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Abstract

Recent attempts at understanding hydrodynamic turbulence have used the
ideas of strange attractors, characteristic exponents and stable manifolds for
differentiable dynamical systems in finite dimensional spaces. This use was some-
what metaphorical, because hydrodynamic evolution is defined in infinite dimen-
sional functional spaces. A recent study indicates that many results on finite
dimensional dynamical systems carry over to dynamical systems in infinite dimen-
sional Hilbert spaces under certain compactness assumptions. This is the case in
particular for the time evolution defined by the MNavier-Stokes equations in a

bounded region of ]R2 or R3 i
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p. 1, bottom, add

This paper was presented at the conference on "Nonlinear Dynamics"

organized by the New York Academy of Sciences, December 17 to 21, 1979.

*ok
p. 4, inmsert ) at the end of %. 16 and add the following footnote at the end
of the page
k)

Actually, the analyticity is explicitly proved in Iooss [20] and
already implicitly in Fujita and Kato [21], as G.Iooss kindly pointed

out to me.

p. 5, replace %. 4 by

(a) lucz) | ¢ R

p. 5, replace 2. 6 by

In particular, if d = 2, the ball {u € Hé : || ull < RO} is admissible
for sufficiently large R0 A TO 3

p. 5, replace %£. 12 and beginning of %. 13 by

The set A = N £ is compact.
t>T
0
p. 6, replace "Proposition 5" in %. 1 by
Proposition 1.5.
p. 8, 2. 3, after & > 0, insert
A >0 .
p. 9, %. 5, replace ... < A(u)} by
voe AW}

p. 13, bottom, add

[20] G.Iooss : "Sur la deuxigme bifurcation d'une solution stationnaire
de systémes du type Navier-Stokes.'" Arch. Rat. Mech. Anal. 64, 339~
369 (1977).

[21] H. Fujita and T. Kato. "On the Navier-Stokes initial value problem i
Arch. Rat. Mech. Anal. 16, 269-315 (1964) .
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0. Introduction

The motion of a fluid in a region (} of :m2 or R? is defined by

a function t— v(t) , where v(t) belongs to some functional space é; of
velocity fields in ( . In a turbulent regime one expects v(t) to be distri-
buted according to some probability law. This probability law is defined by a
measure p on f} , invariant under the deterministic time evolution of the

system.

One has reached some understanding of the invariant measures for a time

evolution in a finite-dimensional space ﬁ;. The notions of strange attractor,
sensitive dependence on initial condition , and characteristic exponents have
been useful in this respect. Also it is almost everywhere possible to define

stable and unstable manifolds, and one can in a number of cases identify the

measures which are stable under small stochastic perturbations. In this paper
we discuss the extension of results obtained for finite-dimensional dynamical
systems to the more realistic case of the time evolution defined in a Hilbert

space by the Navier-Stokes equation.

I wish to thank C. Foias for a very useful conversation on the analyti-

city of solutions of the Navier-Stokes equation.

1. Navier-Stokes theory

We summarize here some results on the time evolution defined by the
Navier-Stokes equation in a bounded domain () . The pioneering work of J. Leray
on the Navier-Stokes equation was followed by contributions by E. Hopf, O0.A.
Ladyzhenskaya, J.L. Lions and others *). We follow here Foias and Temam [2] 3

their paper contains a convenient exposition as well as a good list of references.

Let thus () be bounded open in :md ,d=2or 3. We assume that 30
is of class C2 , that () 1is locally on one side of ) , and that Q) consists
of a finite number of connected components. The Navier-Stokes equation and incom-

pressibility condition are

_)
s:_fm vE - VRT3 (1)
p i i
by =10 (2)

. See the monographs of Ladyzhenskaya [5] , Lions [6], and Temam [19] :



to be satisfied for (x,t) € Q x [0,+») . The boundary conditions are

<

=0 on 3N x [0,+w) (3)

<

v = o on Q x {0} (4)

