ENTROPY PRODUCTION IN QUANTUM SPIN SYSTEMS.
(revised Nov. 2000)
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Abstract. We consider a quantum spin system consisting of a
finite subsystem connected to infinite reservoirs at different tem-
peratures. In this setup we define nonequilibrium steady states
and prove that the rate of entropy production in such states is
nonnegative.
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For several decades, Joel Lebowitz has been the soul of research in statistical me-
chanics. He now plays a central role in the development of new ideas which reshape
our understanding of nonequilibrium. The present paper, dedicated to Joel on his 70-th
birthday, extends some of the new ideas to quantum systems.

Introduction.

Consider a physical situation where a “small” system S is connected to different
“large” heat reservoirs R, (a = 1,2,...) at different inverse temperatures (3,. We want
to define nonequilibrium steady states for the total system L = S+ Ry + Ry + ..., and
verify that the rate of entropy production in such states is > 0. The model which we
discuss in this paper is that of a fairly realistic quantum spin system. In what follows
we first describe the model and state our assumptions (A1), (A2), (A3). In this setup we
introduce nonequilibrium steady states p as states which, in the distant past, described
noninteracting reservoirs at different temperatures. Under suitable conditions we check
that our definition does not depend on where we place the boundary between the small
system and the reservoirs. Our definition of the entropy production e, also does not
depend on where the boundary between the small system and the reservoirs is placed.
With this definition we prove e, > 0. By contrast with an earlier paper [4], we omit here
assumptions of asymptotic abelianness in time which are difficult to verify, the definition
of nonequilibrium steady states is more general, but we obtain less specific results.

Description of the model.*

Let L be a countably infinite set. For each z € L, let H, be a finite dimensional
complex Hilbert space, and write Hx = ®,ecxH, if X is a finite subset of L. We let Ax
be the C*-algebra of bounded operators on Hx, and if Y C X we identify Ay with a
subalgebra of Ax by the map Ay — Ay ® 13,,,, C Ax. We write L as a finite union
L = U,>0R,, where Ry = S is finite (small system) and the R, with a > 0 are infinite
(reservoirs). We can then define the quasilocal C* algebras A,, A as the norm closures of

U 4x U Ax
XCR, XcrL

repectively. Note that all these algebras have a common unit element 1. In this setup we
assume that an interaction ® : X — ®(X) is given such that ®(X) is a selfadjoint element
of Ax for every finite X C L. Also, for each reservoir, we prescribe an inverse temperature
B, > 0 and a state o, on A,.

The assumptions (Al), (A2), (A3).
(A1) The interaction ® satisfies

I\‘P\\A:Ze”*sgp > 1@(X)] < o0

n>0 z X3z:card X =n+1

* See [3], [1].



for some )\ > 0.

The importance of this assumption is that it allows us to equip A with a one-parameter
group (at) of automorphisms* defining a time evolution. Introduce a linear operator § :
UxcrAx — A such that

SA=i > [B(Y),A if AcAx
Y:YNX#0D

If A€ Ax, one checks that
[6™ Al < [JA[jer ™ X ml2a~1|@][,)™

The strongly continuous one-parameter group (a!) of *-automorphisms of A is given by

0 tm
t _ m
a'A= 5_0—!5 A

if A€ UxcrAx and |t| < A/2||®]|x. (More generally one could take A € Ay, where A, is
defined in the Appendix). Let

Hy= > &(X)

XCA

for finite A C L. Writing A — L if A eventually contains each finite X C L we have,
assuming A € A,

lim ||e?tHa Ae~"Hr _ ot A|| =0

A—L

uniformly for ¢ in compact intervals of R.
(A2) ¢(X)=0if XNS=0, XNR, #0, X NRy #0 for different a,b > 0.

Note that the description of the interaction ® is somewhat ambiguous because any-
thing ascribed to ®(X) might also be ascribed to ®(Y') for Y D X. Condition (A2) means
that in our accounting, if a part of the interaction connects two different reservoirs, it must
also involve the small system S.

