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Abstract

In two previous papers [Sei12b, Sei12a], we exposed a combinatorial approach to
the program of Geometry of Interaction, a program initiated by Jean-Yves Girard
[Gir89b]. The strength of our approach lies in the fact that we interpret proofs by
simpler structures — graphs — than Girard’s constructions, while generalizing
the latter since they can be recovered as special cases of our setting. This third
paper extends this approach by considering a generalization of graphs named
graphings, which is in some way a geometric realization of a graph. This very
general framework leads to a number of new models of multiplicative-additive
linear logic which generalize Girard’s geometry of interaction models and opens
several new lines of research. As an example, we exhibit a family of such models
which account for second-order quantification without suffering the same limita-
tions as Girard’s models.

1. Introduction

1.1. Context
Geometry of Interaction. This research program was introduced by Girard [Gir87,
Gir89b] after his discovery of linear logic [Gir95a]. In a first approximation, it
aims at defining a semantics of proofs that accounts for the dynamics of cut-
elimination. Namely, the geometry of interaction models differ from usual (deno-
tational) semantics in that the interpretation of a proof π and its normal form ρ

are not equal, but one has a way of computing the interpretation of the normal
form ρ from the interpretation of the proof π (illustrated in Figure 1). As a con-
sequence, a geometry of interaction models not only proofs — programs — but
also their normalization — their execution. This semantical counterpart to the
cut-elimination procedure was called the execution formula by Girard in his first
papers about geometry of interaction [Gir89a, Gir88, Gir95b], and it is a way of
computing the solution to the so-called feedback equation. This equation turned
out to have a more general solution [Gir06], which lead Girard to the definition
of a geometry of interaction in the hyperfinite factor [Gir11].
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Figure 1: Denotational Semantics vs Geometry of Interaction

Geometry of Interaction, however, is not only about the interpretation of
proofs and their dynamics, but also about reconstructing logic around this se-
mantical counterpart to the cut-elimination procedure. This means that logic
arises from the dynamics and interactions of proofs — programs —, as a syntac-
tical description of the possible behaviors of proofs — programs. This aspect of
the geometry of interaction program has been less studied than the proof inter-
pretation part.

We must also point out that geometry of interaction has been successful in
providing tools for the study of computational complexity. The fact that it models
the execution of programs explains that it is well suited for the study of com-
plexity classes in time [BP01, Lag09], as well as in space [AS13, AS12]. It was
also used to explain [GAL92] Lamping’s optimal reduction of lambda-calculus
[Lam90].

Interaction Graphs. They were first introduced [Sei12b] to define a combinatorial
approach to Girard’s geometry of interaction in the hyperfinite factor [Gir11].
The main idea was that the execution formula — the counterpart of the cut-
elimination procedure — can be computed as the set of alternating paths between
graphs, and that the measurement of interaction defined by Girard using the
Fuglede-Kadison determinant [FK52] can be computed as a measurement of a
set of cycles.

The setting was then extended to deal with additive connectives [Sei12a],
showing by the way that the constructions were a combinatorial approach not
only to Girard’s hyperfinite GoI construction but also to all the earlier construc-
tions [Gir87, Gir89a, Gir88, Gir95b]. This result could be obtained by unveiling
a single geometrical property, which we called the trefoil property, upon which all
the constructions of geometry of interaction introduced by Girard are founded.
This property, which can be understood as a sort of associativity, suggests that
computation — as modeled by geometry of interaction — is closely related to
algebraic topology.

This paper takes another direction though: based on ideas that appeared in
the author’s phd thesis [Sei12c], it extends the setting of graphs by considering
a generalization of graphs named graphings, which is in some way a geometric
realization of a graph. This very general framework leads to a number of new
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models of multiplicative-additive linear logic which generalize Girard’s geometry
of interaction models and opens several new lines of research. As an example,
we exhibit a family of such models which account for second-order quantification
without suffering the same limitations as Girard’s models.

1.2. Outline
We introduce in this paper a family of models which generalizes and axioma-

tizes the notion a GoI model. This systematic approach is obtained by extending
previous work [Sei12b, Sei12a] in which the objects under study were directed
weighted graphs. We will consider here a generalization of such graphs named
graphings, and show how to define a very rich hierarchy of models parametrized
by two monoids: the weight monoid and the so-called microcosm.

A weight monoid is nothing more than a monoid which elements will be used
to give weights to edges of the graphs. A microcosm, on the other hand, is a
monoid of measurable maps, i.e. it is a subset of M (X ), the set of non-singular
Borel-preserving transformations from a measured space (X ,B,µ) to itself, which
is closed under composition and contains the identity transformation.

Once chosen a weight monoid Ω and a microcosm m, we define the notion of
Ω-weighted graphing in m. A Ω-weighted graphing is simply a directed graph
F whose edges are weighted by elements in Ω, whose vertices are measurable
subsets of the measurable space (X ,B), and whose edges are realized by elements
of m, i.e. for each edge e there exists an element φe in m such that φe(s(e)) =
t(e), where s, t denote the source and target maps. For convenience, we use in
the following a different — thus less “graph-like”, but equivalent definition of
graphings.

The main result of this paper is then expressed as follows.

Theorem 1. Let Ω be a monoid and m a microcosm. There exists a family of
GoI model of multiplicative-additive linear logic (MALL) whose objects are Ω-
weighted graphings in m.

The proof of this theorem is decomposed in three steps. Indeed, using previous
results [Sei12a], we only need, for any two graphings F,G, to define:

• the execution F :m:G between F and G, which is associative;
• the measurement �F,G�m of the interaction between F and G;

and show that these two notions satisfy the so-called trefoil property which en-
sures that the constructions described in our previous paper define a satisfying
model of MALL. This property is recalled in Section 2.

Section 3 is therefore concerned with the definition of the execution and the
proof that it is indeed associative (Theorem 22). We then define in Section 4
abstractly a notion of measurement and prove, under certain conditions, that
the trefoil property holds (Theorem 35). These conditions being quite involved,
we then show in Section 5 that in most reasonable cases, one can define whole
families of measurement satisfying them (Theorem 48).

We then give some examples of applications of this result, showing how all
of Girard’s frameworks, either based on operator algebras [Gir89a, Gir88, Gir11]

3



or on the more syntactical “unification algebra” [Gir95b, Gir13a, Gir13b], can be
understood as special cases of our construction.

Section 6, finally, studies a simple example of GoI models obtained from our
construction. We show how this framework allows to interpret multiplicative-
linear logic with second-order quantification. This result actually solves an im-
portant issue, due to locativity, that arose in Girard’s hyperfinite geometry of
interaction [Gir11].

1.3. Motivations and Perspectives
This result is very technical, and we believe that the work needed to obtain

it should be motivated. The importance of this result lies in its great generality
and the new lines of research it opens. We believe that the notion of graphing is
an excellent mathematical abstraction of the notion of program. First, any pure
lambda-term can be represented as a graphing since Girard’s GoI model [Gir88]
is a particular case of our constructions. But one can represent a lot more. In
following work, we will show how to represent quantum computation with the
same objects. Results of Mazza [Maz05] and de Falco [dF08] leads us to believe
that concurrent models of computations, such as pi-calculus can be represented
as graphings. In the long-term, we would also like to obtain such a representation
for more mathematical frameworks, such as cellular automata.

We therefore consider that this framework offers a perfect mathematical ab-
straction of the notion of program, one that is machine-independent, which cap-
tures all the different computational paradigms, and which allows for a fine con-
trol on computational principles. Indeed, while linear logic introduced a syntax
in which one could talk about resource-usage, the approach taken here goes a
step further and introduces a framework where subtle distinctions on the com-
putational principles allowed in the model. These distinctions are made by con-
sidering the hierarchies of weight monoid and microcosms.

This will lead to some interesting results in computational complexity on one
hand, and to interesting models of quantum computation on the other. We now
detail these motivating perspectives.

1.3.1. Fine-Grained Implicit Computational Complexity
Firstly, the results obtained in previous work with C. Aubert characteriz-

ing the classes L and coNL can be improved, extended and linked with logical
constructions in this setting. The following summarizes a work in preparation
[Sei14b].

In the previously described models of multiplicative-additive linear logic, one
can define the type of binary lists Nat2 in a quite natural fashion (the rep-
resentation of lists is thoroughly explained in previous papers on complexity
[AS12, AS13]). Moreover, in a number of cases one can define exponential con-
nectives in the model and therefore consider the type !Nat2 (Bool. Elements
of this type, when applied to a element !Nn of !Nat2, yields one of the distin-
guished elements true or false. Such an element F thus recognize the language
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L (F) = {n ∈ N | F :: !Nn = true}. As a consequence, we can study the set of lan-
guages recognized by all elements in the type !Nat2 (Bool. By modifying the
microcosm, one then modifies the expressivity of the model.

The intuition is that a microcosm m represents the set of computational prin-
ciples available to write programs in the model. Considering a bigger micro-
cosm n)m thus corresponds to extending the set of principles at disposal, conse-
quently increasing expressivity. The set of languages characterized by the type
!Nat2 (Bool becomes larger and larger as we consider extensions of the micro-
cosms. We can then work on this remark, and use intuitions gained from earlier
work [AS12, AS13]. This leads to a perfect correspondance between a hierar-
chy of monoids on the measured space Z× [0,1]N and a hierarchy of classes of
languages in between regular languages and logarithmic space predicates (both
included) [Sei14b].

1.3.2. Quantum Computing and Unitary Bases
The second interest in the hierarchy of models thus obtained concerns quan-

tum computation. Indeed, quantum computation can be represented in a very
natural way as graphings. Using the weight monoid to include complex coeffi-
cients, one can represent qbits in a natural way as graphings corresponding to
their density matrix. One can then represent unitary operators in a similar way
and show that the execution as graphings corresponds to the conjugation of the
density matrix by the unitary operator. Using these techniques, and showing
that one can construct semantically a tensor product of qbits that allows for en-
tanglement, we can obtain a representation of quantum computation that allows
for entanglement of functions.

The construction just described is interesting in itself, and describes work
in preparation. However, it opens a particularly interesting line of research if
one considers the fact that the obtained model lives in the hierarchy of models
described by the microcosms. Indeed, contrarily to theoretical quantum com-
putation which allows the use of unitary gates for any unitary operator, a real,
physical, quantum computer would allow only for a finite number of already im-
plemented unitary gates. The set of such gates is called a basis of unitary oper-
ators and satisfied the property that the span, under composition, of this set of
operators is dense in the set of all unitaries. In other words, any unitary operator
can be approximated by composites of elements of the basis.

Such a restriction is necessary, but there are a number of different choices for
the basis. To compare two different bases, one can ask a physicist which unitary
gates would be easier to create. This is how bases are compared nowadays: the
one which is easiest to construct is considered as better. However, the choice of
the basis may have important consequences from a computational and/or logical
point of view. Our construction provides an adequate framework to tackle this
issue. Indeed, one can restrict the microcosm to allow only unitary gates in a
given basis and study the obtained model computation.
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2. Interaction Graphs: Execution and the Trefoil Property

We defined in earlier work [Sei12b, Sei12a] a graph-theoretical construction
where proofs — or more precisely paraproofs, that is generalized proofs — are in-
terpreted by finite objects2. The graphs we considered were directed and weighted,
with the weights taken in a monoid (Ω, ·). We briefly expose the main results ob-
tained in these previous works.

Definition 2. A directed weighted graph is a tuple G, where VG is the set of
vertices, EG is the set of edges, sG and tG are two functions from EG to VG , the
source and target functions, and ωG is a function EG →Ω.

The construction is centered around the notion of alternating paths. Given
two graphs F and G, an alternating path is a path e1 . . . en such that e i ∈ EF

if and only if e i+1 ∈ EG . The set of alternating paths will be used to define the
interpretation of cut-elimination in the framework, i.e. the graph F ::G — the
execution of F and G — is defined as the graph of alternating paths between F
and G whose source and target are in the symmetric difference V F∆VG . The
weight of a path is naturally defined as the product of the weights of the edges
it contains. One easily verifies that this operation is associative: as long as the
three graphs F,G,H satisfy V F ∩VG ∩V H =;, we have:

(F ::G) ::H = F ::(G ::H)

As it is usual in mathematics, this notion of paths cannot be considered with-
out the associated notion of cycle: an alternating cycle between two graphs F
and G is a cycle which is an alternating path e1e2 . . . en such that e1 ∈ V F if and
only if en ∈ VG . For technical reasons, we actually consider the related notion of
1-circuit, which is a cycle satisfying some technical property.

Definition 3. We define the following notions of cycles:
• a cycle in a graph F is a sequence π= e0 . . . en of edges such that for all i > n

the source of the edge e i+1 coincides with the target of the edge e i;
• a 1-cycle in a graph F is a cycle π such that there are no cycle ρ and integer

k > 1 with π= ρk, where ρk denotes the concatenation of k copies of ρ;
• a circuit is an equivalence class of cycles for the equivalence relation de-

fined by e0 . . . en ∼ f0 . . . fn if and only if there exists an integer k such that
for all i, e i = f j with j = k+ i[n+1].

• a 1-circuit ρ is a circuit which is not a proper power of a smaller circuit, i.e.
is the equivalence class of a 1-cycle.

We will denote by C (F,G) the set of 1-circuits. It can be shown that these
notions of paths and cycles satisfy a property we call the trefoil property which

2Even though the graphs we consider can have an infinite set of edges, linear logic proofs are
represented by finite graphs (disjoint unions of transpositions).
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Figure 2: Structure of the categorical models

turns out to be fundamental for constructing models of linear logic. This property
states the existence of weight-preserving bijections between sets of 1-circuits:

C (F ::G,H)∪C (F,G)∼=C (G ::H,F)∪C (G,H)∼=C (H ::F,G)∪C (H,F)

In this setting, one can define the multiplicative and additive connectives
of Linear Logic. This construction is parametrized by a map from the set Ω
to RÊ0 ∪ {∞}. We thus obtain not only one but a whole family of models. This
parameter is introduced to define the notion of orthogonality in our setting and
is used to measure the sets of 1-circuits. Indeed, given a map m and two graphs
F,G we define �F,G�m as the sum

∑
π∈C (F,G) m(ω(π)), where ω(π) is the weight of

the cycle π.
From any of these constructions, one can obtain a ∗-autonomous category

GraphMLL with

&6∼=⊗ and 1 6∼=⊥, i.e. a non-degenerate denotational semantics for
Multiplicative Linear Logic (MLL). A consequence of the trefoil property is that
this category can be quotiented by an observational equivalence while conserving
its structure of ∗-autonomous category. The categorical model obtained in this
way has two layers (see Figure 2). The first layer consists in a non-degenerate
(i.e. ⊗ 6= &

and 1 6= ⊥) ∗-autonomous category Cond obtained as a quotient, hence
a denotational model for MLL with units. The second layer is a full subcategory
Behav which does not contain the multiplicative units but is a non-degenerate
model (i.e. ⊗ 6= &

, ⊕ 6= & and 0 6= >) of MALL with additive units that does not
satisfy the mix and weakening rules.
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3. Graphings, Paths and Execution

We define in this section the notion of graphing. This notion was considered
by Levitt [Lev95], and later by Gaboriau [Gab00] in order to study measurable
group actions. It generalizes in the setting of measure theory the topological no-
tion of pseudo-group [KN96] which was introduced by E. Cartan [Car04, Car09].

