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Abstract. We study the expression (susceptibility)

() = " [ dn) X (@) A

where f is a unimodal Markovian map of the interval I, and p =
py is the corresponding absolutely continuous invariant measure.
We show that W(\) is analytic near A = 1, where ¥(1) is formally
the derivative of [, p(dz)A(z) with respect to f in the direction
of the vector field X .
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In a previous note [Ru] the susceptibility function was analyzed for some examples of
maps of the interval. The purpose of the present note is to give a concise treatment of the
general unimodal Markovian case (assuming f real analytic). We hope that it will simi-
larly be possible to analyze maps satisfying the Collet-Eckmann condition. Eventually, as
explained in [Ru], application of a theorem of Whitney [Wh] should prove differentiability
of the map f +— p; restricted to a suitable set.

Setup

Let I be a compact interval of R and f : I — I be real analytic. We assume that
there is ¢ in the interior of I such that f/(0) =0, f'(z) > 0 for z < ¢, f'(x) < 0 for x > ¢,
and f”(c) < 0. Replacing I by a possibly smaller interval, we assume that I = [a, b] where
a = f%(c), b = f(c). We assume that the postcritical orbit P = {f™c : n > 1} is finite:
P = {p1,...,pm}; in particular, f is Markovian. We shall assume that f is analytically
expanding in the sense of Assumption A below; in particular the periodic orbits of f are
assumed to be repelling, and therefore ¢ cannot be periodic. We also assume that f is
topologically mixing [this can always be achieved by replacing I by a smaller interval and
f by some iterate fV].

Theorem.

Under the above conditions, and Assumption A stated later, there is a unique f-
invariant probability measure p absolutely continuous with respect to Lebesgue on I. If X
is real analytic on I, and A € C'(I), then

YO = N [ ptdn) X @) A

extends to a meromorphic function in C, without pole on {\ : |A| = 1}.
Change of variable

The finite set {c¢} U P decomposes I into m subintervals I;, with 2m endpoints (we
“double” the endpoints of consecutive subintervals, distinguishing between a — endpoint at
the right of an interval, and a + endpoint at the left). Note that n = {I; : j =1,...,m} is
a Markov partition for the map f. Consider the critical values of f™. Then for large n > 0,
the set of critical values will be stabilized and is always P. We define polar endpoints as
follows:

(1) p € P is a polar —endpoint of an interval in 7 if p is local maximum value of f”
for n large.

(2) v € P is a polar +endpoint of an interval in 7 if p is local minimum value of f”
for n large.

Every p € P is a polar — or +endpoint and may be both, ¢ is a nonpolar endpoint on
both sides.



We define now an increasing continuous map @ : I — R so that J = @/ is a compact
interval. We write wl; = J; for 1 < j < m. Denote by w the inverse of . We assume that
wl|J; extends to a holomorphic function in a complex neighborhood of J; for 1 < j < m
and that for ¢ € {c} U P, w has the property
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w(@g + ) = w(wg) + 5 + o(¢"

if ¢ is a £polar endpoint, and
w(wg£&) = w(wg) £ £+ O0(¢?)

if ¢ is a nonpolar endpoint. [We should really consider disjoint copies of the I; and Jj;,
and disjoint neighborhoods of these in C or in a Riemann surface two-sheeted near polar
endpoints. This would lead to notational complications that we prefer to omit].

Applications of this singular change of coordinate have been used in [Jil], [BJR],
and [Rul; the reference [Ji2] contains some more relevant study regarding the method
of singular change of coordinates in one-dimensional dynamical systems. The reader is
encouraged to compare this method with orbifold metrics in [Th, Chapter 13]. Another
relevant application of this method in complex dynamical systems can be found in [DH].

From now on we shall say that wgq is a +polar (nonpolar) endpoint if ¢ is +polar
(nonpolar).

The dynamical system viewed after the change of variable.

For any two intervals I}, I, € n with fI; D Ij, we define

Yiw =@ o (flI;)7" o (w]Jk)

Note that the 1), are restrictions of inverse branches of g = wo fow : J — J to intervals

in 7. The function t; : Jy — J; extends holomorphically to a complex neighborhood of

Ji. Indeed, note that (f|I;)~* is holomorphic except if I; is one of the two intervals around

¢, in which case the singularity is corrected by w|l,,, where I,, is the rightmost interval in

n. In other cases w|I} cancels the singularity of w|I; by our definition of w. [Note that
’1(¥) > 0 or <0 on J and may vanish only at an interval endpoint].

