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Abstract. Statistical mechanics away from equilibrium is in a
formative stage, where general concepts slowly emerge. We re-
strict ourselves here to the study of transport phenomena, espe-
cially heat transport, and consider several well-studied classes of
systems: finite systems with isokinetic thermostats, infinite clas-
sical Hamiltonian systems, infinite quantum spin systems. For
those classes we discuss how various physical quantities can be
defined. Our review however leaves several basic questions quite
open.
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1 Introduction.

Statistical mechanics, as seen by Boltzmann, is an attempt to understand the bulk
properties of matter in terms of the dynamics of its microscopic constituents. The bulk
properties of matter are described at the macroscopic level by thermodynamics.

1.1 Thermodynamics: equilibrium and nonequilibrium.

Equilibrium thermodynamics is based on the observation that some states of matter,
the equilibrium states, are operationally definable. One can associate with equilibrium
states some quantities, notably temperature and entropy, that are not part of macroscopic
mechanics. In equilibrium ”nothing happens” at the macroscopic level. In nonequilibrium
thermodynamics ”things happen”: heat is transferred, temperature may depend on spatial
coordinate and on time. More importantly, the global entropy is not constant in time, it
always increases. There is a great variety of nonequilibrium phenomena, including chemical
reactions, and the so-called transport phenomena. We shall be especially interested in these
transport phenomena, where a gradient of temperature (or concentration, or velocity in
a fluid) produces a ”transport” or flux of heat (or solute, or momentum). A quantity of
particular interest is the entropy production rate (entropy produced per unit time per unit
volume).

1.2 Equilibrium statistical mechanics.

Maxwell, Boltzmann and Gibbs have understood that the equilibrium states of ther-
modynamics have a probabilistic description at the microscopic level. If H(p,q) is the
Hamiltonian depending on the momentum variables p = (p1, . . . , pN ) and configuration
coordinates q = (q1, . . . , qN ), the probability that p,q are microscopically realized is given
by the ”normalized Boltzmann factor”

P (p,q) dp dq =
1
Q

exp[− 1
kT

H(p,q)] dp dq

where T is the absolute temperature, and k is Boltzmann’s constant. We shall use the
”inverse temperature” β = 1/kT and take k = 1. The above probability distribution is
known as the ”canonical ensemble”, and one shows that is is in some sense equivalent
to other ”ensembles” in the limit of a large system (thermodynamic limit). We shall
not go into details, but note that equilibrium statistical mechanics is an emergent theory
with respect to Hamiltonian mechanics: it applies only to certain systems (like particles
with short range interactions), certain states (equilibrium states), and introduces the new
concept of absolute temperature. The concept of entropy can also be defined, it is given
by

−
∫

P (p,q) dp dq log P (p,q)

(it is basically the logarithm of the volume of occupied phase space, i.e., the part of (p,q)-
space where the probability of the system is somehow significant). A fundamental feature
of the emergent theory of equilibrium statistical mechanics is that it ignores dynamics: time
does not occur. Of course, if one tries to justify the ensembles of equilibrium statistical
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mechanics one will have to use dynamics, but once one has the ensembles, the theory
proceeds without dynamics. Equilibrium statistical mechanics is conceptually simple, it has
been an enormously successful physical theory, and has also led to beautiful mathematical
developments.

1.3 Nonequilibrium statistical mechanics close to equilibrium.

While Boltzmann is one of the fathers of equilibrium statistical mechanics, he is the
father of nonequilibrium statistical mechanics. He has basically explained why entropy
increases in nonequilibrium (see [14]). Here is the idea: Hamiltonian dynamics preserves
phase space volume (Liouville’s theorem) but different regions of phase space may be
so finely mixed by the dynamics that they progressively become indistinguishable. The
apparent entropy, which corresponds to the mixed volume is thus larger than the entropy
corresponding to the volume of an initial region.