We will here consider graphings as a generalization of graph or, more acutely,
as a realization of a graph. We will therefore define the notion of path and built
upon it a generalization of the notion of execution mentioned in the previous sec-
tion. To stay consistent with the spirit of measure-theory, we will however need
first to examine the notion of almost-everywhere equality between graphings.

3.1. First Definitions
The idea is that a graphing is a sort of “geometric realization” of a graph: the

vertices correspond to measurable subsets of a measured space, and edges corre-
spond to measurable maps3 from the source subset onto the target subset. Some
difficulties arise when one wants to define a tractable notion of graphing. Indeed,
a new phenomenon appears when vertices are measurable sets: what should one
do when two vertices are neither disjoint or equal, i.e. when two vertices are
not equal but their intersection is not of null measure? One solution would be to
define graphings where vertices are disjoint subsets (i.e. their intersection is of
null measure), but this makes the definition of execution extremely complex.

Let us consider for instance two graphings with a single edge each, and whose
plugging is represented in Figure 3. To represent the set of alternating paths
whose source and target are subsets of the symmetric difference of the carri-
ers — the execution of the two graphs — we would need to decompose each
of the measurable sets into a disjoint union of sets, each one corresponding to
the source and/or target of a path. In the particular case we show in the fig-
ure, this operation is not that complicated: it is sufficient to consider the sets
(φψ)−k(Ut −Vs)∩ (Us −Vt). However, the operation quickly becomes much more
complicated as we add new edges and create cycles. Figure 4 represents the case
of two graphings with two edges each. Defining the decomposition of the set of
vertices induced by the execution is — already in this case — quite difficult. In
particular, since the sets of vertices considered can be infinite (but countable),
the number of cycles can be infinite, and the operation is then of an extreme
complexity.

As a consequence, we have chosen to work with a different presentation of
graphings, where two distinct vertices can have a intersection of strictly positive
measure — they can even be equal. We will now define the notion of graphing
taking into account these remarks. The terminology is borrowed from works of
Levitt [Lev95] and Gaboriau [Gab00], in which the underlying notion of graphing
(forgetting about the weights) is defined.
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Figure 3: Example of a plugging between graphings

Figure 4: Example of a plugging between graphings

Definition 4. Let (X ,B,λ) be a measured space. We denote by M (X ) the set
of non-singular Borel-preserving transformations4 X → X . A microcosm of the
measured space X is a subset m of M (X ) which is closed under composition and
contains the identity.

In the following, we will consider a notion of graphing depending on a weight-
monoid Ω, i.e. a monoid (Ω, ·,1) which contains the possible weights of the edges.

Definition 5 (Graphings). Let m be a microcosm of a measured space (X ,B,λ)
and V F a measurable subset of X . A Ω-weighted graphing in m of carrier V F is
a countable family F = {(ωF

e ,φF
e : SF

e → TF
e )}e∈EF , where, for all e ∈ EF (the set of

edges):
• ωF

e is an element of Ω, the weight of the edge e;
• SF

e ⊂V F is a measurable set, the source of the edge e;
• TF

e =φF
e (SF

e )⊂V F is a measurable set, the target of the edge e;
• φF

e is the restriction of an element of m to SF
e , the realization of the edge e.

3.2. Almost-Everywhere Equality
For the remaining of this section, we consider that we fixed once and for all

the weight monoidΩ and the microcosm m. We will therefore refer toΩ-weighted
graphings in m simply as graphings.

3To be exact, we will consider graphings whose edges are taken in a microcosm, that is a subset of
all measurable maps which is closed under composition and contains the identity.

4A non-singular transformation f : X → X is a measurable map which preserves the sets of null
measure, i.e. λ( f (A))= 0 if and only if λ(A)= 0. A map f : X → X is Borel-preserving if it maps every
Borel set to a Borel set.
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It is usual, when doing measure theory, to work modulo sets of null measure.
Similarly, we will work with graphings modulo almost everywhere equality, a
notion that we need to define first. Before giving the definition, we will define the
useful notion of empty graphing. An empty graphing will be almost everywhere
equal to the graphing without edges.

Definition 6 (Empty graphings). A graphing F is said to be empty if its effective
carrier is of null measure.

Definition 7 (Almost Everywhere Equality). Two graphings F,G are almost ev-
erywhere equal if there exists two empty graphings 0F ,0G and a bijection θ :
EF ]E0F → EG ]E0G such that:

• for all e ∈ EF ]E0F , ωF∪0F
e =ωG∪0G

θ(e) ;

• for all e ∈ EF ]E0F , SF∪0F
e ∆SG∪0G

θ(e) is of null measure;

• for all e ∈ EF ]E0F , TF∪0F
e ∆TG∪0G

θ(e) is of null measure;

• for all e ∈ EF ] E0F , φG]0G
θ(e) and φ

F]0F
e are equal almost everywhere on

SG]0G
θ(e) ∩SF]0F

e ;

Proposition 8. We define the relation ∼a.e. between graphings:

F ∼a.e. G if and only if F and G are almost everywhere equal

This relation is an equivalence relation.

Proof. It is obvious that this relation is reflexive and symmetric (it suffices to
take the bijection θ−1). We therefore only need to show transitivity. Let F,G,H
be three graphings such that F ∼a.e. G and G ∼a.e. H. Therefore there exists
four empty graphings 0F ,0GF ,0GH ,0H and two bijections θF,G : EF ]E0F → EG ]
E0GF and θG,H : EG ]E0GH → EH ]E0H that satisfy the properties listed in the
preceding definition. We notice that 0F ]0GH and 0GF ]0H are empty graphings.
One can then define θF,H = (θG,H ] Id

E0GF ) ◦ (IdEG ]τ) ◦ (θF,G ] Id
E0GH ), where τ

represents the symmetry E0GF ]E0GH → E0GH ]E0GF ;

EF ]E0F ]E0GH EG ]E0GF ]E0GH

EG ]E0GH ]E0GFEH ]E0H ]E0GF

θF,G ] Id
E0GH

IdEG ]τ

θG,H ] Id
E0GF

θF,H

It is then easy to verify that the three first properties of almost everywhere equal-
ity are satisfied. We will only detail the proof that the fourth property also holds.
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We will forget about the superscripts in order to simplify notations. We will more-
over denote by θ̃F,G (resp. τ̃, resp. θ̃G,H) the function θF,G ]IdEGH (resp. IdEG ]τ,
resp. θG,H ] IdEGF ).

Chose e ∈ EF ]E0F ]E0GH :
• if e ∈ E0GH , then θ̃F,G(e)= e, and φθ̃(e) =φ(e);
• if e ∈ EF ]E0F then, by the definition of θF,G , φ ˜θ(e) is almost everywhere

equal to φe on Se ∩S ˜θ(e).
Thus φθ̃(e) and φe are equal almost everywhere on Se∩Sθ̃(e) in all cases. A similar

reasoning shows that for all f ∈ EG ]E0H ]EGF
, the functions φθG,H ( f ) and φ f are

almost everywhere equal on SθG,H ( f ) ∩S f .
Moreover, φθ̃F,G (e) and φτ̃(θ̃F,G (e)) are equal and have the same domain Sθ̃F,G (e) =

Sτ̃(θ̃F,G (e)). Thus φτ̃(θ̃F,G (e)) and φe are almost everywhere equal on the intersec-
tion Sτ̃(θ̃(e)) ∩Se. Moreover, φτ̃(θ̃F,G (e)) and φθ̃G,H (τ̃(θ̃F,G (e))) are almost everywhere
equal on the intersection Sτ̃(θ̃F,G (e))∩Sθ̃G,H (τ̃(θ̃F,G (e))). We deduce from this that the
functions φe and φθF,H (e) are almost everywhere equal on

Se ∩SθF,H (e) ∩Sτ̃(θ̃F,G (e)) = Se ∩SθF,H (e) ∩Sθ̃F,G (e)

We denote by Z the set of null measure on which they differ. Since Se∆Sθ̃F,G (e)
is of null measure, there exists two sets X ,Y of null measure such that Se ∪ X =
Sθ̃F,G (e) ∪Y . We can deduce5 that Sθ̃F,G (e) = Se ∪ X −Y . Thus

Se ∩SθF,H (e) ∩Sθ̃F,G (e)

= Se ∩Sθ̃F,H (e) ∩ (Se ∪ X −Y )

= Se ∩Sθ̃F,H (e) ∩Se −Y
= Se ∩Sθ̃F,H (e) −Y

We then conclude that the functions φe and φθ̃F,H (e), restricted to Se∩Sθ̃F,H (e), are
equal outside of Y ∪Z which is a set of null measure.

3.3. Paths and Execution
We now need to define what is a path, since we won’t be able to work with the

usual notion of a path in a graph. Obviously, a path will be a finite sequence of
edges. We will replace the condition that the source of an edge be equal to the
target of the preceding edge by the condition that the intersection of these source
and target sets be of non-null measure.

Definition 9 (Plugging). Being given two graphings F,G, we define their plug-
ging Fä̃G as the graphing F ]G endowed with the coloring function δ : EF]G →
{0,1} such that δ(e)= 1 if and only if e ∈ EG .

5One can chose X in such a way so that Sθ̃F,G (e) ∩Y =;.
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Definition 10 (Alternating Paths). A path in a graphing F is a finite sequence
{e i}n

i=0 of elements of EF such that for all 0 É i É n−1, TF
e i
∩SF

e i+1
is of strictly

positive measure.
An alternating path between two graphings F,G is a path {e i}n

i=0 in the graph-
ing Fä̃G such that for all 0É i É n−1, δ(e i) 6= δ(e i+1). We will denote by Chm(F,G)
the set of alternating paths in Fä̃G.

We also define the weight of a path π= {e i}n
i=0 in the graphing F as the scalar

ωF
π =∏n

i=0ω
F
e i

.

Given a path {e i}n
i=0 in a graphing F, one can define a function φF

π as the
partial transformation:

φF
π =φF

en ◦χTF
en∩SF

en−1
◦φF

en−1
◦χTF

en−1∩SF
en−2

◦ · · · ◦χTF
e1∩SF

e0
◦φF

e0

where for all measurable set A, the function χA is the partial identity A → A.
We denote by Sπ and Tπ respectively the domain and codomain of this partial

transformation SF
e0

→ TF
en . It is then clear that the transformation φF

π : Sπ → Tπ

is measurable. Moreover, if all φe i are in a microcosm m, the transformation φπ
is itself in the microcosm m.

We now introduce the notion of carving of a graphing along a measurable set
C. This operation will consists in replacing an edge by four disjoint edges whose
source and target are either subsets of C or subsets of the complementary set of
C.

Definition 11 (Carvings). Let φ : S → T be a measurable transformation, C a
measurable set and Cc its complementary set. We define the measurable trans-
formations:

[φ]i
i = φ�C∩φ−1(C)

: A∩C∩φ−1(C)→ B∩φ(C)∩C

[φ]o
i = φ�C∩φ−1(Cc )

: A∩C∩φ−1(Cc)→ B∩φ(C)∩Cc

[φ]i
o = φ�Cc∩φ−1(C)

: A∩Cc ∩φ−1(C)→ B∩φ(Cc)∩C

[φ]o
o = φ�Cc∩φ−1(Cc )

: A∩Cc ∩φ−1(Cc)→ B∩φ(Cc)∩Cc

We will denote by [S]b
a, [T]b

a (a,b ∈ {i, o}) the domain and codomain of [φ]b
a.

If F is a graphing in a microcosm m, define the carving of F along C as the
graphing F/C = {(ωF

e , [φF
e ]b

a) | e ∈ EF ,a,b ∈ {i, o}} which is a graphing in the micro-
cosm m.

In some cases, the carving a graphing G along a measurable set C is almost
the same as G. Indeed, if each edge have its source and target (up to a null-
measure set) either in C or in its complementary set, the graphing obtained from
the carving operation is almost everywhere equal to G.

Definition 12. Let A,B be two measurable sets. We say that A intersects B
trivially if λ(A∩B)= 0 or λ(A∩Bc)= 0.

If F is a graphing and e ∈ EF , SF
e and TF

e intersect C trivially, then F will be
said to be C-tough.
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Lemma 13. Let F be a graphing and C be a measurable set. If F is C-tough, then
F/C ∼a.e. F.

Proof. Chose e ∈ EF . Since F is C-tough, we are in one of the four following cases:
• SF

e ∩C and TF
e ∩C are of null measure;

• SF
e ∩C and TF

e ∩Cc are of null measure;
• SF

e ∩Cc and TF
e ∩C are of null measure;

• SF
e ∩Cc and TF

e ∩Cc are of null measure;
These four cases are treated in a similar way. Indeed, among the functions [φF

e ]b
a,

a,b ∈ {i, o}, only one is of domain (and thus of codomain) a set of strictly positive
measure. We thus define an empty graphing 0F , with E0F = EF × {1,2,3}, and a
bijection EF/C → EF ]E0F which associates to the element (e,a,b) (e ∈ EF , a,b ∈
{i, o}) the element e ∈ EF if the domain of [φF

e ]b
a is of strictly positive measure, and

one of the elements (e, i) ∈ E0F otherwise. One can then easily show that this
bijection satisfies all the necessary properties to conclude that F ∼a.e. F/C .

Thanks to the carving operation, we are now able to define the execution of
two graphings F and G: we consider the set of alternating paths between F and
G, and we then keep the part of each path which is external to the intersection C
— the location of the cut — of the carriers of F and G. The execution for graph-
ings is therefore the natural generalization of the execution we defined earlier on
graphs.

