
Towards a
Complexity-through-Realizability Theory

Thomas Seiller

Abstract

We explain how recent developments in the fields of realizability models
for linear logic [Sei14e] – or geometry of interaction – and implicit computa-
tional complexity [AS14, AS15] can lead to a new approach of implicit compu-
tational complexity. This semantic-based approach should apply uniformly to
various computational paradigms, and enable the use of new mathematical
methods and tools to attack problem in computational complexity. This paper
provides the background, motivations and perspectives of this complexity-
through-realizability theory to be developed, and illustrates it with recent
results [Sei15].

1 Introduction
Complexity theory lies at the intersection between mathematics and computer
science, and studies the amount of resources needed to run a specific program
(complexity of an algorithm) or solve a particular problem (complexity of a prob-
lem). I will explain how it is possible to build on recent work in realizability
models for linear logic – a mathematical model of programs and their execution
– to provide new characterizations of existing complexity classes. It is hoped that
these characterizations will enable new mathematical techniques, tools and in-
variants from the fields of operators algebras and dynamical systems, providing
researchers with new tools and methods to attack long-standing open problems
in complexity theory.

The complexity-through-realizability theory I propose to develop will provide
a unified framework for studying many computational paradigms and their asso-
ciated computational complexity theory grounded on well-studied mathematical
concepts. This should provide a good candidate for a theory of complexity for
computational paradigms currently lacking an established theory (e.g. concur-
rent processes), as well as contribute to establish a unified and well-grounded
account of complexity for higher-order functionals.

Even though it has been an established discipline for more than 50 years
[HS65b], many questions in complexity theory, even basic ones, remain open.
During the last twenty years, researchers have developed new approaches based
on logic: they offer solid, machine-independent, foundations and provide new
tools and methods. Amongst these approaches, the fields of Descriptive Complex-
ity (DC) and Implicit Computational Complexity (ICC) lead to a number of new
characterizations of complexity classes. These works laid grounds for both the-
oretical results [Imm88] and applications such as typing systems for complexity

1

constrained programs and type inference algorithms for statically determining
complexity bounds.

The complexity-through-realizability theory I propose to develop is related to
those established logic-based approaches. As such, it inherits their strengths: it
is machine-independent, provides tools and methods from logic and gives grounds
for the above mentioned applications. Furthermore, it builds on state-of-the-art
theoretical results on realizability models for linear logic [Sei14e] using well-
studied mathematical concepts from operators algebras and dynamical systems.
As a consequence, it opens the way to use against complexity theory’s open prob-
lems the many techniques, tools and invariants that were developed in these
disciplines.

We illustrate the approach by explaining how first results were recently ob-
tained by capturing a large family of complexity classes corresponding to various
notions of automata. Indeed, we provided [Sei15] realizability models in which
types of binary predicates correspond to the classes of languages accepted by
one-way (resp. two-way) deterministic (resp. non-deterministic, resp. probabilis-
tic) multi-head automata. This large family of languages contains in particular
the classes REG (regular languages), STOC (stochastic languages), L (logarith-
mic space), NL (non-deterministic logarithmic space), CONL (complementaries
of languages in NL), and PL (probabilistic logarithmic space).

2 Background

2.1 Complexity Theory
Complexity theory is concerned with the study of how many resources are needed
to perform a specific computation or to solve a given problem. The study of
complexity classes – sets of problems which need a comparable amount of re-
sources to be solved, lies at the intersection of mathematics and computer sci-
ence. Although a very active and established field for more than fifty years
[Cob65, Coo71, HS65a, Sav70], a number of basic problems remain open, for
instance the famous “millennium problem” of whether P equals NP or the less
publicized but equally important question of whether P equals L. In recent years,
several results have greatly modified the landscape of complexity theory by show-
ing that proofs of separation (i.e. inequality) of complexity classes are hard to
come by, pointing out the need to develop new theoretical methods. The most
celebrated result in this direction [RR97] defines a notion of natural proof com-
prising all previously developed proof methods and shows that no “natural proof”
can succeed in proving separation.

Mathematicians have then tried to give characterizations of complexity classes
that differ from the original machine-bound definitions, hoping to enable meth-
ods from radically different areas of mathematics. Efforts in this direction lead
to the development of Descriptive Complexity (DC), a field which studies the
types of logics whose individual sentences characterize exactly particular com-
plexity classes. Early developments were the 1974 Fagin-Jones-Selman results
[Fag74, JS74] characterizing the classes NEXP and NP. Many such characteriza-
tions have then been given [CG96, DG08, GG95] and the method led Immerman
to a proof of the celebrated Immerman-Szelepcsényi theorem [Imm88, Sze87]
stating the two complexity classes CONL and NL are equal (though Szelepc-

2

sényi’s proof does not use logic-based methods).
Implicit Computational Complexity (ICC) develops a related approach whose

aim is to study algorithmic complexity only in terms of restrictions of languages
and computational principles. It has been established since Bellantoni and Cook’
landmark paper [BC92], and following work by Leivant and Marion [LM93, LM94].
Amongst the different approaches to ICC, several results were obtained by con-
sidering syntactic restrictions of linear logic [Gir87], a refinement of intuition-
nistic logic which accounts for the notion of resources. Linear logic introduces a
modality ! marking the “possibility of duplicating” a formula A: the formula A
shall be used exactly once, while the formula !A can be used any number of times.
Modifying the rules governing this modality then yields variants of linear logic
having computational interest: this is how constrained linear logic systems, for
instance BLL [GSS92] and ELL [DJ03], are obtained. However, only a limited
number of complexity classes were characterized in this way, and the method
seems to be limited by its syntactic aspect: while it is easy to modify existing
rules, it is much harder to find new, alternative, rules from scratch. The approach
taken in my research project does not suffer from these limitations, allowing for
subtle distinctions unavailable to the syntactic techniques of ICC.