Nonequilibrium statistical mechanics is now relatively well understood close to equi-
librium. This development, which took place around the middle of the 20th century, is
linked to the names of Onsager, Green, Kubo, . . . (see [4]). A great simplification that
occurs close to equilibrium is that thermostats are not needed, and one can obtain trans-
port coefficients by some kind of first order perturbation theory around equilibrium (linear
response theory). It turns out that the transport coefficients (i.e., diffusion coefficients,
viscosity, . . . ) are given in terms of the well understood equilibrium states, and the micro-
scopic dynamics in these states, i.e., time correlation functions. Dynamics appears thus
here, but in a limited way.

Note that chemical reactions are not ”close to equilibrium” in the sense needed for
the above ideas to apply. Also, the mathematical justification of linear response theory is
still unsatisfactory, because the microscopic dynamics in equilibrium states remains poorly
understood. In fact, it seems that to make sense of linear response close to equilibrium
requires understanding nonequilibrium statistical mechanics away from equilibrium (this is
often called ”far from equilibrium”, but ”a finite distance away from equilibrium” is what
is really meant).

2 Nonequilibrium statistical mechanics away from equilibrium.

We shall concern ourselves here with transport phenomena and, more specifically, with
heat transfer. We want thus to consider systems that are macroscopically described by
a temperature field, but no density or velocity field. We have thus one macroscopically
conserved quantity (energy, or heat), and no particles for which we would have to consider
conservation of particle number and perhaps of momentum. The fact is that the discussion
of moving particles entails technical difficulties that we want to avoid. We shall in fact
restrict ourselves to three Classes of nonequilibrium systems for which the time evolution
is mathematically well controlled. We present now our three Classes.

2.1 Systems with isokinetic thermostatting [8], [11].

These are systems described by 2N real variables: p1, . . . , pN , q1, . . . , qN , and we write
p = (p1, . . . , pN ), q = (q1, . . . , qN ).
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Case I

We assume, in the simplest case, that the time evolution is

d

dt

(
p
q

)
=

(
ξ(q)− αp

p/m

)
where α = p ·ξ(q)/p2. This differs from a Hamiltonian evolution equation by the fact that
ξ need not be a gradient (i.e., we need not have ξ = −∇qU(q)), and that a term −αp has
been added. We have

d

dt

p2

2m
=

1
m

p · d

dt
p = 0

i.e., the kinetic energy does not change.

Note that a probability measure ρ(x) dx has a (Gibbs) entropy

S = −
∫

ρ(x)dx log ρ(x)

One finds quite generally, for the time evolution given by a vector field X, that

dS

dt
=

∫
ρ(x)dxdivX =

∫
ρ(dx) divX

where the div is with respect to dx, and the right-hand side makes sense even if the measure
ρ is singular. It is argued that the rate of creation of entropy by the system is −dS/dt: this
is the entropy that the external world sees coming out of the system, while the entropy of
the system tends to −∞, and the measure describing it tends to a singular nonequilibrium
steady state (NESS) ρ. The rate of entropy production can thus be identified to the rate
of volume contraction in phase space [1]. In our case

−divX = ∇p · (αp) = Nα + p · ∇pα = (N − 1)α

We may write α = w/2Kwhere w = p · ξ(q)/m is the work per unit time performed by
ξ and K = p2/2m is the kinetic energy, which is constant. We may associate with K a
temperature β−1 such that K = (N − 1)β−1/2 (equipartition of energy suggests a factor
N rather than N − 1, but remember that p is constrained here to an N − 1 dimensional
manifold). We may thus write

−divX = (N − 1)α = βw

hence
rate of entropy creation = (N − 1)

∫
α = β

∫
w

where the integral is taken with respect to the NESS: this is the usual thermodynamic
relation.
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Case II

Instead of thermostatting all N degrees of freedom to temperature β−1 for a system
with nongradient force ξ, we may also consider a Hamiltonian system where we fix the
kinetic energy of a subsystem X1 with N1 degrees of freedom to a value K1, and the
kinetic energy of a subsystem X2 with N2 degrees of freedom to a value K2. This means
that we replace in the equation of motion ξ − αp by ξ − α1p1 − α2p2 where we now
take ξ = −∇qU(q), α1 = ξ · p1/p2