(A3) If a > 0, let ®, be the restriction of the interaction ® to subsets of R, and write

Han= Y ®u(X)=Hg,a
XCRo,NA

Let also the interactions W,y be given such that

1Tallx < K <00 (1)

* See [1] Theorem 6.2.4 (or [3] Section 7.6).
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and write

Ban= Y Y (X)
XCR,NA

We assume that, for a suitable sequence A — L,

o T (e (ea tB0a) 2)
1m

A—L T‘I‘HR nAe_ﬁa(}IaA‘FBaA)

=0,(A)

if A € A,: this defines a state o, on A,, depending on the choice of (¥(x)) and the
sequence A — L. Furthermore we assume that for each finite X there is Ax such that
U\y(Y)=0ifAD Ax and Y C X; therefore

[[[Baa, A]ll =0 (2)

ifA D Ax and A € Ax.

In particular we can take all ¥(,y = 0. Using (3) below, it is readily verified that
o, is a 3,-KMS state (see [2]) for the one-parameter group (&) of automorphisms of A,
corresponding to the interaction ®,. [I do not know which of the (,-KMS states can be
obtained in this manner]|.

Note that the assumptions (A1), (A2), (A3) can be explicitly verified in specific cases.
From (A3) we obtain the following result.

Lemma.

lim |[eft(HaatBan) ge=it(HantBar) _ 3t A|| = 0 (3)
A—L e
for a > 0, and
lim ||€it(HA+Za>0 B“A)Ae_it(HA-l_Zwo Baa) _ atAH =0 (4)

A—L

uniformly for t in compact intervals of R.

We prove (4). Write o}, A = HHNTD oo Ban) go=it(Ha+) S, o Bar) 4pg InA =i[Hp +
> as0 Ban, Al If A € Ux Ax we see using (1) that

tm

ohA=) —ofA
m=0

converges uniformly in A for [t| < A/2(]|®||x + K). Using also (2), it is shown in the
Appendix that §y'A — 0™ A in A when A — L. Therefore

lim [|af A —a'Al|=0
A—L
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when A € Ux Ax, uniformly for [t| < T < A/2(||®||x» + K). But the condition A € Ux Ax
is removed by density, and the condition |t| < T < A/2(||®||x» + K) by use of the group
property. The proof of (3) is similar. []

The KMS state o.

The interaction ) . B.®q, evaluated at X is §,®,(X) if X C R, and 0 if X is not
contained in one of the R,. The corresponding one-parameter group (3!) of automorphisms
of A has, according to (A3), the KMS state® 0 = ®,>00, where oy is the normalized trace
on Ag = Ag. In fact

— Lim Tryy, (eXP(_ Za Ba (HaA + BaA))A)
7 = e exp(= >y e (Hon + Ban)) )

Nonequilibrium steady states.

We call nonequilibrium steady states (NESS) associated with o the limits when 7' — oo

of
1 T t *
T/o dt (a")*o

using the w*-topology on the dual A* of A. With respect to this topology, the set ¥ of
NESS is compact, nonempty, and the elements of ¥ are (at)*-invariant states on A.

This definition generalizes that given in [4] where, under stringent asymptotic abelian-
nes conditions, the existence of a single NESS was obtained.

Dependence on the decomposition L = S + Ry + Ry + .. .**

Our definition of o, and therefore of ¥ depends on the choice of a decomposition of
L into small system and reservoirs. If S is replaced by a finite set S’ O S and the R, by
correspondingly smaller sets Rl C R, one checks that (Al), (A2), (A3) remain valid. If
®! is the restriction of ® to subsets of R/, the replacement of » 5,®, by > 5, P/, changes
(B%) to a one-parameter group (4'*) and o to a state o’. These changes are in fact bounded
perturbations covered by Theorem 5.4.4 and Corollary 5.4.5 of [1]. The map o0 — ¢’ (of
KMS states for (8%) to KMS states for (8't)) is nonlinear (as can be guessed from (5)) and

therefore we cannot expect that = fOT dt (af)*o’ has the same limit as 7 fOT dt (at)*o in
general, but the deviation is not really bad. The (central) decomposition of KMS states
into extremal KMS states gives factor states. If o is assumed to be a factor state, and
(at) is asymptotically abelian, one finds that lim & fOT dt (a*)*o does not depend on the
decomposition L = S + R; + Rs + .. ., as the following result indicates.

Proposition.

* The state o corresponds to the inverse temperature +1 rather than the inverse tem-
perature —1 favored in the mathematical literature.
** This section and the following Proposition are in the nature of a technical digression,
and may be omitted by the reader essentially interested in the positivity of the entropy
production.