Definition 14 (Execution). Let F,G be two graphings in a microcosm m of re-
spective carriers V F ,VG and let C = V F ∩VG . We define the execution of F and
G, denoted by F :m:G, as the graphing in the microcosm m defined as follows:

{(ωFä̃G
π ,φFä̃G

π : [Sπ]o
o → [Tπ]o

o) | π ∈Chm(F,G),λ([Sπ]o
o) 6= 0}

3.4. Cycles and Circuits
Definition 15 (Alternating Cycles). A cycle in a graphing F is a path {e i}n

i=0 in
F such that SF

e0
∩TF

en is of strictly positive measure.
An alternating cycle between two graphings F,G is a cycle {e i}n

i=0 in Fä̃G
which is an alternating path and such that δ(e0) 6= δ(en). We will denote by
Cym(F,G) the set of alternating cycles between F and G.

We now want to define the functions representing the circuits between graph-
ings. This is where things get a little bit more complicated: if π1 and π2 are
two cycles representing the same circuit (i.e. π1 is a cyclic permutation of π2)
the functions φπ1 and φπ2 are not equal in general! We will for now skip this
complication by considering such a set of function for each choice of representa-
tive of circuits. We will however need to take this non-uniformity later, when
defining the notion of circuit-quantifying maps (in the cases — which are those
if interest— where these maps depend on the functions φπ1 ,φπ2 associated to the
representatives of circuits).

13



Definition 16. Let F,G be two graphings. We denote by Cym(F,G) the set of
alternating paths between F and G. A choice of representatives of circuits is a
set Rep(F,G) such that for all ρ in Cym(F,G) there exists a unique element π in
Rep(F,G) such that ρ̄ = π̄ (π̄ denotes the equivalence class of π modulo the action
of cyclic permutations, see Theorem 3).

Definition 17 (Circuits and 1-circuits). If F and G are graphings and Rep(F,G)
is a choice of representatives of circuits between F and G, we define:

Circm(F,G) = {[φπ]i
i | π ∈Rep(F,G)}

Proposition 18. Let F,F ′,G be graphings such that F ∼a.e. F ′. Then there exists
a bijection

θ : Chm(F,G)→Chm(F ′,G)

such that φπ =φθ(π) for all path π.

Proof. By definition, there exists two empty graphings 0F ,0F ′ and a bijection
θ : EF ′ ]E0F′ → EF ]E0F such that:

• for all e ∈ EF ′ ]E0F′ , ωF ′∪0F
e =ωF∪0F

θ(e) ;

• for all e ∈ EF ′ ]E0F′ , SF ′∪0F′
e ∆SF∪0F

θ(e) is of null measure;

• for all e ∈ EF ′ ]E0F′ , TF∪0F′
e ∆TF∪0F

θ(e) is of null measure;

• for all e ∈ EF ′ ]E0F′ , φF]0F
θ(e) et φF ′]0F′

e are almost everywhere equal;
Let π be an alternating path in Fä̃G. We treat the case π = f0 g0 . . . fn gn as
an example, the other cases are dealt with in a similar way. We can define a
path θ−1(π) in F ′ä̃G by π′ = θ−1( f0)g0θ

−1( f1) . . .θ−1( fn)gn. Indeed, since the sets
S f i+1 ∩Tg i (resp. Sg i ∩T f i ) are of strictly positive measure, then θ−1( f i+1) (resp.
θ−1( f i)) is of strictly positive measure (hence an element of EF ′

) and moreover
satisfies that Sθ−1( f i+1) ∩Tg i (resp. Sg i ∩Tθ−1( f i)) is of strictly positive measure.

Conversely, a path π′ = e0 g0 . . . en gn in F ′ä̃G allows one to define a path
θ(π′)= θ(e0)g0θ(e1) . . .θ(en)gn. It is clear that θ(θ−1(π))= π (resp. θ−1(θ(π′))= π′)
for all path π (resp. π′) in Fä̃G (resp. F ′ä̃G).

We also need to check that the operation of execution is compatible with the
notion of almost everywhere equality. Indeed, since we want to work with graph-
ings considered up to almost everywhere equality, the result of the execution
should not depend on the representative of the equivalence class considered.

Corollary 18.1. Let F,F ′,G be graphings such that F ∼a.e. F ′. Then F :m:G ∼a.e.
F ′ :m:G.

Proof. Let θ be the bijection defined in the statement of the preceding proposi-
tion. We notice that ωπ =ωθ−1(π), and that φπ and φθ−1(π) are almost everywhere
equal as compositions of pairwise almost everywhere equal maps. In particular,
their domain and codomain are equal up to a set of null measure. We can then
conclude that θ : EF ′ :m:G → EF :m:G satisfies all the necessary properties: F ′ :m:G
and F :m:G are almost everywhere equal.
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Corollary 18.2. Let F,F ′,G be graphings such that F ∼a.e. F ′. Then Cym(F,G)∼=
Cym(F ′,G).

Proof. Let θ be the bijection defined in the proof of Theorem 18. The functions
φπ and φθ(π) are almost everywhere equal and their domains and codomains are
equal up to a set of null measure. We can deduce from this that [φπ]i

i and [φθ−1(π)]
i
i

are almost everywhere equal, and their domains and codomains are equal up to
a set of null measure.

3.5. Carvings, Cycles and Execution
We now show a technical result that will be useful later, and which gives bet-

ter insights on the operation of execution between two graphings. The execution
of the graphings F and G is defined as a restriction of the set of alternating paths
between F and G. One could have also considered the carvings of F and G along
the intersection C of the carriers of F and G, and then define the execution as
the set of alternating paths whose source and target lie outside of the set C. The
technical lemma we now state and prove shows that these two operations are
equivalent.

Let F,G be two graphings and C = V F ∩ VG . One can notice that there
should be a bijective correspondence between the edges of F :m:G and those of
F/C :m:G/C . Indeed, for two edges e, f to follow each other in a path, one should
have that Se ∩T f is of strictly positive measure. But since Sg ∩T f and S f ∩Sg
are subsets of C, the following expressions are equal:

χSg∩T f ◦φF
f ◦χS f ∩Sg

and χSg∩T f ∩C∩φF
f (C) ◦ (φF

f )�C∩(φF
f )−1(C)

◦χS f ∩Sgi∩C∩(φF
f )−1(C)

One can deduce from this the following equality:

χSg∩T f ◦φF
f ◦χS f ∩Sg

= χSg∩[T f ]i
i
◦ [φF

f ]i
i ◦χ[S f ]i

i∩Sg

One can obtain the following equalities in a similar manner:

χCc ◦φ f ◦χS f ∩Tg = χCc ◦ [φ f ]o
i ◦χ[S f ]i

o∩Tg

χSg∩T f ◦φ f ◦χCc = χSg∩[T f ]i
o
◦ [φ f ]i

o ◦χCc

χCc ◦φ f ◦χCc = χCc ◦ [φ f ]o
o ◦χCc

Lemma 19. Let F,G be two graphings, V F ,VG their carrier and C = V F ∩VG .
Then:

F :m:G = F/C :m:G

Proof. By definition, the execution F :m:G is the graphing:

{(ωFä̃G
π ,φFä̃G

π : [Sπ]o
o → [Tπ]o

o) | π ∈Chm(F,G),λ([Sπ]o
o) 6= 0}

Similarly, the execution F/C :m:G is the graphing:

{(ωF/Cä̃G
π ,φF/Cä̃G

π : [Sπ]o
o → [Tπ]o

o) | π ∈Chm(F/C ,G),λ([Sπ]o
o) 6= 0}
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Let π be an alternating path in Fä̃G. Then π is an alternating sequence of
elements in EF and elements in EG . Suppose for instance π= f0 g0 f1 . . . fk gk fk+1,
and let us define π̃= [ f0]o

i g0[ f1]i
i . . . [ fk]i

i gk[ fk+1]i
o. The function [φFä̃G

π ]o
o is equal

to:

χCc∩φFä̃G
π (Cc) ◦φF

fk+1
◦χS fk+1∩Tgk

◦φG
gk

◦ . . .

· · · ◦φG
g i+1

◦χSgi+1∩T f i+1
◦φF

f i+1
◦χS f i+1∩Tgi

◦φG
g i
◦ . . .

· · · ◦φG
g0

◦χSgi+1∩T f i+1
◦φF

f i+1
◦χCc∩(φFä̃G

π )−1(Cc)

From the remarks preceding the statement of the lemma, one can conclude that
[φFä̃G

π ]o
o is equal to:

χ
Cc∩φF/C ä̃G

π̃ (Cc)
◦ [φF

fk+1
]o
i ◦χ[S fk+1 ]o

i ∩Tgk
◦φG

gk
◦ . . .

· · · ◦φG
g i+1

◦χSgi+1∩[T f i+1 ]i
i
◦ [φF

f i+1
]i
i ◦χ[S f i+1 ]i

i∩Tgi
◦φG

g i
◦ . . .

· · · ◦φG
g0

◦χSgi+1∩[T f i+1 ]i
o
◦ [φF

f i+1
]i
o ◦χCc∩(φF/C ä̃G

π̃ )−1(Cc)

We therefore obtain that [φFä̃G
π ]o

o = [φF/Cä̃G
π̃ ]o

o. Conversely, each alternating path
in F/Cä̃G whose first and last edges are elements of F/C is necessarily of the
form [ f0]o

i g0[ f1]i
i . . . [ fk]i

i gk[ fk+1]i
o where the path f0 g0 f1 . . . fk gk fk+1 is an alter-

nating path in Fä̃G.
The other cases are treated in a similar way.

Corollary 19.1. Let F,G be two graphings, V F ,VG their carrier and C =V F∩VG .
Then:

F :m:G = F/C :m:G/C

We can also show the sets of cycles are equal.

Lemma 20. Let F,G be two graphings, V F ,VG their carrier, and C = V F ∩VG .
Then:

Cym(F,G)=Cym(F/C ,G)

Proof. The argument is close to the one used in the preceding proof. Indeed, if
π= e0 . . . en is an alternating cycle between F and G, then we can associate it to
the cycle [π] = [e0]i

i[e1]i
i . . . [en]i

i. Conversely, if π′ is a cycle in F/Cä̃G, then each
edge in π′ necessarily is of the form [e]i

i for an element e in F. Moreover, the
associated functions are equal, i.e. [φπ]i

i =φ[π].

Notice that the following lemma is the only place where the fact that our
transformations are non-singular is used. It is however fundamental, as it is the
key to obtain the associativity of execution.

Lemma 21. Let F be a graphing, and π= e0 . . . en a path in F such that Sπ is of
strictly positive measure. We define, for all couple of integers i < j, ρ i, j the path
e i e i+1 . . . e j. Then:

16



• for all 0< i < j É n, Sρ i, j ∩Te i−1 is of strictly positive measure;
• for all 0É i < j < n, Tρ i, j ∩Se j+1 is of strictly positive measure.

Proof. Let us fix i, j. We suppose that Sρ i, j ∩Te i−1 is of null measure. Then for all
x ∈ Spi, φe0...e i−1 is defined at x, and such that φe i ...en is defined at φe0...e i−1 (x). In
particular, φe i ...e j is defined at φe0...e i−1 (x), i.e. φe0...e i−1 (x) is an element in Sρ i, j .
Moreover, by the definition, φe0...e i−1 (x) is an element of Te i−1 . Thus φe0...e i−1 (Sπ)⊂
Sρ i, j ∩Te i−1 . Since φe0...e i−1 is a non-singular transformation which is defined at
all x ∈ Sπ, we deduce that λ(Sπ) = 0 ⇔ λ(Sρ i, j ∩ Te i−1 ) = 0. This lead us to a
contradiction since this implies that λ(Sπ)= 0.

A similar argument shows that Tρ i, j ∩Se j+1 is of strictly positive measure.

As this was the case with the execution between graphs in earlier construc-
tions [Sei12b, Sei12a], we can show the associativity of execution under the hy-
pothesis that the intersection of the carriers is of null measure.

Theorem 22 (Associativity of Execution). Let F,G,H be three graphings such
that λ(V F ∩VG ∩V H)= 0. Then:

F :m: (G :m:H)= (F :m:G) :m:H

Proof. We can first suppose that F (resp. G, resp. H) is CF = V F ∩ (VG ∪V H)-
tough (resp. CG = VG ∩ (V F ∪V H)-tough, resp. CH = V H ∩ (V F ∪VG)-tough).
Indeed, if this was not the case, we can always consider the carving along the set
CF (resp. CG , resp. CH). This simplifies the following argument since it allows
us to consider paths instead of restrictions of paths. The proof then follows the
proof of the associativity of the execution for directed weighted graphs obtained
in our previous papers [Sei12b, Sei12a].

We can define the simultaneous plugging of the three graphings F,G,H as
the graphing F ]G]H endowed with a coloring map δ defined by δ(e) = 0 when
e ∈ EF , δ(e) = 1 when e ∈ EG and δ(e) = 2 when e ∈ EH . We can then define
the set of 3-alternating paths between F,G,H as the paths e0e1 . . . en such that
δ(e i) 6= δ(e i+1).

If e0 f0e1 . . . fk−1ek fk is an alternating path in F :m: (G :m:H), where every e i is
an alternating path e i = gi

0hi
0 . . . gi

ni
hi

ni
, then the sequence of edges obtained by

replacing each e i by the associated sequence (and forgetting about parentheses)
is a path. Indeed, we know that, for instance, Se i∩T f i−1 is of strictly positive mea-
sure, and Se i ⊂ Sg0 , thus Sg0 ∩T f i−1 is of strictly positive measure. We therefore
defined a 3-alternating path between F,G and H. The two paths define the same
measurable partial transformation, and have the same domains dans codomains.

