Very stable extensions on arithmetic surfaces

Christophe Soulé

Abstract Given a line bundle \(L \) on a smooth projective curve over the complex numbers, we show that a general extension \(E \) of \(L \) by the trivial line bundle is very stable: line bundles contained in \(E \) have degree much less than half the degree of \(E \). From this result we deduce new inequalities for the successive minima of the euclidean lattice \(H^1(X, L^{-1}) \), where \(L \) is an hermitian line bundle on the arithmetic surface \(X \).

Keywords Projective curve · Semi-stable bundle · Secant variety · Arithmetic surface · Successive minima

Mathematics Subject Classification (2000) MSC 14H60 · MSC 14G40

1 Introduction

Let \(X \) be an arithmetic surface and \(\tilde{N} \) an hermitian line bundle on \(X \). The lattice

\[A = H^1(X, N^{-1}) \]

is equipped with the \(L^2 \)-metric. In this paper we keep on studying the successive minima of this euclidean lattice; see [2], [3] and [4] for previous results. When the degree of \(\tilde{N} \) is large enough we get a lower bound for the \(k \)-th minimum of \(A \), when \(k > \frac{\deg(N)}{2} + g \), where \(g \) is the generic genus of \(X \); cf. Theorem 2 for a precise statement.

As in \textit{op. cit.}, we get this inequality by considering the extension

\[0 \rightarrow \mathcal{O}_X \rightarrow E \rightarrow N \rightarrow 0 \]

C. Soulé
IHÉS, 35 route de Chartres, 91440 Bures-sur-Yvette, France
E-mail: soule@ihes.fr
defined by a class $e \in \Lambda$. If $a \geq 0$ is an integer, we say that e is a-stable when the restriction of E to the geometric generic fiber C of X does not contain any line bundle L with

$$\deg(L) > \frac{\deg(E) - a}{2}.$$

The main ingredient in the proof of Theorem 2 is the assertion that any $V \subset H^1(C, N^{-1})$ contains a class e which is a-stable when $\dim(V)$ is large enough (Theorem 1). This is proved by induction, the case $a = 0$ being Proposition 2 in [4].

The paper is organized as follows. In Section 1 we introduce the notion of a-stability for a rank two vector bundle on C. The Lemma 1 relates a-stability and semi-stability when E is an extension of line bundles. In Lemma 2 we introduce secant varieties. Sections 1.4 to 1.9 are then devoted to the proof of Theorem 1. In Section 2 we let \bar{N} be an hermitian line bundle on some arithmetic surface X. Proposition 2 gives a lower bound for the L^2- norm of $e \in A$ if its restriction to C is a-stable. Theorem 2 follows by arguments similar to those in [2], [3] and [4].

I thank Y. Miyaoka for suggesting to look at very stable bundles, and C. Voisin for her comments on a first draft of this article.

2 Very stable extensions on curves

2.1

Let k be an algebraically closed field of characteristic zero and C a smooth projective curve of genus g over k. Let $a \geq 0$ be an integer. A rank two vector bundle E over C is said to be a-stable when, for every line bundle L contained in E, the following inequality holds:

$$\deg(L) \leq \frac{\deg(E) - a}{2}.$$

So, E is semi-stable (resp. stable) iff it is 0-stable (resp. 1-stable).

2.2

Let M and L be two line bundles on C and

$$0 \to L \to E \to M \to 0$$

an extension of M by L. Let A be an effective line bundle of degree a on C and $s : \mathcal{O}_C \to A$ a non trivial global section of A on C. If A^{-1} is the dual
of A and MA^{-1} its tensor product with M, the section s defines an injective morphism

$$i : MA^{-1} \rightarrow M.$$

If we pull-back the extension E by i we get a commutative diagram

$$
\begin{array}{cccccc}
0 & \rightarrow & L & \rightarrow & E & \rightarrow & M & \rightarrow & 0 \\
\| & & \| & & \| & & \uparrow i \\
0 & \rightarrow & L & \rightarrow & E' & \rightarrow & MA^{-1} & \rightarrow & 0
\end{array}
$$

for some rank two vector bundle E' on C.