Assumption A.

Each Ji, for k =1,...,m, has a bounded open connected neighborhood Uy, in C such
that ¥ : Jp — J; extends to a continuous function ;i : Uy, — C holomorphic in Uy, and
with ¢ijk C Uj.

One checks that the sets U can be assumed to be in e-neighborhoods of the Ji. Also,
Assumption A implies that periodic points for g are strictly repelling. The smoothness of
w, @ in the interior of subintervals shows that the same property holds for f, apart from
interval endpoints where we however also assume the property to hold:

The periodic orbits of f are strictly repelling.
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Markovian graph.

Consider the Markov partition n = {I;}. Let us write j > k (j covers k) if fI; D Ij, (we
allow j > j). This defines a directed graph with vertex set {1,...,m} and oriented edges
(4, k) for j = k. Since we have assumed our dynamical system f to be topological mixing,
our graph is also mixing in the sense that there is N > 1 such that for all j, k € {1,...,m}
we have j = ... k (I edges) corresponding to fNI; D I.

Transfer operators.

For a function ® = (®;) defined on L.J;, write

(LO)k(2) = Y sgn(h)vju(2)®(Wjx2)

jig>k

(Lo®)k(z) = > sgn(f)@(v;x2)
Jig-k
where sgn(j) is +1 if v is increasing on Ji, and —1 if 95 is decreasing on Ji. If H
is the Hilbert space of functions on Lljcr,U; which are square integrable with respect to
Lebesgue, and have holomorphic restrictions to the Uj, then £ and L, acting on H are
holomorphy improving, hence compact and of trace class.

Properties of L.

For z € J;, we have

(L)k(@) = Y [ ()| @5 (jee)

ik

hence ® > 0 implies L& > 0 (L preserves positivity) and

/Jda: (LD)( Z/Jkda: (LD)y, Z/ dz @ ( /Jda;q)(x)

(L preserves mass). Using mixing one finds that £ has a simple eigenvalue po = 1
corresponding to an eigenfunction o9 > 0. The other eigenvalues p, satisfy |us| < 1,
and their (generalized) eigenfunctions oy satisfy [, dzog(x) = 0. If we normalize oo by
[;dzoo(x) = 1, then og(dz) = o¢(x)dz is the unique g-invariant probability measure
absolutely continuous with respect to Lebesgue on J. In particular, og(z)dz is ergodic.

Let now H; C H consist of those ® = (®g) such that the derivative ®’ vanishes
at the (polar) endpoints wa ,wb of J, and such that at the common endpoint wq (¢ €
{c} U P\{a,b})) of two subintervals we have equality on both sides of a quantity which is
either

e the value of ® for a nonpolar endpoint, or

e the value of £’ for a polar 4+ endpoint.
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We note that LH, C H; [this requires a case by case discussion]. Furthermore oy € H;
[take ¢ € H such that ¢ > 0, [,dy¢(y) = 1, and ¢, ¢’ vanish at subinterval endpoints;
then ¢ € Hy and og = lim,,_, o, L™¢ € Hy].

Evaluating ¥()\).

The image p(dz) = p(z)dx of oo(y)dy by w is the unique f-invariant probability
measure absolutely continuous with respect to Lebesgue on I. We have

p(z) = oo(wz)w'(z)

Consider now the expression

ZA" | plaa)x @ LA(m)

where we assume that X extends to a holomorphic function in a neighborhood of each I
and takes the same value at both sides of common endpoints of intervals in 7 (continuity).
Also assume that A € C*(I). For sufficiently small ||, the series defining ¥()) converges.
Writing B = A o w (B has piecewise continuous derivative) and 2 = wy we have

X (@)L A(f"5) = X(wy)

hence

n X(wy) d 0 n
Z)\ /dyJO o) d—yB(g y)

Defining Y (y) = o0o(y) X (wy)/w'(y), we see that Y extends to a holomorphic function
in a neighborhood of each Ji, which we may take to be Uy, except for a simple pole at
each polar endpoint of Ji. Since oy € Hy, the properties assumed for w imply that also
(X ow) X 0¢g € Hy. Note that near a nonpolar subinterval endpoint g

w'(wg £ &) =1+0(§)
and near a + polar endpoint
W' (wq£€) =€+ O(E)