2.2 Realizability Models for Linear Logic and Complexity
Concurrently to these developments in computational complexity, and motivated
by disjoint questions and interests, Girard initiated the Geometry of Interac-
tion (GoI) program [Gir89b]. This research program aims at obtaining particular
kinds of realizability models (called GoI models) for linear logic. Realizability was
first introduced [Kle45] as a way of making the Brouwer-Heyting-Kolmogorov in-
terpretation of constructivism and intuitionistic mathematics precise; the tech-
niques were then extended to classical logic, for instance by Krivine [Kri01], and
linear logic. The GoI program naturally and quickly arose as a well-suited tool
for the study of computational complexity. Using the first GoI model [Gir89a],
Abadi, Gonthier and Lévy [GAL92] showed the optimality of Lamping’s reduc-
tion in lambda-calculus [Lam90]. It was also applied in implicit computational
complexity [BP01], and was the main inspiration behind dal Lago’s context se-
mantics [Lag09]. On a more practical side, let us mention the Geometry of Syn-
thesis program initiated by Ghica [Ghi07, GS10, GS11, GSS11]. This program,
inspired by geometry of interaction, aims at obtaining logical synthesis methods
for VLSI (Very Large Systems Integration) designs.

More recently the geometry of interaction program inspired a new approach
to implicit computational complexity. These new methods were initiated by Gi-
rard [Gir12] and have known a rapid development. They lead to a series of re-
sults in the form of new characterizations of the classes CONL [Gir12, AS14],
L [AS15, ABPS14] and P [ABS15]. Unfortunately, although the construction of
realizability models and the characterizations of classes are founded on similar
techniques, they are two distinct, unrelated, constructions. The approach I pro-
pose to develop in my research project will in particular bridge this gap and pro-
vide similar characterizations which will moreover allow the use of both logical
and realizability-specific methods.

3

3 A Complexity-through-Realizability Theory

3.1 Technical Background and Motivations
About ten years ago, Girard showed [Gir06] that the restriction to the unit ball
of a von Neumann algebra of the so-called “feedback equation”, which represents
the execution of programs in GoI models, always has a solution. Moreover, previ-
ous and subsequent work showed the obtained GoI model interprets, depending
on the choice of the von Neumann algebra, either full linear logic [Gir95] or the
constrained system ELL which characterizes elementary time computable func-
tions [Sei12b]. This naturally lead to the informal conjecture that there should
be a correspondence between von Neumann algebras and complexity constraints.

This deep and promising idea turned out to be slightly inexact and seemingly
difficult to exploit. Indeed, I showed [Sei12b, Sei14a] that the expressivity of
the logic interpreted in the model depends not only on the enveloping algebra N
but also on a maximal abelian sub-algebra (masa) A of N, hinting at a refined
conjecture stating that complexity constraints correspond to such couples (A,N).
This approach is however difficult to extend to other constrained logical systems
for two reasons. The first reason is that the theory of maximal abelian sub-
algebras in von Neumann algebras is an involved subject matter still containing
large numbers of basic but difficult open problems [SS08]. The second is that even
though some results were obtained, no intuitions were gained about what makes
the correspondence between couples (A,N) and complexity constraints work.

Some very recent work of mine provides the foundational grounds for a new,
tractable way of exploring the latter refined conjecture. This series of work
[Sei12a, Sei14b, Sei14e, Sei14d] describes a general systematic construction of
realizability models for linear logic which unifies and extends all previous works
on the subject, encompassing the last forty years of research in the area. The
construction is built upon a generalization of graphs, named graphings [Lev95,
Gab00], which can be understood either as geometric realizations of graphs on
a measure space (X ,B,µ), as measurable families of graphs, or as generalized
measured dynamical system. It is parametrized by two monoids describing the
model of computation and a map describing the realizability structure:

• a monoid Ω used to associate weights to edges of the graphs;
• a measurable map m : Ω→ R̄Ê0, defining orthogonality – accounting for

linear negation;
• a monoid m – the microcosm – of measurable maps from (X ,B,µ) to itself.

A Ω-weighted graphing in m is then defined as a directed graph F whose edges
are weighted by elements in Ω, whose vertices are measurable subsets of the
measurable space (X ,B), and whose edges are realized by elements of m, i.e. for
each edge e there exists an element φe in m such that φe(s(e)) = t(e), where s, t
denote the source and target maps. Based on this notion, and an orthogonality
relation defined from the map m, I obtained a systematic method for constructing
realizability models for linear logic summarized in the following theorem.

Theorem 1 (Seiller [Sei14e]). Let Ω be a monoid, m a microcosm and m :Ω→
R̄Ê0 a measurable map. There exists a deterministic (resp. probabilistic, resp. non-
deterministic) GoI model of multiplicative-additive linear logic whose objects are
Ω-weighted deterministic (resp. probabilistic, resp. non-deterministic) graphings
in m and whose orthogonality depends on m.

4

Let us notice that a microcosm m generates a measurable equivalence relation
which, by the Feldman-Moore construction [FM77], induces a couple (A,N) where
A is a maximal abelian subalgebra of the von Neumann algebra N. This theorem
thus generalizes Girard’s result since it shows that a microcosm (identified with
a couple (A,N)) induces two models of computation: a deterministic model (the
equivalent of Girard’s unit ball restriction) and a non-deterministic model (not
available to Girard techniques because of divergence issues). It shows in fact
much more as it exhibits an infinite family of structures of realizability models
(parametrized by the map m : Ω → RÊ0 ∪ {∞}) on any model obtained from a
microcosm. This extends drastically Girard’s approach for which only two such
structures were defined until now: an “orthogonality-as-nilpotency” structure in
the algebra L (H) [Gir89a] and another one defined using the Fuglede-Kadison
determinant [FK52] in the type II1 hyperfinite factor [Gir11].

3.2 Methodology
We can now explain the proposed methodology for defining a Complexity-through-
Realizability theory.

The notion of Ω-weighted m-graphings for given monoid Ω and microcosm
m yields a very general yet tractable mathematical notion of algorithm, as the
microcosm m can naturally be understood as a set of computational principles
[Sei14c]. It therefore provides an interesting middle-ground between usual com-
putational models, for instance automata, and mathematical techniques from
operator algebras and dynamical systems. It comprises Danos’ interpretation
of pure lambda-calculus (a Turing complete model of computation) in terms of
operators [Dan90], but it is not restricted to sequential algorithms as it will be
shown to provide an interpretation of probabilistic and quantum programs. It
also provides characterizations of usual complexity classes as types of predicates
over binary words Words(2)

Σ ⇒ Bool, which will lead to a partial proof of the
above conjecture by showing a correspondence between families of microcosms
and complexity constraints.