Lemma 1. If E is a-stable, E' is semi-stable.

Proof. The morphism $E' \rightarrow E$ is injective, therefore any line bundle N contained in E' is also contained in E. Hence

$$\deg(N) \leq \frac{\deg(E) - a}{2} = \frac{\deg(E')}{2}$$

and E' is semi-stable.

2.3

Let N be a line bundle of degree $n \geq 3$ on C. Each cohomology class

$$e \in H^1(C, N^{-1}) = \text{Ext}(N, \mathcal{O}_C)$$

classifies an extension

$$0 \rightarrow \mathcal{O}_C \rightarrow E \rightarrow N \rightarrow 0$$

of N by the trivial line bundle. We say that e is a-stable (resp. semi-stable) if E is a-stable (resp. semi-stable).

Let

$$\mathbb{P} = \mathbb{P}(H^1(C, N^{-1}))$$

be the projective space of lines in $H^1(C, N^{-1})$. If ω is the sheaf of differentials on C, Serre duality implies that $H^1(C, N^{-1}) \simeq H^0(C, \omega \otimes N)^*$ and we get a canonical immersion $C \hookrightarrow \mathbb{P}$. If D is an effective divisor on C we let $\langle D \rangle \subset \mathbb{P}$ be the linear span of D, and $|D|$ be the support of D. For every integer $d \geq 0$ we consider the secant variety

$$\Sigma_d = \bigcup_{\deg(D) = d} \langle D \rangle .$$

Lemma 2. The extension class e is a-stable iff its image \bar{e} in \mathbb{P} does not belong to Σ_d when $d < \frac{n+a}{2}$.

2.4

We keep the notation of the previous paragraph.

Theorem 1. Assume that \(n \geq a + 3 \) and let \(V \subset H^1(C, N^{-1}) \) be a \(k \)-vector space of dimension
\[
\dim(V) \geq \frac{n + a}{2} + g. \tag{1}
\]
Then there exists a class \(e \in V \) which is \(a \)-stable.

In view of Lemma 2, Theorem 1 can be rephrased as follows. Let \(\delta = (n + a)/2 \). Assume that \(n \geq \delta + 2 \). When \(d < \delta \) the secant variety \(\Sigma_d \) does not contain any linear subspace \(\mathbb{P}(V) \) with \(\dim(V) \geq \delta + g \).

2.5

To prove Theorem 1 we can assume that \(n + a \) is even. Indeed, if \(n + a \) is odd the condition (1) is equivalent to
\[
\dim(V) \geq \frac{n + a + 1}{2} + g,
\]
and, if \(e \) is \((a + 1)\)-stable, it is also \(a \)-stable.

When \(n + a \) is even, we proceed by induction on \(a \). When \(a = 0 \) (and \(n \) is even) Theorem 1 is Proposition 2 in [4].

Assume Theorem 1 has been proved for \(a - 1 \). If \(P \in C(k) \) is a point on \(C \) we let
\[
X_P = \bigcup_{\deg(D) < \frac{n + a}{2}} \langle D \rangle,
\]
and we consider a linear subspace \(V \subset H^1(C, N^{-1}) \) of dimension at least \(\frac{n+a}{2} + g \). Assume that \(P \) does not lie in the projective space \(\mathbb{P}(V) \subset \mathbb{P} \).

Lemma 3. The intersection \(X_P \cap \mathbb{P}(V) \) is a proper closed subset of \(\mathbb{P}(V) \).

