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Abstract. We propose a model of 1/f noise based on a random walk in a 
random potential. Numerical support for the model is given, and physical 
applicability discussed. 

1. Introduction 

The frequency analysis of fluctuations in a number of physical phenomena exhibits 
a remarkable feature. It is found that the experimental power spectrum (i.e., 
essentially, the frequency distribution of the squared amplitude) behaves like f -  1 
at low frequency f.  (This explains the name of 1/f noise.) The prime example of 
this type of behaviour is seen in voltage fluctuations across a conductor carrying 
electric current (see Hooge et al. [1], Dutta and Horn [2] for reviews). One also 
observes 1If noise (sometimes called flicker noise) in such diverse questions as 
fluctuations of marine currents, or the temporal distribution of loudness in a 
musical recording (see for instance Press [3]). The 1/f law sometimes extends over 
many decades of frequency, implying the existence of correlations over surpris- 
ingly long times for the systems considered. (Since the integrated spectrum would 
diverge logarithmically, one expects that there is a low frequency cutoff.) 

It is easy to obtain a power spectrum~constant  (independently distributed 
events) or ~ 1/f 2 (independently distributed increments). The 1/f law is more 
difficult to explain, especially that its universality requires an interpretation of 
general applicability. There is no natural time scale associated with pure 1/f noise. 
Considerations of self-similarity therefore come naturally to mind (see Mandelbrot 
[4]) but something more specific is needed. Explanations based on spatial 
diffusion depend on special geometric assumptions (see Voss and Clarke [5] and 
Omnes [6]) 1. A guide towards understanding flicker noise in conductors is 
provided by the experimental fact that they are due to equilibrium fluctuations of 
the resistance (see [-5, 1], and more detailed results about so-called ~ noise in [1]). 

1 Explanations using the deterministic noise associated with low-dimensional strange attractors are 
also in doubt (see Arrechi and Lisi [7], Beasley et al. [8]). See however remark (b) below 



2 E. Marinari, G. Parisi, D. Ruelle, and P. Windey 

Here we shall obtain 1/f  noise from the study of random walks in random 
potentials in IR N under natural self-similarity conditions. More precisely we obtain 
a power spectrum "~[logf]k/f by an argument which is not rigorous, but is 
confirmed by numerical experiments. We do not claim that our specific model is of 
general applicability, but variations on the general theme of walks in random 
potentials may be adequate to describe the various 1/f noises seen in nature or 
heard in music [see remark (c) below]. 

2. A Model for l[f Noise 

We consider a system represented by a point x of a finite dimensional state space 
IR N. A potential V is defined on this state space; we think of V as a random 
function with statistical properties discussed below. The time evolution of the 
system is given by a random walk t~x(t)  corresponding to a diffusion in the 
presence of the potential V. We choose the diffusion equation to be 

~c 
- -  = k V . J ,  J=Vc+cVV.  (1) & 

This is the continuous limit of a random walk on a lattice with the nearest 
neighbor transition i-~j proportional to expl[-V/- Vii. 

The diffusion (1) is chosen such that it has an equilibrium distribution 
c ~ e x p [ - V ]  in a bounded box:, corresponding to thermal equilibrium if 
V = E/kT. In the landscape created by the potential V in 1R N, one expects that x(t) 
will occasionally go through a "mountain pass" and then rapidly relax to 
equilibrium in the intermediate valleys. Mountain passes will thus dominate the 
time evolution. Other things being similar, the flux through a mountain pass is 
proportional to the density c at the pass (the profile Vc/c and the gradient VV are 
taken to be the same). An approximate value of c at the pass is given by the 
equilibrium distribution exp [ -  V] normalized to already occupied valleys. 

The above considerations permit an estimate of the long time behavior of the 
random walk if a scaling assumption is made on the potential V at large distances. 
We assume that V belongs to an ensemble which is invariant (at least for the large 
distance behavior) under the transformation V-~ V*, where 

V*(2x)- V*(0)= U(V(x)- V(0)). (2) 

For instance, if N = I ,  potentials with independent increments correspond to 
= 1/2. (Examples with N > 1 and ~ + t/2 are discussed in Mandelbrot [4, Chap. 

28].) Since only potential differences are important, (2) expresses scaling in terms 
of such differences. 

