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What Are the Measures Descrihing,Turbulence?

David RUELLE

IHES, 91440 Bures-sur-Yvette

It is believed that the average propérties of a dissipative dynamical system,
in particular a turbulent flow, are described by a measure invariant under time
evolution. We discuss here the problem of determining such measures (asymp-
tot1c measures).

§1. Intfnduction

The history of ideas on turbulence is a very confused one, showing an
astonishing coexistence of incoherent and often contradicting ideas. = One very
reasonable view is that turbulence should be described by some probability
- measure # on the space S of states (velocity fields) of the viscous fluid under
consideration. The Hopf equation ‘expresses the 1nvar1ance under time evolu-
tion of the measure # (or its Fourier transform). = Starting with the invariance
equation, approximation schemes for determining # have been set up, assuming -

gaussianity, making truncations, etc. I think it is fair to say that these schemes
’ have not been- very successful.

- To understand this failure, it is 111um1nat1ng to examine the set of meas-

ures invariant under time evolution for simple dlfferential equatlons of the type
{Zz§~X(x) zeR™ B ‘(1-1)

4

~ for instance systems obtained by truncation of the full hydrodynamlc equat1ons
This is done in § 2.

In §3 and the rest of this report we dlscuss What measures are appro-
‘priate for the description -of the asymptotic behav1or of (1. 1) or the corre-
spondlng dlscrete tlme evolution : :

’$t+1—f(xz) : | ‘ L 1-2)

1 10

We follow a recent proposal®® and indicate new results.

§ 2. Imnvariant measures for simple differentiable dynamical systems ,

Lorenz® studied numerically the following system, obtained by truncating .
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the hydrodynamic equations describing convection

= —10x+ 10y,
y= ‘—~xz+b28x—y ,

Z=xy ——2.

His conclusions and those of later studies agree with the results obtained in
studying a variety of other systems. They can be summarized as follows:
1) The solutions of the equations tend asymptotically to a set with com-
plicated structure, called a strange attractor. This set looks locally like a
manifold times a Cantor set; in particular it has Lebesgue measure zero.
’ 2) The solutions exhibit sensitive dependence on initial condition: A
small error on initial condition in general grows exponentially with time.

3) There are many ergodic invariant measures. [For Axiom A systems
there are uncountably many, thls is probably the case also for the Lorenz
system]. ' '

The sensitive dependence on initial condition is the more important fact; we
shall come back to it later. ‘

Property 1) shows that nothing like a Gaussian measure can occur: in-
variant measures are necessarily singular with respect to the Lebesgue meas-
ure. Furthermore, Property 3) shows that the Hopf equation:expressing in-
variance of 4 is very far from having a unique solution. If specific results
‘are obtained from gaussianity assumptions and truncation, it is not clear wha-
their significance is. '

A surprising fact, in view of Property 3), is that ergodic averages pro-
duced with the computer tend to oze and the same ergodic measure x4, what-
ever the initial condition: ‘ k

;;m—jdmn(t))— fewunan e
for every continuous function ¢. This is true for the Lorenz system. In
other systems a finite number of these asymptotic measures do occur.® In
hydrodynamical experiments also one measure describes the behavior of the
system in general, although an infinity of ergodic measures undoubtedly exist

in the turbulent regime. We shall now try to understand why this is the
case. '

§ 3. Asymptotic measures

An idea as to what measures 4 are selected to represent the ergodic

* In some systems an infinite number of measures will occur, due for instance to group invariance.:
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averages (2-1) is provided by the study of Axiom A dynamical systems.®
For such systems, if one discards a set of Lebesgue measure zero of initial,
conditions, only a finite number of measures are produced by the ergodic averages
(2:1). . These measures are further characterlzed by the fact that they are sta-
ble under small stochastic perturbations. 7
In the discussion of hydrodynamic experiments or experiments with other
dissipative physical systems, discarding a set of Lebesgue measure zero of initial
_conditions is reasonable.** In the case of computer studies of solutions of
differential equations, small stochastic perturbations provided by round-off er-
rors, are certainly present. In both cases, the result is the same: Finitely
many asymptotic measures are selected in the case of Axzxiom A systems.
Instead of solutions of differential equations we may consider discrete time
dynamical systems (see Eq. (1-2)). The ergodic averages become then

lim £ 3o (F) = [o) a(dy). BNCIED

The discrete time dynamical systems have been better studied than their con-
tinuous time analogues. Usually theorems are first proved for discrete time,
the more difficult continuous time case is solved somewhat later. For this
reason we shall from here on shift to the discrete time language, and speak
of dzﬁ"eomorphzsms instead of differential equations. -

It is natural to look for the asymptotic measures for general diffeomor-
phisms (or flows) among those which satisfy some conditions which charac-
terize them in the Axiom A case. Before doing this we have to 1ntr0duce
the notion of character1st1c exponents.