2.6

To prove Lemma 3, let \(N^{-1}P \) be the tensor product of \(N^{-1} \) with the line bundle \(\mathcal{O}(P) \) and
\[
\pi : H^1(C, N^{-1}) \to H^1(C, N^{-1}P)
\]
the corestriction morphism. Let
\[
\mathbb{P}' = \mathbb{P}(H^1(C, N^{-1}P))
\]
and let
\[
p : \mathbb{P} - \{P\} \to \mathbb{P}'
\]
be the linear projection defined by π. Since P is not in $\mathbb{P}(V)$, we have $\pi(V) = V'$, where V' has the same dimension as V, and p induces an isomorphism
\[\mathbb{P}(V) \cong p(V') . \]

If D is a divisor on C such that $P \in |D|$, $p((D))$ is the linear span $\langle D - P \rangle'$ of $D - P$ in \mathbb{P}'. The secant variety
\[\Sigma = \bigcup_{\deg(D) < \frac{n + a}{2} - 1} \langle D \rangle' \]
is a closed subset of \mathbb{P}', hence its inverse image
\[X_P - \{ P \} = p^{-1}(\Sigma) \]
is a closed subset of $\mathbb{P} - \{ P \}$.

If $\mathbb{P}(V)$ was contained in X_P, $\mathbb{P}(V')$ would be contained in Σ. But
\[\dim(V') = \dim(V) \geq \frac{n + a}{2} + g > \frac{(n - 1) + (a - 1)}{2} + g \]
hence, by the induction hypothesis, $\mathbb{P}(V')$ contains a point \bar{e}' such that e' is $(a - 1)$-stable. Since
\[\frac{n + a}{2} - 1 = \frac{(n - 1) + (a - 1)}{2} , \]
\bar{e}' does not lie in Σ (Lemma 2). This proves Lemma 3.

2.7

To prove Theorem 1 we can assume that $\dim(V) = \frac{n + a}{2} + g$. Since $H^1(C, N^{-1})$ has dimension $n + g - 1$ and $n \geq 3$, V is a proper subspace of $H^1(C, N^{-1})$, and $\mathbb{P}(V)$ does not contain C. Let P_1, \ldots, P_a be a distinct points of $C \setminus \mathbb{P}(V)$ and A the divisor
\[A = P_1 + \cdots + P_a . \]

From Lemma 3 we conclude that
\[U = \mathbb{P}(V) - \bigcup_{\deg(D) < \frac{n + a}{2}} \langle D \rangle \]
is a nonempty open subset of $\mathbb{P}(V)$. Let $N^{-1}A^{-1}$ be the tensor product of N^{-1} with $\mathcal{O}(-A)$ and
\[\pi : H^1(C, N^{-1}A^{-1}) \to H^1(C, N^{-1}) \]
the corestriction map. Let $\mathbb{P}' = \mathbb{P}(H^1(C, N^{-1}A^{-1}))$ and
\[p : \mathbb{P}' - \langle A \rangle' \to \mathbb{P} \]
the projection induced by π.

By Proposition 1 below, applied to NA instead of N and to $W = \pi^{-1}(V)$, there exists a non trivial class $e \in V$ such that $\bar{e} \in U$ and each $e' \in H^1(C, N^{-1} A^{-1})$ such that $\pi(e') = e$ is semi-stable. Assume \bar{e} lies in $\langle D \rangle$, for some effective divisor D on C. Then, either $\deg(D) \geq \frac{n+a}{2}$ or $|A| \cap |D| = \emptyset$ and $\deg(D) < \frac{n+a}{2}$.

In the latter case, since

$$\deg(NA \omega) = (2g - 2) + n + a > 2g - 2 + \deg(A) + \deg(D),$$

we have

$$\langle A \rangle \cap \langle D \rangle = \langle A \cap D \rangle = \emptyset$$

([1] p. 434) and there exists $\bar{e}' \in (D)'$ such that $p(\bar{e}') = \bar{e}$. Since e' is semi-stable and $\deg(NA) = n + a$, Lemma 2 implies that

$$\deg(D) \geq \frac{n + a}{2}.$$

Applying Lemma 2 again, we conclude that e is a-stable.