When distances are multiplied by 2, the height of a mountain pass is multiplied 
by 2L The flux through the pass then changes from g(1)exp[-V]  to 
g(2) exp ]--2~V], where g(2) is a geometric coefficient, polynomial in 2, including a 
factor 2 -N for volume normalization and another factor for the width of the pass. 
The time scale is correspondingly multiplied by g(1)/g(2).exp[(U-1)V]. 

2 More generally one could take J~=A~I~(VI~c+cV~V) with a constant matrix (A~) 
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Conversely, multiplication of the time by z corresponds to multiplication of 
distances by a factor 2(z) and, for large z, 

2(z) = [ V- 1 log z + 1 +O(log log z)] 1/~ 

[V- l(logz + logz o 1)] 1/~ 

t z \1/~ 

In particular, for a random walk on a one-dimensional lattice in a potential with 
independent increments we recover 2(z)~ Ilogzl 2 in agreement with the rigorous 
study of Sinai [-9]. 

We define the power spectrum by 

P ( f )=  lim dStx( t )dt  , 
T ~ o o  

where x(t)  is a linear component of the vector x(t) (or a sum over components is 
taken). By scaling 

lim 1 ~[" ]2 P ( f  / z ) =  . eift/~x(t)dt 
r~oo z g  ' 

+i  2 =z  lim eiS~'x(zt')dt ' 
T ~ o a  * f 0  

= z2 ( z )2P( f ) ,  

so that, replacing 5( by 1 and -c by f - 1 ,  we obtain for small ] 

P ( f )=N0) f -12 ( f -1 )2  I i ° g f  / fol 2/~ (3) 
J 

For the random walk on a one-dimensional lattice in a potential with independent 
increments we then find 

[logf[ ~ 
P ( f )  tbr small f .  

f 
A numerical confirmation of this prediction is presented below. 

3. Remarks  

(a) Physical experiments showing 1 / f  noise presumably cannot detect the factor 
l log f l  2/~ in (3). In particular the scaling assumption need not be verified very 
precisely since a variation of c~ with frequency would not be visible. Also, scaling 
concerns only valleys and passes, the mountain peaks are rarely visited and their 
behaviour is indifferent. 

(b) A deterministic (rather than random) walk in a random potential would 
have the same scaling behavior, if ergodicity arguments can be applied, and would 
therefore again lead to 1 I f  noise. 
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(c) Instead of IR N one may consider a discrete space like Z N or the product of 
N copies of the two-element set {0, 1} for N large. The state space of an extended 
physical system (like a conductor) presumably has a large dimension N. 
Relaxation to equilibrium in potential valleys may then no longer be realistic, 
because the random walk x(t) wanders without coming back to visited points. In 
this situation a new analysis would be necessary. 

We may however guess the answer as follows. Suppose that the system can be 
approximated as the incoherent sum of N/n "small" systems with noise clf. Then 
the full system has noise c'N/f. The factor N is indeed experimentally present in 
the flicker noise of conductors (see [1] or [2]). 

(d) The range of distances over which approximate scaling should hold is 
small (logarithmic) compared to the range of times (or frequencies) over which the 
1/f law will be verified. 

(e) If the potential V is multiplied by /3 and the time t by ~, distances are 
multiplied by 

and therefore 

S~(~,/3) ~ (/7_ ~ X 1/~ ' lOg~o ) , 

P nv(f ) " f l -  21~ II°g f l f o121~ 
S 

If c~ = 112, the noise is thus proportional  to the 4 th power of the temperature, but for 
larger e a weaker dependence on the temperature is obtained. 

If N = 1 and c~ = 1/2, let 

(AV 25 = lim l-iV(x ) -  g(o)] 2 , 
)g~oO X 

then there should exist a universal constant K such that 

P(f)..~K( A g25 - 2 II°gf /fol 4 
f 

4. Numerical Simulations: The One Dimensional Case 

In Sect. 2 we argued that random walk models where the average distance behaves 
for large t as (log0 p are likely to have a power spectrum of the form ( logf )q f -  1. In 
the next two sections we will describe our numerical simulations of such a model in 
one dimension, and some possible extensions to two dimensions. 

