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1. Large N matrix integrals have conformal symmetry 

2. The collective theory is a bosonic CFT defined on a Riemann surface 

3. The gaussian approximation reproduces the leading and the 
subleading order in 1/N (genus 0 and 1). The complete 1/N  expansion is 
obtained by “dressing” the branch points of the Riemann surface by the 
modes of the bosonic current so that the conformal symmetry is 
restored.

4. Diagram technique for the 1/N expansion having only finite number 
of terms for given genus
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Another way to explain that is by the close analogy between the collective bosonic theory and
the one-dimensional quasiclassical motion. In the same way as the quantum effects of the classical
motion are associated with the turning points, the higher terms of the 1/N expansion come from the
vicinity of the branch points of the Riemann surface.

The quasiclassical wave function for the one-dimensional motion can be obtained by gluing the
exact solution near the turning points, given by the Airy function, with the classical trajectories be-
tween the turning points. In the matrix integrals one can proceed in a similar way. The quasiclassical
expansion can be obtained from three ingredients: the classical solution, which defines a Riemann
surface, the fundamental solution of the Laplace operator on this Riemann surface and the matrix
Airy function, which gives the exact solution near the branch points.

In this paper we review the recurrence and the CFTmethods and show how the diagram techniques
obtained by the two methods are related. We also consider some concrete examples as the O(n) and
the ADE matrix models.

2 Conformal invariance of the U(N)matrix measure

We are interested in matrix integrals of general form

Z =

∫

dX e−V [X] = 〈 1 〉 (2.1)

where dX is the flat measure for Hermitian matrices and the potential is invariant under unitary trans-
formations X → gXg−1 with g ∈ U(N). This means that the potential depends on the matrix X

through the momentsWn = tr Xn, n = 1, . . . , N .

V [X] = V (W1,W2, . . . ), Wn = trXn

We will refer to the integral (2.3) as the partition function of the matrix model with potential V .
The free energy of the matrix model is defined as the logarithm of the partition function, F = logZ .
Then the free energy has the 1/N expansion of the form

F =
∞
∑

g=0

F (g) N2−2g. (2.2)

Matrix conformal transformation: By the translational invariance of the matrix measure the parti-
tion function satisfies the Ward identity

tr
∂

∂X
Xn =

n−1
∑

k=0

WkWn−k +
∑

k≥1

kWn+k−1
∂

∂Wk

∫

dX tr

(

∂

∂X
Xn

)

e−V [X] = 0 (2.3)

which written in terms of the moments, takes the form
〈

n−1
∑

k=0

WkWn−k −
∑

k≥1

kWn+k−1
∂V

∂Wk

〉

= 0.
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We will refer to the integral (2.4) as the partition function of the matrix model with potential V .
The free energy of the matrix model is defined as the logarithm of the partition function, F = logZ .
Then the free energy has the 1/N expansion of the form

F =
∞∑

g=0

F (g) N2−2g. (2.2)

The translational invariance of the matrix measure assures that the partition function satisfies a set

of Ward identity
∫

dX
∂

∂Xij
(Xn)kl e−V [X] (2.3)

∫
dX tr

(
∂

∂X
Xn

)
e−V [X] = 0 (2.4)

〈
tr DXn − tr

(
Xn ∂V

∂X

)〉
= 0, (2.5)

whereA is an arbitrary matrix made ofX andY.

〈
( tr W(x))2 − tr (W(x)∂XV )

〉
= 0, Wa(x) =

1

x − X
. (2.6)
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of Ward identity

∫
dX tr

(
∂

∂X
Xn

)
e−V [X] = 0 (2.3)

or 〈
n−1∑

k=0

WkWn−k +
∑

k≥1

kWn+k
∂V

∂Wk

〉

= 0.

〈
( tr W(x))2 − tr (W(x)∂XV )

〉
= 0, Wa(x) =

1

x − X
. (2.4)
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〈T (x) 〉sing = 0

We assume that this problem is solved and we have solved the classical problem and the resolvents

(??) are known. Typically these are meromorphic functions vanishing at infinity. The resolvents

Wa(x) can be obtained from the valued of a single meromorphic function y = Y (x) on the different
sheets of its Riemann surface. The resolvents W̃ a(y) are obtained from the inverse function x =
X(y). Thus the classical solution of the matrix model defines the Riemann surface Σ.

2.1 Loop equations for the hermitian matrix integral

W (x) =
N∑

i=1

1

x − xi
, D(x) =

N∏

i=1

(x − xi)
β, (2.6)

J(x) = W (x) − 1
2V ′(x), Ψ(x) = D(x)e−V (x). (2.7)

〈
N∑

i=1



 ∂

∂xi
+ 2β

∑

j(#=i)

1

xi − xj
− V ′(xi)



 1

x − xi
O

〉

= 0 (2.8)

〈(

W 2(x) − (1 − β)∂W (x) −
N∑

i=1

V ′(xi)

x − xi
+

N∑

i=1

1

x − xi

∂

∂xi

)

O

〉

= 0 (2.9)

2.2 CFT on a Riemann surface

The large N expansion of SU(N) invariant matrix integrals is described by a conformal invariant
collective theory of a chiral bosonic field Φ(x). An important feature of this CFT is that the bosonic
field develops a large classical expectation value. The expectation value of the bosonic current J(x) =
∂Φ(x) is defined on a Riemann surface Σ of genus g realized as a branched covering of the x plane.
In the simplest case of the hermitian one-matrix model the Riemann surface is hyperelliptic. Here

we consider the most general case of a Riemann surface and construct the quasiclassical expansion

of the partition function and the observables. For the definition of the analytic fields on on branched

coverings see [11].

The two first orders of the free energy are given by a gaussian field on the Riemann surface defined

by the classical solution. A good review about the gaussian field on an arbitrary Riemann surface can

be found in [12]. Given the classical solution Jcl(x), the branch points are the solutions of the equation
dx = 0. We denote them by a1, . . . , ap. We assume that the branch points are ordered so that a2k−1

and a2k are connected by a cut, which we denote by Ck. We define a symplectic basis of 2p closed
orientable non-contractible cycles Ai and Bi, i = 1, . . . , p, so that the cycle Ak encircles the cut Ck

and

Ai ◦ Ak = Bi ◦ Bk = 0, Ai ◦ Bk = δi,k, (2.10)

3

∂φ(x) =
∑

n≥0

x−n−1 Wn + 1
2

∑

n≥1

n xn−1 ∂

∂Wn
(2.4)

∂φc(x) = −
∑

n≥0

〈Wn 〉 x−n−1 − 1
2

∑

n≥1

〈 ∂V/∂Wn 〉xn−1 ∼ N (2.5)

〈T (x) 〉sing = 0

(∂φ2
c)sing = 0

〈Ln 〉 = 0, n ≥ −1
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∂Φ(x) is defined on a Riemann surface Σ of genus g realized as a branched covering of the x plane.
In the simplest case of the hermitian one-matrix model the Riemann surface is hyperelliptic. Here
we consider the most general case of a Riemann surface and construct the quasiclassical expansion
of the partition function and the observables. For the definition of the analytic fields on on branched
coverings see [11].

The two first orders of the free energy are given by a gaussian field on the Riemann surface defined
by the classical solution. A good review about the gaussian field on an arbitrary Riemann surface can
be found in [12]. Given the classical solution Jcl(x), the branch points are the solutions of the equation
dx = 0. We denote them by a1, . . . , ap. We assume that the branch points are ordered so that a2k−1

and a2k are connected by a cut, which we denote by Ck. We define a symplectic basis of 2p closed
orientable non-contractible cycles Ai and Bi, i = 1, . . . , p, so that the cycle Ak encircles the cut Ck

and

Ai ◦Ak = Bi ◦ Bk = 0, Ai ◦ Bk = δi,k, (2.6)

whereA ◦B is the algebraic number of intersections. With each branch cut we associate a charge Nk,
evaluated by the contour integral of the bosonic current,

Nk =

∮

Ak

Jcl(x)dx (k = 1, . . . , p). (2.7)

The derivative of the classical current with respect to the charges Nk form a basis of holomorphic
one-forms on the Riemann surface associated with the cycles Ak is given by

ωk =
∂Jcl(x)

∂Nk
dx,

1

2πi

∮

Ak

ωl = δkl. (2.8)

3

can be written as Virasoro constraint for the chiral bosonic collective field 
2.2 Conformal Ward identity

To prove that the theory is conformal invariant we have to demonstrate that the energy-momentum
tensor

T (z) = 1
2 : ∂φ(z)∂φ(z) :=

∑

n

Lnz−n−2 (2.13)

commutes with the screening operator Q+. Indeed, for any n ≥ −1 we have

[Ln, Q+] =

∫ ∞

−∞
dz[Ln, J+(z)] =

∫ ∞

−∞
dz

d

dz

(

zn+1J+(z)
)

