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Introduction

Planar map: connected (multi)graph embedded in the sphere and
considered up to continuous deformation.

(aka planar diagrams, fatgraphs, dessins d'enfants...)
Quadrangulation: every face has degree 4



Introduction

Geodesic (or graph) distance: minimal number of consecutive
edges connecting two given vertices.

Random map: any “reasonable” probability distribution over
{maps of given “size” }, e.g uniform distribution over
{quadrangulations with n faces}.
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Introduction

What can be said about the metric properties of random maps,
especially in the large size limit 7

Universality: in all “reasonable” cases, the typical (and maximal)
distance is of order (size)1/4. Upon renormalizing the distances by
this factor, we expect to find a same random compact continuous
metric space in the limit.

This is an interesting object, similar to the Brownian motion which
is the limit of discrete random walks. It models a discrete random
surface.

Interested people in the region: combinatorists around LIX (G.
Schaeffer, Cori), probabilists around Orsay (Le Gall, Miermont)...
and some theoretical physicists in Saclay.

Previous results in the physics literature (Ambjgrn-Watabiki). Also
Liouville field theory but do we speak about the same distance 7
Our approach: study metric properties of large random maps using
bijections with trees and integrability. Here is a flavor.



The Schaeffer bijection

origin

Start with a pointed planar quadrangulation (marked vertex: origin).



The Schaeffer bijection

Each vertex v receives a label ¢(v) equal to its graph distance from
the origin.



The Schaeffer bijection

[¢(v) —£(v')] = 1if v and v/ are neighbors on the quadrangulation.



The Schaeffer bijection
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Two types of faces.
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The Schaeffer bijection

Create a new edge within each face depending on the type.



The Schaeffer bijection

Apply the Schaeffer rules independently within each face.



The Schaeffer bijection

Remove the isolated origin.



The Schaeffer bijection

Obtain a well-labeled tree (with minimal label 1).



The Schaeffer bijection

Extension to more general classes of maps: [BDG04-07]



Integrability

We consider generating functions for quadrangulations with a
weight g per face (per edge for trees).
For well-labeled trees we easily find a recursive equation:

Re=> (g(Ri—1+ Re+ Reyr)) =

= 1—g(Rey1+ Re+ Re—1)

This is valid for £ > 0 with the boundary condition Ry = 0.



Integrability

The solution is

_ 5 e+ 3]
Re= R+ 2
where . .
==
and
R(g)zl_— v1-12¢g X(g)_'_i_i_l:;

x(g) gR(g)?

The property of “integrability” appears in a more general context
[BDGO3].

bg



The two-point function

Find the law for the distance between two random vertices in a
random quadrangulation.




The two-point function

Find the law for the distance between two random vertices in a
random quadrangulation.

Solved above ! [BDG 2003] The generating function for
quadrangulations with two marked vertices at distance < d is
log Ry.



The three-point function

Find the probability distribution for the pairwise distances between
three random vertices in a random quadrangulation.
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The three-point function
For the three-point function we need a generalization of the
Schaeffer bijection found by Miermont. It involves multiply-pointed
(sources) quadrangulations and results into well-labeled maps.
Here we will need three sources and we obtain well-labeled maps
with three faces (delayed Voronoi cells).

We introduce the useful parametrization:

dip =5+t drs=t+u d31 =u+s



The three-point function
Planar quadrangulations with three marked points at prescribed
pairwise distances di2, db3, d31 are in one-to-one correspondence
with well-labeled maps of this generic type [BGO8]:

minl(v) =1—s
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The three-point function
Such an object can be decomposed into pieces that are special
well-labeled trees, which we are able to enumerate. For instance:

1
\ ‘f" £.,=0

Xs,t =1+ gRth Xs,t (1 + gRs+1Rt+1 Xs+1,t+1)

X - [3][s + 1][t + 1][s + t + 3]
ST s+ 3)[t + 3]s + t + 1]




The three-point function
In the end, the generating function for triply-pointed
quadrangulations is

G(di2, do3, d31) = AsA A F (s, t,u)

where

= 1B]([s+1][t+1][u+1][s+t+u+3])?
F(s,t,u) = [PB[s+t+1][s+t+3][t+u+1][t-+u+3][u+s+1][u+s+3]

and
Asf(s)=f(s)—f(s—1)