The class of models we are going to examine can be seen as a "randomization" 
of the standard random walk. By this we mean that the hopping probabilities are 
randomly distributed over the points. Let us consider a site n belonging to a 
d-dimensional cubic lattice, and n=(n~,n 2 .... ,na)EA. We will assume we are 
working in the infinite volume limit (i.e. A =  Zd). A traveller is moving randomly 
on the lattice. At each time t its probability to move in direction # depends on its 
position, and is nonzero only for moving to nearest neighbour sites. These hopping 
probabilities rc~u(n ) (e = _ ,  ~t = 1, 2 . . . . .  d) are randomly distributed [according to 
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Fig. 1. Transition probabilities from and to the site i (for d =  t) 
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Fig. 2. A typical trapping configuration. On the lower strip the left transition probabilities: on the 
upper one the right ones 

some probability measure Q(~)] and, in all the cases we will consider, the total 
probability to leave the site is equal to one: 

d 
~ //~.(n) = 1, Vn, (4) 

~=--_ ~=I 

where/7~,(n) is the probability to jump from the site n in the ~# direction. Let us 
remark that this class of models falls in the "nonsymmetric category"://~u(n) is a 
priori different f r o m / / _  ~,(n + e#). We choose them to be uncorrelated (see Fig. 1 
for the d = 1 case). 

If the probability distribution ~(~z(n)) is such that 

~drc(n)o(z~(n))In(~) = 0  (5) 

in d = 1, we get the model analyzed by Sinai [9]. He proved that, with probability 
one~ 

lim x(t) oc(ln t )  2 . (6) 
t ~ O O  

For  models in which the constraint (5) is not satisfied (see [11]), and references 
quoted therein. We will describe here our numerical studies of systems satisfying 
the Sinai constraint: we will be concerned both with the analysis of the temporal 
behavior and of its power spectrum. 

We consider an infinite regular chain, and assign to each site a right transition 
probability ~(n), uniformly distributed in the interval (0, 1). The left transition 
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Table 1. Average distance J for the one dimensional walk. Average 
is over 30,000 walks, composed of 4096 time steps. The error is 
defined to be ( ( ~ - d 2 J / ( N -  I)) l/a, where N is the number of walks 
taken in account 

t d 

2 1.003 ± 0.006 
4 1.484 ± 0.007 
8 2.10 ±0.010 

16 2.89 ±0.010 
32 3.86 ±0.030 
64 5.0t ± 0,030 

128 6.42 ± 0.030 
256 8.06 ±0.040 
512 t0.05 ±0.050 

1024 12.21 k 0.060 
2048 14.67 +0,080 
4096 17.30 ±0.100 

Table 2. Same as Table 1, but for time from 213 to 219. averaged 
over 100 walks 

t J 

8192 22.6± 1.8 
16384 27,0_+2.4 
32768 29.1 ±2.6 
65536 32.3±2.9 

131072 35.3 ±3.2 
262144 39.2 ± 3,3 
524288 46.4 ± 4.6 

probability will be 1 -re(n). We will use discrete time (for all our simulations). We 
will denote with brackets ~. ) the average over the walks (in a 9±yen configuration 
of transition probabilities), and with a long bar - -  the average over the probability 
distribution ~(Tc). 

At this point it is useful to underscore that Sinai shows that, with probability 
one, x(t) ~ log 2 t in the asymptotic regime. This logarithmic behaviour is essentially 
produced by the presence of trapping configurations (see Fig. 2): the traveller 
spends most of his time travelling through barriers. On the time scales we are able 
to analyze numerically (t of the order of 104 + 106) (d(t)),  where d(t) is the distance 
covered in time t by the traveller, will be strongly influenced by the particular set 
of transition probabilities which has been chosen : for example in our model at a 
time of order 109 (that we cannot reach) the traveller will be at an average distance 
of, let us say, 100 steps from his starting point. It is clear that the details of each 
randomly chosen set of probabilities will influence strongly (d(t=109)).  The 
question that has to be answered now is : if for a large but finite time T we observe 
d(T) instead of (d(T)) ,  will we find the same kind of behavior? It is not trivial a 
priori that an average over Q(z 0 will not change the behaviour of the considered 
expectation values (see [12] for a detailed discussion of this phenomenon). Let us 
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Fig. 3. Square root of the average distance (see Tables 1 and 2) vs. Int/ln2. The error is defined to be 
A((d) 1/2) = A(~ /2 (~  t/2. For the high statistics data (lnt/ln2 ranging from t to 12) the error is contained 
in the drawing of the points 

consider an example: we assume that for any site n the right transition probability 
re(n) can take the values ~ or 1 -e ,  with probability 1/2. A realization with all 
the re(n) equal to 1 - e ,  up to the time Z will have a probability 

exp { - T l n  2}, (7) 

and for this particular realization 

( d ( T ) )  ~ T.  (8) 