Work in this direction will establish these definitions of algorithms and com-
plexity constraints as a uniform, homogeneous, machine-independent approach
to complexity theory. The methods developed in this setting, either adapted from
DC/ICC or new, will apply to probabilistic/quantum complexity classes as much
as sequential classes. In particular, it will offer a framework where comparison
between non-classical and classical classes can be performed. It will also expand
to computational paradigms where no established theory of complexity exists,
providing a strong and coherent proposition for such.

It will extend the approach of ICC and DC as it will go beyond the syntactical
restrictions they are suffering from. In particular, it will provide a new method
for defining logical systems corresponding to complexity classes: the realizability
model construction gives a systematic way to define a logic corresponding to the
underlying computational model. It will also extend the GoI model approach to
complexity by reconciling the logical and complexity aspects, allowing the use of
both logical and realizability-specific methods.

Lastly, the approach I propose to develop does not naturally fall into the usual
pitfalls for the obtention of separation results. Therefore, it provides a framework
which will potentially offer separation methods, e.g. using invariants for the well-
established mathematical notions it is founded upon.

5

4 First Results
In this section, I expose some recent results obtained by applying the methodol-
ogy described above [Sei15]. We obtain in this way a number of characterizations
of complexity classes, among which REG, STOC, L, NL, CONL and PL.

4.1 Graphings
Definition 2. Let (X ,B,λ) be a measured space. We denote by M (X) the set of
non-singular transformations1 X → X . A microcosm of the measured space X is
a subset m of M (X) which is closed under composition and contains the identity.

In the following, we will consider a notion of graphing depending on a weight-
monoid Ω, i.e. a monoid (Ω, ·,1) which contains the possible weights of the edges.

Definition 3 (Graphings). Let m be a microcosm of a measured space (X ,B,λ)
and V F a measurable subset of X . A Ω-weighted graphing in m of carrier V F is
a countable family F = {(ωF

e ,φF
e : SF

e → TF
e }e∈EF , where, for all e ∈ EF (the set of

edges):
• ωF

e is an element of Ω, the weight of the edge e;
• SF

e ⊂V F is a measurable set, the source of the edge e;
• TF

e =φF
e (SF

e)⊂V F is a measurable set, the target of the edge e;
• φF

e is the restriction of an element of m to SF
e , the realization of the edge e.

I showed in earlier work [Sei14b] how one can construct models of multiplicative-
additive linear logic where proofs are interpreted as graphs. This construction
relied on a single property, called the trefoil property, which relates two simple
notions:

• the execution F ::G of two graphs, a graph defined as a set of paths;
• the measurement �F,G�m, a real number computed from a set of cycles.

These constructions can be extended to the more general framework where proofs
are interpreted as graphings. Indeed, the notions of paths and cycles in a graph-
ings are quite natural, and from two graphings F,G in a microcosm m one can
define its execution F ::G which is again a graphing in m2. A more involved
argument then shows that the trefoil property holds for a family of measure-
ments �·, ·�m, where m : Ω→ RÊ0 ∪ {∞} is any measurable map. These results
are obtained as a generalization of constructions considered in my PhD thesis3

[Sei12b].

Theorem 4 (Non-deterministic model). Let Ω be a monoid and m a microcosm.
The set of Ω-weighted graphings in m yields a model, denoted by M[Ω,m], of
multiplicative-additive linear logic.

In most of the models, one can define some exponential connectives. In par-
ticular, all models considered later on have the necessary structure to define an
exponential modality !. Let us notice however that the notion of exponential

1A non-singular transformation f : X → X is a measurable map which preserves the sets of null
measure, i.e. λ(f (A))= 0 if and only if λ(A)= 0.

2As a consequence, a microcosm is a closed world for the execution of programs.
3In the cited work, the results were stated in the particular case of the microcosm of measure-

preserving maps on the real line.

6

modality we are considering here is extremely weak, as most models won’t vali-
date the functorial promotion rule. The only rule that is assured to be satisfied by
the exponential connectives we will consider is the contraction rule, i.e. for any
type A, one has !A(!A⊗ !A. These very weak exponential connectives will turn
out to be of great interest: we obtain in this way models of linear logic where the
exponentials are weaker than what is obtained through syntactic consideration
in systems like BLL, SLL, etc. and characterize low complexity classes.

4.2 Models of Computation
Before explaining how one can characterize complexity classes in this way, we
first state refinements of the previous theorem. We first define the notion of
deterministic graphing.

Definition 5 (Deterministic graphings). A Ω-weighted graphing G is determin-
istic when:

• for all e ∈ EG , ωG
e ∈ {0,1};

• the following set is of null measure:

{x ∈X | ∃e 6= e′ ∈ EG , x ∈ SG
e ∩SG

e′ }

If the graphing G satisfies only the first item, we will say that G is a non-
deterministic graphing.

We then prove that the notions of deterministic and non-deterministic graph-
ings are closed under composition, i.e. if F,G are deterministic graphings, then
their execution F ::G is again a deterministic graphing. This shows that the sets
of deterministic and non-deterministic graphings define submodels of M[Ω,m].

Theorem 6 (Deterministic model). Let Ω be a monoid and m a microcosm. The
set ofΩ-weighted deterministic graphings in m yields a model, denoted byMdet

m [Ω,m],
of multiplicative-additive linear logic. The set of Ω-weighted non-deterministic
graphings in m yields a model, denoted by Mndet

m [Ω,m], of multiplicative-additive
linear logic

One can also consider several other classes of graphings. We explain here
the simplest non-classical model one could consider, namely that of probabilistic
graphings. In order for this notion to be of real interest, one should suppose that
the unit interval [0,1] endowed with multiplication is a submonoid of Ω.