The constant v is the kinematic viscosity. The external force —g) is assumed

3*
to be square-integrable ) in () . The velocity Z; is tangent to the boundary
and is assumed to extend to a divergence free vector field with square-integrable

second derivatives in () . Writing § =V - @ , we may replace (1), (3) by

= = -
MLy (v & +(p,£+u 20
ot i 1axi 1axi iaxi

.
=vaﬁ--‘}p+<§_¢i§‘2) (5)

Hxi

-
u

= 0 on 30N (6)

One looks then for a solution u of (5) in the Hilbert space HJC') of
3¢
divergence free vector fields in ()} vanishing on the boundary ) with the

Dirichlet norm

2
= T [2 oy et o

The divergence-free condition takes care of (2). Projecting (1) on divergence-
free vector fields eliminates the pressure term ":5'p , and it is easy to make

sense of the other terms. Altogether, one has to find u(t) =(-,t) € H](')

satisfying
du _
E = F(U) (8)
u(0) = uy (9)

1

We say that a solution of (8) is regular on an interval I if u : I~ HO

is continuous.

*) ; ; . rE .
In this section, integrability is always with respect to Lebesgue measure.

*3¢) X
Specifically, H) is the completion with respect to (9) of the space of c®
divergence-free“vector fields with compact support in QO -



11 Theorem : (Uniqueness). Given T > O , there can be only one regular solution

on [0,T] with given initial condition wu, .

We shall denote by H2 the Hilbert space of divergence free vector

Ju. au.
(——3) g B ————i—-zjdx £
.\ ox, {1k ax.axj

i) J 1,7,

fields on () with norm
2
IRl =[5+ 2
4 4 i,

(in particular a € Hz) . We also denote by Hgm s Hé the complexifications of
ul | w? .
0

12. Theorem (Existence and analyticity). There is a constant C (depending on

Q,VvV, 8 ,'a) such that if we write ¢t(A) = C(1+-A2)_2 , then every uj € Hé

determines a regular solution u(t) with ”u(t)”2 <1 + 242 in [O,t(”uO”)] :
3#)

The map (uo,t)b——a u(t) extends to a holomorphic function

3 1 2
: 0<s < t(A)-cos 0} Hyp N Hy

fug € Bop ¢ [lugl < al x {s e

and {u(t) : [Jug| < A} is bounded in Hé for fixed t € (0,t(A)) . The deriva-
3 + . . . 5 1 1 2
tive of wu(t) with respect to u, is an injective linear map Homp—» HOEFW HC .

These results are explicit or implicit in Foias and Temam [2] (see espe-

cially the proof of Lemma 3.1).

13. Theorem (Dimension 2) : If d =2, every u, € V determines a regular solu-

tion u(t) in [O,+w). There are a constant S > O and a continuous function

& ]R+.__> ]R+ such that

lim sup llu(t)|]| < S
o0

and

Hu(t)“ < S(“uon) for all t > O

See Foias and Temam [2] Section 2 . If d = 2, we may write u(t) =s‘u

0)
1 1
where S° : HO — HO n H2 for all t >0 . If d = 3, we impose now a condition

such that st with similar properties can be defined.

*) To be precise, it is a holomorphic function with values in the Hilbert space dbC’

a?d azholomorphic fungtionwithvalues in the Hilbert space HE . The space

Hor1H is closed in H° and the H2 norm restricted to it is equivalent to
F o [J (A@)2 dx]é



1.4, Definition : We say that an open set MC H; is an admissible set (of initial

0
conditions) if every Y, € M determines a regular solution u on [0,+m) , and

there are R , T, = O such that

0
(a) lim sup [[u(e)]| s R
toco
(b) u(t) € M for all t=>T

0

In particular, if d =2 , M= H(l) is admissible with T =0 .

1.5 Proposition : Let M be an admissible set of initial conditions, and St be

defined by Stu0 = u(t) for U EM, t=> TO s IfE t 2 TO 3 St is injective
1

1
and real analytic M i+—— M . The semigroup property fto ft = ft+t holds. The

4o0) to M and the

maps (u,t) +—s ftu, Dft(u) are continuous from M x (T

0’

bounded operators on Hz respectively.

