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Abstract. Given a nonequilibrium steady state p we derive formally the linear response
formula given by equation (6) in the text for the variation of an expectation value at time
t under a time-dependent infinitesimal perturbation 6, F of the acting forces. This leads
to a form of the fluctuation-dissipation theorem wvalid far from equilibrium: the complex
singularities of the susceptibility are in part those of the spectral density, and in part of a
different nature to be discussed.
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Serious attention is now starting to be paid to the chaotic dynamics underlying
nonequilibrium statistical mechanics. (See for instance Chernov et al. [1]). A statisti-
cal mechanical system is kept far away from equilibrium by nonhamiltonian forces, and
“cooled” by a “Gaussian thermostat” ( Hoover [2], Evans and Morriss [3]). What this
amounts to is that the phase space M of the system is taken to be compact, and its time

evolution given by

9 _ pe,t) (1)
d
where no particular assumption is made on F' (except smoothness, and often ¢-indepen-

dence).

It would at first appear that the framework provided by

dx

= () 2)
is much too general to provide results of interest for nonequilibrium statistical mechan-
ics. It is reasonable however to assume that (2) defines a chaotic time evolution, and
that we may exclude a set of Lebesgue measure 0 of initial conditions in the distant past.
These assumptions have surprisingly strong consequences. If we translate chaos mathe-
matically by uniform hyperbolicity, then time averages are uniquely determined and given
by a so-called SRB measure (see below). Physical time evolutions are often hyperbolic in
the weaker sense that most Lyapunov exponents are different from 0. A natural idea is
thus to proceed as if physical systems were uniformly hyperbolic (and then compare the
results with experiments). This has been called the chaotic hypothesis by Gallavotti and
Cohen (who also assume microscopic reversibility). The approach just outlined has been
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vindicated in the case of the Gallavotti-Cohen fluctuation theorem [4], which agrees with
numerical experiments far from equilibrium [5], [6]. From the chaotic principle one also re-
covers near equilibrium the Onsager reciprocity relations [7], [8]. The present letter follows
the same philosophy for the study of linear response far from equilibrium. Our calculations
will be formal and easy. They can be made rigorous if uniform hyperbolicity holds [9],
but this is harder. A rigorous analysis in a more general setup seems difficult and one
may have to untroduce new ideas like the limit of a large system (thermodynamic limit).
Such a limit will be used anyway to compute transport coefficients like the viscosity. What
may be said now is that if linear response for physical systems has a simple expression,
it must be the one given by our formal calculation. The formulae that we obtain appear
thus unavoidable, and should be fundamental for nonequilibrium statistical mechanics far
from equilibrium.

Integrating (1) with initial condition z at time s gives at time ¢ a point z(s, t). Suppose
now that we are in the time independent situation of (2). We may thus write

r(s,t)=z(t—s)= f"°z (3)

If m is a probability measure absolutely continuous with respect to the volume element
dx on the phase space M, and if m under the time evolution f* tends weakly to a limit p,
then p is a good candidate to describe a nonequilibrium steady state. Using the notation

m(®) = / m(d)d(z) ,  p(®) = / o(d)®(z)

we have by assumption, for every continuous &,

lim [ m(dz)®(f °z) = /p(dx)q)(a:) (4)
s——00

We call p = pr an SRB measure, it is usually not absolutely continuous with respect to dx.
Such measures were introduced by Sinai, Ruelle, and Bowen [10], [11], [12] for uniformly
hyperbolic dynamical systems, where it was shown that there is a unique SRB measure
on each mixing attractor. A much more general study of SRB measures was then made
by Ledrappier, Strelcyn, and Young [13], [14] (see Young [15] for recent results). The use
of SRB measures to describe nonequilibrium steady states in statistical mechanics was
advocated early by Ruelle [16], but only recently did it lead to useful results with the
Fluctuation Theorem of Gallavotti and Cohen [4].

One problem with SRB measures is that their characterizations [10], [11], [12], [13],
[14] are difficult to use. It is however relatively easy to expand ppisp with respect to
OF [17]. This has been done rigorously in a special case [9]. Here we proceed instead
formally, and to first order with respect to a time dependent perturbation 6;F (we keep
F time independent). We shall thus recover in a new manner some classical results of
nonequilibrium statistical mechanics, for which see for instance [18], and also obtain new
results.



Using (4), we have formally

6tp(@) =6 lim [ m(dz) ®(x(s,t)) = lim [ m(dzr)dx(s,t)- V(@

§——00 §——00

and we may assume s < t. Writing also T, f? for the tangent map at z to f¢ (in coordinates
this is the matrix of partial derivatives), we have

$2(5,0) = [ dr (Tuguun S )5 F (s, 7)

where we may replace z(s,7) by f7~*z. Using also the notation (f*m)(®) = m(® o f), so
that limg_ o0 (f7*m)(®) = pr(P), we obtain

bip(®) = lim_ dr J Gy m) @) (@5 F @) - Vi@

With the notation of (3), our formal calculation gives thus

S¢p(® / dT/PF dy) (Ty f*" )8, F(y)) - Vye—r)®

which can be rewritten in the equivalent forms

b1p(@ / 7 [ pe(da) ((Tur— )5 Flalr — 1)) - V8 (5)

or

oep(® / dT/pp dy) 6, F(y) - Vy(®o fi77) (6)