This "exceptional" configuration will than add to the leading behaviour (In T) 2 a 
term Te-r, which becomes irrelevant also for T-~0 (10). It should be noticed that 
this conclusion does not hold, tbr example, for (ed(t)). More precisely, we always 
measured expectation values integrated over the probability distribution: for 
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every walk contributing to our expectation values a different random set of 
transition probabilities was used. This is, moreover, the numerical approach 
adequate to the physical picture we have in mind'  we are thinking about random 
processes evolving in random environments, where the macroscopic effect is given 
by the exploration of different realizations of the transition probabilities. 

For the simulations we always used a chain long enough so that the traveller 
never hits the boundary. For that sake only modest memory requirements are 
needed in d = 1. We analyzed 3.10 4 walks of 212 steps, and 10 2 walks of 2 ~9 steps 
(see Tables t and 2). The asymptotic regime seems to be reached after 0 (2 7 +2  9) 
time steps. In Fig. 3 we plot (d(t)) 1/2 versus In t/ln 2. The behaviour is clearly linear. 

We also computed 

1 i eO~tx(t)dt 2 Pr(f) = ~ I o 

for all the frequencies present in the walk of T=212 steps, and, for the same 
frequencies, for the T = 2  ~9 steps walks. In Fig. 4 we plot the quantity 
(JPT= 2~9(J)) ~/4 versus Inf. Its behaviour is compatible with the linear behaviour 
guessed in Eq. (3). We should remark that observing numerically logarithmic 
corrections is a very delicate matter (and the same consideration holds for true 
experiments). First a log correction is hard to distinguish from a small power. 
Secondly we know that the (logJ)4J -1 law will set in only in the asymptotic 
region. A contribution of small power corrections cannot be excluded" if we 
assumed Pr=219(f),,,/-(l+a) we can just bound A by AMax~-,0.4. A power 
correction for finite T is to be expected: we will have A =A(T), and 

lim A(T) = 0. (9) 
T - - *  oo 
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Table  3. a dtt) vs. In t/ln 2 for the two dimensional l¢ = l model. 500 walks are analyzed, b As in a. but 
k = 2  and 2000 walks, e As in a, but k=70 and 3500 walks of 4096 time steps and 1000 walks of 8192 
time steps, d As in a, but k = 2 0  and 500 walks 

a b c d 

In t/tn 2 d(t) In t/In 2 d(t) In t/ln 2 d{t) In t/In 2 d(t) 

1 1.t7__+0.03 1 t.22__+0,01 t 1.20_+0.0t 1 1.16+__0.03 
2 1.73 _+0.04 2 1.73 _+0.02 2 1.68 _+0.02 2 1.61 _+0.05 
3 2.51 _+0,06 3 2.47_+0.03 3 2.24_+0.03 3 2.12_+0.07 
4 3,56_+0.08 4 3.47_+0,03 4 2.95_+0,03 4 2.49_+0.09 
5 5,21-+0.11 5 4.85_+0,05 5 3.77_+0.03 5 2.83_+0.10 
6 7,25_+0.16 6 6.79_+0,08 6 4.74_+0.05 6 3.26__+0.11 
7 10,0 _+0.20 7 9.45_+0.11 7 5.98_+0.06 7 3.48_+0.12 
8 14,6 _+0.30 8 13.45__+0.15 8 7.52_+0.08 8 3.76_+0,13 
9 20,7 _+0.50 9 18.65_+0,21 9 9,34__+0.09 9 4.03-+0.14 

t0 29,0 +0.70 10 26,40_+ 0,3 10 1t.63-+0.12 10 4,29_+0.15 
l l  40,5 -+0,90 11 36,30--+0,5 11 14,43_+0,15 11 4.67__+0.16 
12 57,4 ,+_1.40 t2 51.40-+0,6 12 18.13-+0.17 t2 5. t2-+0.17 