There is an (St) invariant compact set A such that Stu-——ﬁ A for

all u € M, when t5 o . For u€ A, t> TO , the operator DSt(u) is compact

and injective.

Using the compactness of the map HBE N H;L—-e Hbm one obtains Propo-
sition 5 from results stated earlier. Of course Proposition 5 could be strength-
ened on various points. The weak form which we have selected will however be

sufficient for later purposes.

2. Characteristic exponents and invariant manifolds

Let a differentiable dynamical system on a finite dimensional manifold
M be given, with an invariant probability measure p . Then, the multiplicative
ergodic theorem of Oseledec [8] holds, defining the characteristic exponents.
From the theory of Pesin [9] s [10] 5 [11] follows also the existence almost
everywhere of stable and unstable manifolds . We shall now indicate an infinite
dimensional extension of these results to Hilbert spaces (this extension is not
trivial, see Ruelle [17]). Related results for Banach spaces have been obtained

by R. Mamé (private communication).

From now on M will be an open subset of a separable real Hilbert space

*) ; . :
Pesin's formulation requires p to be smooth, but this assumption is unnecessary,

see [16] .



%;, and (St) a semiflow on M , with the properties stated in Proposition 5.
In particular (s may be the Navier-Stokes time evolution. Every (s%)-inva-

riant measure has its support in the compact set A .

2.1. Theorem (First multiplicative ergodic theorem) : Given an (s%)-invariant

Borel function | : M——s R , there is a Borel set ' M such that str<: 1By

for t = TO , and p(T) =1 for every (s%)-invariant probability measure p

If u €T, there are an integer s = 0O , reals u(l) S % v B u(S) >u and
finite-codimensional spaces é; = V(l) s v w D V(S) :)V(S+1) such that
u u u s e
lin =+ log“DSt(u)vH = p(r) if ve€ v(r)\ L)
t u u

o
for r=1,...,s , and

lim sup L 1og“DSt(u)v” <Su if veE V(S+1)

s t u

The functions ur—— s,u(l),...,p(S),V£2),...,V(S+1) are Borel and
Up— S ,u(l),...,u(S), codim V§2),...,codim V£S+1) are (St)—invariant. [Note

it
the codimension codim V 1is the dimension of the orthogonal complement V ] :

A 2 Ty i
2.2. Theorem (Second multiplicative ergodic theorem) : Given an (S )-invariant

Borel function p : M—— R, there is a Borel set I' © A such that 8T T

for t = TO , and pCF) =1 for every (st)-invariant probability measure o .

If u €T , there are an integer s > O , reals u(l) > >|J(S) > and
finite-dimensional spaces {0} = Vio) C’Vil)<: 55 CIV§S) such that

lim % log”(DSt(S-tu))—lvH = q(r)1f v e'?ir)\fV(r’l)

u
s
for r=1,...,s , and
lim inf % 1ogi](Dst(s'tu))'1vl| 2 4y if v ¢ vff)
oo
The functions u — s , u(l),...,u(S), Vﬁl),...;V(S) are Borel and
(1) (s) « (1) o R Ey s ’
D> S , U yeeesid , dim V.77, ..., dim Vu are (S8°) invariant.