. (2.14)

Since our potential diverges at infinity, the boundary terms vanish and the result is zero for all n ≥ −1.
As a consequence, the expectation value

〈T (z) 〉 def= 〈N |eJ [V ] T (z) eQ+ |0〉 (2.15)

is regular for z %= ∞. This condition can be written as a contour integral which projects to the positive
part of the Laurent expansion of T (x):

∮

∞

dz′

2πi

〈T (z) − T (z′)

z − z′

〉

= 0. (2.16)

The conformal Ward identity (2.16) is translated into a set of differential Virasoro constraints on
the partition function using the representation of the gaussian field as a differential operator acting on
the partition function,

φ(z) → φ̂(z)
def
=

1√
2

∑

n≥0

tnzn +
√

2 ln z
∂

∂t0
+

√
2

∑

n≥0

z−n

n

∂

∂tn
. (2.17)

The Virasoro constraints read

L̂n · ZN = 0 (n ≥ −1) (2.18)

where

L̂n
def
=

n
∑

k=0

∂

∂tk

∂

∂tn−k
+

∞
∑

k=0

k tk
∂

∂tn+k
,

∂

∂t0
ZN = NZN . (2.19)

3 The quasiclassical limit

3.1 The classical solution as a hyperelliptic curve

Applied to the genus expansion (1.3) of the free energy, the Virasoro constraints (2.18) generate
an infinite set of equations for the correlation functions of the current J(z), which can be solved
order by order in 1/N . The lowest equation is the classical Virasoro condition, which determines the
expectation value Jc(z) of the current in the large N limit. In our normalization Jc is of order of N ,
just as the confining potential V .

4

with stress-energy tensor

Inserting (2.3) in the matrix integral we get the Virasoro condition:

tr

(

∂

∂X

1

x − X

)

e−V [M] = J+(x)2 + 2J+(x)J−(x) − 2tr
J−(x) − J−(X)

x − X
(2.4)

J(x) = J+(x) + J−(x), (2.5)

J+(x) =
∑

n≥0

x−n−1Wn, (2.6)

J−(x) =
∑

n≥1

n

2
xn−1

(

−
∂V

∂Wn
+

∂

∂Wn

)

(2.7)

〈T (x) ... 〉sing = 0, T (x) =: J(x)2 :

The vacuum expectation value is a solution of the classical Virasoro constraints

Jc(x)2 = analytic function of x (2.8)

where

Jc(x) =
∑

〈Wn 〉x−n−1 −
∑ n

2
〈 ∂V/∂Wn 〉 xn−1 (2.9)

In case of several matrices, there is one Virasoro condition for each matrix. The above identities
are generalized in an obvious way.

tr

(

∂

∂X

1

x − X

)

e−V [M] =: J(x)2 : +analytic function of x (2.10)

J(x) =
∑

n∈Z

Jn x−n−1 , (2.11)

J0 = N, Jn = Wn , J−n = −
n

2

∂V

∂Wn
+

n

2

∂

∂Wn
, n ≥ 1. (2.12)

∂φ(x) =
∑

n≥0

x−n−1 Wn + 1
2

∑

n≥1

n xn−1

(

−
∂V

∂Wn
+

∂

∂Wn

)

(2.13)

(∂φ2
c)sing = 0

We assume that this problem is solved and we have solved the classical problem and the resolvent
is known. Thus the classical solution of the matrix model defines the Riemann surface Σ.

3

Generalizes obviously 
for multi-matrix models

V [M] ~  N2

or
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2. The collective theory is a bosonic CFT defined on a Riemann surface 

The 1/N expansion = quasiclassical expansion for the bosonic field 

  Up to g>1 terms the collective field is a free chiral boson defined on the 
Riemann surface      of the classical solution
  
 
The two-point function of the collective field is given by the Laplace kernel on
the Riemann surface 

The gaussian field on the Riemann surface is conformal invariant only in the leading 
order because the conformal transformations displace the branch points. This can be 
cured by placing special operators at the branch points. 

The partition function of a gaussian field on a Riemann surface is a product of a factor Z0 repre-
senting the quantum fluctuations, and classical factorZcl, given by the sum over the classical solutions
in the different winding sectors. We will consider only one such sector, characterized by the charges
Nj associated with the A-cycles. Then the partition function has the form

Z =
1

det ∂̄0
exp

(

iπ
p

∑

i,k=1

NiτikNk −
∑

x∗

∮

x∗

Vx∗(x)Jc(x)dx
)

. (2.19)

where ∂0 is the holomorphic piece of the determinant of the Laplace operator on the Riemann surface
and by x∗ we denoted the singular points where the current is required to behave as Jc(x) ∼ V ′

x∗(x).
However this is not the full answer, because it is not conformal invariant. For example, a confor-

mal transformation displaces the branch points and therefore changes the classical background. This
can be repaired by inserting at the branch points special operators, which restore the conformal sym-
metry. The complete answer can be written as an asymptotic series in 1/N , whereN = N1+· · ·+Nn.
In [9][10] this program was fulfilled for the case of a hyperelliptic Riemann surface. Here we will
discuss the general case.

2.2 The branch points as primary conformal fields

Jcl(x) = ∂Φcl(x)

From now on J = ∂xΦ will denote the current of a quantum gaussian field with classical value
Jc = ∂Φc. In the vicinity of each branch point a the field Φ can be decomposed into a twisted and
untwisted components, which are odd and even with respect to the Z2 monodromy π̂(a) around this
branch point. Let us introduce the projection operator

P̂ (a) = 1
2(1 − π̂(a)) (2.20)

and define the twisted component as

Φ[a](x) = P̂ (a)Φ(x), J [a](x) = P̂ (a)J(x) (2.21)

Near the branch point the two-point function of the field Φ have the form

D(x, x′)
def
=

〈

Φ(x)Φ(x′)
〉

= log(
√

x − a −
√

x′ − a) + regular, (2.22)

where the last term can be expanded in a Taylor series in
√

x − a and
√

x − a′. The two-point function
of the twisted component is

〈

Φ[a](x)Φ[a](x′)
〉

= 1
2 log

(√
x − a −

√
x′ − a

√
x − a +

√
x′ − a

)

+ regular. (2.23)

In the vicinity of the branch point the twisted current has mode expansion

J [a](x) = J [a]
cl (x) +

∑

r∈Z+ 1
2

J [a]
r (x − a)−r−1, (2.24)

where J [a]
cl (x) is expanded in positive half-integer powers of x − a,

J [a]
cl (x) =

∑

r≥3/2

µ[a]
r (x − a)r−1. (2.25)
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where ∂0 is the holomorphic piece of the determinant of the Laplace operator on the Riemann surface
and by x∗ we denoted the singular points where the current is required to behave as Jc(x) ∼ V ′
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mal transformation displaces the branch points and therefore changes the classical background. This
can be repaired by inserting at the branch points special operators, which restore the conformal sym-
metry. The complete answer can be written as an asymptotic series in 1/N , whereN = N1+· · ·+Nn.
In [?][?] this program was fulfilled for the case of a hyperelliptic Riemann surface. Here we will dis-
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Z = exp



N2F (0) + NF (1) +
∑

g≥2

N2−2gF (g)





2.2 The branch points as primary conformal fields

Jcl(x) = ∂Φcl(x)

D(x, x′)
def
=

〈

Φ(x)Φ(x′)
〉

= 1
2 log(x − x′) + regular (2.20)

From now on J = ∂xΦ will denote the current of a quantum gaussian field with classical value
Jc = ∂Φc. In the vicinity of each branch point a the field Φ can be decomposed into a twisted and
untwisted components, which are odd and even with respect to the Z2 monodromy π̂(a) around this
branch point. Let us introduce the projection operator

P̂ (a) = 1
2(1 − π̂(a)) (2.21)

and define the twisted component as

Φ[a](x) = P̂ (a)Φ(x), J [a](x)
def
= P̂ (a)J(x) (2.22)

Near the branch point the two-point function of the field Φ have the form

D(x, x′)
def
=

〈

Φ(x)Φ(x′)
〉

= log(
√

x − a −
√

x′ − a) + regular, (2.23)

where the last term can be expanded in a Taylor series in
√

x − a and
√

x − a′. The two-point function
of the twisted component is

〈

Φ[a](x)Φ[a](x′)
〉

= 1
2 log

(√
x − a −

√
x′ − a

√
x − a +

√
x′ − a

)

+ regular. (2.24)
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One finds for the Virasoro operators with n ≥ −1

L[a]
n =

∑

r+s=n

:
(

J [a]
r + µ[a]

−r

)(

J [a]
s + µ[a]

−s

)

: +
1

16
δn,0. (2.33)

By convention µ[a]
r = 0 if r ≤ 1/2.

