  m, implying tha t  m is a positive measure and the lamina is 
proved. 

Lamina 6. Let ~ ~ E ~ 5~ ± ; A~ . . . . .  A t  E OA be sel]-ad]oint, and P be a 
complex polynomial in  I arguments, then 

I ~ [ P ( ~ A ~  . . . . .  TIAz)]I ~ sup tP(a(A~) . . . . .  a(A3)l. 
aEEfS.2 J~ 
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Let  z] be the support  of m~ . . . .  ~z and x E A .  Let  Z =  0 be a con- 
tinuous function with compact support  on R ~ such tha t  Z (x) > 0; then 

= m ~  .... ~ , ( Z ) > 0 -  
t We define a functional @z on the setf.adjoint elements of A E 92 by  

One cheeks from the definition (Lemma 5) of m~ .... ~,~ tha t  if A > 0, 
then m A .... ~A has its support  in the product of A by  the positive semi- 

t 
axis. Therefore @x is a positive functional. The support  of the measure 
m~ .... ~,1 is A × {1} hence @z(1)= 1. By  considering the support  of 

t m,i .... ~,A'~".~'+*A" for real scalar ~ one sees similarly tha t  0z is real 
linear. By  linear extension to non self-adjoint elements of 92, @z yields 
thus an element 0z of E n ~± .  When the support  of Z tends to x, we 
have 

(q~ (A~) . . . .  , q~ (A ~)) -~ x 

and the lemma follows from the inequality 

t ~ [ P ( ~ A ~  . . . . .  ~/tA,)]t < sup i F ( x ) [ .  
x E A  

5. Proof of the theorem 

1 °) Extension by linearity from the formula 

fe~(A1 . . . . .  A~) = lira ~ ( ~ l A 1  . . . . .  ~ , A ~ )  
~ $ i , . . . ,  a | - ~ o o  

yields a linear functional fe e on the polynomials in the A s. Lemma 6 
shows tha t  this functional is continuous for the topology of uniform con- 
vergence on E A ~ .  Let  ~ ( E  f~ ~ i  ) be the space of complex continuous 
functions on E f~ ~ ±  with the same topology. Since the A separate the 
points of E f~ ~± ,  the polynomials in the A are dense in ~ ( E  n £ ± )  by 
the theorem of STONE-WEIERSTRASS, and fee extends to a continuous 
linear functional on q~ (E n ~ ±), i.e. a measure on E n ~ ±, again noted/~,. 

For seif-adjoint A 1 . . . . .  A~ E 92 ,and a complex continuous function 
/ on R ~, Lemma 5 shows tha t  

~ ( l ( X ~  . . . . .  X,)) = ~ . . . .  ~ , ( 1 ) .  

I f  0 =< ~0 Eq~(E f~ ~±),  one can approximate ~0 by  functions of the form 
/ (A t  . . . . .  A~) with ] --> 0 (e.g. taking for / the absolute value of a poly- 
nomial) and it  follows tha t  /zo(~) _--> 0. Finally #Q(1)= 1, which con- 
eludes the proof of par t  1 of the theorem. 

2 °) Par t  2 of the theorem follows directly from the equation defin- 
ing #~. 

3 °) Let  fe be a measure which majorizes ~ ,  i.e. such tha t  fe (A) = @ (A) 
for all A E92. I f  ~0 E (E ~ ~±)  and ~ >  0 one can find a measure fe' with 
finite support :  # '  = ~  ~i6~, ~ i >  0 such tha t  I/x(T) - # ' ( ~ ) [  < e and 
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~¢i~ = ~ (see [I], footnote p. 141). I f  ~ is convex we have thus 
g(~) - ~ < g ' ( q )  = ~ ~ , ~ , ( ~ )  < ~ a ~ / ~ , ( ~ )  = g~(q) 

hence ~t~ ~ ~t which proves part  3 of the theorem. 
4 °) If  92~ is a self-adjoint subalgebra of 92, let B~ = {A E ~ : A = A*, 

IIA H =< 1}, the subset of E ~ ~± formed by the elements ~ such that  the 
restriction of ~ to ~ has norm 1 is then 

~ = {~ ~ E  ~ £±  : sup ~(A) = 1} 
AE~ 

and we have 

m > O  

A E B  e 

Since the Vm are open, their countable intersection ~t~ is measurable. 
We prove first that  if Q E g~, then /~o is concentrated on g~. Let  

#0 = # '  + / ~ "  where If#'ll + ]l/~"ll = 1,/~'  is carried by Vm and /~" by 
E m ~ ± - V~. We have for all A E B~: 

hence 

e ( A ) = ~ ( A ) = ~ ' ( A ) + / u " ( L I )  <= JJ~'JJ + II,u" H 1 - = 1 - - ~ - I I ~ " f J  

and therefore tI~"It ---- 0. For  all m,/~e is thus concentrated on V~, hence 
/~ is concentrated on ~ .  