Definition 7 (Probabilistic graphings). AΩ-weighted graphing G is probabilistic
when:

• for all e ∈ EG , ωG
e ∈ [0,1];

• the following set is of null measure:

{x ∈X | ∑
e∈EG ,x∈SG

e

ωG
e 6= 1}

It turns out that this notion of graphing also behaves well under composi-
tion, i.e. there exists a probabilistic submodel of M[Ω,m], namely the model of
probabilistic graphings.

7

M[Ω,m]

Mdet
m [Ω,m]

Mndet
m [Ω,m] M

prob
m [Ω,m]

(a) Different type of graphings

M[Ω,m+n]

M[Ω,m∩n]

M[Ω,m] M[Ω,n]

(b) Different microcosms

M[Θ+ΩΞ,m]

M[Ω,m]

M[Θ,m] M[Ξ,m]

(c) Different weight monoids

Figure 1: Inclusions of models

Theorem 8 (Probabilistic model). LetΩ be a monoid and m a microcosm. The set
ofΩ-weighted probabilistic graphings in m yields a model, denoted byMprob

m [Ω,m],
of multiplicative-additive linear logic.

These models are all submodels of the single model M[Ω,m]. Moreover, other
inclusions of models can be obtained by playing on the other parameters, namely
the weight monoid Ω and the microcosm m. For instance, given two microcosms
m⊂ n, it is clear that a graphing in m is in particular a graphing in n. This inclu-
sion actually extends to an embedding of the model M[Ω,m] into M[Ω,n] which
preserves most logical operations4. Moreover, given two microcosms m and n,
one can define the smallest common extension m+n as the compositional closure
of the set m∪n. The model M[Ω,m+n] then contains both models M[Ω,m] and
M[Ω,n] through the embedding just mentioned. In the same way, an inclusion of
monoids Ω ⊂ Γ yields an embedding of the the model M[Ω,m] into M[Γ,m]. For
instance, the model M[{1},m] is a submodel of M[Ω,m] for any monoid Ω. One can
also define, given weight monoids Ω, Θ and Ξ with monomorphisms Ω→Θ and
Ω→ Ξ, the model M[Θ+ΩΞ,m] where Θ+ΩΞ denotes the amalgamated sum of
the monoids. Figure 1 illustrates some of these inclusions of models.

We will now explain how these models can yields characterizations of several
complexity classes. Before going into details about these characterizations, let
us define a number of complexity classes – all of them definable by classes of
automata.

Definition 9. For each integer i, we define:

• the class 2DFA(i) (resp. 1DFA(i)) as the set of languages accepted by de-
terministic two-way (resp. one-way) multihead automata with at most i
heads;

• the class 2NFA(i) (resp. 1NFA(i)) as the set of languages accepted by two-
way (resp. one-way) multihead automata with at most i heads;

• the class CO2NFA(i) (resp. CO1NFA(i)) as the set of languages whose com-
plementary language is accepted by two-way (resp. one-way) multihead
automata with at most i heads;

• the class 2PFA(i) (resp. 1PFA(i)) as the set of languages accepted by two-
way (resp. one-way) probabilistic multihead automata with at most i heads;

4It preserves all connectives except for negation.

8

?•in •out 0•in •out 0•in •out 1•in •out 0•in •out 1•in •out

Figure 2: Representation of the word w= 00101

We also denote by L (resp. P) the class of predicates over binary words that
are recognized by a Turing machine using logarithmic space (resp. polynomial
time), by NL (resp. NP) its non-deterministic analogue, by CONL (resp. CONP)
the set of languages whose complementary language lies in L (resp. P). We also
denote by PL the class of predicates over binary words that are recognized by a
probabilistic Turing machine with unbounded error using logarithmic space.

We don’t recall the usual definitions of these variants of multihead automata,
which can be easily found in the literature. We simply recall some classical re-
sults:

∪i∈N2DFA(i)= L ∪i∈N 2NFA(i)= NL ∪i∈N 2PFA(i)= PL

4.3 From Regular Languages to Logarithmic Space
In the models of linear logic we described, one can easily define the type Words(2)

Σ
of words over an arbitrary finite alphabet Σ. The definition of the representation
of these binary words comes from the encoding of binary lists in lambda-calculus
and is explained thoroughly in previous papers [AS14, AS15]. We won’t give the
formal definition of what is a representation of a word w here, but let us sketch
the main ideas. Given a word, say the binary word w = 00101, we introduce a
symbol ? that can be understood as a left-hand end-of-tape marker and consider
the list of symbols ?00101. Then, the graphing that will represent w is obtained
by realizing the directed graph over the set of vertices {?,0,1}× {in,out} whose
edges link the symbols of the list together, i.e. the graph pictured in Figure 2.

We are actually interested in the elements of the type !Words(2)
Σ . For each

word w, there exists an element !Lw in the type !Words(2)
{0,1} which represents

it. We say that a graphing – or program – P of type !Words(2)
{0,1} (Bool accepts

the word w when the execution P ::Ww is equal to the distinguished element
true ∈ Bool. The language accepted by such a program P is then defined as
[P]= {w ∈Words(2)

{0,1} | φ ::Ww = true}.

Definition 10 (Characterization). Let Ω be a monoid, m a microcosm and L a
set of languages. We say the type !Words(2)

{0,1} (Bool characterizes the set L if
the following set is equal to L

{[F] | F ∈ !Words(2)
{0,1} (Bool}

We now consider the measured space N× [0,1]N endowed with the product of
the counting measure on N and the Lebesgue measure on the Hilbert cube [0,1]N.
We define the following microcosms:

• m1 is the monoid of translations Tk : (n, x) 7→ (n+k, x);
• mi+1 is the monoid mi + si+1 where si+1 is the monoid generated by the

single map:

si+1 : (n, (x1, x2, . . .)) 7→ (n, (xi+1, x2, . . . , xi, x1, xi+2, . . .))

9

• m∞ =∪i∈Nmi.
The intuition is that a microcosm m represents the set of computational princi-
ples available to write programs in the model. The operation + thus extends the
set of principles at disposal, increasing expressivity. As a consequence, the set
of languages characterized by the type !Words(2)

{0,1} (Bool becomes larger and
larger as we consider extensions of the microcosms. As an example, the micro-
cosm m1 corresponds to allowing oneself to compute with automata. Expanding
this microcosm by adding a map s2 yields m2 = m1 + s2 and corresponds to the
addition of a new computational principle: using a second head.