2.4 Operator formalizm

Wewill write the partition function as a Fock space expectation value. Consider the Fock space whose
right vacuum state the product |0tw〉 of the 2p twisted vacua associated with the branch points.

|0tw〉 =
∏

k

σ(ak)|0〉

Following the logic of [12] we can construct a left vacuum state Σ, such that for any local set of
operators A(zn) we have

〈. . . 〉 = 〈Σ| . . . |0tw〉

〈Σ|
∏

n

An(zn)|0tw〉 = 〈
∏

n

An(zn)〉 (2.34)

where 〈 〉 denotes the unnormalized expectation value on the surface Σ. In this formalism the global
geometry of the Riemann surface is contained in the state Σ. In particular, the (chiral) partition
function of the gaussian field on the Riemann surface Σ is given by the scalar product 〈Σ|0tw 〉.

As we explained in the previous subsection, a conformal invariant right vacuum state can be
constructed by inserting dressing operators Ω̂(ak) at the branch points x(ak). The total dressing
operator, which we denote by Ω̂, is given by the formal series

Ω̂ =
∏

k=1,...,2p

eŵ(ak), ŵ(ak) =
∑

n≥0

1

n!

∑

r1,...,rn

w[ak ]
r1...rn

J [ak]
−r1

...J [ak ]
−rn

. (2.35)

Ω̂ =
∏

k

Ω̂(ak)

Ω̂(ak) = exp





∑

n≥0

1

n!

∑

r1,...,rn

w[ak]
r1...rn

J [ak]
−r1

...J [ak ]
−rn





It satisfies the Virasoro conditions

L[ak]
n Ω̂ |0tw〉 = 0 (n ≥ −1), (2.36)

where the operators L[ak]
n are made by the half-integer modes J [ak]

r of the Z2-twisted current J [ak](x) =
P̂ (ak)J(x), associated with the expansion around the branch point ak. The partition function we are
interested in is given by the scalar product

Z =
〈

Σ| Ω̂ |0tw

〉

. (2.37)
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In the vicinity of the branch point the twisted current has mode expansion

J [a](x) = J [a]
cl (x) +

∑

r∈Z+ 1
2

J [a]
r (x − a)−r−1, (2.25)

where J [a]
cl (x) is expanded in positive half-integer powers of x − a,

J [a]
cl (x) =

∑

r≥3/2

µ[a]
r (x − a)r−1. (2.26)

Then the two-point correlator (2.24) leads to the commutation relations

[J [a]
r , J [a]

s ] = 1
2rδr+s,0. (2.27)

One can associate with the branch point a vacuum state defined as the highest weight vector of the
representation of this algebra. The corresponding quantum field is the twist operator σ(a):

J [a]
1/2σ(a) = J [a]

3/2σ(a) = J [a]
5/2σ(a) = · · · = 0. (2.28)

The Hilbert space associated with σ(a) generated by multiple action on σ(a) with the negative modes
J [a]
−1/2, J

[a]
−3/2, . . . of the twisted current J

[a].
The conformal invariance of the state associated with the twist operator requires that the energy-

momentum tensor associated with the gaussian field (2.25) is non-singular near the branch point a.
Obviously this is not true. The twist operator σ(a) depends on the position of the branch point ak and
does not satisfy the lowest Virasoro condition L−1. It is also not invariant with respect to dilatations
generated by L0.

2.3 Dressing the branch points

We look for operators which create conformally invariant states near the branch points. Such operators
can be constructed from the modes of the twisted bosonic field near the branch point by requiring
that the singular terms with their OPE with the energy-momentum tensor vanish. Assuming that the
dressed twist operator is a well defined operator in the Hilbert space associated with σ(a),

Ω̂(a) = eŵ(a), (2.29)

the dressing exponent ŵ(a) can be expanded as a formal series in the creation operators J−r (r > 0)
defined by the expansion (2.25) near the point a:

ŵ(a) =
∑

n≥0

1

n!

∑

r1,...,rn

wr1...rn(a)J [a]
−r1

...J [a]
−rn

. (2.30)

The coefficients of the expansion depend on the classical current Jcl and are determined by the re-
quirement of conformal invariance

L[a]
n Ω̂(a) = 0 (n ≥ −1) (2.31)

where the Virasoro generators Ln are defined by the expansion at the point z = a of the energy-
momentum tensor of the twisted bosonic field

T [a](x) = lim
x′→x

[

J [a](x)J [a](x′) − 1
2

1

(x − x′)2

]

=
∑

n

Ln(a) (x − a)−n−2. (2.32)
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The partition function of a gaussian field on a Riemann surface is a product of a factor Z0 repre-
senting the quantum fluctuations, and classical factorZcl, given by the sum over the classical solutions
in the different winding sectors. We will consider only one such sector, characterized by the charges
Nj associated with the A-cycles. Then the partition function has the form

Z =
1

det ∂̄0
exp

(

iπ
p

∑

i,k=1

NiτikNk −
∑

x∗

∮

x∗

Vx∗(x)Jc(x)dx
)

. (2.19)

where ∂0 is the holomorphic piece of the determinant of the Laplace operator on the Riemann surface
and by x∗ we denoted the singular points where the current is required to behave as Jc(x) ∼ V ′

x∗(x).
However this is not the full answer, because it is not conformal invariant. For example, a confor-

mal transformation displaces the branch points and therefore changes the classical background. This
can be repaired by inserting at the branch points special operators, which restore the conformal sym-
metry. The complete answer can be written as an asymptotic series in 1/N , whereN = N1+· · ·+Nn.
In [9][10] this program was fulfilled for the case of a hyperelliptic Riemann surface. Here we will
discuss the general case.

2.2 The branch points as primary conformal fields

Jcl(x) = ∂Φcl(x)

From now on J = ∂xΦ will denote the current of a quantum gaussian field with classical value
Jc = ∂Φc. In the vicinity of each branch point a the field Φ can be decomposed into a twisted and
untwisted components, which are odd and even with respect to the Z2 monodromy π̂(a) around this
branch point. Let us introduce the projection operator

P̂ (a) = 1
2(1 − π̂(a)) (2.20)

and define the twisted component as

Φ[a](x) = P̂ (a)Φ(x), J [a](x) = P̂ (a)J(x) (2.21)

Near the branch point the two-point function of the field Φ have the form

D(x, x′)
def
=

〈

Φ(x)Φ(x′)
〉

= log(
√

x − a −
√

x′ − a) + regular, (2.22)

where the last term can be expanded in a Taylor series in
√

x − a and
√

x − a′. The two-point function
of the twisted component is

〈

Φ[a](x)Φ[a](x′)
〉

= 1
2 log

(√
x − a −

√
x′ − a

√
x − a +

√
x′ − a

)

+ regular. (2.23)

In the vicinity of the branch point the twisted current has mode expansion

J [a](x) = J [a]
cl (x) +

∑

r∈Z+ 1
2

J [a]
r (x − a)−r−1, (2.24)

where J [a]
cl (x) is expanded in positive half-integer powers of x − a,

J [a]
cl (x) =

∑

r≥3/2

µ[a]
r (x − a)r−1. (2.25)
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and untwisted components, each satisfying its Virasoro condition.
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Then the two-point correlator (2.24) leads to the commutation relations

[J [a]
r , J [a]

s ] = 1
2rδr+s,0. (2.27)

One can associate with the branch point a vacuum state defined as the highest weight vector of the
representation of this algebra. The corresponding quantum field is the twist operator σ(a):

J [a]
1/2σ(a) = J [a]

3/2σ(a) = J [a]
5/2σ(a) = · · · = 0. (2.28)

The Hilbert space associated with σ(a) generated by multiple action on σ(a) with the negative modes
J [a]
−1/2, J

[a]
−3/2, . . . of the twisted current J

[a].
The conformal invariance of the state associated with the twist operator requires that the energy-

momentum tensor associated with the gaussian field (2.25) is non-singular near the branch point a.
Obviously this is not true. The twist operator σ(a) depends on the position of the branch point ak and
does not satisfy the lowest Virasoro condition L−1. It is also not invariant with respect to dilatations
generated by L0.

2.3 Dressing the branch points

We look for operators which create conformally invariant states near the branch points. Such operators
can be constructed from the modes of the twisted bosonic field near the branch point by requiring
that the singular terms with their OPE with the energy-momentum tensor vanish. Assuming that the
dressed twist operator is a well defined operator in the Hilbert space associated with σ(a),

Ω̂(a) = eŵ(a), (2.29)

the dressing exponent ŵ(a) can be expanded as a formal series in the creation operators J−r (r > 0)
defined by the expansion (2.25) near the point a:

ŵ(a) =
∑

n≥0

1

n!

