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Introduction

Planar map: connected (multi)graph embedded in the sphere and
considered up to continuous deformation.

(aka planar diagrams, fatgraphs, dessins d’enfants...)
Quadrangulation: every face has degree 4



Introduction
Geodesic (or graph) distance: minimal number of consecutive
edges connecting two given vertices.
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Random map: any “reasonable” probability distribution over
{maps of given “size”}, e.g uniform distribution over
{quadrangulations with n faces}.



Introduction

What can be said about the metric properties of random maps,
especially in the large size limit ?

Universality: in all “reasonable” cases, the typical (and maximal)
distance is of order (size)1/4. Upon renormalizing the distances by
this factor, we expect to find a same random compact continuous
metric space in the limit.
This is an interesting object, similar to the Brownian motion which
is the limit of discrete random walks. It models a discrete random
surface.
Interested people in the region: combinatorists around LIX (G.
Schaeffer, Cori), probabilists around Orsay (Le Gall, Miermont)...
and some theoretical physicists in Saclay.
Previous results in the physics literature (Ambjørn-Watabiki). Also
Liouville field theory but do we speak about the same distance ?
Our approach: study metric properties of large random maps using
bijections with trees and integrability. Here is a flavor.
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The Schaeffer bijection

origin

Start with a pointed planar quadrangulation (marked vertex: origin).



The Schaeffer bijection
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Each vertex v receives a label `(v) equal to its graph distance from
the origin.



The Schaeffer bijection
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|`(v)− `(v ′)| = 1 if v and v ′ are neighbors on the quadrangulation.



The Schaeffer bijection
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Two types of faces.



The Schaeffer bijection
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Create a new edge within each face depending on the type.



The Schaeffer bijection

2

12

11

2

3

4

2

1
2

0

Apply the Schaeffer rules independently within each face.



The Schaeffer bijection
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Remove the isolated origin.



The Schaeffer bijection
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Obtain a well-labeled tree (with minimal label 1).



The Schaeffer bijection
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Extension to more general classes of maps: [BDG04-07]



Integrability

We consider generating functions for quadrangulations with a
weight g per face (per edge for trees).
For well-labeled trees we easily find a recursive equation:

m

m+1
m−1 m

+1m

R` =
∑
k≥0

(g (R`−1 + R` + R`+1))k =
1

1− g(R`+1 + R` + R`−1)

This is valid for ` > 0 with the boundary condition R0 = 0.



Integrability

The solution is

R` = R
[`][`+ 3]

[`+ 1][`+ 2]

where

[`] ≡ 1− x`

1− x

and

R(g) =
1−√1− 12g

6g
x(g) +

1

x(g)
+ 1 =

1

gR(g)2
.

The property of “integrability” appears in a more general context
[BDG03].



The two-point function
Find the law for the distance between two random vertices in a
random quadrangulation.

2v
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Solved above ! [BDG 2003] The generating function for
quadrangulations with two marked vertices at distance ≤ d is
log Rd .
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log Rd .



The three-point function

Find the probability distribution for the pairwise distances between
three random vertices in a random quadrangulation.
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The three-point function
For the three-point function we need a generalization of the
Schaeffer bijection found by Miermont. It involves multiply-pointed
(sources) quadrangulations and results into well-labeled maps.

Here we will need three sources and we obtain well-labeled maps
with three faces (delayed Voronoi cells).

v

12

d
23d 31

s t

u

1 2

3

v

v

d

We introduce the useful parametrization:

d12 = s + t d23 = t + u d31 = u + s
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The three-point function
Planar quadrangulations with three marked points at prescribed
pairwise distances d12, d23, d31 are in one-to-one correspondence
with well-labeled maps of this generic type [BG08]:

3

F1

2F F

min ℓ(v) = 0

min ℓ(v) = 1− s

min ℓ(v) = 1− t min ℓ(v) = 1− u

min ℓ(v) = 0

min ℓ(v) = 0



The three-point function
Such an object can be decomposed into pieces that are special
well-labeled trees, which we are able to enumerate.