Conversely, if e0e1 . . . en is a 3-alternating path between F,G and H, then we
can see it as an alternating sequence of edges in F and alternating sequences
between G and H. Let π = g0h0 . . . gkhk be the path defined by such a sequence
appearing in the path e0 . . . en. We can use the preceding lemma to insure that
Sπ∩Te j is of strictly positive measure. Similarly, Tπ∩Sek is of strictly positive
measure. We thus showed that we had an edge in F :m: (G :m:H). The two paths
define the same partial measurable transformation, and have the same domains
and codomains.
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[0,2] [3,5]

x 7→ 5− x

(a) A graphing G

[0,1] [1,2] [3,4] [4,5]

x 7→ 5− x

x 7→ 5− x

(b) A refinement of G

Figure 5: Illustration of refinement

4. Cycles and The Trefoil Property

In this section, we go a bit further into the theory of graphings. Indeed, one
of the main motivations behind the use of continuous sets as vertices of a graph
instead of usual discrete sets lies in the idea that edges of a graphing may be
split into sub-edges. In order to formalize this idea (illustrated in Figure 5),
we define the notion of refinement of a graphing. Once this notion defined, we
will want to consider graphings up to refinement, meaning that a graphing and
one of it refinements should intuitively represent the same computation. We
therefore define a equivalence relation on the set of graphings by saying that two
graphings are equivalent if they possess a common refinement. We show that
this equivalence relation is compatible with the execution defined in the previous
section.

We then explore the notion of cycles between graphings. If a cycle might be de-
fined in the obvious and natural way, we want to define a measurement which is
compatible with the equivalence relation based on refinements. This means that
the measurement should be “refinement-invariant”, something that involves lots
of complex combinatorics. Moreover, this measurement should satisfy the trefoil
property with respect to the execution defined earlier. We therefore introduce
the notion of “circuit-quantifying map” which satisfies two abstract properties.
We then show that any map satisfying these properties defines a measurement
which is both refinement-invariant and satisfies the trefoil property.

4.1. Refinements
We now define the notion of refinement of a graphing. This a very natural

operation to consider. A simple example of refinement is to consider a graphing
F and one of its edges e ∈ EF : one can obtain a refinement of F by replacing e
with two edges f , f ′ such that S f ∪S f ′ = Se and S f ∩S f ′ is of null measure (one
should then define T f =φe(S f ) and T f ′ =φe(S f ′ ) accordingly). This is illustrated
in Figure 5.

Definition 23 (Refinements). Let F,G be two graphings. We will say that F is
a refinement of G — denoted by F É G — if there exists a function θ : EF → EG

such that:
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• for all e, e′ ∈ EF such that θ(e) = θ(e′) and e 6= e′, SF
e ∩SF

e′ and TF
e ∩TF

e′ are
of null measure;

• for all e ∈ EF , ωG
θ(e) =ωF

e ;
• for all f ∈ EG , SG

f and ∪e∈θ−1( f )S
F
e are equal up to a set of null measure;

• for all f ∈ EG , TG
f and ∪e∈θ−1( f )T

F
e are equal up to a set of null measure;

• for all e ∈ EF , φG
θ(e) and φF

e are equal almost everywhere SG
θ(e) ∩SF

e .
We will say that F is a refinement of G along g ∈ EG if there exists a set D of
elements of EF such that:

• θ−1(g)= D;
• θ�EF−D

: EF −D → EG − {g} is bijective.
If D contains only two elements, we will say that F is a simple refinement along g.
The refinements will sometimes be written (F,θ) in order to precise the function
θ.

Proposition 24. We define the relation ∼É on the set of graphings as follows:

F ∼É G ⇔∃H, (H É F)∧ (H ÉG)

This is an equivalence relation.

Proof. Reflexivity and symmetry are straightforward. We are therefore left with
transitivity: let F,G,H be three weighted graphs such that F ∼É G and G ∼É H.
We will denote by (PF,G ,θ) (resp. (PG,H ,ρ)) a common refinement of F and G
(resp. of G and H). We will now define a graphing P such that P É PF,G and
P É PG,H . Let us define:

• EP = {(e, f ) ∈ EPF,G ×EPG,H | θ(e)= ρ( f )};
• SP

(e, f ) = SPF,G
e ∩SPG,H

f when θ(e)= ρ( f );

• TP
(e, f ) = TPF,G

e ∩TPG,H
f when θ(e)= ρ( f );

• ωP
(e, f ) =ω

PF,G
e =ωPG,H

f ;

• φP
(e, f ) is the restriction of φ

PF,G
e to SP

(e, f );
• µF,G : (e, f ) 7→ e and µG,H : (e, f ) 7→ f .

It is then easy to check that (P,µF,G) (resp. (P,µG,H)) is a refinement of PF,G
(resp. of PG,H).

Since (PF,G ,θ) is a refinement of F and (P,µF,G) is a refinement of PF,G , it
is clear that (P,θ ◦µF,G) is a refinement of F. In a similar way, (P,θ ◦µG,H) is a
refinement of H. Finally, P É F and P É H, which shows that F ∼É H.

Proposition 25. The relation ∼É contains the relation ∼a.e..

Proof. Let F,G be two graphings such that F ∼a.e. G. We will show that F ∼É G.
We will use the notations of Theorem 7: 0F ,0G for the empty graphings and θ for
the bijection between the sets of vertices. First, we notice that F É F ]0F and
G ÉG]0G . As a consequence, F ∼É F ]0F and G ∼É 0G . Moreover, the bijection
θ : EF ]E0F → EG ]E0G clearly satisfies the necessary conditions for (F ]0F ,θ)
to be a refinement of G ] 0G , which implies that F ] 0F ∼É G ] 0G . Using the
transitivity of ∼É, we can now conclude that F ∼É G.
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Of course, the carving of a graphing G along a measurable set C defines a
refinement of G where each edge is replaced by exactly four disjoint edges. This
will be of use to simplify some conditions later: a measurement that is invariant
under refinements will be invariant under carvings too.

Proposition 26. Let G be a graphing and C a measurable set. The graphing
G/C is a refinement of G.

Proof. It is sufficient to verify that the function θ : EG/C → EG , (e,a,b)→ e satis-
fies all the necessary conditions. Firstly, using the definition, the weights ωG/C

(e,a,b)
and ωG

e are equal. Then, the sets [SG
e ]b

a, a,b ∈ {i, o} (resp. [TG
e ]b

a) define a partition
of SG

e (resp. TG
e ). Finally, using the definition again, [φG

e ]b
a is equal to φG

e on its
domain.

Lemma 27. Let F,G be two graphings, e ∈ EF and F (e) be a simple refinement of
F along e. Then F (e) :m:G is a refinement of F :m:G.

Proof. By definition,

F :m:G = {(ωFä̃G
π ,φFä̃G

π : [Sπ]o
o → [Tπ]o

o) | π ∈Chm(F,G),λ([Sπ]o
o) 6= 0}

Since F (e) is a simple refinement of F along e, there exists a partition of SF
e in

two sets S1,S2, and a partition of TF
e in two sets T1,T2 such that φF

e (Si) = Ti.
We can suppose, without loss of generality, that S1 ∩S2 =; since there exists a
graphing which is almost everywhere equal to F (e) and satisfies this additional
condition, and since execution is compatible with almost everywhere equality.
This additional assumption implies in particular that T1 ∩T2 is of null measure.
We denote by f1, f2 the two elements of EF(e)

whose image is e by θ.
To any element π= {e i}n

i=0 of F (e) :m:G, we associate the path θ(π)= {θ(ai)}n
i=0.

We now need to check that this is indeed a refinement. Let π1,π2 be two distinct
paths such that θ(π1)= θ(π2). We want to show that Sπ1 ∩Sπ2 is of null measure.
Since π1 = {pi}

n1
i=0 and π2 = {qi}

n2
i=0 are distinct, they differ at least on one edge.

Let k be the smallest integer such that pk 6= qk. We can suppose without loss of
generality that pk = f1 and qk = f2. If x ∈ Sπ1 , then x ∈φ−1

p0...pk−1
(S1). Similarly, if

x ∈ Sπ2 , then x ∈φ−1
q0...qk−1

(S2)=φ−1
p0...pk−1

(S2). Since we supposed that S1∩S2 =;,
we deduce that Sπ1 ∩Sπ2 =;.

By definition, the weight of a path π is equal to the weight of every path
π′ such that θ(π′) = π. Moreover, the functions φπ′ and φθ(π′) are by definition
almost everywhere equal on the intersection of their domain since every φe is
almost everywhere equal to φθ(e).

We are now left to show Sπ = ∪π′∈θ−1(π)Sπ′ (the result concerning Tπ is then
obvious). It is clear that Sπ′ ⊂ Sπ when θ(π′) = π, and it is therefore enough to
show one inclusion: that for all x ∈ Sπ there exists a π′ with θ(π′) = π such that
x ∈ Sπ′ . Let π=π0e0π1e1 . . .πnenπn+1 where for all i, e i = e, and πi is a path (that
could be empty if i = 0 or i = n+1). Now chose x ∈ Sπ. Then for all i = 0, . . . ,n,
φπ0 e0...πi (x) ∈ Se i = Se, thus φπ0 e0...πi (x) is either in S1 or in S2. We obtain in
this way a sequence a0, . . . ,an in {1,2}n. It is then easy to see that x ∈ Sπ′ where
π′ =π0 fa0π1 fa1 . . .πn fanπn+1.
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Lemma 28. Let F,G be two graphings, e ∈ EF and (F ′,θ) a refinement of F along
e. Then F ′ :m:G is a refinement of F :m:G.

Proof. This is a simple adaptation of the proof of the preceding lemma. Let D be
the set of elements such that θ−1(e)= D; we can suppose, modulo considering an
almost everywhere equal graphing, that the sets Sd (d ∈ D) are pairwise disjoint.
To every path π = ( f i)n

i=0 in F ′ :m:G, we associate θ̃(π) = {θ( f i)}n
i=0. Conversely, a

path π= (g i)n
i=0 in F :m:G defines a countable set of paths:

Cπ = {( f i)n
i=0 | θ( f i)= g i}

We are left with the task of checking that θ̃ :π 7→ θ̃(π) is a refinement. For this, we
consider two paths π1 and π2 such that θ̃(π1) = θ̃(π2). Using the same argument
as in the preceding proof, we show that Sπ1 ∩Sπ2 is of null measure. The verifi-
cation concerning the weights is straightforward, as is the fact that the functions
are almost everywhere equal on the intersection of their domains. The last thing
left to show is that Sπ = ∪π′∈Cπ

Sπ′ . Here, the argument is again the same as in
the preceding proof: an element x ∈ Sπ is in the domain of one and only one Sπ′
for π′ ∈ Cπ.

Theorem 29. Let F,G be graphings and (F ′,θ) be a refinement of F. Then F ′ :m:G
is a refinement of F :m:G.

Proof. If π is an alternating path f0 g0 f1 . . . fn gn between F ′ and G, we define
θ(π) = θ( f0)g0 . . .θ( f1) . . . gnθ( fn). This clearly defines a path, since S f i ⊂ Sθ( f i)
(resp. T f i ⊂ Tθ( f i)) and π is itself a path.

Let us denote by f0, . . . fn, . . . the edges of F. We define the graphings Fn as
the following restrictions of F: {(ωF

f i
,φF

f i
)}n

i=0. We define the corresponding restric-

tions of F ′ as the graphings (F ′)n = {(ωF ′
e ,φF ′

e ) | e ∈ θ−1( f i)}n
i=0. By an iterated use

of the preceding lemma, we obtain that ((F ′)n :m:G,θ) is a refinement of Fn :m:G
for every integer n. It is then easy to see that (F ′ :m:G,θ) = (∪nÊ0(F ′)n :m:G,θ) is
a refinement of ∪nÊ0Fn :m:G, i.e. of F :m:G.

4.2. Measurement of circuits
We would like to define a measurement of circuits between two graphings F

and G in such a way that if (F ′,θ) is a refinement of F, the measurements �F,G�m
and �F ′,G�m are equal. Firstly, one should be aware that to define the notion of
circuit-quantifying maps one should take into account the fact that if π1,π2 are
two representatives of a given circuit, the functions φπ1 and φπ2 are not equal in
general.

Secondly, suppose that we obtained such a map q (which does not depend on
the choice of representatives), that π is an alternating cycle between F and G and
that (F ′,θ) is a refinement of F. We will try to understand what the set of circuits
induced by π in F ′ä̃G looks like. We first notice that the cycle π corresponds to a
family Eπ of alternating cycles between F ′ and G. If for instance π= f0 g0 . . . fn gn,
one should consider the set of sequences { f ′0 g0 . . . f ′n gn | ∀i, f ′i ∈ θ−1( f i)}. However,
each of these sequences does not necessarily define a path: it is possible that
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[0,2] [3,5]

x 7→ 5− x

x 7→ x−3

[0,1] [1,2] [3,4] [4,5]

x 7→ 5− x

x 7→ 5− x

x 7→ x−3

(a) A cycle doubling its length

[0,2] [3,5]

x 7→ x+3

x 7→ x−3

[0,1] [1,2] [3,4] [4,5]

x 7→ x−3

x 7→ x+3

(b) A cycle splitting in two cycles

Figure 6: Examples of the evolution of a cycle when performing a refinement

Sg i∩T f ′i
(or S f ′i+1

∩Tg i ) is of null measure. It is even possible that such a sequence
will be a path without being a cycle, and that a cycle of length l, once decomposed
along the refinement, becomes a cycle of length m× l, where m is an arbitrary
integer. Figure 6 shows how a cycle of length 2 can induce either a cycle of length
4 or a set of two cycles of length 2 after a refinement. However, a cycle of length 4
could very well be induced by the cycle π2 if the latter is an element of Cym(F,G).
The following definition takes all these remarks into account.

Definition 30. Let π be a cycle between two graphings F,G, et πω = {πk | k ∈
N}∩Cym(F,G). Let (F ′,θ) be a refinement of F. We fix Rep(F ′,G) a choice of
representatives of circuits, and we write

E(F ′,θ)
π = {ρ = f ′0 g0 f ′1 g1 . . . f ′n gn ∈Rep(F ′,G) | ∃k ∈N,θ(ρ)=πk}

A function q from the set6 of cycles into RÊ0∪{∞} is refinement-invariant if for all
graphings F,G and simple refinement (F ′,θ) of F, the following equality holds:∑

ρ∈πω
q(ρ)= ∑

ρ∈E(F′ ,θ)
π

q(ρ)

6As in the graph setting, we work modulo a the renaming of edges. As a consequence, if the class
of cycles is not a priori a set, the function q will not depend on the name of edges, but only on the
weight and the transformation associated to the cycle. We can therefore define q as a function on the
set of equivalence classes of cycles modulo renamings of edges.
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This is the most general notion one could state and it allows one to define
what it means to be invariant under refinement in the general setting of circuits.
In the particular case we will be interested in, i.e. the case where one considers
only the set of 1-circuits, we can notice that the definition becomes much simpler.
Indeed, the set πω is reduced to the singleton {π}, and the equality that should be
verified becomes

q(π)= ∑
ρ∈E(F′ ,θ)

π

q(ρ)

Definition 31 (Circuit-Quantifying Maps). Let m denote a microcosm. A map q
from the set of m-cycles7 into RÊ0 ∪ {∞} is a (m-)circuit-quantifying map if:

1. for all representatives π1,π2 of a circuit π, q(π1)= q(π2);
2. q is refinement-invariant.