2.3. Remarks : Assumptions of differentiability rather than real analyticity are
sufficient for the above theorems to hold. Theorem 2.1 holds without injectivity

assumption on st and DSY(u). Almost everywhere with respect to every (s%)=



= o

invariant probability measure, the quantities s , u(r) , codim V(r+1) occuring
in Theorem 2.1 are equal to s , u(r) 5 dim‘;(r) in Theorem 2.2. This justifies
the confusion in notation for s and u(r) . We have also, for almost all
5 Vir+1) n ;ﬁr) = {0} and V£r+1) +'§£r) = #. (transversality). Furthermore if

5r(u) is the minimum of the component orthogonal to V£r+1) of a vector
ve VT with |v| =1, then

lim % log ﬁr(ftx) = 0

ts e

It is easy to let yu go to —~ in Theorems 2.1 and 2.2.
(r) A 5 aiEs (r)
The u are called characteristic exponents. The multiplicity m

V(r+1) - codim V(r) = dim(;(r) 'v(r—l)

(r)

of is codim - dim

2.4, Theorem (Local stable manifolds) : Let ® , A , r be (s%)-invariant Borel

functions on I’ with ® >0, A <0, r integer € [O,s] , and
(r)

(where we have written p(O) =+, u(s+1) =)

Replacing possibly T' by a smaller set retaining the properties of Theorem 2.1

one may construct Borel functions B > >0 and y >1 on I' with the follow-

ing properties.

(a) If u €Tl the set

Uﬁ ={veM: |u-v] = alu) and HStu-Stﬂlss(u)expt:X(u)

for all t > TO]

is contained in T and is a finite codimensional real analytic submanifold of
the ball fv € M : |u-v| < a(u)} . For each v E\;ﬁ , the tangent Tv];ﬁ is

1
Vir+1) . More generally, for every r' € [0,s] , the function v—s Vir ) is

real analytic on 1;u 5

A
(b) If v , w € Uu o ES TO , then

HStv-Stw” s v@) |lv-w| exptA(u)

(¢) If uwel ., then Q(Stu) ; B(Stu) 5 \((Stu)—l



. -Bt
decrease less fast than the exponential e ® when t- « .

2.5. Theorem (Local unstable manifolds) : Let ® , A , r be (st)-invariant

~

Borel functions on I , with ® >0 , r integer € [O,s] , and

u(r+1) & & & Ll(r)

(0) (s+l) _
=)

(where we have written u = 4w , U

~

Replacing possibly I’ by a smaller set retaining the properties of Theorem 2.2.,

one may construct Borel functions § >a > 0 and '\?' >1 on T with the

following properties.

(a) f u E‘% , the set

iﬁ ={veM: Hu-—v” < a(u) and

t

”S_ u-—S—tv” < B(u) exp[ -t A(u)] for all t 2 Tof

is contained in [* and is a finite dimensional real analytic submanifold of the
ball fv €M : [[ju-v| = a(u)} . For each v € Eﬁ , the tangent T Uﬁ is Vir)

~ ]
More generally, for every r' € [0,s] , the function v+ Vér ) is real analytic

~

on U
u

2 §
(b) If wv,w € Uu PO o TO , then

t

IIs™ v-—S_tw“ < y(u) ||v -w|| exp[-t A(w)]

(¢) If u eT , then E(S_tu) 5 E(S-tu) , 'Q'(S-tu)-1 decrease less fast than

> -Ht
the exponential e ® when t -5 o .

2.6. Remarks : Theorem 2.4. holds without injectivity assumptions on St and

DSt(u) . The manifolds Uﬁ

manifolds respectively. They do not in general depend continuously on u , but

and gﬁ are local generalized stable and unstable

the construction implies measurability properties.

If p 1is an (St)—invariant probability measure such that the charac-

o (r)
teristic exponents are almost everywhere non-zero, let

u(r(Q+1)) u(r(Q))

& % z w0 2% =

~

A

Then Uu and Uﬁ are respectively local stable and local unstable manifolds in

the strict sense. They intersect transversally at u for p-almost all wu .



One can define global stable and unstable manifolds, we shall consider

only the latter.

2.7. Theorem (Global unstable manifolds): With the notation of Theorems 2.2 and

~ ~

2.5., one can choose I' such that, if u € I" , the set

uﬁ ={veM: lim sup % log ”S—tu-S_tv“ < AMuw}
oo
is contained in T and is the image of ’;ﬁr) by an injective real analytic

immersion tangent to the identity at u .