Theorem 11. In the model Mdet
m [{1},mi], the type !Words(2)

{0,1} (Bool character-
izes the class 2DFA(i).

In particular, the type !Words(2)
{0,1} (Bool in the model Mdet

m [{1},m1] charac-
terizes the class REG of Regular languages.

Theorem 12. In the model Mdet
m [{1},m∞], the type !Words(2)

{0,1} (Bool character-
izes the class L.

4.4 Non-deterministic and Probabilistic Computation
All the preceding results have non-deterministic analogues; we consider in this
section the model of non-deterministic graphings. To obtain the same types of
results in that case, two issues should be dealt with. First one needs to consider
programs of a different type since the result of a non-deterministic computation
yield sets of booleans and not a single boolean. Thus, programs will be considered
as elements of a more general type than in the deterministic case: !Words(2)

{0,1} (
NBool, where NBool is a specific type definable in the models, somehow a non-
deterministic version of the booleans.

The second issue concerns acceptance. While it seemed natural in the deter-
ministic case to ask the computation to yield the element true ∈ Bool, one has
a choice now. Should one define acceptance as producing at least one element
true or as producing no element false? Both conditions should be considered.
In order to obtain a quite general notion of acceptance that can not only capture
both notions explained above but extend to other computational paradigms such
as probabilistic computation, we use the structure of the realizability models we
are working with to define a notion of test. Indeed, the models are constructed
around an orthogonality relation ‹: a test will be an element (or more generally
a family of elements) T of the model and a program P accepts the word w if the
execution P :: !Lw is orthogonal to T .

One can then define the language [M]T as the set of all words w that are
accepted by M w.r.t. the test T :

[M]T = {w | M :: !Lw ‹ T }

Definition 13. Let Ω be a monoid, m a microcosm, T a test and L a set of
languages. We say the type !Words(2)

{0,1} (NBool characterizes the set L w.r.t.
the test T if the following set is equal to L

{[F]T | F ∈ !Words(2)
{0,1} (NBool}

10

In particular, one can show the existence of two tests T n and T co that corre-
spond to the two notions of acceptance mentioned above and which allows for the
characterization of usual non-deterministic classes.

Theorem 14. In the model Mndet
m [{1},mi], the type !Words(2)

{0,1} (NBool charac-
terizes the class 2NFA(i) w.r.t. the test T n and the class CO2NFA(i) w.r.t. the test
T co.

In particular, the type !Words(2)
{0,1} (NBool in the model Mndet

m [{1},m1] char-
acterizes the class REG of Regular languages.

Theorem 15. In the model Mndet
m [{1},m∞], the type !Words(2)

{0,1} (NBool charac-
terizes the class NL w.r.t. the test T n and the class CONL w.r.t. the test T co.

In the case of probabilistic graphings, one can show the existence of a test
T p which allows for the characterization of probabilistic computation with un-
bounded error. This leads to the following theorems.

Theorem 16. In the model Mprob
m [[0,1],mi], the type !Words(2)

{0,1} (NBool char-
acterizes the class 2PFA(i) w.r.t. the tests T p.

In particular, the type !Words(2)
{0,1} (NBool in the model Mprob

m [[0,1],m1]
characterizes the class STOC of Stochastic languages.

Theorem 17. In the model Mprob
m [[0,1],t+p], the type !Words(2)

{0,1} (NBool char-
acterizes the class PL w.r.t. the test T p.

4.5 And Then More
All of these results are based upon the fact that elements of the type !Words(2)

{0,1} (
NBool correspond to some kinds of two-way multihead automata, either deter-
ministic, non-deterministic or probabilistic. Several other results can be obtained
by modifying the notion of automata considered in three different ways.

The first modification is actually a restriction, that is: can we represent com-
putation by one-way automata? One can already answer positively to this ques-
tion, as the two-way capability of the automata does not really find its source in
the programs P in !Words(2)

{0,1} (NBool but in the representation of words. One
can define an alternative representation of words over an alphabet Σ and a cor-
responding type Words(1)

Σ . We then obtain the following results, i.e. the one-way
analogue of Theorem 11, Theorem 12, Theorem 14, Theorem 12, Theorem 16 and
Theorem 17.

Theorem 18 (One-way characterizations - deterministic case). In Mdet
m [[0,1],mi]

(resp. Mdet
m [[0,1],m∞]), the type !Words(1)

{0,1} (Bool characterizes the class 1DFA(i)
(resp. ∪iÊ11DFA(i)).

Theorem 19 (One-way characterizations - non-deterministic case). InMndet
m [[0,1],mi]

(resp. Mndet
m [[0,1],m∞]), the type !Words(1)

{0,1} (NBool characterizes the class
1NFA(i) (resp. ∪iÊ11NFA(i)) w.r.t. the test T n and CO1NFA(i) (resp. ∪iÊ1CO1NFA(i))
w.r.t. the test T co.

Theorem 20 (One-way characterizations - probabilistic case). In Mprob
m [[0,1],mi]

(resp. M
prob
m [[0,1],m∞]), the type !Words(1)

{0,1} (NBool characterizes the class
1PFA(i) (resp. ∪iÊ11PFA(i)) w.r.t. the test T p.

11

The second modification is the extension of automata with a pushdown stack.
Work in this direction has recently lead to a characterization of P in a more syn-
tactical setting [ABS15]. Even though the syntactical approach just mentioned
could very well be transported to our setting (it was shown [Sei14e] that ele-
ments of the resolution algebra can be represented as graphings), this would lead
to a characterization based on a microcosm containing non-measure-preserving
maps. Even though non-measure-preserving maps are allowed in the general set-
ting of graphings [Sei14e], the use of measure-preserving microcosm is more in-
teresting in view of the possible use of mathematical invariants such as `2-Betti
numbers discussed in the next section. One can find such a measure-preserving
microcosm p which leads to a characterization of P in both the model of deter-
ministic graphings and the model of non-deterministic graphings because non-
determinism do not add any expressivity to the model of deterministic two-way
multihead automata with a pushdown stack.