A circuit-quantifying map should therefore meet quite complex conditions and
it is a very natural question to ask wether such maps exist. We will define in
the next section a family of circuit-quantifying maps for the set of 1-circuits,
answering this question positively.

We will now define the measurement associated to a circuit-quantifying map.
If the formal definition depends on the choice of a family of representatives of
circuits, the result �F,G�m is obviously independent of it. This is a consequence
of the first condition in the definition of circuit-quantifying maps.

Definition 32 (Measure). Let q be a circuit-quantifying map. We define the
associated measure of interaction as the function �·, ·�m which associates, to all
couple of graphings F,G, the quantity:

�F,G�m = ∑
π∈Circm(F,G)

q(π)

Where Circm(F,G) depends on a choice of a set of representatives of circuits.

Lemma 33. Let F,G be two graphings, e ∈ EF , and F (e) a simple refinement along
e of F. Then:

�F,G�m = �F (e),G�m

Proof. We write θ : EF(e) → EF and { f , f ′} = θ−1(e). We will use the notations
introduced in Theorem 30.

We will also denote by O({e},G) the set of 1-circuits in Cym({e},G). Then the
family {πω}π∈O({e},G) is a partition of Cym({e},G): it is clear that if π,π′ are two
distinct elements of O({e},G), πω and (π′)ω are disjoint, and it is equally obvious
that Cym({e},G) = ∪π∈O({e},G)π

ω since the fact that πk ∈ Cym(F,G) implies that
π ∈Cym(F,G).

7This is the set of cycles realized by maps in the microcosm m.
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By definition, one has:

�F (e),G�m = ∑
π∈Cym(F(e),G)

q(π)

= ∑
π∈Cym(F(e)−{ f , f ′},G)

q(π)+ ∑
π∈Cym({ f , f ′},G)

q(π)

= ∑
π∈Cym(F−{e},G)

q(π)+ ∑
π∈O({e},G)

∑
ρ∈E(F(e) ,θ)

π

q(ρ)

= ∑
π∈Cym(F−{e},G)

q(π)+ ∑
π∈O({e},G)

∑
ρ∈πω

q(ρ)

= ∑
π∈Cym(F−{e},G)

q(π)+ ∑
π∈Cym({e},G)

q(π)

= ∑
π∈Cym(F,G)

q(π)

Which shows that �F (e),G�m = �F,G�m.

Theorem 34. Let F,G be graphings and (F ′,θ) a refinement of F. Then:

�F,G�m = �F ′,G�m

Proof. The argument is now usual. We first enumerate the edges of F, and denote
them by f0, . . . , fn, . . . . We then define:

Fn = {(ωF
f i

,φF
f i

)}n
i=0

(F ′)n = {(ωF ′
e ,φF ′

e ) | θ(e)= f i}n
i=0

Then ((F ′)n,θ) is a refinement of Fn, and an iterated use of the preceding lemma
shows that:

�(F ′)n,G�m = �Fn,G�m

Then:

�F ′,G�m = ∑
π∈Cym(F ′,G)

q(π)

= lim
n→∞

∑
π∈Cym((F ′)n,G)

q(π)

= lim
n→∞�(F ′)n,G�m

= lim
n→∞�Fn,G�m

= lim
n→∞

∑
π∈Cym(Fn,G)

q(π)

= ∑
π∈Cym(F,G)

q(π)

Finally, we showed that �F ′,G�m = �F,G�m.
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Theorem 35 (Trefoil Property). Let F,G,H be graphings satisfying the condition
λ(V F ∩VG ∩V H)= 0. Then:

�F,G :m:H�m +�G,H�m = �H :m:F,G�m +�H,F�m

Proof. We consider the expression �F,G :m:H�m +�G,H�m. We can suppose with-
out loss of generality that F (resp. G, resp H) is V F ∩ (VG ∪V H)-tough (resp.
VG∩(V F ∪V H)-tough, resp. V H∩(V F ∪VG)-tough). Indeed, if this is not the case
the preceding proposition allows us to replace F,G,H by the adequate carvings
without changing the measure of interaction.

The end of the proof is now very similar to the proof of the trefoil property for
graphs.

Let π be an element in Circm(F,G :m:H). Then π is an alternating path be-
tween F and G :m:H, for instance π= f0ρ0 f1 . . . fnρn. Now, each ρ i is an alternat-
ing path between G and H. Either each ρ i is an element of G in which case π is
an alternating path between F and G, and therefore corresponds to an element
in Circm(F,G), either at least one of the ρ i contains an edge of H. In this second
case, it is clear that π is an element of Cym(F :m:G,H) (we use Theorem 21 to
insure that alternating paths between F and G that appear as part of π have a
domain —hence a codomain — of strictly positive measure). Similarly, an ele-
ment of Cym(G,H) is an element of Cym(F :m:G,H).

We now will work with equivalence classes of graphings for the equivalence
relation ∼É. Theorem 34 and Theorem 29 insure us that the operations of plug-
ging and execution are well defined in this setting. As we showed, each circuit-
quantifying map gives rise to a measurement on graphings that satisfies the
trefoil property. One question remains unanswered at this point: do such func-
tions exists? The existence of such maps is not clear from their definition, which
is quite involved. The next section will give explicit constructions of such maps
exists in a very general setting.

5. Models of Multiplicative-Additive Linear Logic

We have now shown how to define execution between graphings and, given a
map m, a measurement between graphings. We have shown that the execution is
associative and that if m is a circuit-quantifying map, that is m satisfies a num-
ber of conditions, the trefoil property holds. We have therefore almost finished
the proof that for any microcosm m and monoid Ω one can construct a GoI model
based on Ω-weighted graphings in m. The last step is to show the existence of
circuit-quantifying maps, i.e. exhibit at least one measurement which satisfies
the trefoil property. In fact, we will show how to define, given a measured space
X satisfying some reasonable properties, one can define a whole family of such
circuit-quantifying maps, a family parametrized by the choice of a measurable
map m :Ω→RÊ0 ∪ {∞}.

We first define the notion of trefoil space, and prove some basic but essential
properties on them. We then define a family of functions and prove that they are
circuit-quantifying maps.
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5.1. Trefoil Spaces
We now introduce the notion of trefoil space. One of the conditions for a space

X to be a trefoil space is that it should be second-countable. This is justified by
the fact that we will need the measurability of the fixed-point set of a measurable
transformation on X . We will indeed use the following theorems.

Proposition 36 (Dravecký [Dra75]). Let (Y ,T ) be a measurable space. The fol-
lowing statements are equivalent:

• (Y ,T ) has a measurable diagonal;
• For every measurable space (X ,S ) and every measurable mapping f : X →

Y , the graph of f is measurable.

Proposition 37 (Dravecký [Dra75]). Let (Y ,G ) be a topological space and T a
σ-algebra generated by G . Then (Y ,T ) has a measurable diagonal if and only if
there is a topology H ⊂G such that (Y ,H ) is a second-countable T0 space.

Now, we will therefore ask our spaces to be second-countable8 in order to
obtain the measurability of the fixed point sets of measurable transformations.
Moreover, our measurements will be defined using integrals, and we thus need a
space in which one can define a reasonable notion of integral. In particular, we
will ask our space to be Hausdorff9, and endowed with its Borel σ-algebra and a
σ-additive Radon measure.

Definition 38. Let (X ,T ) be a second-countable Hausdorff space, and (X ,B,µ)
be a measured space where B is the Borel σ-algebra and µ a σ-additive Radon
measure on (X ,B). Such a measured space will be referred to as a trefoil space.

Proposition 39. Let X be a trefoil space. For all measurable map φ : X → X , the
fixed point set F (φ)= {x ∈ X | φ(x)= x} is measurable.

Proof. The point is that the diagonal ∆= {(x, x) | x ∈ X } ⊂ X × X is a measurable
set for the product σ-algebra. This is true because of second countability. Then,
we have that F (φ) = F−1(∆) for F(x) = (x, f (x)) measurable from X to X × X .
Hence F (φ) is measurable.

Corollary 39.1. Let X be a trefoil space and φ : X → X be a measurable map.
Then the following map is measurable:

ρφ :


X → N∪ {∞}
x 7→ inf{n ∈N | φn(x)= x} if {n ∈N | φn(x)= x} 6= ;
x 7→ ∞ otherwise

Proof. We define X i = ρ−1
φ (i) for all integer i ∈N. Then it is clear that X i is equal

to the fixed point set F (φi) of φi. Applying Theorem 39, we deduce that X i is
measurable. Finally, the set X∞ = X −∪i∈NX i is also measurable.

8And satisfying the first axiom of separation T0, but this will be strengthened.
9In fact, this restriction could be weakened, as integration with respect to Radon measures can be

defined in non-Hausdorff spaces. However it is not clear that the weakening this condition would be
of interest. We therefore consider the case of Hausdorff spaces, keeping in mind that this is not an
essential condition.
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5.2. Circuit-Quantifying Maps for Measure-Inflating Transformations
We have chosen to explain the construction of circuit-quantifying maps on

the microcosm of measure-inflating transformations first. Indeed, this particular
case allows for a simpler definition of the maps which should be more intuitive
for the reader. We will then built on the results of this section to define circuit-
quantifying maps in the general setting.

Definition 40. Let φ : X → X be a non-singular transformation. We define the
measurable set:

{φ}= ⋂
n∈N

φn(X )∩φ−n(X )

Definition 41. Let π be a cycle in the weighted graphing F. Then the map φπ
restricted to X = {φπ} is a non-singular transformation X → X . We can then
define the map ρφπ on X . We define the support supp(π) of π as the set ρ−1

φπ
(N).

Remark. In the author’s PhD, a similar work was presented, only restricted to the
particular case of the microcosm of measure-preserving maps on the real line. We
showed in this case the existence of a family of circuit-quantifying maps. Indeed,
for any measurable map m :Ω→R∪ {∞}, we defined qm as the function:

qm :π 7→
∫

supp(π)

m(ω(π)ρφπ (x))
ρφπ (x)

dλ(x)

This function was a circuit-quantifying map for the above mentioned microcosm.
As it turns out, this approach can be generalized to the microcosm of measure-
preserving maps on any trefoil space by using the very same formula.

We now want to extend these circuit-quantifying maps to the microcosm of
measure-inflating maps10 on any trefoil space (i.e. transporting µ to a scalar
multiple of µ). One easy way to do so is by considering an extension using push-
forward measures. Recall that if µ is a measure on X , and f : X →Y a measurable
map, then the push-forward measure µ∗ f is defined by µ∗ f (A) = µ( f −1(A)) and
satisfies, for all g measurable such that g ◦ f is integrable (this is equivalent to
saying that g is µ∗ f integrable):∫

Y
g(y)dµ∗ f (y)=

∫
X

g( f (x))dµ(x)

Definition 42. Let (X ,B,µ) be a trefoil space, and m :Ω→ RÊ0 ∪ {∞} be a mea-
surable map. We define the function:

qm :π= e0 . . . en 7→ 1
n+1

n∑
i=0

∫
supp(π)

m(ω(π)ρφπ (x))
ρφπ (x)

dλ∗φn ◦φn−1 ◦ · · · ◦φi(x)

10We use this terminology for maps that transport the measure µ onto a scalar multiple of µ.
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Corollary 42.1. Let (X ,B,µ) be a trefoil space, m the microcosm of measure-
preserving maps, and m :Ω→ RÊ0 ∪ {∞} be a measurable map. The map qm can
be expressed as:

qm :π 7→
∫

supp(π)

m(ω(π)ρφπ (x))
ρφπ (x)

dλ(x)

Proof. If all φk are measure-preserving maps, then we have, for all integer j, the
following equality:∫

supp(π) j

m(ω(π) j)
j

dλ∗φn ◦φn−1 ◦ · · · ◦φi(x)=
∫

supp(π) j

m(ω(π) j)
j

dλ(x)

We can then compute:

qm(π) = 1
lg(π)

lg(π)−1∑
i=0

∫
supp(π)

m(ω(π)ρφπ (x))
ρφπ (x)

dλ∗φn ◦φn−1 ◦ · · · ◦φi(x)

= 1
lg(π)

lg(π)−1∑
i=0

∑
j∈N

∫
supp(π) j

m(ω(π) j)
j

dλ∗φn ◦φn−1 ◦ · · · ◦φi(x)

= ∑
j∈N

lg(π)−1∑
i=0

∫
supp(π) j

1
lg(π)

m(ω(π) j)
j

dλ∗φn ◦φn−1 ◦ · · · ◦φi(x)

= ∑
j∈N

lg(π)−1∑
i=0

∫
supp(π) j

1
lg(π)

m(ω(π) j)
j

dλ(x)

= ∑
j∈N

∫
supp(π) j

m(ω(π) j)
j

dλ∗φn ◦φn−1 ◦ · · · ◦φi(x)

=
∫

supp(π)

m(ω(π)ρφπ (x))
ρφπ (x)

dλ(x)

Lemma 43. For all measurable map m, the function qm has a constant value on
the equivalence classes of cycles modulo the action of cyclic permutations.

Proof. Let π = e0e1 . . . en be a cycle, supp(π) its support. For all i ∈ N, we write
(supp(π))i = ρ−1

π (i). Consider now π1 = e1e2 . . . ene0, and supp(π1) its support. We
define (supp(π1))i = ρ−1

π1 (i). We will first show that (supp(π1))i = φe0 ((supp(π))i)
for all integer i.

Let us now pick x ∈ (supp(π1))i, which means that x ∈ supp(π1) and φi
π1 (x)= x.