2.8

Let N be a line bundle of even positive degree n on C. Let

$$K \subset W \subset H^1(C, N^{-1})$$

be linear subspaces. We assume that $V = W/K$ is not zero and we let $U \subset \mathbb{P}(V)$ be a nonempty open subset. Let $\pi : W \to V$ be the projection and $a = \dim(K)$.

Proposition 1. If $\dim(V) \geq \frac{n}{2} + g$ there exists $\varepsilon \in V$ such that $\bar{e} \in U$ and any $e \in W$ such that $\pi(e) = \varepsilon$ is semi-stable.

2.9

To prove Proposition 1, we first note, as in [4] p. 288, that there exist two line bundles L and M on C such that $LM = \omega$ and $ML^{-1} = N$. Any class $e \in H^1(C, N^{-1})$ defines an extension

$$0 \to L \to E \to M \to 0$$

and a boundary map

$$\partial_e : H^0(C, M) \to H^1(C, L).$$

The bundle E is semi-stable iff ∂_e is an isomorphism. We now adapt to our situation the argument of C. Voisin in [4] 2.2. Let

$$\mu : H^0(C, M)^{\otimes 2} \to W^*$$
be the composite of the cup-product with the projection

\[H^0(C, M^2) = H^1(C, N^{-1})^* \to W^*. \]

Any vector \(e \in W \) defines, via \(\mu \), a quadric \(q_e \) in the projective space \(\mathbb{P}(H^0(C, M)) \). The boundary map \(\partial_e \) is an isomorphism iff \(q_e \) is non singular.

Arguing by contradiction, we assume that, for every \(\varepsilon \in V \) such that \(\bar{\varepsilon} \in U \), there exists \(e \in W \) such that \(\pi(e) = \varepsilon \) and \(q_e \) is singular. When \(r \geq 1 \) is a positive integer, we let \(U_r \subset U \) be the set of those \(\bar{\varepsilon} \) such that there exist \(e \in W \) with \(\pi(e) = \varepsilon \) and the singular locus of \(q_e \) has dimension \(r \). We have

\[U = \bigcup_{r \geq 1} U_r \]

and each set \(U_r \) is constructible. Therefore there exists \(r_0 \) such that \(U_{r_0} \) contains a dense open subset of \(\mathbb{P}(V) \). Consider the Zariski closure \(B \subset \mathbb{P}(H^0(C, M)) \) of the union of the singular loci of the quadrics with singular locus of dimension \(r_0 \), and let \(b \) be the dimension of \(B \).

Let \(\sigma \in H^0(C, M) \) be a representative of a generic point \(\bar{\sigma} \in B \). We claim that the map

\[\mu_\sigma : H^0(C, M) \to W^* \]

sending \(\tau \) to \(\mu(\sigma \otimes \tau) \) has rank at most \(a + b \). Indeed \(q \in W \) is singular at \(\tau \) iff it lies in the subspace \(Q_\tau \subset W \) orthogonal to the image of \(\mu_\tau \). The union of all the vector spaces \(Q_\tau, \tau \in B \), maps onto \(U_{r_0} \). Therefore the dimension of \(Q_\sigma \) is at least \(\dim(V) - b \) and the rank of \(\mu_\sigma \) is at most \(\dim(W) - (\dim(V) - b) = a + b \), as claimed.

It follows that the kernel \(H_\sigma \) of \(\mu_\sigma \) has dimension \(c \geq m - a - b \), where \(m = \dim H^0(C, M) \). Arguing as in op. cit., p. 290, we find that the subspace \(W^\perp \subset H^0(C, M^2) \) orthogonal to \(W \) has dimension at least

\[b + c \geq m - a. \]

Therefore, since \(H^1(C, N^{-1}) \) has dimension \(n + g - 1 \), \(W \) has dimension at most \(n + a + g - m - 1 \). By Riemann-Roch and the fact that \(2\deg(M) = 2g - 2 + n \), we know that

\[n - m + g \leq \frac{n}{2} + g. \]