This applies in particular to the global unstable manifold in the

strict sense

wu ={v E€M: lim sup % log “S_tu'-S—tv” 0 ]
e

3. What are the measures describing turbulence ?

We have assumed that there is a compact attracting set A such that

Stu0 tends to A for Uy €M and t o o . If we choose the smallest A with
this property, (St) extends to a group of homeomorphisms of A . In the case
of Navier-Stokes time evolution, the work of Mallet-Paret [7] (and Foias and
Temam [2]) shows that A has finite topological dimension. The stable and un-
stable manifold theorems give further geometric information on A and the flow
near it. A large subset 'F of A (in the sense that p(f) =1 for every
invariant probability measure p ) consists of global unstable manifolds. The

presence of strictly positive characteristic exponents corresponds to sensitive

dependence on initial condition. If there is no zero characteristic exponent,

the unstable manifolds are intersected transversally (almost everywhere) by

(local) stable manifolds defined in a neighborhood of A .

If the stable (i.e. contracting) manifolds would form a continuous
family covering a neighborhood of A , one would have a rather good geometric
picture of the dynamics near A . At present one understands well only a limited
class of dynamical systems (on finite dimensional manifolds) ; these are essen-
tially the systems for which Axiom A holds. In the Axiom A case, one can decom-
pose A into subsets (so-called "basic" sets), the most important onesbeing
the "Axiom A attractors". If A is an Axiom A attractor, the local stable mani-

folds form a continuous family covering a neighborhood of A . There is then a
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distinguished invariant probability measure P on A (call it asymptotic mea-

sure) with the following properties )

(a) For almost every u
of A

0 with respect to Lebesgue measure in a neighborhood

T
lim %Jr
Tseo 0

for all the continuous real functions ¢ on a neighborhood of A .

dt ¢(Stuo) =jrp(du) o(u)

(b) Stability under small stochastic perturbations : Let Pe be the stationary

probability measure for a small stochastic perturbation of our dynamical system

(¢ 1is a small parameter telling how small the perturbation is). Then

1im'fpo(du) (u) =,[ p(du) @(u)

€0

for all continuous real functions ¢ on a neighborhood of A . [We have not
indicated what kind of small stochastic perturbation is allowed, for a precise

formulation, see [4] 7.

The asymptotic measure p on an Axiom A attractor is ergodic, and charac-

terized by either of the following properties.

(I) The conditional measures of p on unstable manifolds are absolutely conti-

nuous with respect to Lebesgue measure on these manifolds.

(IT) The measure theoretic entropy h(p) is equal to the sum of the positive
characteristic exponents (counted with their multiplicity). [For an arbitrary

m(r) (r)(x),

invariant probability measure O one has h(0) < |o(dx) z

(x)u
see [13] ] . r:u(r)>0

It is matural to try to describe turbulence by an (St)-invariant proba-
bility measure p . Since there are in general uncountably many different ergodic
measures, the question arises which one to choose. In [14] we suggested to look
for the "asymptotic measures'" describing turbulence among those which satisfy I

or II. The following remarks are in order about that proposal.

(1) T implies II (in finite dimension) as shown by P. Walters and A. Katok
(unpublished).

(2) An example (due to R. Bowen and A. Katok) shows that there is sometimes no

*) Sec Bowen and Ruelle [1] for (a) and Kifer [3] , [4] for (b). These are based

on earlier work of Sinai [18] and Ruelle [12] 5



= 0T =

measure satisfying I or II., It is not known how exceptional this situation is.

(3) Stability under small stochastic perturbations makes sense in infinite
dimension and is a reasonable condition to impose on a measure describing tur-
bulence. To see this one can estimate the time it takes for thermal fluctuations
to be magnified by the sensitive dependence on initial condition, up to the point
of becoming macroscopic. (Thermal fluctuations are a kind of stochastic pertur-
bations always present in a fluid).One finds (see Ruelle [15}) that this time

is relatively short.

Altogether, the use of I and II still appears promising for the research

of measures describing turbulence.
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