Using the above notation, assume that o is a factor state, and that
lim [|[a’A, B]|| =0
t—o0

when A, B € A. Then, when T' — o0,

17 1 [T
limf/o dt(at)*a'zlimf/o dt (a')*o

Let us introduce the GNS representation (#, m, Q) associated with o so that if

1 T
p = lim T /o dt (a*)*o
we have
1 T
p(4) = lim - / dt (9, (ot A)Q)
0

By restricting T" to a subsequence we may assume that in the weak operator topology
e .
lim T/ dtm(atA) = A € n(A)"
0

and by assumption we also have A € 7(A)’, hence A € w(A)' N7(A)” = {1} since o is a
factor state.

But we may write o/(-) = (@, 7(-)€?): this follows from the perturbation theory of [1]
(see proof of Theorem 5.4.4). We have thus

1 (7 17
lim — / dt o’ (o’ A) = lim — / dt (U, (o’ A)Y)
T Jo T Jo

17 1 [
= lim — / dt (Q, m(a’A)Q) = lim — / dt o(atA)
T Jo T Jo

as announced. []
Entropy production.
For finite A C L we have defined

Hy= ) &(X)

XCA

but Hy, Hg, do not make sense. We can however define

[HLaHRa] = j%i_)InL[HAaHRaﬂA] = Ai_)nE[HAJHaA]
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We have indeed

[Ha, Hoal = [Hy — Hap, Hapl = [Ha — > Hon, Haal
b>0

and (A2) gives

Hy _ZHbA = Z Z mq’()()

b>0 €S X:xe XCA
[implying the existence of the limit lima_p(Ha — 3 50 Hon) = Hp — 3450 Hr, € Al
Using (A1) we obtain
||[¢(X)a HaA]H < 2)\_1”(1)”)\||¢(X)He)\ca.rdX

hence

D [®(X), Hanll| < 227 1|@[|xe™|[@]]
XDz

and [Hp, Hyp| has a limit [H, Hg,| € A when A — L with
I[Hr, Hp,]|| < 2cardSA~"e?(|®|I3
The operator
i[Hy,Hp,|

may be interpreted as the rate of increase of the energy of the reservoir R, or (since
this energy is infinite) rather the rate of transfer of energy to R, from the rest of the
system. According to conventional wisdom we define the rate of entropy production in an
(at)*-invariant state p as

ep = Zﬁap(i[HL, Hg,])

a>0
(this definition does not require that p € ).
Remark.

If we replace S by a finite set S’ O S and the R, by the correspondingly smaller sets
R! C R,, we have noted earlier that (A1), (A2), (A3) remain satisfied. As a consequence
of (A1) we have

i[Hp, Hp, — Hp] = lim i[Hy, Hop — H.\] = lim §(Hap — H,)
e A—L A—L
(where the operator § has been defined just after (A3)), hence
p(i[HL, Hr, — Hp,]) = lim p(6(Han — Hyp)) =0
—L

i.e., the rate of entropy production is unchanged when S and the R, are replaced by S’
and the R/ . The reason why we do not have p(i[Hr, Hg,]) = 0 is mathematically because
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Hp, is “infinite” (Hpg, ¢ A), and physically because our definition of p(i[Hy, Hp,]) takes
into account the flux of energy into R, from S, but not the flux at infinity.

Theorem.
The entropy production in a NESS is nonnegative, i.e., e, > 0 if p € X.
We have seen that
[HL, HRa] = 11111 [HA, HaA]
A—L

= lim [H) — ; Hyp, Hoal

Therefore, using (A3) and [Hpp + Boa, Za>0 Ba(Han + Bap)] = 0, we find

> BalHy, Hp,) = lim [Hy = > Hyn, Y BaHon]

a>0 b>0 a>0

= Al_)InL[HA — ZHbAa Z Ba(Haa + Baa)]

b>0 a>0
= lm [Hy+ > Bia, ) Ba(Han + Baa)]
- b>0 a>0

in the sense of norm convergence.

We also have, for some sequence of values of T tending to infinity and all A € A,

1 (7 1 (7
p(A) = lim —/ dto(a'A) = lim lim —/ dt o(al A)
T Jo T Jo

T 00 T—soco A—L
where, by (4),

it(HA +Za>0 BQA)Ae—it(HA +Za>0 BaA)

alA=e — a'A in norm

when A — L, uniformly for ¢ € [0, T7.