∑

r1,...,rn

wr1...rn(a)J [a]
−r1

...J [a]
−rn

. (2.30)

The coefficients of the expansion depend on the classical current Jcl and are determined by the re-
quirement of conformal invariance

L[a]
n Ω̂(a) = 0 (n ≥ −1) (2.31)

where the Virasoro generators Ln are defined by the expansion at the point z = a of the energy-
momentum tensor of the twisted bosonic field

T [a](x) = lim
x′→x

[

J [a](x)J [a](x′) − 1
2

1

(x − x′)2

]

=
∑

n

Ln(a) (x − a)−n−2. (2.32)
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generated by L0.

2.3 Dressing the branch points

We look for operators which create conformally invariant states near the branch points. Such operators
can be constructed from the modes of the twisted bosonic field near the branch point by requiring
that the singular terms with their OPE with the energy-momentum tensor vanish. Assuming that the
dressed twist operator is a well defined operator in the Hilbert space associated with σ(a),

Ω̂(a) = eŵ(a), (2.29)

the dressing exponent ŵ(a) can be expanded as a formal series in the creation operators J−r (r > 0)
defined by the expansion (2.25) near the point a:

ŵ(a) =
∑

n≥0

1

n!

∑

r1,...,rn

wr1...rn(a)J [a]
−r1

...J [a]
−rn

. (2.30)

The coefficients of the expansion depend on the classical current Jcl and are determined by the re-
quirement of conformal invariance

L[a]
n Ω̂(a) = 0 (n ≥ −1) (2.31)

where the Virasoro generators Ln are defined by the expansion at the point z = a of the energy-
momentum tensor of the twisted bosonic field

T [a](x) = lim
x′→x

[

J [a](x)J [a](x′) − 1
2

1

(x − x′)2

]

=
∑

n

Ln(a) (x − a)−n−2. (2.32)

6

In the vicinity of the branch point the twisted current has mode expansion

J [a](x) = J [a]
cl (x) +

∑

r∈Z+ 1
2

J [a]
r (x − a)−r−1, (2.25)

where J [a]
cl (x) is expanded in positive half-integer powers of x − a,

J [a]
cl (x) =

∑

r≥3/2

µ[a]
r (x − a)r−1. (2.26)

Then the two-point correlator (2.24) leads to the commutation relations

[J [a]
r , J [a]

s ] = 1
2rδr+s,0. (2.27)

One can associate with the branch point a vacuum state defined as the highest weight vector of the
representation of this algebra. The corresponding quantum field is the twist operator σ(a):

J [a]
1/2σ(a) = J [a]

3/2σ(a) = J [a]
5/2σ(a) = · · · = 0. (2.28)

The Hilbert space associated with σ(a) generated by multiple action on σ(a) with the negative modes
J [a]
−1/2, J

[a]
−3/2, . . . of the twisted current J

[a].
The conformal invariance of the state associated with the twist operator requires that the energy-

momentum tensor associated with the gaussian field (2.25) is non-singular near the branch point a.
Obviously this is not true. The twist operator σ(a) depends on the position of the branch point ak and
does not satisfy the lowest Virasoro condition L−1. It is also not invariant with respect to dilatations
generated by L0.

2.3 Dressing the branch points

We look for operators which create conformally invariant states near the branch points. Such operators
can be constructed from the modes of the twisted bosonic field near the branch point by requiring
that the singular terms with their OPE with the energy-momentum tensor vanish. Assuming that the
dressed twist operator is a well defined operator in the Hilbert space associated with σ(a),

Ω̂(a) = eŵ(a), (2.29)

the dressing exponent ŵ(a) can be expanded as a formal series in the creation operators J−r (r > 0)
defined by the expansion (2.25) near the point a:

ŵ(a) =
∑

n≥0

1

n!

∑

r1,...,rn

wr1...rn(a)J [a]
−r1

...J [a]
−rn

. (2.30)

The coefficients of the expansion depend on the classical current Jcl and are determined by the re-
quirement of conformal invariance

L[a]
n Ω̂(a) = 0 (n ≥ −1) (2.31)

where the Virasoro generators Ln are defined by the expansion at the point z = a of the energy-
momentum tensor of the twisted bosonic field

T [a](x) = lim
x′→x

[

J [a](x)J [a](x′) − 1
2

1

(x − x′)2

]

=
∑

n

Ln(a) (x − a)−n−2. (2.32)

6

The quantum field associated with 
the branch point at x=a is the twist operator                : 

In the vicinity of the branch point the twisted current has mode expansion

J [a](x) = J [a]
cl (x) +

∑

r∈Z+ 1
2

J [a]
r (x − a)−r−1, (2.25)

where J [a]
cl (x) is expanded in positive half-integer powers of x − a,

J [a]
cl (x) =

∑

r≥3/2

µ[a]
r (x − a)r−1. (2.26)

Then the two-point correlator (2.24) leads to the commutation relations

[J [a]
r , J [a]

s ] = 1
2rδr+s,0. (2.27)

One can associate with the branch point a vacuum state defined as the highest weight vector of the
representation of this algebra. The corresponding quantum field is the twist operator σ(a):

J [a]
1/2σ(a) = J [a]

3/2σ(a) = J [a]
5/2σ(a) = · · · = 0. (2.28)

The Hilbert space associated with σ(a) generated by multiple action on σ(a) with the negative modes
J [a]
−1/2, J

[a]
−3/2, . . . of the twisted current J

[a].
The conformal invariance of the state associated with the twist operator requires that the energy-

momentum tensor associated with the gaussian field (2.25) is non-singular near the branch point a.
Obviously this is not true. The twist operator σ(a) depends on the position of the branch point ak and
does not satisfy the lowest Virasoro condition L−1. It is also not invariant with respect to dilatations
generated by L0.

2.3 Dressing the branch points

We look for operators which create conformally invariant states near the branch points. Such operators
can be constructed from the modes of the twisted bosonic field near the branch point by requiring
that the singular terms with their OPE with the energy-momentum tensor vanish. Assuming that the
dressed twist operator is a well defined operator in the Hilbert space associated with σ(a),

Ω̂(a) = eŵ(a), (2.29)

the dressing exponent ŵ(a) can be expanded as a formal series in the creation operators J−r (r > 0)
defined by the expansion (2.25) near the point a:

ŵ(a) =
∑

n≥0

1

n!

∑

r1,...,rn

wr1...rn(a)J [a]
−r1

...J [a]
−rn

. (2.30)

The coefficients of the expansion depend on the classical current Jcl and are determined by the re-
quirement of conformal invariance

L[a]
n Ω̂(a) = 0 (n ≥ −1) (2.31)

where the Virasoro generators Ln are defined by the expansion at the point z = a of the energy-
momentum tensor of the twisted bosonic field

T [a](x) = lim
x′→x

[

J [a](x)J [a](x′) − 1
2

1

(x − x′)2

]

=
∑

n

Ln(a) (x − a)−n−2. (2.32)
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One finds for the Virasoro operators with n ≥ −1

L[a]
n =

∑

r+s=n

:
(

J [a]
r + µ[a]

−r

)(

J [a]
s + µ[a]

−s

)

: +
1

16
δn,0. (2.33)

By convention µ[a]
r = 0 if r ≤ 1/2.

2.4 Operator formalizm

Wewill write the partition function as a Fock space expectation value. Consider the Fock space whose
right vacuum state the product |0tw〉 of the 2p twisted vacua associated with the branch points.

|0tw〉 =
∏

k

σ(ak)|0〉

Following the logic of [12] we can construct a left vacuum state Σ, such that for any local set of
operators A(zn) we have

〈. . . 〉 = 〈Σ| . . . |0tw〉

〈Σ|
∏

n

An(zn)|0tw〉 = 〈
∏

n

An(zn)〉 (2.34)

where 〈 〉 denotes the unnormalized expectation value on the surface Σ. In this formalism the global
geometry of the Riemann surface is contained in the state Σ. In particular, the (chiral) partition
function of the gaussian field on the Riemann surface Σ is given by the scalar product 〈Σ|0tw 〉.

As we explained in the previous subsection, a conformal invariant right vacuum state can be
constructed by inserting dressing operators Ω̂(ak) at the branch points x(ak). The total dressing
operator, which we denote by Ω̂, is given by the formal series

Ω̂ =
∏

k=1,...,2p

eŵ(ak), ŵ(ak) =
∑

n≥0

1

n!

∑

r1,...,rn

w[ak ]
r1...rn

J [ak]
−r1

...J [ak ]
−rn

. (2.35)

Ω̂ =
∏

k

Ω̂(ak)

Ω̂(ak) = exp





∑

n≥0

1

n!

