COUNTING UNBRANCHED SUBGRAPHS (revised).

by David Ruelle*.

Abstract. Given an arbitrary finite graph, the polynomial Q(z)
= Y pey 27 associates a weight 2" to each unbranched
subgraph F' of length cardF'. We show that all the zeros of Q
have negative real part.

A graph (V, E,v) consists of a finite set V' of vertices, a finite set E of edges, and a
map v of E to the two-element subsets of V. If a € E and v(a) = {j, k}, we say that the
edge a joins the vertices j, k. [We impose that j # k, but allow different edges to join the
same two vertices. We assume that each vertex j is in v(a) for some a € F].

For our purposes a subgraph of (V, E,v) will be a graph (V, F, ¢) where FF C E and
¢ = v|F. We shall now fix (V, E,v), and say that F' is a subgraph of E if FF C E (this
defines (V, F, ¢) uniquely). We define the subset U of unbranched subgraphs of E by

U={F CE:(Vj)card{a € F :v(a) 37} <2}

1. Proposition.

The polynomial

Qu(z) — Z an,rdF

Feu
has all its zeros in {z : Rez < —2/n(n — 1)} where n > 2 is the largest number of edges
ending in any vertex j.
The proof is given in Section 5 below. This result is related to a well-known theorem of

Heilman and Lieb [2] on counting dimer subgraphs (for which card{a € F : v(a) 3 j} < 1).

Let us consider an edge a as a closed line segment containing the endpoints j, k € v(a).
Also identify a subgraph F' C E with the union of its edges. Then F' is the union of its
connected components, and if F' € U/, these are homeomorphic to a line segment or to a
circle. We call b(F') the number of components homeomorphic to a line segment, therefore

2b(F) = card{j € V : v(a) 3 j for exactly one a € F'}

Let us define
Qu(Z,t) — Z anrdFtb(F).

Felu

We see that
QU(Za ]-) = QU('Z)-
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2. Proposition.

Ift is real > 2—2/n, then Qu(z,t) has all its zeros (with respect to z) on the negative
real axis.

The proof is given in Section 6 below. For ¢ > 2, this is a special case a theorem of
Wagner [6] as pointed out by the referee (take Q,(y) =1+ sy + y*/2 for each vertex v in
Theorem 3.2 of [6]).

We shall use the following two lemmas.
3. Lemma.

Let A, B be closed subsets of the complex plane C, which do not contain 0. Suppose
that the complex polynomial

a+ Bz1 + 2o + 02129

can vanish only when z; € A or z9 € B. Then
a+ 90z

can vanish only when z € —AB.

This is the key step in an extension (see Ruelle [5]) of the Lee-Yang circle theorem [3].
Note that in applications of the lemma, the coefficients o, 3, v, § are usually polynomials
in variables z; (different from z;, 22, 2).

4. Lemma.

Let Q(z) be a polynomial of degree n with complex coefficients and P(z1,...,z,) the
only polynomial which is symmetric in its arguments, of degree 1 in each, and such that

P(z,...,z) = Q(2).
If the roots of @ are all contained in a closed circular region M, and z; ¢ M, ..., 2z, ¢ M,
then P(z1,...,%2,) # 0).
This is Grace’s theorem, see Polya and Szego [4] V, Exercise 145.
5. Proof of Proposition 1.

If a € E, and v(a) = {j, k}, we introduce complex variables z4;, zqx. For each j € V,
let p; be the polynomial in ZU) = (%aj)v(a)>; such that

pi(Z9) =14 20+ Y 2052

a#b

(where we assume v(a) 3 j, v(b) 3 j). Putting all 2,; equal to 2z, we obtain a polynomial

gi(z) =1+nz+ %Zz



where n; > 0 is the number of edges ending in j. Define Cij) = —1 when n; = 1 or 2, and

X M2

G) _
= nj(n; —1)

g), and oo if

if n; > 2. The zeros of g;, considered as a polynomial of degree n; are (
n; > 2. They are therefore contained in the closed circular regions (half-planes)

HY) = {z: Rele (= — ¢V < 0}

Hg(j_) = {2 : Re[e (2 — ()] < 0}

for 0 < @ < 7/4. By Lemma 4, we have thus p;(Z()) # 0 if z,; ¢ Héft) for all a € F such
that j € v(a).

If a polynomial is separately of first order in two variables z;, z2, i.e., it is of the form
a+ Bz1 + vze + 62129
the Asano contraction [1] consists in replacing it by the first order polynomial
o+ 6z

in one variable z, as in Lemma 3. As already noted, the coefficients o, (3, v, § may depend
on variables z; different from 21, 2o, z. Let now Z = (24).cr and

Pu(Z) =D ]] #a-

Fecl acF
If we take the product [];cy p;j(Z (4)) and perform the Asano contraction
o+ Bzaj + YZak + 0245 Zak — a+0z,

for all a € E we obtain Py(Z). Using Lemma 3 iteratively, once for each edge a € E, we
see thus that Py (Z) has no zeros when for each a € E

2 € C\ (~HZHY)
where v(a) = {j,k} and
HG(QH(S? ={uwv:ue€ Héi),v € Ha(lj:)}.

We have ‘ .
C\ (—HY)H)) > C\ (~Hps Hos)
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where Hy, is the largest Hézt) (obtained by replacing n; by n = max;n;). Note that
C\ (—Hp+Hyy) is the interior of a parabola passing through —¢% and with axis passing
through 0 and making an angle +20 with the positive real axis. When 46 varies between
—7/4 and m/4, the parabola sweeps the region Rez > —Re(i = —2/n(n — 1)2. Since
Qu(z) is obtained from Py (Z) by putting all z, equal to z, this proves Proposition 1. []

6. Proof of Proposition 2.

We proceed as for Proposition 1, defining here

pj(Z(j)) =1+ Szzaj + Zzajzbj

a#b

nj(n; —1
gi(z,t) =1+n sz + J(Jf)zz
If s > /2 —2/n;, the roots of q; are real negative, and the same type of argument used
j j

for theorem 1 shows that all the zeros of Qy(z, s?) are real and negative. []
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