Write
Hppy = Hp + Z Baa
a>0
Ga =) Ba(Han + Ban) + log Try, exp(— > Ba(Haa + Ban))
a>0 a>0

Then the entropy production is

e, = p(iZﬁa[HL,HRa])

. T
lim LIm i / dt O.(eitHBA [HBA, GA]e—itHBA)
a>0 T 0

 Tooo AoL



and the convergence when A — L of the operator (e®*#82[Hp, Gple"BA) is uniform for
t € [0,T]. According to (A3) we may choose the A tending to L such that Try,e %A (")
tends to o(-) in the w*-topology, hence

. T

. .1 B . »

e, = lim lim — dt Try, (e GAeZtHBA[HBA,GA]e thBA)
T—oo A—L 0

. 17 —Ga @ itHpa —itHpa
—Tll_IggoAl_)II}lT/O dt Tryy, (e %(e Gae )

1 . 1 —GA iTHpBp —¢THpa\ —GA
—Tll_I)Iéo[%l_)HiT(TI‘HA(e e Ge ) — Tra, (6792 Ga))
and the Theorem follows from the Lemma below, applied with A = G, U = e!7#8a and
8(s) = —e.

Lemma.

Let A, U be a hermitean and a unitary n X n matrix respectively, and ¢ : R — R be
an increasing function. Then

tr(¢(A)UAU) < tr(4(A)A)

As R. Seiler kindly pointed out to me, this lemma can be obtained readily from O.
Klein’s inequality

tr(f(B) — f(A) - (B—A)f'(4)) =0
where A, B are hermitean and f convex: take B = UAU ! and ¢ = f'. []

Remark.
We have
> p(i[Hy, Hp,]) =0
a>0
because

. . . d
S L R ) = Jim oy~ 3D Hasl) = Spat YD 8(X) 0 =0
a>0 a>0 X:XNS#D

where we have used the fact that p is (a!)*-invariant. In particular, in the case of two
reservoirs

0< €p = (51 - BZ)p(i[HLvHRJ)

so that if the temperature 5, ! is less than By 1 ie., B1 — B > 0, the flux of energy into
R1 is > 0: heat flows from the hot reservoir to the cold reservoir.

Proving strict positivity of e,.
It is an obvious challenge to prove that e, # 0. A natural situation to discuss would

correspond to R, = Z" and ®, translationally invariant. But we need then v > 3 as
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discussed in [4]. Indeed, for v < 3 one expects a nonequilibrium steady state to be in fact
an equilibrium state at a temperature intermediate between the original temperatures of
the reservoirs. Instead of a quantum spin system as described above, a gas of noninteracting
fermions would probably be easier to treat first.

Complements and relation with recent work of Jaksi¢ and Pillet.

After this paper was submitted for publication, two interesting contributions were
posted to the mp_arc archive: one by Jaksi¢ and Pillet* and one by Maes et al.** In this
Section and the next two, I am complying with the editor’s request to take into account
remarks by the referees, and in particular to discuss the relations of my work with the two
references mentionned above.

Note that the definition of entropy production used above is based on the thermo-
dynamic relation dQ = kT dS or, in the present case dS = > (kT,) 'dQ,. It can be
considered a drawback that this definition does not relate directly to a microscopically
defined entropy-like quantity, as is done in the papers of Jaksi¢ and Pillet, and Maes et
al. We now discuss in detail the approach of Jaksi¢ and Pillet, and its relation with the
present paper.***

We are given a C*-algebra A with identity, an element V = V* € A, time evolutions
(a?), (at) (i.e., strongly continuous one-parameter groups of *-automorphisms of A) such
that

St (V), [ [@ (V), Al

tn—
0

t t1
at(A):ét(A)-i-Zi"/ dtl/ dtz.../
n>1 0 0

and an (&!)-invariant state o on A. Therefore (at) is a local perturbation by V of the
“free” evolution given by (&!) and o is an invariant state for the “free” evolution. We
furthermore assume that

(C1) There exists a time evolution (3?) for which o is a KMS state at inverse temper-
ature +1

(C2) V is in the domain of the infinitesimal generator dg of (G%).