The last modification is the consideration of quantum graphings, i.e. graph-
ings computing with complex numbers. This is still a work in progress, but
I believe that one can define variants of quantum graphings corresponding to
measure-once or measure-many quantum automata, leading to several other
characterizations.

5 Perspectives
We proposed here to develop a theory of complexity-through-realizability, founded
on alternative definitions of the notions of algorithms and complexity classes.
This is illustrated by first results showing how a large family of complexity
classes (predicates) can be characterized by these techniques. These results are
a first step towards a demonstration that these definitions capture and gener-
alize standard ones, offering a unified homogeneous framework for the study of
complexity classes.

The complexity-through-realizability theory to be developed will therefore have
two main objectives. We will first aim at establishing that this new approach to
complexity captures, generalizes and extends the techniques developed by previ-
ous approaches such as DC and ICC. We will also investigate how the new meth-
ods and techniques derived from the mathematical foundations of our approach
can be used to address open problems in complexity.

I propose the following three goals to deal with the first objective of the
project: obtaining foundational results which will establish the complexity-through-
realizability approach as an independent research field. Those correspond to
three natural sequential steps: show the complexity-through-realizability tech-
niques (i) are coherent with classical theory, (ii) generalize and improve state-
of-the-art techniques, and finally (iii) provide the first homogeneous theory of
complexity for several computational paradigms.

(i) Show that Complexity-through-realizability techniques yield characteriza-
tions of usual complexity classes.

The results presented in this paper are a first step, but they lean on previ-
ously known characterizations of complexity classes (predicates) by means
of all kinds of automata. An adaptation of work by Asperti and Roversi
[AR02] and Baillot [Bai11] should allow for encoding Turing machines in

12

the realizability models we consider and should lead to characterizations
of several other complexity classes (predicates), such as the exponential
hierarchy. Moreover, characterizations of NC1 by means of branching pro-
grams (Barrington’s theorem [Bar89]) and PSPACE by means of bottleneck
Turing machines [CF91] should lead to characterizations of those classes.
It is moreover important to characterize not only classes of predicates but
classes of functions as well. A natural lead for this is to understand the
classes of functions lying in the type Nat2 ⇒Nat2 – functions from (bi-
nary) natural numbers to (binary) natural numbers – in the models con-
sidered. More geƒnerally, we expect characterizations and/or definitions of
complexity classes of higher-order functionals as the types of higher-order
functionals in the models, e.g. (Nat2 ⇒Nat2)⇒ (Nat2 ⇒Nat2) for type 2
functionals. As no established theory of complexity for higher-order func-
tional exists at the time, this particular line of research meets item (iii).

(ii) Show that Complexity-through-realizability techniques extend and improve
previous work.

It would be interesting to understand if the definition of algorithms as Ab-
stract State Machines (ASMs) proposed by Gurevich [Gur95] corresponds
to a specific case of our definition of algorithms as graphings. Although no
previous work attempted to relate ASMs and GoI, an ASM is intuitively
a kind of automata on first-order structures and such objects can be seen
as graphings [Sei14e]. This expected result will show that the notion of
graphing provides an adequate mathematical definition of the notion of al-
gorithm. The complexity-through-realizability techniques proposed should
also be shown to generalize both the quantitative denotational semantics
[LMMP13] and the quantitative realizability technique developed by Hoff-
man and dal Lago [dLH11]. Building on previous work obtaining a realiz-
ability model capturing the ICC logical system ELL [Sei14d], one should
also work on demonstrating that complexity-through-realizability techniques
generalize and extend ICC techniques, for instance by describing the syn-
tax of logical systems corresponding to the realizability models. This should
lead to applications such as typing systems for complexity constrained pro-
grams and type inference algorithms for statically determining the com-
plexity bounds of programs.

(iii) Show that Complexity-through-realizability techniques apply to a wide va-
riety of computational paradigms, for instance process calculi, probabilis-
tic/quantum computation, and cellular automata.

First results in this directions are provided by the work sketched in sec-
tion 4, as it is shown that probabilistic computation can fit into the pro-
posed framework. Moreover, a generalization towards quantum computa-
tion seem natural. The framework offered by graphings is indeed partic-
ularly fit for those two computational paradigms as it related to operator
algebras techniques, hence related to both measure theory and linear alge-
bra. In this particular case of probabilistic and quantum computation, this
will allow for characterizations of other standard probabilistic and quan-
tum complexity classes such as PP, BPP, or BQP. In other cases such as
concurrent programs or cellular automata where no established complexity

13

theory exists, this will provide a viable and well-grounded foundation for
such a theory.

It is our belief also that important contributions can be made by working
on the second objective, namely use well-established mathematical techniques,
tools and invariants from operator algebras and dynamical systems for address-
ing open problems in complexity.

In particular, `2-Betti numbers [Gab02] appear to be good candidates for this
purpose. Let us recall that the notion of microcosm used to characterize complex-
ity classes in the work described above generates a measured equivalence relation
which in turn defines a von Neumann algebra together with a distinguished max-
imal abelian sub-algebra. The notion of measured equivalence relation is used to
study measurable group actions, and mathematicians have developed fine invari-
ants to classify them, such as cost [Gab00] and `2-Betti numbers5 [Gab02]. Dis-
cussions with operator algebraists lead to some evidence that if two microcosms
m and n have the same6 `2-Betti number, the complexity classes characterized
are equal. This is coherent with the first results presented in section 4: a number
of well-known separation results such as 2DFA(k) 6=2DFA(k+1) [Mon76] hold for
the various notion of automata considered above, and one can show that the first
`2-Betti numbers of the corresponding microcosms are not equal. We are there-
fore conjecturing the following result, which would lead to a new method for the
obtention of separation results.

Conjecture 1. Let m,n be two microcosms. Then m and n have the same `2-
Betti numbers if and only if the types Nat2 ⇒Bool in the corresponding models
characterize the same complexity classes.

I believe moreover that higher-order homotopies relate to higher-order func-
tionals, and I am expecting a more precise result stating that equality of `2-Betti
numbers β(2)

k for all k É N is equivalent to the equality of the characterized type
k functionals complexity classes for all k É N.