∑

r1,...,rn

w[ak]
r1...rn

J [ak]
−r1

...J [ak ]
−rn





It satisfies the Virasoro conditions

L[ak]
n Ω̂ |0tw〉 = 0 (n ≥ −1), (2.36)

where the operators L[ak]
n are made by the half-integer modes J [ak]

r of the Z2-twisted current J [ak](x) =
P̂ (ak)J(x), associated with the expansion around the branch point ak. The partition function we are
interested in is given by the scalar product

Z =
〈

Σ| Ω̂ |0tw

〉

. (2.37)
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In the vicinity of the branch point the twisted current has mode expansion

J [a](x) = J [a]
cl (x) +

∑

r∈Z+ 1
2

J [a]
r (x − a)−r−1, (2.25)

where J [a]
cl (x) is expanded in positive half-integer powers of x − a,

J [a]
cl (x) =

∑

r≥3/2

µ[a]
r (x − a)r−1. (2.26)

Then the two-point correlator (2.24) leads to the commutation relations

[J [a]
r , J [a]

s ] = 1
2rδr+s,0. (2.27)

One can associate with the branch point a vacuum state defined as the highest weight vector of the
representation of this algebra. The corresponding quantum field is the twist operator σ(a):

J [a]
1/2σ(a) = J [a]

3/2σ(a) = J [a]
5/2σ(a) = · · · = 0. (2.28)

The Hilbert space associated with σ(a) generated by multiple action on σ(a) with the negative modes
J [a]
−1/2, J

[a]
−3/2, . . . of the twisted current J

[a].
The conformal invariance of the state associated with the twist operator requires that the energy-

momentum tensor associated with the gaussian field (2.25) is non-singular near the branch point a.
Obviously this is not true. The twist operator σ(a) depends on the position of the branch point ak and
does not satisfy the lowest Virasoro condition L−1. It is also not invariant with respect to dilatations
generated by L0.

2.3 Dressing the branch points

We look for operators which create conformally invariant states near the branch points. Such operators
can be constructed from the modes of the twisted bosonic field near the branch point by requiring
that the singular terms with their OPE with the energy-momentum tensor vanish. Assuming that the
dressed twist operator is a well defined operator in the Hilbert space associated with σ(a),

Ω̂(a) = eŵ(a), (2.29)

the dressing exponent ŵ(a) can be expanded as a formal series in the creation operators J−r (r > 0)
defined by the expansion (2.25) near the point a:

ŵ(a) =
∑

n≥0

1

n!

∑

r1,...,rn

wr1...rn(a)J [a]
−r1

...J [a]
−rn

. (2.30)

The coefficients of the expansion depend on the classical current Jcl and are determined by the re-
quirement of conformal invariance

L[a]
n Ω̂(a) = 0 (n ≥ −1) (2.31)

where the Virasoro generators Ln are defined by the expansion at the point z = a of the energy-
momentum tensor of the twisted bosonic field

T [a](x) = lim
x′→x

[

J [a](x)J [a](x′) − 1
2

1

(x − x′)2

]

=
∑

n

Ln(a) (x − a)−n−2. (2.32)
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One finds for the Virasoro operators with n ≥ −1

L[a]
n =

∑

r+s=n

:
(

J [a]
r + µ[a]

−r

)(

J [a]
s + µ[a]

−s

)

: +
1

16
δn,0. (2.33)

By convention µ[a]
r = 0 if r ≤ 1/2.

2.4 Operator formalizm

Wewill write the partition function as a Fock space expectation value. Consider the Fock space whose
right vacuum state the product |0tw〉 of the 2p twisted vacua associated with the branch points.

|0tw〉 =
∏

k

σ(ak)|0〉

Following the logic of [?] we can construct a left vacuum state Σ, such that for any local set of
operators A(zn) we have

〈. . . 〉 = 〈Σ| . . . |0tw〉

〈Σ|
∏

n

An(zn)|0tw〉 = 〈
∏

n

An(zn)〉 (2.34)

where 〈 〉 denotes the unnormalized expectation value on the surface Σ. In this formalism the global
geometry of the Riemann surface is contained in the state Σ. In particular, the (chiral) partition
function of the gaussian field on the Riemann surface Σ is given by the scalar product 〈Σ|0tw 〉.

As we explained in the previous subsection, a conformal invariant right vacuum state can be
constructed by inserting dressing operators Ω̂(ak) at the branch points x(ak). The total dressing
operator, which we denote by Ω̂, is given by the formal series

Ω̂ =
∏

j=1,...,2p

eŵ(ak), ŵ(ak) =
∑

n≥0

1

n!

∑

r1,...,rn

w[ak ]
r1...rn

J [ak]
−r1

...J [ak ]
−rn

. (2.35)

It satisfies the Virasoro conditions

L[ak]
n Ω̂ |0tw〉 = 0 (n ≥ −1, j = 1, . . . , 2p), (2.36)

where the operators L[ak]
n are made by the half-integer modes J [ak]

r of the Z2-twisted current J [ak](x) =
P̂ (ak)J(x), associated with the expansion around the branch point ak. The partition function we are
interested in is given by the scalar product

Z =
〈

Σ| Ω̂ |0tw

〉

. (2.37)

In order compute this expectation value we should be able to evaluate the expectation value of
any product of negative modes J [ak ]

r . Since we are working with a gaussian field, it is sufficient to
calculate the expectation value of a pair of such modes:

G[ai,ak]
r,s =

〈J [ai]
−r J [ak ]

−s 〉
〈1〉

def
=

〈

Σ
∣

∣J [ai]
−r J [ak ]

−s Ω̂
∣

∣0tw
〉

〈

Σ| Ω̂ |0tw

〉 . (2.38)
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One finds for the Virasoro operators with n ≥ −1

L[a]
n =

∑

r+s=n

:
(

J [a]
r + µ[a]

−r

)(

J [a]
s + µ[a]

−s

)

: +
1

16
δn,0. (2.33)

By convention µ[a]
r = 0 if r ≤ 1/2.

2.4 Operator formalizm

Wewill write the partition function as a Fock space expectation value. Consider the Fock space whose
right vacuum state the product |0tw〉 of the 2p twisted vacua associated with the branch points.

|0tw〉 =
∏

k

σ(ak)|0〉

Following the logic of [12] we can construct a left vacuum state Σ, such that for any local set of
operators A(zn) we have

〈. . . 〉 = 〈Σ| . . . |0tw〉

〈Σ|
∏

n

An(zn)|0tw〉 = 〈
∏

n

An(zn)〉 (2.34)

where 〈 〉 denotes the unnormalized expectation value on the surface Σ. In this formalism the global
geometry of the Riemann surface is contained in the state Σ. In particular, the (chiral) partition
function of the gaussian field on the Riemann surface Σ is given by the scalar product 〈Σ|0tw 〉.

As we explained in the previous subsection, a conformal invariant right vacuum state can be
constructed by inserting dressing operators Ω̂(ak) at the branch points x(ak). The total dressing
operator, which we denote by Ω̂, is given by the formal series

Ω̂ =
∏

k=1,...,2p

eŵ(ak), ŵ(ak) =
∑

n≥0

1

n!

∑

r1,...,rn

w[ak ]
r1...rn

J [ak]
−r1

...J [ak ]
−rn

. (2.35)

It satisfies the Virasoro conditions

L[ak]
n Ω̂ |0tw〉 = 0 (n ≥ −1), (2.36)

where the operators L[ak]
n are made by the half-integer modes J [ak]

r of the Z2-twisted current J [ak](x) =
P̂ (ak)J(x), associated with the expansion around the branch point ak. The partition function we are
interested in is given by the scalar product

Z =
〈

Σ| Ω̂ |0tw

〉

. (2.37)

In order compute this expectation value we should be able to evaluate the expectation value of
any product of negative modes J [ak ]

r . Since we are working with a gaussian field, it is sufficient to
calculate the expectation value of a pair of such modes:

G[ai,ak]
r,s =

〈J [ai]
−r J [ak ]

−s 〉
〈1〉

def
=

〈

Σ
∣

∣J [ai]
−r J [ak ]

−s Ω̂
∣

∣0tw
〉

〈

Σ| Ω̂ |0tw

〉 . (2.38)
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The matrix G(ai,ak)
r,r′ can be computed knowing the two-point function 〈 J(z)J(z′) 〉, which is the

unique function defined globally on the Riemann surface and having a double pole at z = z′ with
residue 1/2.