13 73.40__+0,9 13 22.6 _+0.5 

5. The Two Dimensional Case 

The straightforward extension to d = 2 of the model we analyzed in the previous 
section can be discussed in this way: to each site we assign 2 d = 4  numbers Qu 
(# = 1, 2, 3, 4), uniformly distributed in (0, 1), and define the transition probability 
to each of the 2d neighbouring sites by 

rc i = Qi Z -  1, (lO) 

where 

In the class of models we studied 

where 

2d 

Z= ~ Qi. (11) 
i=1 

Tq(k): Q[ Z(k)- 1, (12) 

2d 

Z(k)= ~ Q~, (13) 
i=1 

and k is an integer power ranging between 0 and + oe. When k = 0 it reduces to the 
normal random walk. In the limit k ~  oe we get a deterministic model where the 
moving point is localized on a closed loop: for every site we will get that for a 
random # =B 

~ = 1, (14) 

and for all the other # 

r%,~=0.  (15) 
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Table 4. 2 ( t )  4V4096 ~ versus V7 
d(t = 4096) 

V7 2(t). K = 1 2(t}. K =2 

4.00 3.95 4.32 
5.66 5.78 6.04 
8.00 8.08 8.45 

11.31 11.I5 tl.77 
16.00 16.28 16.75 
22.63 23.08 23.22 
32.00 32.33 32.87 
45.25 45,16 45.20 
64.00 64.00 64.00 
90.51 - 91.39 

Then as soon as the t ravel ler  comes back  to a site he a l ready  visited he s tar ts  
repea t ing  indefini tely the same path.  F o r  k = 1 we recover  the naive extension we 
jus t  described.  

W e  ana lyzed  this model  for several values of  k" we p roduced  500 walks  of  4096 
t ime steps for k =  1, 2000 walks of  8192 t ime steps for k = 2 ,  3500 walks of  4096 
t ime steps and  1000 of  8192 for k = 7 and  500 walks of  4096 t ime steps for k = 20. In  
Tables  3 a - d  we list d(t) for these four cases. 

F o r  the d = 2 case we needed quite a big lat t ice to keep the moving  po in t  away  
from the b o u n d a r y  : for smaller  k a b igger  la t t ice is of  course needed. F o r  the cases 
of  k = 7 and  k = 20 we needed a 160 x 160 sites lattice, for k = 2 a 400 X 400 lattice, 
while for k = 1 we used dynamica l  a l loca t ion  of  the m e m o r y  (when the t ravel ler  
was reaching far away  regions new par ts  of lat t ice were created in this given 
direction). 

F o r  k = 1 and  k = 2 our  results clearly indicate  

d(t)oct ~, (16) 

e---0.5, for the t ime regions we explored.  In T a b l e 4  we give the quan t i ty  
(~1/2/d(7)).d(t), where  ~=4096. In the case k =  1 the  power  seems to be exact ly  a 
square  root ,  while for k = 2 a sl ightly lower  power  seems to be preferable.  

Ano the r  possible  way of  ana lyz ing  the numer ica l  results  consists in defining 
the p a r a m e t e r  

d(U +1) _ d(T) 
~(U) = - -  - -  (17) 

d(U) - d ( T -  ~)' 

2 r +  1 
If  d(t)~c~+fl(lnt 2) we get ~(2~)~ 2 r - ~ '  while if d ( t ) ~ A + B t  ~ we get ~ ( T ) = U  

= constant .  This gives us 

c~(k= 1 )=0~50+0 .13 ,  (18) 

c~(k = 2) = 0.50___ 0.08. (19) 
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For  k = 7  and k=20  we plot in Figs. 5 and 6 (d(t)) 1/2 versus lnt/ln2. The k = 7  
case does not seem to show a linear behaviour of (d(t~ 1/2 in log scale. The ~ seems 
to be constant enough to suggest a power behaviour: under this assumption we 
get 

e(k = 7) = 0.30 + 0.09. (20) 

but in this case we have again to face the outstanding problem of distinguishing 
between a log behaviour and a small power one. The k=20  walk has, in the 
precision of our errors bars, a behaviour completely compatible with (logt) 2. 

All these numerical computations (d= 1 and 2) required the equivalent of 
5 CPU h of CDC 7600. 
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