Since \(\dim(V) = \dim(W) - a \), we get

\[\dim(V) \leq \frac{n}{2} + g - 1, \]

contradicting our hypothesis.
3 Arithmetic surfaces

3.1

Let F be a number field, \mathcal{O}_F its ring of integers and $S = \text{Spec}(\mathcal{O}_F)$. Consider a proper flat curve X over S such that X is regular and the generic fiber X_F is geometrically irreducible of genus g. Let

$$\text{deg} : \text{Pic}(X) \to \mathbb{Z}$$

be the morphism which sends the class of a line bundle over X to the degree of its restriction to X_F.

Let $\bar{N} = (N, h)$ be an hermitian line bundle on X. The cohomology group

$$A = H^1(X, N^{-1})$$

is a finitely generated module over \mathcal{O}_F. It can be endowed as follows with an hermitian norm. For every complex embedding $\sigma : F \to \mathbb{C}$, we let $X_\sigma = X \otimes \mathcal{O}_F \mathbb{C}$ be the corresponding complex curve. The cohomology group

$$A_\sigma = A \otimes \mathbb{C} = H^1(X_\sigma, N_{\mathbb{C}}^{-1})$$

is canonically isomorphic to the complex vector space $\mathcal{H}^{01}(X_\sigma, N_{\mathbb{C}}^{-1})$ of harmonic differential forms of type $(0, 1)$ with coefficients in the restriction $N_{\mathbb{C}}^{-1}$ of N^{-1} to X_σ. Given $\alpha \in \mathcal{H}^{01}(X_\sigma, N_{\mathbb{C}}^{-1})$ we let α^* be its transposed conjugate (the definition of which involves h), and we define

$$\|\alpha\|_{L^2}^2 = \frac{i}{2\pi} \int_{X_\sigma} \alpha^* \alpha.$$

Given $e \in A$ we let

$$\|e\| = \sup_{\sigma} \|\sigma(e)\|_{L^2},$$

where σ runs over all complex embeddings of F.

Let $a \geq 0$ be an integer and n the degree of N. We assume that $n \geq a + 3$. Let \bar{A} be an hermitian line bundle on X of degree $\text{deg}(A) = a$, and $s : \mathcal{O}_X \to \bar{A}$ a non zero global section of A. Define

$$\|s\|_{\sup} = \sup_{x \in X(\mathbb{C})} \|s(x)\|,$$

where $X(\mathbb{C}) = \bigsqcup_\sigma X_\sigma$ is the set of complex points of X.

Any class $e \in A$ defines an extension

$$0 \to \mathcal{O}_X \to E \to N \to 0$$

on X. If \bar{F} is a fixed algebraic closure of F, we let $E_{\bar{F}}$ be the restriction of E to $X_{\bar{F}} \otimes \bar{F}$. Denote by $r = [F : \mathbb{Q}]$ the absolute degree of F.
Proposition 2. Assume E_F is a-stable. Then the following inequality holds
\[\log \| e \| \geq \frac{(\bar{N} - \bar{A})^2}{2(n-a)r} - \log \| s \|_{\text{sup}} - 1, \]
where $(\bar{N} - \bar{A})^2 \in \mathbb{R}$ denotes the arithmetic self-intersection of the first Chern class $\hat{c}_1(\bar{N} \bar{A}^{-1}) \in \hat{C}H^1(X)$.

3.2

To prove Proposition 2 we consider the extension
\[0 \to \mathcal{O}_X \to E' \to NA^{-1} \to 0 \]
obtained by pulling back $e \in H^1(X, N^{-1})$ to $e' \in H^1(X, N^{-1}A)$. Since the restriction of E' to X_F is semi-stable (Lemma 1) we have
\[\log \| e' \| \geq \frac{(\bar{N} - \bar{A})^2}{2(n-a)r} - 1 \quad (2) \]
(see [2] or [4] pp. 294-295). So we are left with comparing $\| e \|$ and $\| e' \|$.