[In fact Jaksi¢ and Pillet assume a temperature —1 in (C1); our choice of temperature
+1 will bring a change of sign below in the definition of the entropy production. In the
situation discussed earlier we have

V=Y &X)

XNS#D

* V. Jaksi¢ and C.-A. Pillet. “On entropy production in quantum statistical mechanics.”
mp arc 00-309.
** Chr. Maes, F. Redig, and M. Verschuere. “Entropy production for interacting particle
systems.” mp_arc 00-357.
*** We have changed the notation of [2] to align it with the one used above.
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hence ||V]|x < ||®||xcardS, and V' € A,. Note that A} is in the domain of the infinitesimal
generator dg of () (see the Appendix), hence (C2) holds. The advantage of the approach
of Jaksi¢ and Pillet is that ¢ can be an arbitrary KMS state: the existence of “boundary
terms” By as in (A3) is not required].

In this setup one introduces the observable
—6p(V)
and the entropy production in the state p is defined as

p(=d5(V))

[In our situation we have

—5s(V)==> B Y, Y, i[®X), oY)

a>0 XCR,Y:YNS#D

= BuilHL, Hg,]

a>0
so that p(—d3(V)) = e, is indeed the rate of entropy production in the state p].
Finite dimensional digression.

For the purpose of motivation we discuss now the case where A would be the algebra
of n x n matrices, and consider two states on A given by density matrices u, v. A relative
entropy is then defined by

Ent(u|v) = —tr(ulogu — plogr) <0

If (a!) is a one parameter group of *-automorphisms of .4 we have thus

d Y — d ;
thnt(,uoa lv) = tr(,udta (logv))

Suppose now that v is preserved by the “free” evolution (&), and that (at) is a perturbation
of (&), so that

Ott(A) — ei(H+V)tAe—i(H+V)t ’ dt(A) — ethAe—th

then

%at(log v) = o' (i[V,logv])

Define now (%) by
ﬂt(A) — e—itlog VAeitlogz/
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so that v is the corresponding KMS state (at inverse temperature +1). Then if g is the
infinitesimal generator of (3!) we have

i[V,logv] = 65(V)

hence

< ot (tog) = ! (35(V)

d
EEnt(u o at|v) = u(at(65(V)))
We obtain thus

Ent(uo o7 |v) — Ent(ulv) = / (1o at) (V) dt

or, taking uy = v = o,
T
0 < —Fnt(o 0 allo) = / (0 0at)(=05(V)) dt
0

The infinite dimensional situation.

If u, v are two faithful normal states on a von Neumann algebra M [in our case
7y (A)"], Araki has introduced a relative entropy Ent(u|v) in terms of a relative modular
operator associated with u, v. We must refer the reader to [1] Definition 6.2.29 for details.
Using this definition, Jaksi¢ and Pillet have worked out an infinite dimensional version of
the finite dimensional calculation given above. They are able to prove the formula

/(; (oo at)(—(Sg(V)) dt = —Ent(c o aT‘a) >0

which can be interpreted as an entropy balance, and gives in the limit

p(—6p(V)) >0

if p is a NESS. The proof is fairly technical.

The approach of Jaksi¢ and Pillet has the interest of great generality. In particular
o can be an arbitrary KMS state. Also, instead of a spin lattice system one can consider
fermions on a lattice. For a noninetacting fermion model, Jaksi¢ and Pillet have announced
a proof of strict positivity of the entropy production, as had been suggested above.

Appendix: the algebras A,.

The purpose of this Appendix is to complete the proof of (4) by establishing (10)
below. On the way to this result we introduce “partial traces” w5, and algebras A, which
are of interest in their own right.
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For finite A C L, a map 7p : UxAx — Ap is defined by

try A
A= THy 2
A Y—1>III,I\A dimHy
If the ¢; form an orthonormal basis of Hy, and ¥’,¥"” € H we have

trHYA w,,) _ 1
dimHy ~ dimHy

(¥

Y (i@, Api @ Y")

hence ||mpA|| < ||A||. The properties of the following lemma are then readily checked.