Since φπ1 (x) = φe0 (φe1...en (x)), we have x = φe0 (φe1...enφ
i−1
π1 (x)). We now define

y = φe1...enφ
i−1
π1 (x)) and we will show that y ∈ (supp(π))i. Since φe0 (y) ∈ supp(π1),
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we have φe0 ∈ Se1...en , and therefore y ∈ Sπ. Moreover,

φk
π(y) = φi

π(φe1...enφ
i−1
π1 (x))

= φπ(φi−2
π (φe1...enφ

i−1
π1 (x)))

= φe1...en (φe0 (φi−1
π (φe1...en (φi−1

π1 (x)))))

= φe1...en (φi
π1 (φi−1

π1 (x)))

= φe1...en (φi−1
π1 (φi

π1 (x)))

= φe1...en (φi−1
π1 (x))

= y

Thus y is an element in supp(π1), and more precisely an element in (supp(π1))i.
We therefore showed that (supp(π1))i ⊂φe0 ((supp(π))i).

To show the converse inclusion, we take x = φe0 (y) with y ∈ (supp(π))i. Then
y ∈ Sπk and therefore y ∈ Se0 e1...en e0 . Finally φe0 (y) ∈ Sπ1 . Moreover, we have:

φk
π1 (x) = φk

π1 (φe0 (y))

= φe0 (φk
π(y))

= φe0 (y)

= x

As a consequence, x is an element in (supp(π))i, which shows the converse inclu-
sion.

More generally, if πk denotes the cycle ek ek+1 . . . ene0 . . . ek−1, we have

φe0...ek (supp(π)i)= supp(πk)i

A similar argument shows that φen (supp(πn)i)= supp(π)i.
We then compute:

qm(π) = 1
lg(π)

lg(π)−1∑
i=0

∫
supp(π)

m(ω(π)ρφπ (x))
ρφπ (x)

dλ∗φen ◦φen−1 ◦ · · · ◦φe i (x)

= 1
lg(π)

lg(π)−1∑
i=0

∑
j∈N

∫
supp(π) j

m(ω(π) j)
j

dλ∗φen ◦ · · · ◦φe i (x)

= 1
lg(π)

lg(π)−1∑
i=0

∑
j∈N

∫
φ−1

en (supp(π) j)

m(ω(π) j)
j

dλ∗φen−1 ◦ · · · ◦φe i (x)

= 1
lg(π)

lg(π)−1∑
i=0

∑
j∈N

∫
supp(πn) j

m(ω(π) j)
j

dλ∗φen−1 ◦ · · · ◦φe i (x)

= 1
lg(π)

lg(π)−1∑
i=0

∫
supp(πn)

m(ω(π)ρφπ (x))
ρφπ (x)

dλ∗φen−1 ◦ · · · ◦φe i (x)

One can now notice that λ∗φn ◦φn−1 ◦ · · · ◦φ0 = λ. Indeed, φπ is measure-
inflating as a composition of measure-inflating maps. But since it has its domain
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equal to its codomain, it is necessarily measure-preserving. This implies that for
all measurable map f : X →R:∫

supp(φpi)
f (x)dλ(x)=

∫
supp()φpi

f (x)dλ∗φen−1 ◦φen−2 ◦ · · · ◦φe0 ◦φen (x)

Using this equality, we compute:

qm(π) = 1
lg(π)

∫
supp(πn)

m(ω(π)ρφπ (x))
ρφπ (x)

dλ(x)+ . . .

· · ·+ 1
lg(π)

lg(π)−2∑
i=0

∫
supp(πn)

m(ω(π)ρφπ (x))
ρφπ (x)

dλ∗φen−1 ◦ · · · ◦φe i (x)

= 1
lg(π)

∫
supp(πn)

m(ω(π)ρφπ (x))
ρφπ (x)

dλ∗φen−1 ◦φen−2 ◦ · · · ◦φe0 ◦φen (x)+ . . .

· · ·+ 1
lg(π)

lg(π)−2∑
i=0

∫
supp(πn)

m(ω(π)ρφπ (x))
ρφπ (x)

dλ∗φen−1 ◦ · · · ◦φe i (x)

= qm(πn)

Thus, by induction, qm(π)= qm(π j) for all integer j. We can now conclude that qm
takes a constant value over the equivalence classes of cycles modulo the action of
cyclic permutations.

Lemma 44. For all measurable map m, the function qm is refinement-invariant.

Proof. Let F,G be weighted graphings, and F (e) a simple refinement of F along
e ∈ EF . We will denote by f , f ′ the two elements of F (e) which are the decomposi-
tions of e. Up to almost everywhere equality, one can suppose that S f ∩S f ′ =;.
Let us now chose π a representative of a 1-circuit π̄. Since we are working with
1-circuits, the set πω is equal to {π}. We suppose that π contains occurrences of
e, and write π = ρ0e i0ρ1e i1 . . . e in−1ρn where for all j, e i j = e and ρ j is a path
(where the paths ρ0 and ρn may be empty). We denote by Eπ the set of 1-cycles
µ = ρ0εi0

0
ρ1εi0

1
. . .εi0

n−1
ρnρ0εi1

0
ρ1 . . .ε1

n−1ρn . . .ρ0εik
0

. . .εik
n−1
ρn where k ∈ N — which

we will denote by lg(µ), and where for all values of l,m, εim
l

is either equal to f

or equal to f ′. We will denote by Ēπ the set of 1-circuits in Eπ, i.e. the set E(F,θ)
π

introduced in Theorem 30.
Let us pick x ∈ supp(π)−ρ−1

π (∞). Then x ∈ (supp(π))k for a given value k in N,
i.e. φk

π(x) = x. Since Se = S f ∪S f ′ , we have, for each occurrence e i p of e and each
integer l:

φk
π =φl

π ◦φρp+1 e i p+1 ...e inρn ◦φe i p
◦φρ0 e i0ρ1...e i p−1ρ j ◦φk−l−1

π

Then φρ0 e...ρ j ◦φk−l−1
π (x) is either an element in S f or an element in S f ′ . For

each occurrence e i of e, we will write di p,l = f or di p,l = f ′ according to wether
φρ0 e...ρ j ◦φk−l−1

π (x) is an element in S f or an element in S f ′ . We then obtain, for
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all integer 0 É l É k, paths νl = ρ0di0,lρ1di1,l . . .din−1,lρn. By concatenation, we
can define a cycle ν = ν0ν1 . . .νk. This cycle is a d-cycle for a given integer d,
i.e. ν = π̃d where π̃ is a 1-cycle in Eπ. It is clear from the definition of π̃ that
x ∈ supp(π̃) and that, for all 1-cycle µ in Eπ, x 6∈ supp(µ) when µ 6= π̃.

Moreover, it is clear that if x ∈ supp(µ) for a given 1-cycle µ ∈ Eπ, then one
necessarily has x ∈ supp(π). We deduce from this that the family (supp(µ))µ∈Eπ

is a partition of the set supp(π). Notice that ωµ = ω
lg(µ)
π . Moreover, for all x ∈

supp(µ), one has ρφµ (x)× lg(µ)= ρφπ (x), and therefore ω
ρφπ (x)
π =ωρφµ (x)

µ .
We now notice that if µ= µ1 . . .µlg(µ) ∈ Eπ, and if σ is the cyclic permutations

over {1, . . . , lg(µ)} such that σ(i)= i+1, then the 1-cycles

µσk =µσk(1)µσk(2) . . .µσk(lg(µ))

for 0 É k É lg(µ)−1 are pairwise disjoint elements in Eπ. Indeed, these are 1-
cycles since µ is a 1-cycle, and they are pairwise disjoint because if µσk = µσk′
(supposing that k > k′), we can show that µσ(k−k′) =µ and that k−k′ divides lg(µ),
which contradicts the fact that µ is a 1-cycle.

We can now deduce that:∫
supp(π)

m(ω
ρφπ (x)
π )

ρφπ (x)
dλ∗φen ◦ · · · ◦φe i (x)

= ∑
µ∈Eπ

∫
supp(µ)

m(ω
ρφπ (x)
π )

ρφπ (x)
dλ∗φen ◦ · · · ◦φe i (x)

= ∑
µ∈Eπ

∫
supp(µ)

m(ω
ρφµ (x)
µ )

ρφπ (x)
dλ∗φen ◦ · · · ◦φe i (x)

= ∑
µ̄∈Eπ

∫
supp(µ̄)

l g(µ̄)m(ω
ρφµ̄ (x)
µ̄ )

ρφπ (x)
dλ∗φen ◦ · · · ◦φe i (x)

= ∑
µ̄∈Eπ

∫
supp(µ̄)

l g(µ̄)m(ω
ρφµ̄ (x)
µ̄ )

ρφµ̄ (x)× l g(µ̄)
dλ∗φen ◦ · · · ◦φe i (x)

= ∑
µ̄∈Ēπ

∫
supp(µ̄)

m(ω
ρφµ̄ (x)
µ̄ )

ρφµ̄ (x)
dλ∗φen ◦ · · · ◦φe i (x)

We will use in this computation the fact that if µ̄ ∈ Ēπ, the associated map
φµ̄ is equal to φk

π for k is defined by lg(µ̄) = k× lg(π). We will also need i.e. the
computation to name the edges in an element µ̄ ∈ Ēπ; we will denote them by
f0, f1, . . . , fp where p = lg(µ̄). Using this notation and the preceding remark, we
have that for all measurable map f : X →R and all integer l ∈ {0, . . . ,k−1}:∫

supp(µ̄)
f (x)dλ∗(φπ)l◦φen◦φen−1◦· · ·◦φe i (x)=

∫
supp(µ̄)

f (x)dλ∗φ fp◦φ fp−1◦· · ·◦φ f i+(k−l)lg(π)
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Using what we have proved up to now, we can now compute qm:

qm(π) = 1
lg(π)

lg(π)−1∑
i=0

∫
supp(π)

m(ω(π)ρφπ (x))
ρφπ (x)

dλ∗φen ◦φen−1 ◦ · · · ◦φe i (x)

= 1
lg(π)

lg(π)−1∑
i=0

∑
µ̄∈Ēπ

∫
supp(µ̄)

m(ω
ρφµ̄ (x)
µ̄ )

ρφµ̄ (x)
dλ∗φen ◦ · · · ◦φe i (x)

= ∑
µ̄∈Ēπ

1
lg(µ)

 lg(µ)
lg(π)

lg(π)−1∑
i=0

∫
supp(µ̄)

m(ω
ρφµ̄ (x)
µ̄ )

ρφµ̄ (x)
dλ∗φen ◦ · · · ◦φe i (x)


= ∑

µ̄∈Ēπ

1
lg(µ)


lg(µ)
lg(π)−1∑

l=0

lg(π)−1∑
i=0

∫
supp(µ̄)

m(ω
ρφµ̄ (x)
µ̄ )

ρφµ̄ (x)
dλ∗φen ◦ · · · ◦φe i (x)


= ∑

µ̄∈Ēπ

1
lg(µ)


lg(µ)
lg(π)−1∑

l=0

lg(π)−1∑
i=0

∫
supp(µ̄)

m(ω
ρφµ̄ (x)
µ̄ )

ρφµ̄ (x)
dλ∗φl

π ◦φen ◦ · · · ◦φe i (x)


= ∑

µ̄∈Ēπ

1
lg(µ)

lg(µ)−1∑
i=0

∫
supp(µ̄)

m(ω
ρφµ̄ (x)
µ̄ )

ρφµ̄ (x)
dλ∗φ fp ◦φ fp−1 ◦ · · · ◦φ f i (x)

= ∑
µ̄∈Ēπ

qm(µ̄)

Which shows that qm is refinement-invariant.

The two preceding lemmas have as a direct consequence the following propo-
sition which shows that we defined a family of circuit-quantifying maps.

Proposition 45. Let (X ,B,µ) be a trefoil space, m the microcosm of measure-
inflating maps, and m :Ω→ RÊ0 ∪ {∞} be a measurable map. The function qm is
a m-circuit-quantifying map.

5.3. Circuit-Quantifying Map in the General Case
This result can now be extended to the microcosm of all non-singular Borel

preserving transformations (the macrocosm on X ). We first show an easy lemma.

Lemma 46. If ρ : X →N is measurable and for all i ∈N the maps φi are measur-
able, then the following map is measurable:

f (x)=
ρ(x)∑
i=0

φi(x)

Proof. Indeed, if X i denotes the measurable set ρ−1(i) for all integer i, then the
restriction of f to X i is equal to the finite sum

∑i
k=0φi(x) which is measurable on

X i.
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This lemma insures us that the following definition makes sense.

Definition 47. Let X be a trefoil space, and m :Ω→RÊ0 ∪ {∞} be a measurable
function. We define the map:

q̄m :π= e0 . . . en 7→
n+1∑
j=0

∫
supp(π)

ρφπ (x)∑
k=0

m(ω(π)ρφπ (φk
π(x)))

(n+1)ρπ(x)ρφπ (φk
π(x))

dλ∗φen ◦φen−1 ◦· · ·◦φe j (x)

We now have to check that Theorem 43 and Theorem 44 still hold in this gen-
eral setting. This can easily be seen because of the following computation, where
we use the convention that ek denote ek mod n+1 and π̃i denotes the restriction of
πi, the i-times concatenation of π, to supp(π)i:

q̄m(π) =
lg(π)∑
j=0

∫
supp(π)

ρφπ (x)∑
k=0

m(ω(π)ρφπ (φk
π(x)))

lg(π)ρπ(x)ρφπ (φk
π(x))

dλ∗φen ◦φen−1 ◦ · · · ◦φe j (x)

=
lg(π)∑
j=0

∑
i∈N

∫
supp(π)i

i∑
k=0

m(ω(π)ρφπ (φk
π(x)))

lg(π)iρφπ (φk
π(x))

dλ∗φen ◦φen−1 ◦ · · · ◦φe j (x)

=
lg(π)∑
j=0

∑
i∈N

i∑
k=0

∫
supp(π)i

m(ω(π)ρφπ (φk
π(x)))

lg(π)iρφπ (φk
π(x))

dλ∗φen ◦φen−1 ◦ · · · ◦φe j (x)

= ∑
i∈N

lg(π)∑
j=0

1
lg(π)i

i∑
k=0

∫
supp(π)i

m(ω(π)ρφπ (φk
π(x)))

ρφπ (φk
π(x))

dλ∗φen ◦φen−1 ◦ · · · ◦φe j (x)

= ∑
i∈N

lg(π)∑
j=0

1
lg(π)i

i∑
k=0

∫
supp(π)i

m(ω(π)ρφπ (x))
ρφπ (x)

dλ∗φk
π ◦φen ◦φen−1 ◦ · · · ◦φe j (x)

= ∑
i∈N

lg(πi)∑
j=0

1
lg(πi)

∫
supp(π)i

m(ω(π)ρφπ (x))
ρφπ (x)

dλ∗φen×i ◦φen×i−1 ◦ · · · ◦φe j (x)

= ∑
i∈N

qm(π̃i)

From this result, and the fact that φπ̃i is measure-preserving, one can adapt the
proofs of Theorem 43 and Theorem 44, and show the following theorem which,
together with Theorem 22 and Theorem 35, finishes the proof of Theorem 1.