5A definition which is coherent with `2-Betti number defined by Atiyah [Ati76], the later general-
ization to groups by Cheeger and Gromov [CG86] reformulated by Lück [Lüc02], and the generaliza-
tion to von Neumann algebras by Connes and Shlyakhtenko [CS05].

6The `2-Betti number of a microcosm is defined as the `2-Betti number of the generated measured
equivalence relation.

14

References
[ABPS14] Clément Aubert, Marc Bagnol, Paolo Pistone, and Thomas Seiller.

Logic programming and logarithmic space. In Jacques Garrigue, edi-
tor, Programming Languages and Systems - 12th Asian Symposium,
APLAS 2014, Singapore, November 17-19, 2014, Proceedings, volume
8858 of Lecture Notes in Computer Science, pages 39–57. Springer,
2014.

[ABS15] Clément Aubert, Marc Bagnol, and Thomas Seiller. Memorization for
unary logic programming: Characterizing ptime. Submitted, 2015.

[AR02] Andrea Asperti and Luca Roversi. Intuitionistic light affine logic.
ACM Transactions on Computational Logic (TOCL), 3(1):137–175,
2002.

[AS14] Clément Aubert and Thomas Seiller. Characterizing co-nl by a group
action. Mathematical Structures in Computer Science, available as
FirstView, December 2014.

[AS15] Clément Aubert and Thomas Seiller. Logarithmic space and permu-
tations. accepted for publication in Information and Computation,
2015.

[Ati76] Michael Atiyah. Elliptic operators, discrete groups and von Neumann
algebras, volume 32-33 of Astérisque, pages 43–72. Société Mathéma-
tique de France, 1976.

[Bai11] Patrick Baillot. Elementary linear logic revisited for polynomial
time and an exponential time hierarchy. In Hongseok Yang, editor,
APLAS, volume 7078 of Lecture Notes in Computer Science, pages
337–352. Springer, 2011.

[Bar89] David A. Barrington. Bounded-width polynomial-size branching pro-
grams recognize exactly those languages in {NC1}. Journal of Com-
puter and System Sciences, 38(1):150 – 164, 1989.

[BC92] Stephen Bellantoni and Stephen Cook. A new recursion-theoretic
characterization of the polytime functions. Computational Complex-
ity, 2, 1992.

[BP01] Patrick Baillot and Marco Pedicini. Elementary complexity and ge-
ometry of interaction. Fundamenta Informaticae, 45(1-2):1–31, 2001.

[CF91] JIN-YI CAI and MERRICK FURST. Pspace survives constant-with
bottlenecks. International Journal of Foundations of Computer Sci-
ence, 02(01):67–76, 1991.

[CG86] Jeff Cheeger and Mikhael Gromov. l2-cohomology and group coho-
mology. Topology, 25(2):189–215, 1986.

[CG96] K. J. Compton and E. Grädel. Logical definability of counting func-
tions. J. Comput. Syst. Sci., 53, 1996.

15

[Cob65] A. Cobham. The intrinsic computational difficulty of functions. In
Proceedings of the 1964 CLMPS, 1965.

[Coo71] S. Cook. The complexity of theorem-proving procedures. In Proceed-
ings of the 3rd ACM Symposium on Theory of Computing, 1971.

[CS05] Alain Connes and Dimitri Shlyakhtenko. L 2-homology for von neu-
mann algebras. Journal für die reine und angewandte Mathematik,
2005(586):125–168, 2005.

[Dan90] Vincent Danos. La Logique Linéaire Appliquée à l’Étude de Divers
Processus de Normalisation (principalement du λ-calcul). PhD the-
sis, University of Paris VII, June 1990.

[DG08] A. Dawar and E. Grädel. The descriptive complexity of parity games.
LMCS, 5213, 2008.

[DJ03] Vincent Danos and Jean-Baptiste Joinet. Linear logic & elementary
time. Information and Computation, 183(1):123–137, 2003.

[dLH11] Ugo dal Lago and Martin Hofmann. Realizability models and implicit
complexity. Theoretical Computer Science, 412:2029–2047, 2011.

[Fag74] R. Fagin. Generalized first-order spectra and polynomial-time recog-
nizable sets. In SIAM-AMS Proc., volume 7, 1974.

[FK52] Bent Fuglede and Richard V. Kadison. Determinant theory in finite
factors. Annals of Mathematics, 56(2), 1952.

[FM77] Jacob Feldman and Calvin C Moore. Ergodic equivalence relations,
cohomology, and von neumann algebras. I. Transactions of the Amer-
ican mathematical society, 234(2):289–324, 1977.

[Gab00] Damien Gaboriau. Coût des relations d’équivalence et des groupes.
Inventiones Mathematicae, 139:41–98, 2000.

[Gab02] Damien Gaboriau. Invariants l2 de relations d’équivalence et de
groupes. Publ. Math. Inst. Hautes Études Sci, 95(93-150):15–28,
2002.

[GAL92] Georges Gonthier, Martín Abadi, and Jean-Jacques Lévy. The geom-
etry of optimal lambda reduction. In Ravi Sethi, editor, POPL, pages
15–26. ACM Press, 1992.

[GG95] E. Grädel and Y. Gurevich. Tailoring recursion for complexity. Jour-
nal of Symbolic Logic, 60, 1995.

[Ghi07] Dan R. Ghica. Geometry of synthesis: a structured approach to vlsi
design. In Martin Hofmann and Matthias Felleisen, editors, POPL,
pages 363–375. ACM, 2007.

[Gir87] Jean-Yves Girard. Linear logic. Theoretical Computer Science,
50(1):1–101, 1987.

[Gir89a] Jean-Yves Girard. Geometry of interaction I: Interpretation of sys-
tem F. In In Proc. Logic Colloquium 88, 1989.

16

[Gir89b] Jean-Yves Girard. Towards a geometry of interaction. In Proceedings
of the AMS Conference on Categories, Logic and Computer Science,
1989.

[Gir95] Jean-Yves Girard. Geometry of interaction III: Accommodating the
additives. In Advances in Linear Logic, number 222 in Lecture Notes
Series, pages 329–389. Cambridge University Press, 1995.