\ § 4. Characteristic exponents

Let £ be a diffeomorphism and # an ergodic measure (for f) with compact
support. Denote by 7T,f the tangent map to f (resp. the matrix of partial
derivatives if f is a diffeomorphism of R™). It follows from the multiplicative
ergodic theorem of Oseledec that g-almost everywhere one can decompose the
tangent space (resp. R™) into a direct sum 'Wﬂ(l)@--'@Wn(‘” such that

* Tt will not be necessary for our purposes to define these systems.” They are a. reasonably
large class of differentiable dynamical systems, which are fairly well understood theoretically.
For their study, the reader may consult S. Smale’® and R. Bowen.?? For the. results on
asymptotic measures see Sinai,’?> Ruelle,®> Bowen and Ruelle® and the monograph of Bowen.
See also the papers of Kifer® on small stochastic perturbations.

*%) We treat the phase space of the dissipative system ' as finite. dimensional. We shall not
discuss here the problems connected with the fact that in most cases it has actually infinite
dimension. Let us say however that in many cases of interest it appears that the motions
lie asymptotically in finite dimension, see Mallet-Paret.” “
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k—>oo k ‘ \ . .

The numbers 1™ are called characteristic exponents. In particular, the 1argest\\
characteristic exponent A satisfies ' ‘

Clim L log| T, = 2@
nsdoo 77

since we assumed 4 ergodic, the characteristic exponents are constant (a.e.).
If the asymptotic behavior of the orbit (f*z) -is described by g, and if the
largest characteristic exponent 1% is strictly positive, then we have sensitive
dependence on initial condition. o \

‘ If the largest characteristic exponent 1% is strictly negative, then the sup-
port of # is an attracting periodic orbit. Although this last result is intui-
tively natural the proof of it which I know is not elementary.'”

§ 5. Characterization of asymptotic measures

. In the Axiom A case, the asymptotic measures are'precisely those ergodic

measures # which satisfy the following equivalent conditions. ‘

(a) Variational principle. The quantity % (u)-4(4) is maximum (this
" maximum is zero). Here A(x) denotes the sum of the positive characteristic
exponents (W1th multlphclty) h () denotes the entropy (Kolmogorov-Sinai
invariant). ‘ -

(b) Smoothness of conditional measures. The measure 4 is smooth
along unstable directions. More precisely, the conditional measures on unsta-
ble manifolds are absolutely continuous with respect to Lebesgue measure on
‘these unstable manifolds. Unstable manifolds will be defined below.

The equivalence between the above two conditions is proved by methods
- of statistical mechanics. The smoothness of conditioﬁal measures means that #
is a Gibbs state (for some interaction), and the Varlatlonal prlnc1p1e mearis
that # is an equilibrium state. One uses then the equ1va1ence betvveen Gibbs
states: and equilibrium states. :

~Also for dlffeomorphlsms which do not satisfy Axlom A, it is natural to
look for asymptotic measures among those satisfying either the variational
~ principle, or the smoothness of conditional measures. The equivalence between
these conditions is not known in general. We are here in the realm of con-
jectures, but tvvo results are known v , : '
“ (@)  An mequalzty related to the varzatzonal principle (Ruelle,”
Katok®). If fisa C* map of a compact manifold, and # any f-ergodic measure,
then ' ‘ \ : :

h(u)<<A).
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(b) Existence of unstable manifolds (Ruelle™).
Let f be a C'*¢ diffeomorphism of a compact manifold. Define the wunsta-
ble manifold P, through z by o "

ﬂ‘) = {yEM lim sup = log d(fa,'“ﬂ N <O} "}
-0
Let also ‘UJ,;(;):WJB(”)—}—---—I—WJ'” be the sum of the spaces corresponding to
strictly positivei characteristic exponents. Then for almost all x (with respect
to any f-invariant measure ) P, s a smooth manifold tangent to U5 at
z. P, may actually be dense in parts of A, and therefore a more careful
formulation 1is:- ‘ij('é is the image of U, by an injective imbedding tangent
to the identity at x. Similar results had been proved earlier by Pesin in a

special case.
§ 6. Conclusions

The programme of studying asymptotic measures for general diffeomor-
phisms is only at its beginning. = If one is optimistic, one may hope that the asymp-
totic measures will play for dissipative systems the sort of role which the Gibbs
ensembles have played for statistical mechanics. Even if that is the case;\the
difficulties éncoun‘cered in séatistical mechanics in going from Gibbs ensembles
to a theory of phase transitions may serve as a warning that we are, for dis-
31patlve systems not yet close to a real theory of turbulence.
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Discussion

H. Haken: It is known from the work of May and others that the variety of
solutions of z;.;=f(x;) is richer than that of solutions of the corresponding differ-
ential equation dx/dt=g(z). Could you therefore comment on  the, relation -
between these two types of equations? »

D. Ruelle: Solutions of differential equations in some fixed dimension 7 are
less rich than discrete time evolutions in the same dimension. They rather corre-
spond to discrete time evolution in dimension 7—1.