G[aiak]
r,r′ = 4

∫

dx

2πi

∫

dx′

2πi

〈J(x)J(x′)〉c
(x − x(ai))r((x′ − x(ak))r

′ (r, r′ ≥ 1
2 ). (2.39)

Once we know the matrixG[ai,ak]
r,s and the coefficients w[ak ]

r1...rn, we can compute the 1/N expansion
to any order just by expanding the dressing operators and performing Wick contractions. This pre-
scription can be packed in a concise formula in the following way. Introduce, together with the right
Fock vacuum associated with the 2p twist operators, a left twisted Fock vacuum, which annihilates
the negative modes of the current:

〈0tw|J
[ak ]
−r = 0, J [ak ]

r |0tw〉 = 0 (r ≥ 1
2 ; k = 1, . . . , 2p). (2.40)

Then the state
〈

Σ
∣

∣ is obtained from 〈0tw| by acting with the gaussian operator associated with the
matrix (2.38). As a result we obtain the following Fock space representation of the expectation value
(2.37),

Z = 〈Σ
∣

∣Ω̂|0tw〉 = 〈Σ|0tw〉 〈0tw| e2JĜJ Ω̂ |0tw〉 , (2.41)

where Ω̂ is defined by (2.35) and

JĜJ
def
=

2p
∑

i,j=1

∑

r,s≥1/2

1

r s
G[ai,ak]

r,s J [ai]
r J [ak]

s . (2.42)

2.5 The dressing operator and the Kontsevich integral

In order to make use of this formula we need the explicit expressions for the coefficients of the series
(2.30), which can be obtained by demanding that the dressing operator (2.29) solves the Virasoro
constraints generated by the operators (2.33). The solution is given by the Kontsevich matrix integral
[13], also known as matrix Airy function. We can represent the modes Jr as

J [ak]
−n−1/2 = −1

2t[ak]
n , Jn+1/2 = −(n + 1

2 ) ∂[ak]
n (n ≥ 0) (2.43)

where we denoted ∂[ak ]
n ≡ ∂/∂t[ak ]

n . We also relabel the modes of the classical current as

y[ak]

−n− 1
2

→ −1
2µn (n ≥ 0). (2.44)

Then the dressing operator (2.30) is represented by a function Ω(t0, t1, t2, . . . ) and the Virasoro oper-
ators aact as

L̂n =
∑

k−m=n

(k + 1
2)(tm + µm)∂k +

∑

k+m=n−1

(k + 1
2)(m + 1

2 )∂k∂m (2.45)

+
1

4
t20 δn+1,0 +

1

16
δn,0 (n ≥ −1). (2.46)
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One finds for the Virasoro operators with n ≥ −1

L[a]
n =

∑

r+s=n

:
(

J [a]
r + µ[a]

−r

)(

J [a]
s + µ[a]

−s

)

: +
1

16
δn,0. (2.33)

By convention µ[a]
r = 0 if r ≤ 1/2.

2.4 Operator formalizm

Wewill write the partition function as a Fock space expectation value. Consider the Fock space whose
right vacuum state the product |0tw〉 of the 2p twisted vacua associated with the branch points.

|0tw〉 =
∏

k

σ(ak)|0〉

Following the logic of [12] we can construct a left vacuum state Σ, such that for any local set of
operators A(zn) we have

〈. . . 〉 = 〈Σ| . . . |0tw〉

〈Σ|
∏

n

An(zn)|0tw〉 = 〈
∏

n

An(zn)〉 (2.34)

where 〈 〉 denotes the unnormalized expectation value on the surface Σ. In this formalism the global
geometry of the Riemann surface is contained in the state Σ. In particular, the (chiral) partition
function of the gaussian field on the Riemann surface Σ is given by the scalar product 〈Σ|0tw 〉.

As we explained in the previous subsection, a conformal invariant right vacuum state can be
constructed by inserting dressing operators Ω̂(ak) at the branch points x(ak). The total dressing
operator, which we denote by Ω̂, is given by the formal series

Ω̂ =
∏

k=1,...,2p

eŵ(ak), ŵ(ak) =
∑

n≥0

1

n!

∑

r1,...,rn

w[ak ]
r1...rn

J [ak]
−r1

...J [ak ]
−rn

. (2.35)

It satisfies the Virasoro conditions

L[ak]
n Ω̂ |0tw〉 = 0 (n ≥ −1), (2.36)

where the operators L[ak]
n are made by the half-integer modes J [ak]

r of the Z2-twisted current J [ak](x) =
P̂ (ak)J(x), associated with the expansion around the branch point ak. The partition function we are
interested in is given by the scalar product

Z =
〈

Σ| Ω̂ |0tw

〉

. (2.37)

Zclassical+gauss = 〈Σ|0tw 〉 . (2.38)

In order compute this expectation value we should be able to evaluate the expectation value of
any product of negative modes J [ak ]

r . Since we are working with a gaussian field, it is sufficient to
calculate the expectation value of a pair of such modes:

G[ai,ak]
r,s =

〈J [ai]
−r J [ak ]

−s 〉
〈1〉

def
=

〈

Σ
∣

∣J [ai]
−r J [ak ]

−s Ω̂
∣

∣0tw
〉

〈

Σ| Ω̂ |0tw

〉 . (2.39)
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The complete solution is obtained by inserting the dressing operator 

One finds for the Virasoro operators with n ≥ −1

L[a]
n =

∑

r+s=n

:
(

J [a]
r + µ[a]

−r

)(

J [a]
s + µ[a]

−s

)

: +
1

16
δn,0. (2.33)

By convention µ[a]
r = 0 if r ≤ 1/2.

2.4 Operator formalizm

Wewill write the partition function as a Fock space expectation value. Consider the Fock space whose
right vacuum state the product |0tw〉 of the 2p twisted vacua associated with the branch points.

|0tw〉 =
∏

k

σ(ak)|0〉

Following the logic of [12] we can construct a left vacuum state Σ, such that for any local set of
operators A(zn) we have

〈. . . 〉 = 〈Σ| . . . |0tw〉

〈Σ|
∏

n

An(zn)|0tw〉 = 〈
∏

n

An(zn)〉 (2.34)

where 〈 〉 denotes the unnormalized expectation value on the surface Σ. In this formalism the global
geometry of the Riemann surface is contained in the state Σ. In particular, the (chiral) partition
function of the gaussian field on the Riemann surface Σ is given by the scalar product 〈Σ|0tw 〉.

As we explained in the previous subsection, a conformal invariant right vacuum state can be
constructed by inserting dressing operators Ω̂(ak) at the branch points x(ak). The total dressing
operator, which we denote by Ω̂, is given by the formal series

Ω̂ =
∏

k=1,...,2p

eŵ(ak), ŵ(ak) =
∑

n≥0

1

n!

∑

r1,...,rn

w[ak ]
r1...rn

J [ak]
−r1

...J [ak ]
−rn

. (2.35)

Ω̂ =
∏

k

Ω̂(ak)

It satisfies the Virasoro conditions

L[ak]
n Ω̂ |0tw〉 = 0 (n ≥ −1), (2.36)

where the operators L[ak]
n are made by the half-integer modes J [ak]

r of the Z2-twisted current J [ak](x) =
P̂ (ak)J(x), associated with the expansion around the branch point ak. The partition function we are
interested in is given by the scalar product

Z =
〈

Σ| Ω̂ |0tw

〉

. (2.37)
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The conformal invariance      
completely determines the coefficients in the formal expansion

The twist operator is not conformal invariant. To make it conformal 
invariant, we dress it with the modes of the twisted current.

Operator formalism:

The partition function of a gaussian field on a Riemann surface is a product of a factor Z0 repre-
senting the quantum fluctuations, and classical factorZcl, given by the sum over the classical solutions
in the different winding sectors. We will consider only one such sector, characterized by the charges
Nj associated with the A-cycles. Then the partition function has the form

Z =
1

det ∂̄0
exp

(

iπ
p

∑

i,k=1

NiτikNk −
∑

x∗

∮

x∗

Vx∗(x)Jc(x)dx
)

. (2.19)

where ∂0 is the holomorphic piece of the determinant of the Laplace operator on the Riemann surface
and by x∗ we denoted the singular points where the current is required to behave as Jc(x) ∼ V ′

x∗(x).
However this is not the full answer, because it is not conformal invariant. For example, a confor-

mal transformation displaces the branch points and therefore changes the classical background. This
can be repaired by inserting at the branch points special operators, which restore the conformal sym-
metry. The complete answer can be written as an asymptotic series in 1/N , whereN = N1+· · ·+Nn.
In [9][10] this program was fulfilled for the case of a hyperelliptic Riemann surface. Here we will
discuss the general case.