[Gir06] Jean-Yves Girard. Geometry of interaction IV: the feedback equa-
tion. In Stoltenberg-Hansen and Väänänen, editors, Logic Collo-
quium ’03, pages 76–117, 2006.

[Gir11] Jean-Yves Girard. Geometry of interaction V: Logic in the hyperfi-
nite factor. Theoretical Computer Science, 412:1860–1883, 2011.

[Gir12] Jean-Yves Girard. Normativity in logic. In Peter Dybjer, Sten Lind-
ström, Erik Palmgren, and Göran Sundholm, editors, Epistemology
versus Ontology, volume 27 of Logic, Epistemology, and the Unity of
Science, pages 243–263. Springer, 2012.

[GS10] Dan R. Ghica and Alex Smith. Geometry of synthesis II: From
games to delay-insensitive circuits. Electr. Notes Theor. Comput. Sci.,
265:301–324, 2010.

[GS11] Dan R. Ghica and Alex Smith. Geometry of synthesis III: resource
management through type inference. In Thomas Ball and Mooly Sa-
giv, editors, POPL, pages 345–356. ACM, 2011.

[GSS92] Jean-Yves Girard, Andre Scedrov, and Philip J. Scott. Bounded linear
logic: a modular approach to polynomial-time computability. Theor.
Comput. Sci., 97(1):1–66, April 1992.

[GSS11] Dan R. Ghica, Alex Smith, and Satnam Singh. Geometry of synthesis
IV: compiling affine recursion into static hardware. In Manuel M. T.
Chakravarty, Zhenjiang Hu, and Olivier Danvy, editors, ICFP, pages
221–233. ACM, 2011.

[Gur95] Yuri Gurevich. Specification and validation methods. chapter Evolv-
ing Algebras 1993: Lipari Guide, pages 9–36. Oxford University
Press, Inc., New York, NY, USA, 1995.

[HS65a] J. Hartmanis and R. Stearns. On the computational complexity of
algorithms. Transactions of the AMS, 117, 1965.

[HS65b] Juris Hartmanis and Richard Stearns. On the computational com-
plexity of algorithms. Transactions of the American Mathematical
Society, 117, 1965.

[Imm88] Neil Immerman. Nondeterministic space is closed under complemen-
tation. In Structure in Complexity Theory Conference, 1988.

[JS74] N. Jones and A. Selman. Turing machines and the spectra of first-
order formulas. Journal of Symbolic Logic, 39, 1974.

17

[Kle45] Stephen C. Kleene. On the interpretation of intuitionistic number
theory. Journal of Symbolic Logic, 10, 1945.

[Kri01] Jean-Louis Krivine. Typed lambda-calculus in classical zermelo-
fraenkel set theory. Arch. Mathematical Logic, 40, 2001.

[Lag09] Ugo Dal Lago. The geometry of linear higher-order recursion. ACM
Trans. Comput. Logic, 10(2):8:1–8:38, March 2009.

[Lam90] John Lamping. An algorithm for optimal lambda calculus reduction.
In Frances E. Allen, editor, POPL, pages 16–30. ACM Press, 1990.

[Lev95] Gilbert Levitt. On the cost of generating an equivalence relation.
Ergodic Theory and Dynamical Systems, 15:1173–1181, 1995.

[LM93] D. Leivant and J.-Y. Marion. Lambda calculus characterizations of
poly-time. Fundam. Inform., 19, 1993.

[LM94] Daniel Leivant and Jean-Yves Marion. Ramified recurrence and com-
putational complexity II: Substitution and poly-space. Lecture Notes
in Computer Science, 933, 1994.

[LMMP13] Jim Laird, Guy McCusker, Giulio Manzonetto, and Michele Pagani.
Weighted relational models of typed lambda-calculi. In Proceedings
of the 28th Annual IEEE Symposium on Logic in Computer Science,
LICS 2013, June 25-28, 2013, New Orleans, USA, 2013.

[Lüc02] Wolfgang Lück. L2-Invariants: Theory and Applications to Geometry
and K-Theory, volume 44 of A Series of Modern Surveys in Mathe-
matics. 2002.

[Mon76] Buckhard Monien. Transformational methods and their application
to complexity problems. Acta Informatica, 6:95–108, 1976.

[RR97] A. A. Razborov and S. Rudich. Natural proofs. Journal of Computer
and System Sciences, 55, 1997.

[Sav70] W. Savitch. Relationship between nondeterministic and determinis-
tic tape classes. Journal of Computer and Systems Sciences, 4, 1970.

[Sei12a] Thomas Seiller. Interaction graphs: Multiplicatives. Annals of Pure
and Applied Logic, 163:1808–1837, December 2012.

[Sei12b] Thomas Seiller. Logique dans le facteur hyperfini : géometrie de
l’interaction et complexité. PhD thesis, Université Aix-Marseille,
2012.

[Sei14a] Thomas Seiller. A correspondence between maximal abelian sub-
algebras and linear logic fragments. Submitted, 2014.

[Sei14b] Thomas Seiller. Interaction graphs: Additives. Accepted for publica-
tion in Annals of Pure and Applied Logic, 2014.

[Sei14c] Thomas Seiller. Interaction graphs and complexity. Extended Ab-
stract, 2014.

18

[Sei14d] Thomas Seiller. Interaction graphs: Exponentials. Submitted, 2014.

[Sei14e] Thomas Seiller. Interaction graphs: Graphings. Submitted, 2014.

[Sei15] Thomas Seiller. Interaction graphs and complexity I. In preparation,
2015.

[SS08] Allan Sinclair and Roger Smith. Finite von Neumann algebras and
Masas. Number 351 in London Mathematical Society Lecture Note
Series. Cambridge University Press, 2008.

[Sze87] R. Szelepscényi. The method of forcing for nondeterministic au-
tomata. Bulletin of the EATCS, 33, 1987.

19

	Introduction
	Background
	Complexity Theory
	Realizability Models for Linear Logic and Complexity

	A Complexity-through-Realizability Theory
	Technical Background and Motivations
	Methodology

	First Results
	Graphings
	Models of Computation
	From Regular Languages to Logarithmic Space
	Non-deterministic and Probabilistic Computation
	And Then More

	Perspectives