Theorem 48. Let (X ,B,µ) be a trefoil space, m the associated macrocosm, and
m :Ω→ RÊ0 ∪ {∞} be a measurable map. The map q̄m is a m-circuit-quantifying
map.

Example. This setting is a far-reaching extension of our previous work on di-
rected weighted graphs [Sei12a]. Indeed, this previous framework is recovered
as the special case of a discrete space endowed with the counting measure. In
this case, one can notice that the map ρφπ is constantly equal to 1 and therefore
the family of measurement just defined can be computed with the simpler expres-
sion q̄m(π) = m(ω(π)). The family of measurements defined from these functions
thus turn out to be equal to the family of measurement considered on graphs
[Sei12a]. In particular, the measurement defined from the map q̄m =− log(1− x)
corresponds to Girard’s measurement based on the determinant [Sei12b].
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Example. Let us consider the trefoil space X = [0,1] endowed with Lebesgue
measure, and the microcosm of measure-preserving maps. Since each measure-
preserving map on X defines a unitary acting on the Hilbert space L2(X ) by
pre-composition, it is easy to associate to any C-weighted graphing G a linear
combination [G] of partial isometries on L2(X ). This might not define an oper-
ator in general since the obtained operator might not be bounded, but we will
restrict the discussion to the set of graphings for which [G] is an operator. This
set of graphings can be shown to have the following properties:

• it contains, for each integer k, the “k× k-matrices algebra11” of graphings
constructed from translations between intervals I l = [ l

k , l+1
k ], i.e. directed

weighted graphs on k vertices;

• it has a trace: for each f ∈m one can define tr( f ) as the measure of the set
of fixed points of f ; this trace, when restricted to the k× k matrix algebra
defined above yields the usual (normalized, i.e. tr(1)= 1) trace of matrices;

Thus, the set of such graphings plays the rôle of the type II1 hyperfinite factor.
The same reasoning shows that the C-weighted graphings in the microcosm of
measure-preserving maps on X = R with the Lebesgue measure play the rôle of
the type II∞ hyperfinite factor.

Remark. We did not show here a formal correspondance, but a proof of such a
result most surely exists. In particular, in the case where X is the real line, it is
known that the type II∞ factor arises as the von Neumann algebra generated by:

• elements of L∞(R) acting on L2(R) by multiplication;

• the unitaries induced by precomposition by rational translation.

We did not think however that such a result would be of great interest in this
paper, as we already know from the discrete case discussed above and previous
results [Sei12b, Sei12a] that our setting generalizes Girard’s constructions using
operator algebras.

5.4. Example: Unification “Algebras”
As already mentioned, it can be shown using previous results [Sei12b, Sei12a]

that the framework of graphing generalizes Girard’s constructions based on oper-
ators [Gir89a, Gir88, Gir11]. We will now explain how the alternative approach
he uses, namely using “algebras of clauses” [Gir95b] or “unification algebra”
[Gir13a, Gir13b], is also a particular case of our constructions on graphings.

We thus show how Girard’s notions of flows and wirings can be understood in
terms of graphings. This gives intuitions on what he calls the “unification alge-
bra” which is nothing more than the algebra generated by the set of graphings
on the adequate space B(Σ).

In the following we fix a countable (infinite) set of variables Var.

11Of course, this is not the matrix algebra, but one can show that the operator [G] associated to
such a graphing G is the image of a k×k matrix through a well-chosen injective morphism.
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Definition 49. A signature is a tuple (Const,Fun) where Const contains symbols
of constants and Fun contains a finite number of symbols of functions. We say the
signature is free if the set Const is empty.

Definition 50. The terms defined by a signature Σ are defined by the grammar:

T := x | c | f (T, . . . ,T) (x ∈Var, c ∈Const, f ∈Fun)

A closed term is a term that does not contain any variables. A term which is not
closed is said to be open.

Definition 51. If Σ is a free signature, there are no closed terms. In this partic-
ular case, we define the set of closed terms as the trees defined co-inductively as
follows:

T := f (T, . . . ,T) ( f ∈Fun)

We can understand these closed terms as infinite rooted trees labelled by function
symbols.

Definition 52. Let Σ be a free signature. We define the topological space B(Σ)
as the set of closed terms considered with the topology induced by the set of open
terms: O (u(x1, . . . , xn) is defined as the set of closed terms u(t1, . . . , tn) where the
ti are closed terms. This space can be endowed with a σ-finite radon measure
λ defined inductively following the definition of open terms. We define for each
enumeration e : Fun→N∗:

λe(xi) = 1 when xi ∈Var
λe( f i(t1, . . . , tki ) = 1

2e( f i )

∑ki
i=1λe(ti)

Remark. One can define other measures (which are more satisfying in some re-
spect) in some specific cases:

• If the set Fun is finite, we write K = ∑
f i∈Fun ki, where ki is the arty of f i,

and define:

λ(xi) = 1 when xi ∈Var
λ( f i(t1, . . . , tki ) = 1

K
∑ki

i=1λ(ti)

• If the set Fun is infinite but the number of functions of a given arity k is
finite (we denote it by ak), we can define:

λ(xi) = 1 when xi ∈Var
λ( f i(t1, . . . , tki ) = 1

ai×2ki+1

∑ki
i=1λ(ti)

Definition 53. Let Σ be a non-free signature. We define the topological space
B(Σ) as the set of closed terms endowed with the discrete topology. This space
can be endowed with the counting measure.

Theorem 54. For any signature Σ, the space B(Σ) is a trefoil space.
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Proof. It is clear in the case of a non-free signature. In the case of a free signa-
ture, the space is clearly Hausdorff. It is second-countable since we defined the
topology as induced by a countable number of open sets.

Definition 55. A flow is an ordered pair u ( t, where u, t are terms with the
same variables. A wiring is a sum of flows.

Definition 56. A flow u(x1, . . . , xk)( t(x1, . . . , xk, xk+1, . . . , xn) represents the fol-
lowing non-singular borel-preserving map from the open O (t) to the open O (u):

[u( t] := t(T1, . . . ,Tk) 7→ u(T1, . . . ,Tk)

Given a wiring W , we can therefore associate a graphing [W] to it.

Theorem 57. Let Σ be a signature. The map W 7→ [W] commutes with execution.

Proof. This is shown easily by looking at the definition of composition of flows. A
global substitution is a map from the set of variables to the set of terms, and we
denote by vθ the result of the substitution of each variable xi in v by the term
θ(xi). We say two terms v,v′ are unifiable when there exists a global substitution
θ such that vθ = v′θ. In this case, there exists a principal unifier, i.e. a substitu-
tion θ0 such that any substitution θ satisfying vθ = v′θ can be factorized through
θ0, i.e. there exists θ′ such that θ = θ0θ

′. The composition (u( v)(v′(w) is then
equal to 0 if v and v′ are not unifiable, and to uθ0 (wθ0 if they are unifiable and
θ0 is the principal unifier.

Now, it is not hard to see that two terms u,v are unifiable if and only if the
open sets O (u) and O (v) have a non-trivial (of strictly positive measure) inter-
section. This intersection is then an open set equal to O (uθ0) = O (vθ0) where
θ0 is the principal unifier of u and v. Thus composition of flows corresponds to
considering the partial composition of the associated measurable maps.

This implies that the composition of wirings W ◦W ′ = (
∑

i∈I f i) ◦ (
∑

j∈J g j),
which is defined as (

∑
i∈I, j∈J f i ◦ g j, corresponds to taking the graphing of alter-

nating paths of length 2 between the graphings [W] and [W ′].
Finally, the execution formula12 Ex(U ,σ)= (1−σ2)U(1−σU)−1(1−σ2), which

is computed as:

Ex(U ,σ)= (1−σ2)

(∑
iÊ0

U(σU)k

)
(1−σ2)

corresponds to the execution of graphings [U] :m: [σ] because:

• the conjugation by (1−σ2) is used to restrict the result to wirings living
outside of the cut, which is dealt with in the execution of graphings by con-
sidering the restriction of paths φ to their outside component [φ]o

o;

12We restrict ourselves here to the simple case of the execution formula where σ corresponding
to the modus ponens. The case of the more involved formula corresponding to the general cut rule
obviously holds, as it can be recovered from the simpler one considered here.
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• for each integer k, the terms U(σU)k correspond to the set of alternating
paths of length 2k+1 as we already noticed, which are the only possible
lengths of alternating paths in this case13

Thus the embedding W 7→ [W] commutes with execution, i.e. the execution of
graphings computes the execution formula on wirings.

This shows that the notion of graphing is a non-trivial generalization of the
notion of wirings considered lately by Girard. In particular, the construction of
GoI models based on wirings can be expressed in terms of graphings. Moreover,
the notion of graphing is much more powerful than Girard’s notion of wiring. In-
deed, the syntactic definitions of wiring do not allow for the quantitative features
of graphings, namely the family of measurement considered above. In particular,
the only definable notion of orthogonality one can consider on wiring is defined
as the nilpotency of the product of two wirings, which corresponds to the mea-
surement defined above with the dull circuit-quantifying map m(x)=∞.

5.5. Digression: Topological Graphings
One generalization of Girard’s framework based on unification would be to

consider a weakened definition of flow t ( u where the variables of u and t do
not match exactly but only the inclusion Var(u) ⊂ Var(t) holds. In this case, the
interpretation of flows as non-singular maps is no longer valid as the “weakening”
thus allowed makes it possible that the inverse image of a set of measure zero
is of strictly positive measure. This is seen by taking the inverse image through
[u(x)( v(x, y)] of a closed term u(T) in the free signature case.

This mismatch is due to the fact that in the process of generalizing the notion
of flows, we stepped outside of measure theory. The map interpreting the flows
are no longer non-singular (they are still measurable though, but non-singularity
is necessary to obtain the associativity of execution), but they are continuous. A
topological notion of graphing, corresponding somehow to a notion of pseudo-
monoid to recall Cartan’s notion of pseudo-group [Car04, Car09, KN96], could be
applied here instead of our measurable approach.

Indeed, define a topological graphing on a topological space X as a countable
family F = {(ωF

e ,φF
e : SF

e → TF
e )}e∈EF , where, for all e ∈ EF (the set of edges):

• ωF
e is an element of Ω, the weight of the edge e;

• SF
e and TF

e are open sets, the source and target of the edge e;
• φF

e is an open continuous map from SF
e to TF

e , the realization of the edge e.
Then the notions of paths and cycles can be defined as in the more complex

case of measurable graphings considered until now. We can therefore define the
execution between topological graphings and show associativity. We note here
that the mismatch with associativity in the measurable case which arose from the
non-singularity is no longer a problem since we do not quotient by sets of measure
0 anymore. In the same way we defined refinements, one can define refinements

13This is due to the fact that we restricted to the simpler case of the execution formula, see foot-
note 12.
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in this topological setting and define a corresponding equivalence relation. It is
easily shown that execution is compatible with this equivalence relation, and we
therefore can mimic almost all results of Section 3 and Section 4, forgetting about
almost-everywhere equality. However, the contents of Section 5 depends greatly
on the fact that we are dealing with measurable spaces. The only obvious way
to obtain the trefoil property in the topological case is therefore to consider the
measurement to be ∞ when there exists a cycle and 0 otherwise. This means that
the only sensible notion of orthogonality one can define corresponds to nilpotency.
Of course, one may be able to define other measurements, but it would be much
more difficult than in the measurable case where we can use the radon measure
on the space.

This explains why, even though one could do all the constructions we consid-
ered in this easier setting, we chose to work with measured spaces. The fact that
the topological approach is easier comes with its drawback: the topological set-
ting is much poorer and we would miss the quantitative flavor we obtained here.
In particular, we loose the generalization of the determinant measure, as well as
any measurement built on circuit-quantifying maps which take values outside
{0,∞}.

6. The Real Line and Quantification

We now consider any microcosm on the real line endowed with Lebesgue
measure which contains the microcosm of affine14 maps. We fix Ω =]0,1] en-
dowed with the usual multiplication and we chose any measurable map m :Ω→
RÊ0 ∪ {∞} such that m(1) = ∞. Then, as we showed in the preceding section,
the map qm is a m-circuit-quantifying map. We can thus define the measure-
ment �·, ·�m corresponding to qm following Theorem 32. This measurement and
the execution of graphings satisfy the trefoil property. We will now show how to
interpret in this case multiplicative-additive linear logic with second-order quan-
tification.

As remarked earlier, the set of Ω-weighted graphings in the microcosm of
measure-preserving maps on the real line with Lebesgue measure corresponds
intuitively to the hyperfinite type II∞ factor. We are therefore considering an
extension of the setting of Girard’s hyperfinite geometry of interaction by con-
sidering the larger microcosm of affine transformations. The general result we
obtained earlier allows us to do so while still disposing of a measurement, which
in the particular case of the map m(x)=− log(1−x) generalizes the measurement
based on Fuglede-Kadison determinant [FK52]. We point out that this would cor-
respond in Girard’s setting to extend the set of operators considered (i.e. consider
an algebra A containing strictly the type II∞ hyperfinite factor), while still dis-
posing of the Fuglede-Kadison determinant. The existence of such an extension
is not clear, and should it exists, its definition would be far from trivial!

14An affine map is a map x 7→αx+β where α,β are real numbers. These maps are the only ones we
will use in order to interpret proofs of MALL2.
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The extension to affine maps gives us the possibility of defining real second-
order quantification, which was not the case of Girard in his hyperfinite GoI
model. Indeed, the fact that projects — which interpret proofs — have a loca-
tion forces him to consider quantification over a given location, something that
we also consider here. However, Girard cannot interpret the right existential in-
troduction (from ` B[A/X ],Γ deduce ` ∃X B,Γ) correctly because the location of
the formula A and the location of the variable X might not have the same size15!
We bypass this problem here by using measure-inflating faxes, i.e. bijective bi-
measurable transformations that multiply the size by a scalar.

