Matrix models as conformal field theories

Ivan Kostov, IPhT

1. Large N matrix integrals have conformal symmetry
2. The collective theory 1s a bosonic CFT defined on a Riemann surface

3. The gaussian approximation reproduces the leading and the
subleading order in 1/N (genus 0 and 1). The complete 1/N expansion 1s
obtained by “dressing” the branch points of the Riemann surface by the
modes of the bosonic current so that the conformal symmetry 1s
restored.

4. Diagram technique for the 1/N expansion having only finite number
of terms for given genus
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1. Large N matrix integrals have conformal symmetry

Z:/dXeV[X] = (1) VM)~ N?

U(N) symmetry =>  V[X]| =V (W, Ws,...), W, =trX"

The Ward identity / IX tr ( aix Xn) ~VIX] _ g

can be written as Virasoro constraint for the chiral bosonic collective field

. v [ OV D
O(a) =)z " Wat 3 ) na 1<_aw +avv)

n>0 n>1

with stress-energy tensor T(z) = 1. O (2)0¢(z) : = Z L,z "2

(\V)

(Lp)=0, n>—-1 o (T(x)) =0

Generalizes obviously
for multi-matrix models
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2. The collective theory 1s a bosonic CFT defined on a Riemann surface

The 1/N expansion = quasiclassical expansion for the bosonic field

Z:exp N2F(0)+Nf(1)+ZN2_2gf(g>
g=>2

classical gaussian quantum
action fluctuations corrections

Up to g>1 terms the collective field is a free chiral boson defined on the
Riemann surface ) ] of the classical solution

Jd(x) — 5‘<I>C1(x)

The two-point function of the collective field 1s given by the Laplace kernel on
the Riemann surface )

D(z,x") o (®(x)®(z') ) = 5 log(xz — z’) + regular

The gaussian field on the Riemann surface 1s conformal invariant only 1n the leading
order because the conformal transformations displace the branch points. This can be
cured by placing special operators at the branch points.
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Let d be one of the branch points of the Riemann surface Z . The bosonic field splits into a twisted
and untwisted components, each satisfying its Virasoro condition.

the projector onto the twisted component: ~ P(a) = %(1 —7(a))

""""" m(a) J () = P(a)J(x)

Tl (2) = lim [ﬂal () J W (") — L E _1x,)2] =Y Ly(a) (z—a)"2

r—1
Mode expansion J[a]( ) = ) + Z J (x—a)™" 77,
near the branch reZ+ L !
point:
_ Z 9 (= a) 1, [J?[a]7 Js[a]] _ %7“5r+s,o-
r>3/2

The quantum field associated with
the branch point at x=a 1s the twist operator O (CL) ; Jl[c;]2 (a) = J:EC/L]2 (a) = J5[‘;]2 (a)=---=0.
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Operator formalism:  |Oy) = H o(ax)|0)
k

chassical—l—gauss — < Z‘Otw >

The twist operator i1s not conformal invariant. To make 1t conformal
invariant, we dress 1t with the modes of the twisted current.
The complete solution is obtained by inserting the dressing operator

Q=]]ar)
k

The conformal invariance L%”k] Q) Otw) = 0 (n > —1),

completely determines the coefficients in the formal expansion

Z = <Z|Q‘Otw> = (X|0w) (Opw| 7070 Ow)
Jd(x)
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Explicit expression for the I/N expansion of the free energy:

a a a lak] _ ak]
J[—ﬁ]—1/2 - _%tn i Jq[zf]m —(n+ ) 3[ ¢ (n=0) O™ = 0/0tn ™
4 N
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The correlation functions
of the Kontsevich model

gt 27TZ 27TZ (x — a;)™ /2 (2" — ap)nt1/2
dx Jea ()
[a ] _ cl
o = 2 ]ézk 2mi (x — ag)"+1/2 (n=1)
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Diagram technique for the 1/N expansion:

ny a.
g handles{ OO \O\O, mZ m % % n C " ‘L m
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w8 G " G w

Gl (J(z)J(z"))
/ 271 / 2mi (x — a;)™ T2 (2! — ap)nt1/2

dx Jei(x)
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Example: The genus two free energy for the one-cut solution (two
branch points) of the one-matrix model
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Conclusion

1. Any (multi) matrix integral 1s dercribed at large N by a CFT of a bosonic field on
a Riemann surface.

2. The 1/N expansion 1s completely determined by the classical solution and the
conformal invariance.

3. Analogy with the quasiclassical one-dimensional motion:

-- Planck constant <==> 1/N

-- Classical trajectory <==> Riemann surface

-- Turning points <==> branch points (more strictly, ramification points)
-- Airy function <==> Kontsevich integral

4. The diagram technique for the 1/N expansion obtained from CFT 1s a partial
resummation of the diagram technique obtained by the Eynard-Orantin topological

recursion procedure.
[I.LK. - N. Orantin, 2010]
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