Let  now/~e be concentrated on ~ ,  hence on V2~. There exists then 
1 

a compact KcV~m such that  ffQ(K)> 1 ~-~ . We may suppose that  

~A~ is a sub.B*-algebra of 92, and has thus an approximate identity (see 
DIX~IIER [2], 1.7.2. and 2.1.5 (v)). Since K (  V ~  is compact one can 
find, using the approximate identity, A o C B~ such that  

~EE~£±:Q(Ao)> 1 - ~ -  7 ) K .  
Under these conditions 

Q(Ao) = #q(~o) > ( 1 -  2 ~ ) / , ~ ( K ) > 1  - 
1 

m ~ 

hence e E V~, hence Q E ~ -  
The above results generMize immediately from the case of one sub- 

algebra 9.1~ to the case of a countable family ( ~ )  because U = Q ~ is 

measurable, proving part 4 of the theorem. 
5 °) Suppose that  the conditions of part  5 of the theorem are fulfilled 

and let z be the mapping which associates to ~ E E ~ ~± the sequence 
(q(Ai)). Considered as a mapping of E ~ £± into the product of a 
countable sequence of copies of the real line, ~ is continuous and its 
image ~r(E A 2±)  is thus compact. Corresponding to gq, with ~ E U, a 
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measure ~ on ~r(E n ~±)  is defined by 

~(~) = ~(~o~), ~ ~(~(E n ~±)). 
We have then ~ ~ ~ on ~ (E  ~ ~ i ) .  We show that  ~q is maximal. Let  
indeed ~ ~- ~ .  If  ~>  0 and W E ~ ( z ( E  ~ ~±)), one can find a measure 
~' with finite support: ~' = ~ ~a~ ,  ~i > O, such that  I~ (W) - ~' (W)] < 
and ~ ~i(rt = ~r@ (see [1], footnote p. 141). Let  Q~ EE r~ ~± be such 
that  ~r~i = ~i, then z r (~  ~@~) = zrQ, hence by assumption ~ = ~ ~i~.  
We have thus 

~"(~) = ~  ~'(:~e~) =< ~ ~/~, (~  o ;~) = / ~ ( ~  o :~) = ~(~) 
hence ~ ( ~ ) ~  ~ '(y~)-  ~ which shows that  ~ is maximal. Since 
~ (E  ~ ~±) is metrizable, it  follows (see CHOQU~T and ~EY~R Ill ,  
Corollary 14) tha t  ~e is concentrated on the set @ (z (E n ~ ±)) of extremal 
points of ~ (E n ~±).  Therefore/~ is concentrated on 

n ~ - ~ g ( ~ ( ~  ~ ~ ) ) .  
But, using the assumptions one sees ~ n z-~ g (~ (E ~ ~±))  C g (E n ~ ±), 
hence/z~ is concentrated on g~(E ~ ~±) ~ ~. 

Conversely let /~ ~ 0 be a measure of norm 1 on E ~ ~±,  there 
exists then @ ~ E  ~ ~± (the resultant of ~) such that  ~(A) = #(-~) for 
all A ~.1, i.e./~ ~- ~e. If  ;u is concentrated on g~(E n ~±),  it  follows (see 
CHOQUET and M E ¥ ~  [1], proposition 15) tha t  ~ is extremal, hence by 
part  3 of the theorem, # = ~e. If /~ is concentrated on ~ ( E  n ~1)  n ~, 
part  4 of the theorem shows that  ~ ~ ~, which concludes the proof. 