6.1. Basic Definitions
The model is based on the same constructions as the one described in pre-

vious work [Sei12a]. We recall the basic definitions of projects and behaviors,
which will be respectively be used to interpret proofs and formulas, as well as
the definition of connectives.

• a project of carrier V A is a triple a = (a,V A , A), where a is a real number,
A = ∑

i∈I A αA
i A i is a finite formal (real-)weighted sum of graphings of car-

rier included in V A ; here the projects considered always have a carrier of
finite measure;

• two projects a,b are orthogonal when:

¿a,bÀm = a(
∑

i∈I A
αB

i )+b(
∑

i∈IB
αB

i )+ ∑
i∈I A

∑
j∈IB

αA
i α

B
j �A i,B j�m 6= 0,∞

• the execution of two projects a,b is defined as (∆ denotes the symmetric
difference):

a ::b= (¿a,bÀm,V A∆V B,
∑

i∈I A

∑
j∈IB

αA
i α

B
j A i :m:B j)

• if a is a project and V is a measurable set such that V A ⊂ V , we define the
extension a↑V as the project (a,V , A);

• a behavior A of carrier V A is a set of projects of carrier V A which is equal
to its bi-orthogonal A‹‹ , and such that for all λ ∈R,

a ∈A ⇒ a+λ0 ∈A
b ∈A‹ ⇒ b+λ0 ∈A‹

• we define, for every measurable set the empty behavior of carrier V as the
empty set 0V , and the full behavior of carrier V as its orthogonal TV =
{a | a of support V };

15The restriction to operators in the type II∞ factor implies that unitaries preserve the sizes.
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• if A,B are two behaviors of disjoint carriers, we define:

A⊗B = {a ::b | a ∈A,b ∈B}‹‹
A(B = {f | ∀a ∈A, f ::a ∈B}

A⊕B = ({a↑V A∪V B | a ∈A}‹‹ ∪ {b↑V A∪V B | b ∈B}‹‹ )‹‹
A&B = {a↑V A∪V B | a ∈A‹ }‹ ∩ {b↑V A∪V B | b ∈B‹ }‹

We now define localized second order quantification and show the duality be-
tween second order universal quantification and second order existential quan-
tification.

Definition 58. We define the localized second order quantification as, for any
measurable set L:

∀LX F(X) = ⋂
A,V A=L

F(A)

∃LX F(X) =
( ⋃

A,V A=L
F(A)

)‹‹

Proposition 59.
(∀LX F(X))‹ =∃LX (F(X))‹

Proof. The proof is straightforward. Using the definitions:

(∀LX F(X))‹ =
( ⋂

A,V A=L
F(A)

)‹

=
( ⋃

A,V A=L
(F(A))‹

)‹‹

= ∃LX F‹ (X )

Where we used the fact that taking the orthogonal turns an intersection into a
union.

6.2. Truth
We now define a notion of successful project, which intuitively correspond to

the notion of winning strategy in game semantics. This notion should be under-
stood as a tentative characterization of those projects which arise as interpreta-
tion of proofs. The notion of success defined here is the natural generalization of
the corresponding notion on graphs [Sei12b, Sei12a]. The graphing of a success-
ful project will therefore be a disjoint union of “transpositions”. In the following,
we say a weighted sum of graphings

∑
i∈I A αA

i A i is balanced when for all i, j ∈ I A ,
we have αA

i =αA
j .

Definition 60. A project a= (a, A) is successful when it is balanced, a = 0 and A
is a disjoint union of transpositions:

40



• for all e ∈ EA , ωA
e = 1;

• for all e ∈ EA , ∃e∗ ∈ EA such that φA
e∗ = (φA

e )−1 — in particular SA
e = T A

e∗
and T A

e = SA
e∗ ;

• for all e, f ∈ EA with f 6∈ {e, e∗}, SA
e ∩SA

f and T A
e ∩T A

f are of null measure;
A conduct A is true when it contains a successful project.

Proposition 61 (Consistency). The conducts A and A‹ cannot be simultaneously
true.

Proof. We suppose that a= (0, A) and b= (0,B) are successful project in the con-
ducts A and A‹ respectively. Then:

¿a,bÀm = �A,B�m

If there exists a cycle whose support is of strictly positive measure between A and
B, then �A,B�m =∞ since we suppose that m(1)=∞. Otherwise, �A,B�m = 0. In
both cases we obtained a contradiction since a and b cannot be orthogonal.

Proposition 62 (Compositionnality). If A and A(B are true, then B is true.

Proof. Let a ∈A and f ∈A(B be successful projects. Then:
• If ¿a, fÀm = ∞, the conduct B is equal to TV B , which is a true conduct

since it contains (0,;);
• Otherwise ¿a, fÀm = 0 (this is shown in the same manner as in the pre-

ceding proof) and it is sufficient to show that F :m: A is a disjoint union of
transpositions. But this is straightforward: to each path there corresponds
an opposite path and the weights of the paths are all equal to 1, the condi-
tions on the source and target sets Sπ and Tπ are then easily checked.

Finally, if A and A(B are true, then B is true.

6.3. Interpretation of proofs
Definition 63. We fix an infinite (countable) set of variables V and w define
formulas of MALL2 inductively by the following grammar:

F := T | 0 | X | X‹ | F ⊗F | F

&

F | F ⊕F | F & F | ∀X F | ∃X F (X ∈ V )

Definition 64 (The Sequent Calculus MALL2). A proof in the sequent calculus
MALL2 is a derivation tree constructed from the derivation rules shown in Fig-
ure 7 page 42.

To prove soundness, we will follow the proof technique used in our previous
papers [Sei12b, Sei12a]. We will first define a localized sequent calculus and
show a result of full soundness for it. The soundness result for the non-localized
calculus is then obtained by noticing that one can always localize a derivation.
We will consider here that the variables are defined with the carrier equal to an
interval in R of the form [i, i+1[.
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ax
` C‹ ,C

∆1 `Γ1,C ∆2 `Γ2,C‹
cut

∆1,∆2 `Γ1,Γ2
(a) Identity Group

∆1 `Γ1,C1 ∆2 `Γ2,C2 ⊗
∆1,∆2 `Γ1,Γ2,C1 ⊗C2

∆`Γ,C1,C2 &

∆`Γ,C1

&

C2
(b) Multiplicative Group

`Γ,Ci ⊕i`Γ,C1 ⊕C2

`Γ,C1 `Γ,C2
&`Γ,C1 & C2

>`Γ,> No rules for 0.
(c) Additive Group

`Γ,C X 6∈ FV (Γ)
∀`Γ,∀X C

`Γ,C[A/X ]
∃`Γ,∃X C

(d) Quantifier Group

Figure 7: Rules for the sequent calculus MALL2

Definition 65. We fix a set V = {X i( j)}i, j∈N×Z of localized variables. For i ∈ N,
the set X i = {X i( j)} j∈Z will be called the variable name X i, and an element of X i
will be called a variable of name X i.

For i, j ∈N×Z we define the location ]X i( j) of the variable X i( j) as the set

{x ∈R | 2i(2 j+1)É m < 2i(2 j+1)+1}

Definition 66 (Formulas of locMALL2). We inductively define the formulas of
localized second order multiplicative-additive linear logic locMALL2 as well as
their locations as follows:

• A variable X i( j) of name X i is a formula whose location is defined as ]X i( j);
• If X i( j) is a variable of name X i, then (X i( j))‹ is a formula whose location

is ]X i( j).
• The constants T]Γ are formulas whose location is defined as ]Γ;
• The constants 0]Γ are formulas whose location is defined as ]Γ.
• If A,B are formulas with respective locations X ,Y such that X∩Y =;, then

A⊗B (resp. A

&

B, resp. A & B, resp. A⊕B) is a formula whose location is
X ∪Y ;

• If X i is a variable name, and A(X i) is a formula of location ]A, then ∀X i A(X i)
and ∃X i A(X i) are formulas of location ]A.

Definition 67 (Interpretations). An interpretation basis is a function Φ which
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associates to each variable name X i a behavior of carrier16 [0,1[×{∗}.

Definition 68 (Interpretation of locMALL2 formulas). LetΦ be an interpretation
basis. We define the interpretation IΦ(F) along Φ of a formula F inductively:

• If F = X i( j), then IΦ(F) is the delocation (i.e. a behavior) of Φ(X i) defined
by the function x 7→ 2i(2 j+1)+ x;

• If F = (X i( j))‹ , we define the behavior IΦ(F)= (IΦ(X i( j)))‹ ;
• If F =T]Γ (resp. F = 0]Γ), we define IΦ(F) as the behavior T]Γ (resp. 0]Γ);
• If F = 1 (resp. F =⊥), we define IΦ(F) as the behavior 1 (resp. ⊥);
• If F = A⊗B, we define the conduct IΦ(F)= IΦ(A)⊗ IΦ(B);
• If F = A

&

B, we define the conduct IΦ(F)= IΦ(A)

&

IΦ(B);
• If F = A⊕B, we define the conduct IΦ(F)= IΦ(A)⊕ IΦ(B);
• If F = A & B, we define the conduct IΦ(F)= IΦ(A)& IΦ(B);
• If F =∀X i A(X i), we define the conduct IΦ(F)=∀XiIΦ(A(X i));
• If F =∃X i A(X i), we define the conduct IΦ(F)=∃XiIΦ(A(X i)).

Moreover, a sequent `Γ will be interpreted as the

&

of formulas in Γ, which will
be written

&

Γ.

Definition 69. Let F be a formula, A a subformula of F, n the number of occur-
rences of A in F, and X i be a variable name that does not appear in F. We define
an enumeration eA/F of the occurrences of A in F whose image is {1, . . . ,n}. For
each j ∈ {1, . . . ,n}, we define ψ j : ]e−1( j)→ ]X i( j) as the natural (order-preserving)
measure-inflating map between ]e−1( j), a disjoint union of unit segments, and
]X i( j), a unit segment. We then define the measure-inflating fax [e−1( j)↔ X i( j)]
as the graphing:

{(1,ψ), (1,ψ−1)}

Definition 70 (Interpretation of locMALL2 proofs). Let Φ be an interpretation
basis. We define the interpretation IΦ(π) — a project — of a proof π inductively:

• if π is a single axiom rule introducing the sequent ` (X i( j))‹ , X i( j′), we
define IΦ(π) as the project Fax defined by the translation x 7→ 2i(2 j′−2 j)+x;

• if π is composed of a single rule T]Γ, we define IΦ(π)= 0]Γ;
• if π is obtained from π′ by using a

&

rule, then IΦ(π)= IΦ(π′);
• if π is obtained from π1 and π2 by performing a ⊗ rule, we define IΦ(π) =

IΦ(π1)⊗ IΦ(π′);
• if π is obtained from π′ using a ⊕i rule introducing a formula of location V ,

we define IΦ(π)= IΦ(π′)⊗0V ;
• if π of conclusion `Γ, A0 & A1 is obtained from π0 and π1 using a & rule, we

define the interpretation of π in the same way it was defined in our previous
paper [Sei12a];

• If π is obtained from a ∀ rule applied to a derivation π′, we define IΦ(π) =
IΦ(π′);

16We consider [0,1[×{∗} and not simply [0,1[ only to insure that the image of Φ is disjoint from the
locations of the variables.

43



• If π is obtained from a ∃ rule applied to a derivation π′ replacing the for-
mula A by the variable name X i, we define IΦ(π) = IΦ(π′) :m: (

⊗
[e−1( j) ↔

X i( j)]);
• if π is obtained from π1 and π2 by applying a cut rule, we define IΦ(π) =

IΦ(π1)t IΦ(π2).

Theorem 71 (locMALL2 soundness). Let Φ be an interpretation basis. Let π be
a derivation in locMALL2 of conclusion ` Γ. Then IΦ(π) is a successful project in
IΦ(`Γ).

As it was remarked in our previous papers, one can chose an enumeration of
the occurrences of variables in order to “localize” any formula A and any proof π
of MALL2: we then obtain formulas Ae and proofs πe of locMALL2. The following
theorem is therefore a direct consequence of the preceding one.

Theorem 72 (Full MALL2 Soundness). Let Φ be an interpretation basis, π an
MALL2 proof of conclusion ∆ ` Γ; and e an enumeration of the occurrences of
variables in the axioms in π. Then IΦ(πe) is a successful project in IΦ(∆e `Γe; ).

7. Perspectives

We described in this paper a general construction of models of multiplicative-
additive linear logic (MALL). This general construction can be performed on any
trefoil space, that is a measured space subject to a few conditions. Given a trefoil
space X , we obtain a hierarchy of models of MALL corresponding to the hierar-
chy of microcosms, i.e. monoids of non-singular transformations from X to itself,
and the hierarchy of weight monoids. In particular, all previously considered ge-
ometry of interaction constructions can be recovered for particular trefoils spaces
X , weight monoids and microcosms.

The perspectives of this work are numerous. First, one can extend the model
on the real line described at the end of this paper in order to deal with exponential
connectives, following the approach described in the author’s PhD thesis [Sei12c].
Following this approach, we will obtain a model of Elementary Linear Logic. But
more expressive exponentials can be defined here, and we will also define a model
interpreting full linear logic.

The most exciting perspective of this work concerns the field of computational
complexity. As described in a short note [Sei14a], we can show a correspondence
between a part of the hierarchy of models obtained here and a part of the hier-
archy of complexity classes. Indeed, as we consider bigger microcosms, the type
of predicates !Nat2 ( Bool becomes larger. Intuitively, a microcosm describes
the computational principles allowed in the system. By adapting earlier results
obtained with von Neumann algebras [AS12, AS13] we can define microcosms for
which the type of predicates characterizes the class of regular languages on one
hand, and the class of logarithmic space predicates on the other.

We can also apply the techniques developed here for quantum computation.
Indeed, it is possible to model quantum circuits in a very nice way in some of
the models defined in this paper. Once again, one could gain from the possibility
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of considering smaller and/or larger microcosms. For instance, one could study
restrictions of these models of quantum computation where the available unitary
gates are limited to a chosen basis. It would then be possible to understand how
the different choices of bases of unitaries affect the model from a computational
and/or logical point of view.

Lastly, we believe the theory of dynamical systems and ergodic theory might
shed new light on the field of computational complexity. In particular, we will
study how mathematical invariants, such as l2-Betti numbers, are related to
computation.
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