Lemma

The map 7, extends to a unique linear norm-reducing map A — Ap. Furthermore
TAA=A if A€ Ay
TAA* = (TpAA)*
TATA?T = TAITA
Choose now some A > 0. For A € Ay, define

4]y = inf{ 3 [|Ax[le*4X - 3" Ax = 4}
XCA X

By compactness we may replace the inf by min. If A is replaced by a larger set A’, and
Yoy Ay = Awith Y C A/, we have

Z ||Ay||6)\cardY > Z ||7TAAy||e)\card(YﬂA)
YCA Y

with >, maAy = mpA = A. Therefore ||A||, does not depend on the choice of A provided
A € Ax. We have thus a norm ||.||y on Ux.Ax, and we may define the Banach space A
by completion.

Proposition.

The inclusion map Ux Ax — A extends to a norm-reducing map w : Ay — A and w
is injective.

w is norm-reducing because ||A|| < ||A||x for A € Ux Ax.

Note now that mp : Ux Ax — Ap reduces the ||.||[x-norm and extends thus to a linear
norm-reducing map Ay — Axx where Ay is Ap equipped with the ||.|[x-norm. Assume
that A € Ay with [|A||x = a > 0. We may choose A and B € Ay such that ||A—B||x < a/3,
hence ||B||x > 2a/3. Now wA = 0 would imply 7o A = 0 hence

2a a

S < IIBllx = llma(B = A)lx < A= Bllx < 5
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Therefore w must be injective. []
Corollary.

A, is identified by w to a dense x-subalgebra of A; Ay is then a Banach algebra with
respect to the norm ||.||x. Taking A = 0 we may define Ay = A. With this definition, if
A < u we have Ay D A,, and the map A, — A is norm-reducing.

If A,B € Ap, we may choose Ax,Bx € Ax such that A = ZXcAAX’ B =
ZXcABX’ and

1Alx= ) llAx[le* X ||B|[x= ) [|Bx|[e*X
XCA XCA

Thus
HABHA < ZZHAXAYHE/\C&H:‘(XUY)
X Y

< 3057 (| Ax ||| Ay |[eNCadXFeardy) — 41| ||B]|,
X Y

Therefore if A, B tend to limits Ay, Boo in Ay, AB tends in Ay to Ax Boo and || Aoo Boo| |
< |Aso||a||Boo||a- The rest is clear. []

If [|®||x < 00 and Ax € Ax the formula

bAx=1i ) [®(Y),Ax]
Y. YNX+#0

defines an element of Ay. If A > 1 > 0, and ||®||x < 0o, one also checks that §™ defines a
map Ay — A, such that

16 A1, < 203 = )~ Allx]|@]1x

[16™ Al < [|A[[xm!(2(A — ) H|@][3)™ (6)
[The proof of (6) is basically the same as that of the standard case y = 0].
We turn now to the proof of (10). We have dp = &) + 64, where

SpA=i[Hp, Al ,  S§A=1i]> Baa, Al
a>0

and (1) and (6) (for m = 1) yield
16A], < JAllx-2( = ) [ @115

164 Al < [1A]1x-2(X = )~ |@]]a
16X All, < [Al[x-2(A — p) T K
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Given € > 0 and A € A, we can find X such that A = A; + A, with 4; € Ax and
||Aa||x < €. Therefore

106 = 6) Al < 1106 = 6a) A + 15 s + (187 Asl |, + 1185 Azl
=[|(6 = 0a) Al + €2(A — ) "1 (2][®[|x + K) (7)
Taking A D Ax we also have

A1 =0
by (2), and
G-d)Ai=i > [B(Y), 4
Y:YZAYNX#£D
so that

16 = 83) Al < [[Ax][x-2(X — ) M| @[’ 5 (8)
where |[®[|y ) = Sup,ex D yvsrvex e(cardY=DX||(Y)||. When A — L we have ||®||y, —
0 and (7), (8) yield

Lim [[(6 — 04) Al =0 (9)
We can now prove that, if ||®|[y < co and A € A,,
. m A m —
lim [|6™ A — ST Al =0 (10)
We have indeed .
STA-SRA=) SRTETI(6 — 6p)67A
k=0

and, using (6),
6
165 Allza/s < [|Allx-E(S]1@]10)*

hence, by (9),
. k o
}le [1(6 = 6a)6%All5/3 =0

so that, using (6),
1635718 = 6a) 8" Al < |63 "71(8 — 6a)6" Allo

6 —k—
<18 = 8a)8 Allx/a(m — k = (S [[@[|)™ "
which tends to zero when A — L. This concludes the proof of (10).
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