1, α2 = ξ · p2
2 (we use the notation p1 = (pi)i∈X1 and

p2 = (pi)i∈X2). We write β1 = 2K1/(N1− 1), β2 = 2K2/(N2− 1) and assume β−1
1 < β−1

2 .
The energy per unit time received by the ith thermostat is wi = pi · ξ(q)/m, and

−divX = ∇p · (α1p1 + α2p2) = N1α1 + N2α2 + p1 · ∇p1α1 + p2 · ∇p2α2

= (N1 − 1)α1 + (N2 − 1)α2 = β1w1 + β2w2

Since the forces inside the system are Hamiltonian, assuming that the energy of the system
remains bounded gives

∫
w1 +

∫
w2 = 0, where the integral is with respect to the NESS,

hence
rate of entropy creation = (β1 − β2)

∫
w1

which is the usual thermodynamic relation.

One can argue that, in both Case I and Case II, the average of −divX in the NESS is
≥ 0 (basically this is because the volume in phase space cannot indefinitely increase), and
this gives the correct (positive) sign for

∫
w or

∫
w1.

2.2 Infinite systems of classical rotators [18].

Let L be a countable set and Γ a graph with vertex set L. For each x ∈ L we
consider a ”rotator” described by variables qx ∈ T, px ∈ R and with hamiltonian Hx =
p2

x/2m + Ux(qx). We couple these rotators by interaction potentials W{x,y}(qx, qy) when
{x, y} ∈ Γ. To obtain the Hamiltonian of the system in a finite region Λ we let ΓΛ be the
restriction of Γ to Λ and write

HΛ =
∑
x∈Λ

Hx +
∑

{x,y}∈ΓΛ

W{x,y}(qx, qy)

We assume that the graph Γ is finite dimensional and that that the Ux, W{x,y} and their
derivatives are uniformly bounded (we omit here technical details). It is also allowed
to introduce an ”external” (nongradient) force ξ acting on a finite number of rotators
(corresponding to a finite set Λ0 ⊂ L). One can then prove an existence and uniqueness
theorem for the time evolution (f t) of the infinite sysem of oscillators just described.

Let ` denote a state, i.e., a probability measure on the infinite dimensional phase
space of our system, then the time-evolved state f t` is defined for all t and one can take
as nonequilibrium steady states the limits when T →∞ of

1
T

∫ T

0

dt f t`
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We choose as initial state ` a Gibbs state, i.e., a limit of Z−1
Λ e−H̃Λ when the finite set

Λ ⊂ L tends to L, with

H̃Λ =
∑
x∈Λ

(
p2

x

2m
+ Ũx(qx)) +

∑
{x,y}∈ΓΛ

W{x,y}(qx, qy)

and Z−1
Λ a normalization factor. If we take H̃ = βH outside of a finite region, our initial

state is at temperature β−1 (outside of the finite region). Another possibility is to take
L = L1 t L2 t finite region, and arrange that the initial state ` is at temperature β−1

1 in
the infinite set L1, and at temperature β−1

2 in the infinite set L2. Given a finite set X ⊂ L
the state f t`, integrated over the variables px, qx for x /∈ X is of the form

`t
X(pX ,qX) dpX dqX

where pX = (px)x∈X , qX = (qx)x∈X , and `t
X is a smooth function bounded by

C1(t)e−C2(t)p
2

In particular, one can associate with X, t an entropy

St(X) = −
∫

dpX dqX `t
X(pX ,qX) log `t

X(pX ,qX)

and also a conditional entropy

Št(X) = lim
Λ→∞

(St(Λ)− St(Λ\X))

It is then a natural idea to try to define the rate of entropy production in X as the time
average of −dSt(X)/dt or −dŠt(X)/dt, i.e.,

e(X) = lim
T→∞

S0(X)− ST (X)
T

, ě(X) = lim
T→∞

Š0(X)− ŠT (X)
T

(the use of e(X) was proposed by Evans and coworkers [19], see also [9], [15]). We may
again consider two cases.