Assuming that ® is in a suitable space B of functions on M, and 6F in a suitable
space X of vector fields, we can rewrite (5) and (6) as

5tp:/dTKZt_T(sTF:/dO'HOCSt_OF

where the linear operator x, maps X to the dual B* of B (B* consists of linear functionals
on B), and
(ke X)® =0 for 0 <0

(ke X)® = / pp(d2) (To(or )X (7)) - Vo = / pr(dy) X () - Vy(® o 1)
for >0

The (operator-valued) response function o — k, vanishes for o < 0: this is called causality.
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As we have said, formulas like (5), (6) can be proved rigorously [9] under uniform
hyperbolicity assumptions. They can be extended to time dependent F' and pg, and to
random forces [9]. Near equilibrium and assuming reversibility one can use (6) to prove
the Onsager reciprocity relation [7], [8] and compute higher order corrections [19].

To study the convergence of the right hand side of (6), assume that all Lyapunov
exponents with respect to pr are # 0, except one corresponding to the direction of the
flow, and write 6, F = X? + ¢, F + X*, where X is in the stable (contracting) and X is
in the unstable (expanding) direction. We have then

oup(® / d"/ o (dy)[(Tyf7)XE s (9)) Vo @ — (F-Vy_p+div" Xi-,) ()0 (y(0))]

where div" is the divergence in the unstable direction. [The SRB measure pp is smooth in
the unstable direction, so that an integration by part in this direction can be performed,
see [9]]. The convergence of the right hand side depends on the exponential decrease of o —
(T, f?)X* and on the decay of the correlation function o — pp((F:Ve+divX"™)(®o f7)).

In the same manner one obtains for the susceptibility, i.e., the Fourier transform

Roy = //s:oe“"”da

(hoX)®

the formula

= [ o [ o0 X5W) - Voo - (F- 6+ div' X*)(3)-(u(0)

where X = X% + ¢F 4+ X", or

~8 ~Uu
Ky = K, + K,
where

(R X)® = pF[(/OOO ei“’ada((TfU)Xs) o f—a) Vo] (7)

(AeX)® = — /‘00 e“dopp((F - V¢ +divX*) o f77).9) (8)
0

At equilibrium, an important property of the susceptibility function is given by the
fluctuation-dissipation theorem [20]. We shall now show that part of this property survives
away from equilibrium, as a statement about singularities of the susceptibility function.
First notice that, by causality, &, extends to an analytic function for Imw > 0. From
this one can deduce the Kramers-Kronig dispersion relations [21]. The dispersion relations
therefore also hold far from equilibrium. We discuss now the singularities of &, for Imw <
0. For the sake of clarity, we consider the situation first at equilibrium, then away from
equilibrium. Our discussion will not make use of microscopic reversibility.
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At equilibrium, the SRB measure pp is absolutely continuous with respect to the
volume element of M, and we simply write pr(dz) = dz. From (7) and (8), it follows that
the singularities of (45X )® for Imw < 0 are the same as those of

[ eedopp(@o ) 1) = 5.0, 1) (9)
for U =div®X?®, or F - V¢ + div* X"™. The right-hand side of (9) is the Fourier transform
of the correlation function o — pp((® o f9).¥), and S, is called the spectral density. For
sufficiently regular ®, ¥, one can extend S, (®, V) to complex w. The singularities of &{,
and & (and &, ) are thus expected to be the same as those of S, for Imw < 0. This
connection between &, and S, is basically the fluctation-dissipation theorem.

Far away from equilibrium, the singularities of % are (in view of (8)) again the same
as the singularities with Imw < 0 of the spectral density S,. For instance a simple pole
of S, at wy (with Imwy < 0) corresponds to a simple pole a(w — wp) ™! of &% (even if it
is not clear how to determine the residue a in practice). This is what remains here of the
fluctuation-dissipation theorem. The singularities of &}, however, become different from
those of i%. Define 77 on the vector fields X* (in the stable direction) by

(T7X%) (@) = (Ty-ouf7) X (f ) (10)

Then, (77)s>0 is a contraction semigroup and, if —H is its infinitesimal generator, we
have by the Hille-Yosida theorem [22]

/0 " 4o (T7)X7) 0 1~ = (H — i)™

so that (&% X)(®) = pr[(H — iw)~1X* - V®]. The singularities of 4% are thus related to
the spectrum of H.

To summarize, we see that at equilibrium the singularities of the susceptibility &,
are the singularities of the spectral density S, with Imw < 0. Outside of equilibrium,
the singularities of the susceptibility &, bifurcate into those of A which are again the
singularities of the spectral density S, with Imw < 0, and those of &] which are different
(and related to the spectrum of the infinitesimal generator of the semigroup (77),>0
defined by (10)). It is thus in principle possible to distinguish the singularities of ¥ and
of &, and it would be interesting to see them in an experimental study bifurcating from
each other as one moves away from equilibrium [23].
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