For instance:
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Xs,t = 1 + gRsRt Xs,t (1 + gRs+1Rt+1 Xs+1,t+1)

Xs,t =
[3][s + 1][t + 1][s + t + 3]

[1][s + 3][t + 3][s + t + 1]
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The three-point function
In the end, the generating function for triply-pointed
quadrangulations is

G (d12, d23, d31) = ∆s∆t∆uF (s, t, u)

where

F (s, t, u) = [3]([s+1][t+1][u+1][s+t+u+3])2

[1]3[s+t+1][s+t+3][t+u+1][t+u+3][u+s+1][u+s+3]

and
∆s f (s) ≡ f (s)− f (s − 1)

We can now deduce from our expression the probability
distribution for distances in random planar quadrangulations of
large size n. This is obtained through a contour integral and a
saddle point expansion around the critical point gc = 1/12:

g =
1

12
(1− Λε) d = Dε−1/4 ε� 1
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The two-point function yields

G (d ; g) ≡ log Rd/Rd−1 ∼ ε3/4G(D;α)

with

G(D;α) ≡ 4α3 cosh(αD)

sinh3(αD)
α ≡

√
3

2
Λ1/4

in agreement with [Ambjørn-Watabiki 1996].

Going back to the canonical ensemble (fixed size) we find the
probability density for D:

ρ(D) =
2

i
√
π

∫ ∞
−∞
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2G(D;

√
−3iξ/2)
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Applying the same method to the three-point function we compute
ρ(D12,D23,D31). Plots are easier with the conditional density:

ρ(D23,D31|D12) ≡ ρ(D12,D23,D31)

ρ(D12)

for D23,D31 when D12 is fixed.
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Applying the same method to the three-point function we compute
ρ(D12,D23,D31). Plots are easier with the conditional density:

ρ(D23,D31|D12) ≡ ρ(D12,D23,D31)

ρ(D12)

for D23,D31 when D12 is fixed.
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Properties of geodesics

In another work [BG07-08] we have studied the properties of
geodesic paths themselves.
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Properties of geodesics

A summary of our findings:

I We compute exactly a generating function for planar
quadrangulations with a marked geodesic.

I The mean number of geodesics between two given vertices at
distance d ∝ n1/4 is 3× 2d .

I However for two generic vertices, any two geodesics
connecting them are indistinguishable on a macroscopic
(∝ n1/4) scale.

In the continuous object, there is a unique
geodesic connecting two generic points.

I There are some pairs of exceptional vertices connected by
several macroscopically disjoint geodesics. We find that for k
geodesics the number of such pairs is of order n(11−3k)/4. See
also [Le Gall 2008].
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Properties of geodesics

This can be seen by studying a specific case of the previous
construction: u = 0, d12 = s + t, d23 = t, d31 = s.

2

3
v

1F

F

min ℓ(v) = 1− s

ℓ(v) = 0
min ℓ(v) = 1− t

min ℓ(v) = 0

[Miermont 2007]
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Confluence of geodesics

Le Gall has shown the surprising phenomenon of confluence of
geodesics.
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Confluence of geodesics

Consider the tree obtained by Schaeffer’s bijection with v3 as
origin:

In the discrete setting these correspond to particular geodesics,
nevertheless in the scaling limit this makes no difference. We have
δ ∝ n1/4.
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Confluence of geodesics
We were able to compute the continuous law for δ (δ → δ · n−1/4):
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Confluence of geodesics

The shape of a triangle will actually look like:

v3

1v 2v

δ3

δ1

δ2

D’
31

D’
23

D’
12

Our computation of the three-point function can be refined in
order to obtain the joint law for all six parameters:
D ′12,D

′
23,D

′
23, δ1, δ2, δ3. All these quantities have the same mean

value.
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Conclusion

I Technically, we have developed a diagrammatric approach to
compute metric properties of random quadrangulations (and
more).

I We find that the Brownian map has a structure inbetween the
sphere and a tree.

I Do we consider the “right” metric? What if we consider an
“unreasonable” class of maps (coupled to a critical statphys
model, with scale-free degree distributions...)?

I Current work: a better understanding of the “integrability”
property through a connection with continued fractions.
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