Case I

There is an external force ξ and the system is thermostatted at temperature β−1.
Then

0 ≤ e(X) ≤ ě(X) ≤ β × energy flux from ξ

Case II

No external force, but two thermostats at temperatures β−1
1 < β−1

2 . Then

0 ≤ e(X) ≤ ě(X) ≤ (β1 − β2)× energy flux to thermostat 1
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2.3 Infinite quantum spin systems.

To each point x of a countably infinite set L, a finite dimensional Hilbert space Hx is
attached. For finite X ⊂ L we let AX be the algebra of bounded operators on ⊗x∈XHx.
With natural identifications, all the AX are subalgebras of a C∗-algebra A, such that
∪XfiniteAX is norm-dense in A. Choosing a self-adjoint Φ(X) ∈ AX for each X, we define
a formal Hamiltonian

H =
∑
X

Φ(X)

Under reasonable assumptions on the ||Φ(X)||, Robinson [3] has shown that H defines a
time evolution, in the sense of a one-dimensional parameter group of ∗-automorphisms αt

of the algebra A. One writes L = L1tL2tfinite region and one introduces, as initial state,
a state σ on A (=normalized positive linear form) describing equilibrium at temperature
β−1

1 in the infinite set L1 and equilibrium at temperature β−1
2 in the infinite set L2. By a

compactness argument, one can let T tend to +∞ in such a way that the limits

lim
1
T

∫ T

0

dt σ(αtA) = ρ(A)

exist, defining a nonequilibrium steady state ρ. It can be proved [16],[12] that the thermo-
dynamic expression for the entropy production is nonnegative:

(β1 − β2)× energy flux to thermostat 1 ≥ 0

3 A study of physical quantities.

We have considered three Classes of systems which may describe nonequilibrium: (1)
finite systems with IK thermostatting, (2) infinite systems of classical rotators, (3) infinite
quantum spin systems. For Classes (1), (2) we could have an external force + thermostat
(Case I). For Classes (1)-(3) we could have two thermostats at different temperatures (Case
II). We shall now discuss which physical quantities can be associated with different types
of systems.

In all the cases considered, the time evolution ((f t) for (1),(2), (αt) for (3)) is well
defined. For the Class (1), the IK thermostatting is part of the equations of motion, and we
can take a somewhat arbitrary initial condition `(p,q) dp dq with ` continuous decreasing
fast as p → ∞. For Classes (2),(3), the thermostatting is part of the initial condition
` or σ. By compactness, we may choose T → ∞ so that these time averages tend (in
a weak sense) to a state ρ. This state is invariant under time evolution and we call ρ
a nonequilibrium steady state (NESS). Note that for Class (1) (IK thermostatting), the
NESS ρ is expected to be a singular measure, this is because we want nontrivial entropy
production

e = lim
T→∞

S0 − ST

T
> 0

This implies ST → −∞, hence fT ` → singular. Note however, that if X ⊂ {1, . . . , N}
is sufficiently small, the projection ρX of the NESS to X might be absolutely continuous.
Similarly, for Class (2) systems, the ρX for finite X may be absolutely continuous.
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3.1 Temperature.

A priori, the temperature of the thermostats is well defined. For infinite thermostats
(Classes (2),(3)) this should be physically the temperature far inside the thermostats.
But note that we must require that the thermostats have dimension ≥ 3. Indeed, if we
consider a macroscopic continuous description of our system, it would have a temperature
distribution satisfying the heat equation, and an asymptotically constant value of the
temperature at infinity is not possible in dimensions 1 and 2.

For systems locally close to equilibrium, one could define a local temperature, but
in general a local temperature would not seem to make much physical sense, because the
local velocity distribution cannot be expected to be Maxwellian.

One might want to conjecture that, for a system with two thermostats at temperatures
β−1

1 < β−1
2 , any reasonably defined local temperature β̃−1 would satisfy β1 > β̃ > β2. Let

me argue that this is incorrect. Indeed, we may imagine that our system contains a little
green man (or woman) who, seeing a warm and a cold source, uses them to power an engine,
and then either warms or cools some part of the system outside of the range [β−1

1 , β−1
2 ].