Therefore 1
Y(wq+€) = AiE + BT +0(¢)

where BT = B~ for the two sides of wg, and B™ = 0 at the left endpoint wa of J, B~ =0
at the right endpoint wb of J. We may write

/ dyao(y)Xfwy)diB(g"y)= / dyY (y)g' (v)---9' (9" y)B'(¢"y)
J J
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- / ds (L3Y)(s)B'(s)
J

where Ly has been defined above, and we have thus

p) =3 A /J ds (LnY) () B (s)

Properties of L.

We let now Hy C H be the space of functions ® = (®;) vanishing at the endpoints
wa, wb of J, and such that the values of ® on both sides of common endpoints of intervals
J; coincide (continuity). Therefore LoHy C Hy.

There is a periodic orbit v1,...,7, (With g7; = 7, 41(moap)) of polar endpoints where
Yo 18 the £ endpoint of some subinterval Ji,). Choose P, to be 0 on subintervals different
from Ji(4), and to be holomorphic on a complex neighborhood of Ji(4) except at v,. Also
assume that

Pa(ya £6) = % +0(e)

and that P, vanishes at the endpoint of Jy () different from v,. Then

LoPy — |f,(7(a)‘1/2pa+1(modp) € Hy

Therefore LHP; — APy = u € Hy where A = [[2_; |f'(7()[}/? > 1. Since the spectrum of
L acting on H is contained in the closed unit disk, and since the derivative v’ is in H, we
may define v = (LP — A)~'u' € H. Since [, dyu'(y) = 0 we also have [, dyv(y) = 0 and
we can take w € Hy such that w’' = v. We have thus

(L5 — Nw) = (LP = Nw' = (LP — A)v =’

so that (L£§ — A)w = u [there is no additive constant of integration since (L5 — A)w and u
are in Hy|. Finally
(LE—A) (P —w) =0

There is thus a Ly-invariant p-dimensional vector space spanned by vectors P, — w, with
wqo € Hy, such that the spectrum of Ly restricted to this space consists of eigenvalues wy

with
P

wp = Al/pe27r€i/p — | H fl(,ya)‘l/2pe27r£i/p

a=1
fort=0,...,p— 1.

For the postcritical but nonperiodic polar points 71, ..., 7, define ﬁg like P, above,
with v, replaced by 4. For each § there is & = a(f) with

Eg(ﬁﬁ — AIBPQ) € Ho
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with some jig # 0, hence
L§(Pp — Ap(Po —wa)) = Y5 € Ho

Poles of U(\).

We may now write
Y=Y+Y1+Y;

where
Yy € Hy

p
Vi=) calP,
a=1

q
= (P — Ap(Pa(s) — wa(s)))
p=1
and there is a corresponding decomposition W(A) = Wo(A) + ¥y (A) + ¥o(A). Here ¥1(A) is
a sum of terms Cy/(\ — wy) where wy = AYP x p-th root of unity; W2(A) = polynomial of
degree ¢ — 1 in A plus A9)°%_, ¢sUg(\) where Uy is obtained if we replace Y by Yz in the
definition of W. The poles of W()) are thus those of ¥;(A) at the we and those of Wo(A)

and \ilﬂ()\). The discussion is the same for ¥y and the g, we shall thus only consider ¥y,
Since Yy € Hy and LoHy C Hy we have

Z)\”/ds (LDYy) (s Z)\"/ds (LDY,) (s)B(s)

= —Z)\"/ds (L"Y!)(s)B(s)

It follows that Wo(\) extends meromorphically to C with poles at the u,;l. We want to
show that the residue of the pole at g ' = 1 vanishes. Since | sdyor(y) =0for k > 1, the
coefficient of oy in the expansion of Y is proportional to

/J dyY!(y) = Y (wb) — Y (@a) = 0

because Yy € Hy. Therefore Wy(A) is holomorphic for [A| = 1, and the same holds for the
Wg(A), concluding the proof of the theorem. In fact we know that the poles of W(\) are
located at ;" for k> 1, and at w, ' for £=0,...,p— 1, so that |u; '| > 1, |w; | < 1.
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