Z = exp



N2F (0) + NF (1) +
∑

g≥2

N2−2gF (g)





2.2 The branch points as primary conformal fields
〈

J(x)J(x′)
〉

= ∂x∂x′D(x, x′)

Jcl(x) = ∂Φcl(x)

D(x, x′)
def
=

〈

Φ(x)Φ(x′)
〉

= 1
2 log(x − x′) + regular (2.20)

From now on J = ∂xΦ will denote the current of a quantum gaussian field with classical value
Jc = ∂Φc. In the vicinity of each branch point a the field Φ can be decomposed into a twisted and
untwisted components, which are odd and even with respect to the Z2 monodromy π̂(a) around this
branch point. Let us introduce the projection operator

P̂ (a) = 1
2(1 − π̂(a)) (2.21)

and define the twisted component as

Φ[a](x) = P̂ (a)Φ(x), J [a](x)
def
= P̂ (a)J(x) (2.22)

Near the branch point the two-point function of the field Φ have the form

D(x, x′)
def
=

〈

Φ(x)Φ(x′)
〉

= log(
√

x − a −
√

x′ − a) + regular, (2.23)

where the last term can be expanded in a Taylor series in
√

x − a and
√

x − a′. The two-point function
of the twisted component is

〈

Φ[a](x)Φ[a](x′)
〉

= 1
2 log

(√
x − a −

√
x′ − a

√
x − a +

√
x′ − a

)

+ regular. (2.24)
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Figure 1: The Feynman rules for the quasiclassical expansion of the τ -function associated with the Riemann
surface Σ.

e
P

g≥2 N2−2gF(g)
= exp





1
2

2p
∑

i,j=1

∑

m,n≥0

G[aiak ]
m,n ∂[ai]

m ∂[ak ]
n



 exp





2p
∑

j=1

∑

n≥0

µ[ak]
n ∂[ak ]

n





× exp





∑

g≥0

∑

n≥0

∑

k1,...,kn≥0

(

µ[ak]
1

)2−2g−n
w(g)

k1,...,kn

t[ak]
k1

. . . t[ak]
kn

n!





t
(·)
· =0

. (2.54)

To evaluate the correlation functions of the current we use its representation as differential operator

Ĵ(z) = Jc(z) +
2p
∑

j=1

∑

n≥0

G[ak ]
n (z) ∂[ak ]

n . (2.55)

We therefore extend the set of Feynman rules by adding the external lines which represent the func-
tions

G[ak]
n (x) = 2

∫

dx′

2πi

〈J(x)J(x′)〉
(x′ − ak)n+1/2

. (2.56)

The Feynman rues for evaluating the 1/N expansion are given in Fig. 1. The genus g contribution
for any observable is equal to the sum of all genus g Feynman diagrams. The genus of a Feynman
diagram is equal to 2 − 2h − n, where h is the number of handles, including the handles made of
propagators, and n is the number of the external lines.

2.7 Quasi-hyperelliptic Riemann surfaces

Many interesting examples are described by surfaces which resemble the hyperelliptic ones.

3 Recursion equations for the Kontsevich matrix integral

Z(Λ) =

∫

dMe− tr ( 1
3M3−MΛ2

(3.1)
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Zclassical+gauss = 〈Σ|0tw 〉 . (2.38)

In order compute this expectation value we should be able to evaluate the expectation value of
any product of negative modes J [ak ]

r . Since we are working with a gaussian field, it is sufficient to
calculate the expectation value of a pair of such modes:

G[ai,ak]
r,s =

〈J [ai]
−r J [ak ]

−s 〉
〈1〉

def
=

〈

Σ
∣

∣J [ai]
−r J [ak ]

−s Ω̂
∣

∣0tw
〉

〈

Σ| Ω̂ |0tw

〉 . (2.39)

The matrix G(ai,ak)
r,r′ can be computed knowing the two-point function 〈 J(z)J(z′) 〉, which is the

unique function defined globally on the Riemann surface and having a double pole at z = z′ with
residue 1/2.

G[aiak]
r,r′ = 4

∫

dx

2πi

∫

dx′

2πi

〈J(x)J(x′)〉c
(x − x(ai))r((x′ − x(ak))r

′ (r, r′ ≥ 1
2 ). (2.40)

Once we know the matrixG[ai,ak]
r,s and the coefficients w[ak ]

r1...rn, we can compute the 1/N expansion
to any order just by expanding the dressing operators and performing Wick contractions. This pre-
scription can be packed in a concise formula in the following way. Introduce, together with the right
Fock vacuum associated with the 2p twist operators, a left twisted Fock vacuum, which annihilates
the negative modes of the current:

〈0tw|J
[ak ]
−r = 0, J [ak ]

r |0tw〉 = 0 (r ≥ 1
2 ; k = 1, . . . , 2p). (2.41)

Then the state
〈

Σ
∣

∣ is obtained from 〈0tw| by acting with the gaussian operator associated with the
matrix (2.39). As a result we obtain the following Fock space representation of the expectation value
(2.38),

Z = 〈Σ
∣

∣Ω̂|0tw〉 = 〈Σ|0tw〉 〈0tw| e2JĜJ Ω̂ |0tw〉 , (2.42)

where Ω̂ is defined by (2.35) and

JĜJ
def
=

2p
∑

i,j=1

∑

r,s≥1/2

1

r s
G[ai,ak]

r,s J [ai]
r J [ak]

s . (2.43)

2.5 The dressing operator and the Kontsevich integral

In order to make use of this formula we need the explicit expressions for the coefficients of the series
(2.30), which can be obtained by demanding that the dressing operator (2.29) solves the Virasoro
constraints generated by the operators (2.33). The solution is given by the Kontsevich matrix integral
[13], also known as matrix Airy function. We can represent the modes Jr as

J [ak]
−n−1/2 = −1

2t[ak]
n , Jn+1/2 = −(n + 1

2 ) ∂[ak]
n (n ≥ 0) (2.44)

where we denoted ∂[ak ]
n ≡ ∂/∂t[ak ]

n . We also relabel the modes of the classical current as

y[ak]

−n− 1
2

→ −1
2µn (n ≥ 0). (2.45)
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Then the dressing operator (2.30) is represented by a function Ω(t0, t1, t2, . . . ) and the Virasoro oper-
ators aact as

L̂n =
∑

k−m=n

(k + 1
2)(tm + µm)∂k +

∑

k+m=n−1

(k + 1
2)(m + 1

2 )∂k∂m (2.46)

+
1

4
t20 δn+1,0 +

1

16
δn,0 (n ≥ −1). (2.47)

The solution depends on the moments µn of the classical current. It is sufficient to have the
solution Ω0 for the simplest nontrivial classical background µn = µ1 δn,1. Then the general solution
is obtained simply by a shift tn → tn − µn, n ≥ 2:

Ω = exp
(

−
∑

n≥2

µn∂n

)

Ω0. (2.48)

The function Ω0 is given by a formal expansion in t0, t1, . . . and 1/µ1 ∼ 1/N :

Ω0(tn) = µ1
−1/24 exp

∑

g≥0

∑

n≥0

∑

k1,...,kn≥0

µ1
2−2g−n w(g)

k1,...,kn

tk1 . . . tkn

n!
. (2.49)

The coefficients w(g)
k1,...,kn

are the genus g correlation functions in the Kontsevich model. The inter-
section numbers 〈τk1 . . . τkn〉g are nonzero only if the indices k1, . . . , kn obey the selection rule

n
∑

j=1

kj = 3(g − 1) + n. (2.50)

Examples:

w(0)
m1,...,mn

= (−1)n

n
∏

j=1

(2mj − 1)!!
(m1 + ... + mn)!

m1!...mn!
, m1 + ... + mn = n − 3

w(0)
0,0,0 = −1, w(1)

1 = −
1

24
, w(1)

1,1 =
1

24
, w(1)

0,2 = −
1

8
, w(1)

0,1,2 = −
1

4
, w(1)

0,0,3 = −
5

8
,

w(1)
0,0,2,2 =

3

2
w(2)

2,2,2 = −
63

80
, w(2)

2,3 =
29

128
, w(2)

4 = −
35

384
, w(2)

0,0,0,0,2 = −3

w(1)
1n =

(n − 1)!

24
, w(1)

n+1,0 = (−1)n (2n + 1)!!

24
. (2.51)

2.6 Feynman rules

µ[ak]
n = −2

∮

ak

dx

2πi

Jcl(x)

(x − ak)n+1/2
(n ≥ 1) (2.52)

G[aiak ]
m,n = 4

∫

dx

2πi

∫

dx′

2πi

〈J(x)J(x′)〉
(x − ai)m+1/2(x′ − ak)n+1/2

= 4

∫

dx

2πi

∫

dx′

2πi

〈J [ai(x)J [a](x′)〉
(x − ai)m+1/2(x′ − ak)n+1/2

. (2.53)
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The correlation functions 
of the Kontsevich model

Explicit expression for the  1/N   expansion of the free energy:
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Figure 1: The Feynman rules for the quasiclassical expansion of the τ -function associated with the Riemann
surface Σ.

e
P

g≥2 N2−2gF(g)
= exp





1
2

2p
∑

i,j=1

∑

m,n≥0

G[aiak ]
m,n ∂[ai]

m ∂[ak ]
n



 exp




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∑

j=1

∑

n≥0

µ[ak]
n ∂[ak ]

n





× exp





∑

g≥0

∑

n≥0

∑

k1,...,kn≥0

(

µ[ak]
1

)2−2g−n
w(g)

k1,...,kn

t[ak]
k1

. . . t[ak]
kn

n!





t
(·)
· =0

. (2.54)

To evaluate the correlation functions of the current we use its representation as differential operator

Ĵ(z) = Jc(z) +
2p
∑

j=1

∑

n≥0

G[ak ]
n (z) ∂[ak ]

n . (2.55)

We therefore extend the set of Feynman rules by adding the external lines which represent the func-
tions

G[ak]
n (x) = 2

∫

dx′

2πi

〈J(x)J(x′)〉
(x′ − ak)n+1/2

. (2.56)

The Feynman rues for evaluating the 1/N expansion are given in Fig. 1. The genus g contribution
for any observable is equal to the sum of all genus g Feynman diagrams. The genus of a Feynman
diagram is equal to 2 − 2h − n, where h is the number of handles, including the handles made of
propagators, and n is the number of the external lines.