6. An application to antieommutation relations 

Let  5/~ be the Hilbert  space of the Fock representation of the canoni- 
cal antieommutation relations (Foek space of the CAR). We take as 
test-functions the real square-integrable functions on R ~, which form a 
real Hilbert space L~ (R~). Let  ~.I 0 be the algebra of bounded operators 
on I f  generated by the anulhHation and creation operators a(]), a* (g) 
w i th / ,  g ~ L~ (R v) and let ~0 be the subatgebra of 92 0 generated by the 
monomials of even degree. We note ~ (resp. ~ )  the uniform closure of 
~A 0 (resp. ~0). I t  is known that  the states on ~1 exactly correspond (by the 
Gel'fand-Segal construction) to the cyclic representations of the canonical 
antieommutation relations. 

We call even state a state on ~1 which vanishes on the monomials 
of odd degree in the creation and annihilation operators (only even 
states occur in questions of physical interest). There is then a natural 
one-to-one correspondance between the states on B and the even states 
Oil ~,  

If  x ~ R ~, an automorphism ~ of the algebra ~ exists such that  
w~a(]) = a(]~) where ~ ~ L~(R ~) is defined by/~(~) -- ](~ - x). With this 
definition (A1) is obviously satisfied for 92 and ~3. As is well known, the 
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CAR imply Ila(hll = Ila* (/)[I = II/ll~. :From this (A2) follows for 92 and ~ .  
I t  follows also that  the algebra ~ of even polynomials in the a (]), a* (g), 
where ], g have compact support, is dense in ~ and therefore (A3) is 
satisfied for ~ .  Finally since L~ (R ~) is separable, ~$ is separable. 

The information collected above shows that  part  5 of the theorem of 
Section 3 applies to the tvanslationally invariant states on B. We re- 
formulate this result as follows. 

Proposition. Let K be the convex compact set o] even translationally 
invariant states on the algebra 92 o/the CA R. Let ~ (K) be the set o/extremal 
points of K. There is a one-to-one correspondance between the elements 
o / K  and the measures/~ >= O, o/total mass 1 on K concentrated on 8 (K), 
such that 

e(A)=/~(A) fo ra l l  A E92. 

That  K contains many elements follows from [8] Section VIII .  

Acknowledgements. I wish to thank R. KADISON who read the manuscript of this 
article and made several illumin~ting comments. 

Appendix 

Let  H be an unbounded self-adjoint operator in the Hilbert space 
of a C*-algebra 92, and let Q be a state on 92. The aim of this appendix is 
to give conditions under which an unbounded self.adjoint operator H 0, 
corresponding to H, can be reconstructed in the Gel'fand-Segal HAlbert 
space ~ .  

We shall however state our results somewhat more generally and 
use the language of B*-algebras. Throughout what follows 92 will be a 
B*-algebra and, given a state ~ on 92, we shall note Do the Hilbert space 
of the Gel'fand-Segal construction and ~ the canonical homomorphism 
of 9.1 into the bounded operators on ~ .  Q will be the normalized vector 
in ~o, cyclic with respect to ~(92) such that  (~Q, ~o(A)~) = 0(A) for 
all A E 92. 

Let  921 be a sub-B*-algebra of 92 and ~ a state on 92 such tha t  its 
restriction to 921 has norm 1. Given e > 0 there exists a self-adjoint 
A1 E 921 such that  

HA1]I < 1, 0(A1)> 1 - ~ ]2 .  (A1) 

This is a consequence of the existence of an approximate identi ty in 921 
(see DIX~IIER [2] 1.7.2. and 2.1.5. (v)). Therefore 

II~ - :~o(A~).QII < e .  (A2) 

Proposition 1. Let 921 be a sub.B*-algebra o/92; the [ollowing conditions 
are equivalent 

(i) The closed le]t ideal L (or the closed right ideal R)  generated by 92x 
is a two.aided ideal. 
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(iX) For all A ~ 00, A 1 E 001, e > O, there exists a seli-ad]oint B C 92i, 
such that 

IIBl[ < 1, i I B A A 1  - AAxl] < e .  (A3) 

(iii) There exist sel/.adjoint subsets ~ and ~A 1 respectively generating 
PA and 001 (/or their structures o/B*-algebras) and such that [or all A C ~1, 
A1 C ~1, e < O, there exists B E 001 such that 

HBAAx - AAltt  < ~.  (A4) 

(i) ~ (iX) If  L is a two-sided ideal, then L D R, hence L -- R* C L* = R 
and for all e > 0 there exist A~. C PA, B~ ~ 00x, i = 1 . . . .  , n such that  

[[AA x - ~ B~A~[] < e/3. (A5) 