We have a commutative diagram:
\[
\begin{array}{cccccc}
0 & \to & \mathcal{O}_X & \to & E & \to & N & \to & 0 \\
\| & | & \| & | & \| & | & \| & | & \\
0 & \to & \mathcal{O}_X & \to & E' & \to & NA^{-1} & \to & 0.
\end{array}
\]

Any C^∞ splitting $E_{C} \to \mathbb{C}$ of the top extension defines, by restriction, a C^∞ splitting $E'_{\mathbb{C}} \to \mathbb{C}$. The Cauchy-Riemann operators $\bar{\partial}_E$ and $\bar{\partial}_{E'}$ can then be written as matrices
\[\bar{\partial}_E = \begin{pmatrix} \bar{\partial}_C & \alpha \\ 0 & \bar{\partial}_N \end{pmatrix} \]
and
\[\bar{\partial}_{E'} = \begin{pmatrix} \bar{\partial}_C & \alpha' \\ 0 & \bar{\partial}_{NA^{-1}} \end{pmatrix}, \]
where α is a linear map $C^\infty(N_C) \to A^{01}(\mathbb{C})$, and $\alpha' : C^\infty(NA_C^{-1}) \to A^{01}(\mathbb{C})$ is the restriction of α to NA_C^{-1}.

For any $\sigma : F \to \mathbb{C}$, choose a local chart z of X_{σ} and local trivializations of N_C and A_C. We have
\[\alpha = \varphi \, d\bar{z}, \]
where φ is a smooth function and
\[\alpha' = \varphi u \, d\bar{z}, \]
where \(u \) is the local section of \(A \) defined by \(s \). The transposed conjugates are

\[
\alpha^* = \frac{\bar{\varphi}}{h_N(1,1)} \, dz
\]

and

\[
\alpha'^* = \frac{h_A(1,1) \, \bar{\varphi} \, \bar{u} \, dz}{h_N(1,1)},
\]

where \(h_N(1,1) \) (resp. \(h_A(1,1) \)) is the squared norm of the local generator of \(N \) (resp. \(A \)). It follows that

\[
\alpha'^* \alpha' = h_A(1,1) \, \bar{u} \, \alpha^* \alpha = \| s \|^2 \, \alpha^* \alpha,
\]

and

\[
\| \alpha' \|^2_{L^2} = \frac{i}{2\pi} \int_{X_\sigma} \alpha'^* \alpha' \leq \| s \|^2 \, \sup \| \alpha \|^2_{L^2}.
\]

Assume that the splitting \(E_C \to \mathbb{C} \) has been chosen such that \(\alpha \) is harmonic. Then we get

\[
\| \alpha' \|^2_{L^2} \leq \| s \| \sup \| \sigma(e) \|^2_{L^2}.
\]

Since \(\| \sigma(e') \|^2_{L^2} \) is the smallest value of \(\| \alpha' \|^2_{L^2} \) when \(\alpha' \) runs over all representatives of \(e' \) in \(A^{[1]}(X_\sigma, N^{-1} A_C) \), we get

\[
\| \sigma(e') \|^2_{L^2} \leq \| s \| \sup \| \sigma(e) \|^2_{L^2}
\]

hence

\[
\| e' \| \leq \| s \| \sup \| e \|.
\]

This inequality and (2) imply Proposition 2.

3.3

We keep the notation of §2.1 and we consider the (logarithms of the) successive minima of the euclidean lattice \((A, \| \cdot \|)\). When \(k \leq rk(A) \), \(\mu_k \) is the infimum of all real numbers \(\mu \) such that there exists \(k \) elements \(e_1, \ldots, e_k \) in \(A \) which are linearly independent in \(A \otimes \mathbb{F} \) and such that

\[
\| e_i \| \leq \exp(\mu) \quad \text{for all} \quad i = 1, \ldots, k.
\]

Theorem 2. Assume that

\[
\frac{n + a}{2} + g \leq k < n + g - 1.
\]