2.7 Quasi-hyperelliptic Riemann surfaces

Many interesting examples are described by surfaces which resemble the hyperelliptic ones.

3 Recursion equations for the Kontsevich matrix integral

Z(Λ) =

∫

dMe− tr ( 1
3M3−MΛ2

(3.1)
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Then the dressing operator (2.30) is represented by a function Ω(t0, t1, t2, . . . ) and the Virasoro oper-
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(k + 1
2)(tm + µm)∂k +

∑

k+m=n−1

(k + 1
2)(m + 1

2 )∂k∂m (2.46)

+
1

4
t20 δn+1,0 +

1

16
δn,0 (n ≥ −1). (2.47)

The solution depends on the moments µn of the classical current. It is sufficient to have the
solution Ω0 for the simplest nontrivial classical background µn = µ1 δn,1. Then the general solution
is obtained simply by a shift tn → tn − µn, n ≥ 2:

Ω = exp
(

−
∑

n≥2

µn∂n

)

Ω0. (2.48)

The function Ω0 is given by a formal expansion in t0, t1, . . . and 1/µ1 ∼ 1/N :

Ω0(tn) = µ1
−1/24 exp

∑

g≥0

∑

n≥0

∑

k1,...,kn≥0

µ1
2−2g−n w(g)

k1,...,kn

tk1 . . . tkn

n!
. (2.49)

The coefficients w(g)
k1,...,kn

are the genus g correlation functions in the Kontsevich model. The inter-
section numbers 〈τk1 . . . τkn〉g are nonzero only if the indices k1, . . . , kn obey the selection rule

n
∑

j=1

kj = 3(g − 1) + n. (2.50)

Examples:

w(0)
m1,...,mn
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n
∏

j=1

(2mj − 1)!!
(m1 + ... + mn)!
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, m1 + ... + mn = n − 3

w(0)
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1 = −
1

24
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1,1 =
1

24
, w(1)

0,2 = −
1

8
, w(1)

0,1,2 = −
1

4
, w(1)

0,0,3 = −
5

8
,

w(1)
0,0,2,2 =

3

2
w(2)

2,2,2 = −
63

80
, w(2)

2,3 =
29

128
, w(2)

4 = −
35

384
, w(2)

0,0,0,0,2 = −3

w(1)
1n =

(n − 1)!

24
, w(1)

n+1,0 = (−1)n (2n + 1)!!

24
. (2.51)
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etc.
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Example: The genus two free energy for the one-cut solution (two 
branch points) of the one-matrix model
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Figure 2: The vertices w(g)
m1,...,mn

and the propagators g[a,a′]
mn and g[a,a]

mn = g[a′,a′]
mn contributing to the genus two

free energy in the case of a single cut.

first several coefficients g[ai,ak ]
km are

{g(a1 ,a1)
km }

k,m≥0 = {g(a2 ,a2)
km }

k,m≥0 =









−1/2 3/8 −5/16 ...
3/8 −3/8 45/128 ...

−5/16 45/128 −45/128 ...
. . . . . . . . .









{g(a1 ,a2)
km }

k,m≥0 = {g(a2 ,a1)
km }

k,m≥0 =









−1 3/2 −15/8 ...
3/2 −21/4 165/16 ...

−15/8 165/16 −1745/64 ...
. . . . . . . . .









. (4.6)

As an illustration of the Feynman diagram technique we will evaluate the free energy up to genus
two. We denote the two branch points by a′ = a1, a = a2, and the moments of the classical solution
associated with them by µn = µ(a)

n , µ′
n = µ(a′)

n .
The genus-one term is

F (1) = −
1

24
lnµ1 −

1

24
ln µ′

1 −
1

8
ln d (d = a − a′). (4.7)

The first two terms come from the dressing of the twist operators and the last term is the logarithm of
the correlation function 〈0|σ(a′)σ(a)|0〉.

The term F (2) in the genus expansion of the free energy is a sum of the contributions of all
possible genus two Feynman diagrams composed by the vertices and the propagators shown in Fig. 2.
The relevant diagrams are depicted in Fig. ??. The result is

F (2) =
1

µ2
1

(

−
21

160

µ3
2

µ3
1

+
29

128

µ2µ3

µ2
1

−
35

384

µ4

µ1
+

5

32

µ3

µ1d
−

49

256

µ2
2

µ2
1d

−
105

512

µ2

d2µ1
−

175

1024

1

d3

)

+ {µ ↔ µ′} +
1

µ1µ′

1

(

−
1

64

µ2µ′

2

µ1µ′

1d
−

5

128

µ2

µ1d2
−

5

128

µ′

2

µ′

1d
2
−

69

256

1

d3

)

(4.8)

12

x(z) = z2, y(z) =
∑

n

µnz2n+1. (3.2)

4 Example: the single cut solution

In this section we consider in details the case of one cut (p = 1), where the Riemann surface of the
classical solution is a sphere. The explicit expression for the classical current is

Jc(z) = 1
2

∮

A1

dz

2πi

y(z)

y(z′)

V ′(z′) − V ′(z)

z − z′
, y(z) =

√

(z − a1)(z − a2). (4.1)

Expanding at z = ∞ and using the asymptotics Jc(z) ∼ −1
2V ′(z)+N/z+..., one finds the conditions

∮

A1

dz

2πi

zkV ′(z)

y(z)
= −2Nδk,1 (k = 0, 1) (4.2)

which determine the positions of the two branch points.
The two-point function of the Z2-twisted current J(z) on the Riemann surface of the classical

solution is equal to the 4-point function of two currents and two twist operators:

〈J(z)J(z′)〉 ≡ 〈0|J(z)J(z′)σ(a)σ(b)|0〉 =

√

(z−a1)(z′−a2)
(z−a2)(z′−a1) +

√

(z′−a1)(z−a2)
(z′−a2)(z−a1)

4(z − z′)2
. (4.3)

The coefficients G[ai,ak]
km are obtained by expanding 〈J(z)J(z′)〉 near the points a1 and a2. Assuming

that a2 > a1, we write for z, z′ real and outside the interval [a1, a2]

4〈J(z)J(z′)〉 =

√

z−a2
z′−a2

+
√

z′−a2
z−a2

(z − z′)2
+

∑

m,n≥0

G[a2,a2]
mn (z − a2)

m− 1
2 (z′ − a2)

n− 1
2

=

√

a1−z
a1−z′ +

√

a1−z′
a1−z

(z − z′)2
+

∑

m,n≥0

G[a1,a1]
mn (a1 − z)m− 1

2 (a1 − z′)n−
1
2 (4.4)

=

|a1−a2|√
(z−a2)(a1−z′)

+
√

(z−a2)(a1−z′)
|a1−a2|

(z − z′)2
+

∑

m,n≥0

G[a2,a1]
mn (z − a2)

m− 1
2 (a1 − z′)n−

1
2

=

|a1−a2|√
(z′−a2)(a1−z)

+
√

(z′−a2)(a1−z)
|a1−a2|

(z − z′)2
+

∑

m,n≥0

G[a2,a1]
mn (a1 − z)m− 1

2 (z′ − a2)
n− 1

2 .

We find that G[a1,a1]
km are of the form

G[ai,ak]
k,m =

1

dk+m+1
g[ai,ak ]
km , d = |a1 − a2|, (4.5)

where g[ai,ak]
km are rational numbers with the symmetry g[a1,a1]

km = g[a2,a2]
km and g[a1,a2]

km = g[a2,a1]
km . The
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Conclusion

1. Any (multi) matrix integral is dercribed at large N by a CFT of a bosonic field on 
a Riemann surface. 

2. The 1/N expansion is completely determined by the classical solution and the 
conformal invariance.

3. Analogy with the quasiclassical one-dimensional motion:
-- Planck constant  <==> 1/N
-- Classical trajectory <==> Riemann surface
-- Turning points <==> branch points (more strictly, ramification points)
-- Airy function <==> Kontsevich integral

4. The diagram technique for the 1/N expansion obtained from CFT is a partial 
resummation of the diagram technique obtained by the Eynard-Orantin topological 
recursion procedure.
[I.K. - N. Orantin, 2010]
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