The three-point function

In the end, the generating function for triply-pointed
quadrangulations is

G(di2, do3, d31) = AsA A F (s, t,u)

where

= 1B]([s+1][t+1][u+1][s+t+u+3])?
F(s,t,u) = [PB[s+t+1][s+t+3][t+u+1][t-+u+3][u+s+1][u+s+3]

and
Asf(s)=f(s)—f(s—1)

We can now deduce from our expression the probability
distribution for distances in random planar quadrangulations of
large size n. This is obtained through a contour integral and a
saddle point expansion around the critical point g = 1/12:

1
g=1;(1-N) d= DY/t ex1



The two-point function yields
G(d;g) = log Ry/Ry—1 ~ €/*G(D; a)

h(aD) 3
D;a)=4 scomar) = \/7/\1/4
G(Dia) = 4a sinh3(aD) “ 2

in agreement with [Ambjgrn-Watabiki 1996].
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The two-point function yields
G(d;g) = log Ry/Ry—1 ~ €/*G(D; a)

h(aD) 3
D;a)=4 scomar) = \/7/\1/4
G(Dia) = 4a sinh3(aD) “ 2

in agreement with [Ambjgrn-Watabiki 1996].
Going back to the canonical ensemble (fixed size) we find the
probability density for D:

2 [ e :
o(D)= = / deceg(D; 3ED)
p(D)
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Applying the same method to the three-point function we compute
p(D12, D23, D31). Plots are easier with the conditional density:

p(D12, Dp3, D31)

p(Do3, D31|D1p) = (Do)

for Dy3, D31 when Dss is fixed.
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Applying the same method to the three-point function we compute
p(D12, D23, D31). Plots are easier with the conditional density:

D12, D23, D3y1)

p(Do3, D31|D1p) = o

p(Dr2)

for Dy3, D31 when Dss is fixed.
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Applying the same method to the three-point function we compute
p(D12, D23, D31). Plots are easier with the conditional density:

p(D12, Dp3, D31)
p(D12)

p(Do3, D31|D1p) =

for Dy3, D31 when Dss is fixed.

Do =3.0

p(D23 ’D31 p12




Properties of geodesics

In another work [BG07-08] we have studied the properties of
geodesic paths themselves.
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Properties of geodesics

This can be seen by studying a specific case of the previous
construction: u =0, dip =s+t, d3 =t, d31 =s.

=] By

[Miermont 2007]
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Properties of geodesics

A summary of our findings:

» We compute exactly a generating function for planar
quadrangulations with a marked geodesic.

» The mean number of geodesics between two given vertices at
distance d oc n1/* is 3 x 2¢.

» However for two generic vertices, any two geodesics
connecting them are indistinguishable on a macroscopic
(ox n/*) scale. In the continuous object, there is a unique
geodesic connecting two generic points.

» There are some pairs of exceptional vertices connected by
several macroscopically disjoint geodesics. We find that for k
geodesics the number of such pairs is of order n(11=3k)/4  See
also [Le Gall 2008].



Confluence of geodesics

Le Gall has shown the surprising phenomenon of confluence of

geodesics.

%) \\8423



Confluence of geodesics

Consider the tree obtained by Schaeffer's bijection with v3 as
origin:
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Consider the tree obtained by Schaeffer's bijection with v3 as
origin:



Confluence of geodesics

Consider the tree obtained by Schaeffer's bijection with v3 as
origin:

U
0

In the discrete setting these correspond to particular geodesics,
nevertheless in the scaling limit this makes no difference. We have
8§ o nt/%.



Confluence of geodesics

We were able to compute the continuous law for & (§ — 6 - n=/4):

o(0) = 1\3f /Oo d¢ =€/ 3iE J2e 2V 32
_[{ ( 11y 954> 3521(3 )0F2( 33 9&4>

+¢37530F2 ({5212}
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Confluence of geodesics

The shape of a triangle will actually look like:




Confluence of geodesics

The shape of a triangle will actually look like:

Our computation of the three-point function can be refined in
order to obtain the joint law for all six parameters:

D15, D3, D)s, 01,02, 03. All these quantities have the same mean
value.
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Conclusion

» Technically, we have developed a diagrammatric approach to
compute metric properties of random quadrangulations (and
more).

» We find that the Brownian map has a structure inbetween the
sphere and a tree.

» Do we consider the “right” metric? What if we consider an
“unreasonable” class of maps (coupled to a critical statphys
model, with scale-free degree distributions...)?

» Current work: a better understanding of the “integrability”
property through a connection with continued fractions.
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