Then

\[
\mu_k \geq \frac{(\bar{N} - \bar{A})^2}{2(n - a) r} - \log \| s \| \sup - C,
\]

where \(C = 1 + \log(d(n, a) k) \), and \(d(n, a) \) is bounded as in (3) below.
3.4

To prove Theorem 2 we let
\[V \subset H^1(X_F, N^{-1}) = \Lambda \otimes \bar{F} \]
be the linear space spanned by \(e_1, \ldots, e_k \). Since \(k < n + g - 1 \), \(V \) is a proper subspace of \(\Lambda \otimes \bar{F} \). From Theorem 1 we know that there exists \(e \in V \) such that the corresponding extension \(E \) of \(\mathcal{O}_C \) on \(C = X_F \) is \(a \)-stable. Moreover, \(E \) is a stable extension when \(e \) does not belong to \(\mathbb{P}(V) \cap H(n, a) \), where \(H(n, a) \) is a hypersurface defined as follows. When \(n + a \) is odd we let \(H(n, a) = H(n, a + 1) \). When \(n + a \) is even, \(H(n, a) \) is defined by induction on \(a \). We choose \(A = P_1 + \ldots + P_k \) as in 1.7. The class \(\bar{e} \) is \(a \)-stable when it satisfies the following two conditions. First, for any \(P \in |A| \), the projection of \(\bar{e} \) into \(\mathbb{P}(H^1(C, N^{-1}P)) \) should not lie in \(H(n - 1, a - 1) \). Second, let \(L \) and \(M \) be line bundles on \(C \) such that \(LM = \omega \) and \(ML^{-1} = NA \); then, any class \(e' \in \mathbb{P}(H^1(C, N^{-1}A^{-1})) \) which maps to \(e \in \mathbb{P}(H^1(C, N^{-1})) \) should be such that the boundary map
\[\partial_{e'} : H^0(C, M) \to H^1(C, L) \]
is an isomorphism. Let \(m \) be the dimension of \(H^0(C, M) \), \(\sigma_1, \ldots, \sigma_m \) a basis of \(H^0(C, M) \), and \(\tau_1, \ldots, \tau_m \) a basis of \(H^1(C, L) \). Then \(\partial_{e'} \) is injective as soon as it satisfies the inequality
\[(\partial_{e'}(\sigma_1) \wedge \ldots \wedge \partial_{e'}(\sigma_m), \tau_1 \wedge \ldots \wedge \tau_m) \neq 0, \]
which is of degree \(m \leq \frac{n + a}{2} \) in \(e' \). It follows from the proof of Theorem 1 that \(\bar{e} \) is \(a \)-stable as soon as it satisfies these two conditions, which is the case when \(\bar{e} \notin H(n, a) \), where \(H(n, a) \) is an hypersurface of degree \(d(n, a) \) with
\[d(n, a) \leq \frac{n + a}{2} + a(n - 1, a - 1) \]
and
\[d(n, 0) \leq \frac{n}{2}. \]

Therefore we get
\[d(n, a) \leq p + a(p - 1) + a(a - 1)(p - 2) + a(a - 1)(a - 2)(p - 3) + \ldots + a!(p - a), \quad \text{when } n + a = 2p \text{ or } 2p - 1. \] (3)

Therefore, as in [3] Prop. 5, there exist \(k \) integers \(n_1, \ldots, n_k \), with \(|n_i| \leq d(n, a) \) for all \(i \), such that
\[e = n_1 e_1 + \ldots + n_k e_k \]
does not lie in \(H(n, a) \). The extension \(E \) defined by \(e \) on \(X \) is then \(a \)-stable, and Proposition 2 implies that
\[\log ||e|| \geq \frac{(N - A)^2}{2(n - a) r} - \log ||s||_{sup} - 1. \]

Since
\[||e|| \leq k d(n, a) \exp(\mu_k), \]
Theorem 2 follows.
References