In view of this remark we require, for Class (2) systems, that for each finite X the energy
of the subsystem X is bounded independently of time. Note that this requirement could
be violated in Case I if the thermostat had dimension < 3, because the energy produced
by the external force could not be evacuated at the rate at which it is produced.

3.2 Entropy.

The total entropy is expected to diverge for an infinite system. We shall thus try
to give a meaning to the entropy of a finite set X in the NESS ρ. We shall discuss the
Gibbs entropy Sρ(X) because other definitions of entropy require a system close in some
sense to equilibrium (see [14]). For Class (1) systems (IK thermostatted), we expect the
NESS ρ to be singular, hence Sρ({1, . . . , N}) = −∞. Of course if ρ is an equilibrium
state Sρ({1, . . . , N}) is finite, and one can try to extend the definition away from the
equilibrium states [17], but this can be done consistently only close to equilibrium. For
sufficiently small X ⊂ {1, . . . , N}, it appears possible that Sρ(X) is finite. For Class (2)
systems, it is believable that the projection ρX of the NESS to the finite region X is
absolutely continuous and with finite entropy (see [5],[6],[2]), at least if X is disjoint from
the region where an external force ξ is acting (Case I). For Class (3) systems (quantum
spins), the von Neumann entropy Sρ(X) = −trρX log ρX is always finite. It would remain
to discuss the possible use and physical meaning of Sρ(X) when this quantity is finite.

3.3 Global entropy production.

There is a thermodynamic formula for the global entropy production rate e. In Case
I we have

e = β × energy flux from ξ

In Case II
e = (β1 − β2)× energy flux to thermostat 1

and one has e ≥ 0. This result, to be proved for each Class of systems considered, is non
trivial, it means that the energy flows in the ”right” direction.
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For systems with an IK thermostat we can also express the rate of entropy production
in terms of phase space volume contraction, and this has led to the important fluctuation
theorems [7], [10].

3.4 Local entropy production.

For infinite classical Hamiltonian systems (our Class (2)) Evans and coworkers [19]
have proposed to define the rate of entropy production in a finite region X as the time
average of −dSt(X)/dt, i.e.,

e(X) = lim
T→∞

S0(X)− ST (X)
T

This quantity is ≥ 0 but it is nontrivial, i.e., e(X) > 0, only if ST (X) →∞ when T →∞.
So, we cannot have both a finite entropy Sρ(X) and a nontrivial entropy production
e(X) > 0. The current evidence [5],[6],[2] is that the projection ρX of the NESS ρ to a
finite region X is absolutely continuous (at least if X is disjoint from the region where
an external force ξ is acting) and that e(X) = 0. It does not appear impossible at this
time that ě(X) (which is ≥ e(X)) yields a nontrivial definition of entropy production in the
region X. (Note also that ě(X) is a subadditive function of X, while e(X) is superadditive).
The problem, however, is wide open. For our Class (3) (quantum spin systems) we have
ě(X) = e(X) = 0 because ŠT (X) and ST (X) are bounded.

4 Discussion.

Let us again stress that our discussion of nonequilibrium has been restricted to trans-
port (in fact heat transport), disregarding chemical reactions, metastability, etc. Also, we
have focussed on nonequilibrium steady states, and ignored transient phenomena.

Boltzmann had a clear physical idea of why entropy increases in nonequilibrium pro-
cesses. He was able to implement this idea for gas dynamics (the H-theorem) by ignoring
recollisions, and this has led to a rigorous result (Lanford [13]). A rigorous mathematical
formulation of entropy production is also possible when an IK thermostat is used. Unfortu-
nately, it remains unclear if a local entropy production ě(X) can be defined nontrivially for
infinite classical systems. (For quantum spin systems, the evidence is that such a definition
is not possible).

The importance of identifying physical quantities in models of nonequilibrium is shown
by the extraordinary success of the Fluctuation Theorem, based on the use of the IK
thermostat and the identification of entropy production with volume contraction in phase
space. The possibility of identifying a nontrivial local entropy production in infinite systems
remains an important challenge. Perhaps progress on this question may be obtained by
numerical studies of subsystems of finite systems with IK thermostats and an external
force (as indicated in [19]).
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