J. L. Lebowitz: Am I correct in thinking that the hope is still very very far
away, it is true, but nevertheless the hope is that there is an invariant measure
of the general type you discussed for the Navier-Stokes equation at high Reynolds
numbers which will contain such things as the Kolmogorov law, etc.?

D. Ruelle: That is the remote hope.

M. S. Green: What does your maximum principle mean for an ergodic Hamil-
tonian system?

D. Ruelle: For systems with a smooth invariant measure, the variational
principle becomes an 1dent1ty derived by Pesin and Margulis. ' :

M. S. Green: Could you expand on the remark in the beginning of your talk
that random elements in the numerical calculations such as round-off errors have
an important role to play even though such elements may be very small?

D. Ruelle: If the initial point z is arbitrary and no randomness is present,
every ergodic measure can appear as )

n—1
11m E 0 fege
n—sco M fp=

M. S. Green: I speak from the prejudice that the origin of the dissipative
‘systems in Hamiltonian systems of so many degrees of freedom must have an -
important bearing on the physical interpretation of strange attractors, in spite of
the fact that fluctuations from this source are extremely small. Your reply clarifies,
at least for me, the natural molecular fluctuations and their associate phase space
measures have the effect of picking out the particular ergodic measure on the
strange atfractor which satisfies your maximum principle as the physically signifi-

- cant one.

N. G. van Kampen: The aim is to understand turbulence as a- consequence
of the hydrodynamic equations, as they stand. No molecular aspects need be taken
into consideration, unless you adopt the unusual view that turbulence is not a
purely hydrodynamiecal phenomenon

D. Ruelle: It is an interesting idea that the microscopic ﬂuctuatlons may
provide the element which fixes the choice of the asymptotic measure describing
the macroscopic behavior of the system. Otherwise, as Prof. van Kampen indicates,
turbulence is completely described by the macroscopic hydrodynamic equations.
For instance, I believe that multiplying the amplitude of microscopic fluctuations
by a factor of 2 would have no visible effect. ’

M. S. Green: I think I may differ from Prof. van Kampen about the task of
theoretical physics.in explaining turbulence. Statistical mechanics delivers to the
hydrodynamicist the Navier-Stokes equations together with very small but nonzero
random stresses and heat currents which represent the molecular fluctuations. I
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do not see any principle which requires us to explain turbulence using the deter-
ministic equations alone. If the natural fluctuations have a role to play in picking
out the physically relevant measure among the many permitted by the deterministic
equations. I do not think we have committed a methodological solecism. On
the contrary, we have thereby diminished the number of explanatory principles
something I find very satisfying. ,

J. D. Gunton: The mathematical models which you study can apparently be
obtained in some cases from truncation of the hydrodynamic equations. .Since Dr.
Yahata has shown at this meeting that a partial understanding of the instabilities
in Couette flow can be obtained by a truncation of the Navier-Stokes equations,
I would like to knovv if some of your ideas can be applied to his work.

D. Ruelle: I expect that the ideas 1 described apply to the truncations of
hydrodynamlc equations studied by Dr. Yahata and others.

H. Haken: It might be pos51ble to introduce a classification of dlfferent kinds of .
turbulence by means of your measures. Has anything been done in this direction?

D. Ruelle: A classification of the type you suggest would be obtained by
counting the number of positive or zero characteristic exponents.

P. C. Martin: I like to make the analogy between the Ruelle- Takens picture
for turbulence and the statistical dynamic picture of a crystal. It is a useful
concept to understand that a crystal is a state with broken translational symmetry
and that a state with broken spatial translational symmetry has Bragg peaks. Like-
wise it is a useful concept to understand that dissipative dynamical systems can
have attractors more complicated than limit cycles and fixed points and that
the time dependent correlations of such states have continuous frequency spectra.
This classification theory helps us to recognize that we do not need external
noise for turbulence just as we do not need external periodic potentials to
create a crystal. However, crystals come in many variation and have many propor-
tions and a solid state physicist wishes to understand a great deal more than that
a crystal differs from a liquid because it gives rise to Bragg peaks. In particular,
the fact that in some dsymptotic region, e.g., for second order structural phase
transitions, there is a universal behavior for the long range correlation functions
of substances has little to do with the definition of a crystal. Indeed the behavior
of the correlations in this limit can be understood by a different sort of ideas (via
the renormalization group and fixed points) that does not distinguish between
structural phase transitions and other transitions in fluids with order parameters
of the same symmetry. In the same way, the Kolmogorov spectrum and strong
turbulence might well be independent of whether the noise is externally generated
or not. At the very least, an understanding of strong turbulence involves showing
that in some asymptotic limit, the behavior of the correlations on strange attractors
- associated with fluids has “universal” properties of a very specific type. It is a
long way from Bragg peaks to critical exponents and it is a long way from con-
tinuous frequency spectra to Kolmogorov-like “universal” spatial correlations.