In view of the existence of an approximate identi ty in OA x there exists a 
self-adjoint B ~ PAx such that  

liBti < 1, ]IBB~ - Bi] I . liA~]t < ~3/3n (A6) 

and (A3) follows from (A5), (A6). 
(iX) @(iii) is trivial. 
(iii) ~ (i). (A4) implies that  ~ x  C R, hence ~ [ x  C R, hence ~PAx C R, 

hence L C R, hence R := L* C R* = L, hence L ---- R is a two-sided ideal. 
Definition. We shall say that a sub-B*-algebra PAx o/ 00 is clean i] it 

satisfies the conditions o] Proposition 1. 
Lemma. Let 001 be a sub-B*-algebra o/9.1 and ~ a state on 00. I/001 is 

clean and if the restriction o[ Q to 001 has norm 1 then, ]or all qb E De, e > O, 
there exists a sel]-ad]oint B E PAx such that 

HBH =< 1, I f ~ -  ~e(B)¢II < ~. (AT) 

The restriction o] 7~ o to 00x is thus non degenerate. 
There exists A E PA such that  

H~ - ze(A)E2 H < ~. (AS) 

Choose also A1, B ~ PAx satisfying respectively (A2), (A3); then (AS) and 
(A2) yield 

lie - -  ~e(AA1)QlI < ~(1 q- tlAII). (A9) 
We have 

¢ - x ~ ( B ) ~  = (qb - ~e (AAI )Q)  + (A10) 
+ ~q(AAx - B A A x ) Q  + go(B) ( z o ( A A x ) ~  - ~ ) .  

So tha t  (A3) and (A9) yield 

1]¢ - ~q(B)¢l[  < ~(3 + 2]IAII) ( A l l )  
proving the Lemma. 

Let  ~0(R) be the B*-algebra of complex continuous functions 
vanishing at infinity on the reM line and let 9~f be the dense ideal of 
~0 (R) formed by  the functions with compact support. 

Proposition 2. Let h be a homomorphism o / ~ o  (R) into the B*-algebra 
00 and 00x -~ h~o(R)  its image. Let ~ be a state on 92. i] the restriction o] 
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to 021 has norm 1 and if OA I is clean, then 7~eh is non degenerate and there 
is a unique sel]-adjoint operator H o on ~)q such that for all ] ~ c# o (R) 

~ (h/) = / ( H e ) .  (A 12) 

I t  follows f rom the l emma t h a t  7~e(h~o(R))Oq is dense in ~e. There-  
fore also D = ~e (h ~ ) 0 ~  is dense in 00. I f  g C 5/0 we define g'  ~ ~ by  

g' (t) = tg(t). (_413) 

I f  7~Q(hg)q5 = zQ(h~)~,  with g, ~ C ~ ,  4 ,  ~ C0.o, there  exists ~ C J F  
such t h a t  g' = ~g, ~' = g~, hence 

We m a y  thus  define a l inear opera tor  H '  on D b y  

H'=q(hg) ~ = 7~q(hg')~) (A15) 

and, ~ being as above,  we have  

Ii(H') ~ ~ ( h g ) ~ ] l  = i l (~(h~))  ~ ~ ( h g ) ~ l l  _--< II~tl ~ i l ~ ( h g ) ~ t l .  (Al6)  

The vectors  in D are thus  analyt ic  vectors  of H '  in the  sense of NELSOn, 
and since D is dense in 0q, H '  is essentially self-adjoint  (see [7], L e m m a  
5.1). Le t  H e be the  closure of H ' .  I f  P is a polynomial  we have  

P (Hq) =e(hg) ~ = ~e(h(P (o 0 . g))qS . (A17) 

Therefore if P tends  uni formly  on (-[IhII, HhII) to  the  restr ict ion to  this 
in te rva l  of /Ec#0(R),  the  r igh t -hand  side of (A.17) has a limit,  and  
therefore  

/(H~) =~(h)¢  = ~ ( h ( / ( ~ ) .  g ) ) ¢  = ~ d h ( / .  g ) ) ¢  = ~ ( h ] )  ~ A h g ) ¢ .  

This shows t h a t / ( / / ~ )  = ze(h/)  on D, hence on ~e. 
Remark. I~ in Proposi t ion 2 we replace (#0 (R) b y  ~0 (S), where S is a 

closed subset  of R, a self-adjoint  opera to r  H e sat isfying (AI2)  is again  
ob ta ined  and  its spec t rum is contained in S. 
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