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Introduction

• String theory naturally generalizes real-analytic Eisenstein series
– for genus one surfaces,

⋆ multiple Kronecker-Eisenstein sums,
⋆ multiple integrations of Green function on the torus,

⇒ modular graph functions invariant under SL(2,Z).
(Green, Russo, Vanhove 2008; ED, Green, Vanhove 2015; ED, Green, Gurdogan, Vanhove 2015)

• String theory includes contributions from surfaces of all genera
=⇒ expect modular graph functions for higher genus surfaces.

• Focus of this talk is on genus two and higher
– simplest is Kawazumi-Zhang invariant (to be explained below);
– genus-two string theory predicts an infinite number of higher invariants;
– genus greater than two string theory offers no predictions,

but mathematical constructions produce higher invariants.

• I will give an account of what we know and do not know to date.



Eric D’Hoker Higher genus modular graph functions

Bibliography

Based on

• ED, Michael Green and Boris Pioline, arXiv:1712.06135,

Higher genus modular graph functions, string invariants, and their exact asymptotics

• ED, Michael Green and Boris Pioline, (in preparation)

Asymptotics of the D8R4 genus-two string invariant

and earlier work

• ED, Michael Green, arXiv:1308.4597, Journal of Number Theory, Vol 144 (2014) 111-150,

Zhang-Kawazumi invariants and Superstring Amplitudes

• ED, Michael Green, Boris Pioline, Rudolfo Russo, arXiv:1405.6226, JHEP 1501 (2015) 031,

Matching the D6R4 interaction at two-loops

• Boris Pioline, arXiv:1504.04182, Journal of Number Theor. 163, 520 (2016),

A Theta lift representation for the Kawazumi-Zhang and Faltings invariants

of genus-two Riemann surfaces



Eric D’Hoker Higher genus modular graph functions

Expansion in genus and low energy

gs

energy

genus 0
genus 1
genus 2

R
R4

D4R4
D6R4

• Supertring Perturbation Theory in g
(2−2h)
s with h ≥ 0 is the genus

– holds for small string coupling gs ≪ 1
– but for all energies

• Supergravity R
– leading low energy expansion of string theory
– holds for all couplings gs

• String induced effective interactions R4,D4R4,D6R4

– Evaluated in superstring perturbation theory
– Accessible via the four-graviton scattering amplitude
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Effective Interactions

• Four-graviton amplitude in Type II at genus 0,

A(0)(sij) = R4 1

stu

Γ(1− s) Γ(1− t) Γ(1− u)

Γ(1 + s) Γ(1 + t) Γ(1 + u)

– R4 = unique maximally supersymmetric contraction of 4 Weyl tensors
– External momenta ki for i = 1, 2, 3, 4 with k2i = 0 and

∑

i ki = 0
– Introduce dimensionless Lorentz-invariants sij = −α′ki · kj/2
– s = s12 = s34, t = s13 = s24, u = s14 = s23 with s+ t+ u = 0

• Low energy expansion corresponds to |s|, |t|, |u| ≪ 1

1

stu
+ 2ζ(3) + ζ(5)(s2 + t2 + u2) + 2ζ(3)2stu+ · · ·

massless R4 D4R4 D6R4

Exchange of massive string states produces local effective interactions.

•
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Genus-one string amplitude

• Effective R4-type interactions in Type II
– Generated by a multiple integral over a torus Σ1 = C/(Z+ τZ),
of modulus τ ∈ H, namely τ = τ1 + iτ2 with τ1, τ2 ∈ R and τ2 > 0,

B(1)(sij|τ) =
N
∏

i=1

∫

Σ1

d2zi
τ2

exp
{

∑

1≤i<j≤N

sij g(zi − zj|τ)
}

• Mathematically, one may consider this integral for arbitrary N
– g(z|τ) is the translation-invariant Green function on Σ1,

τ2∂z̄∂zg(z|τ) = −πδ(2)(z) + π

∫

Σ1

d2z g(z|τ) = 0

– Integrals absolutely convergent for |sij| < 1; analytic near sij = 0;
– B(1)(sij|τ) is invariant under the modular group SL(2,Z).

• String amplitude obtained by integral over modulus of the torus,

A
(1)

(sij) =

∫

H/SL(2,Z)

d2τ

τ2
2

B
(1)

(sij|τ)

– requires analytic continuation in sij (ED, Phong 1994).
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Genus-one modular graph functions

• Taylor series expansion of B(1)(sij|τ) for fixed τ in powers of sij

– An integration point zi is represented by a vertex •

– A Green function is represented by an edge = g(zi − zj|τ)
zi zj

D4R4 • •

D6R4

•

•

•
• •

D8R4

•

•

•

•

•

•

• • •

D10R4 •

•

•

•

•

•

• • ••

•

•

•

•

•

•

one-loop two-loops three-loops four-loops
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Properties of genus-one modular graph functions

• One-loop graphs with k vertices give real analytic Eisenstein series Es

k
∏

i=1

∫

Σ

d2zi
τ2

g(zi − zi+1|τ) =
∑

(m,n) 6=(0,0)

τk2
πk|mτ + n|2k

= Ek

– convergent sums for Re(s) > 1; modular SL(2,Z)-invariant
– Laplace-eigenvalue equation, (∆− s(s− 1))Es = 0 with ∆ = 4τ22∂τ∂τ̄

• Two-loop graphs evaluate to the series

Cs1,s2,s3(τ) =
∑

(mr,nr) 6=(0,0)

3
∏

r=1

(

τ2
π|mrτ + nr|2

)sr

δ(
∑

r

mr) δ(
∑

r

nr)

– convergent sums for Re(sr) ≥ 1; modular SL(2,Z)-invariant;
– satisfy inhomogeneous Laplace-eigenvalue equations, e.g.

∆C1,1,1 = 6E3

(∆ − 2)C2,1,1 = 9E4 − E
2
2

(∆ − 6)C3,1,1 = 3C2,2,1 + 16E5 − 4E2E3 (1)
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Genus-two surfaces

• Σ is a compact Riemann surface of genus two
– Key difference with genus-one: no translation symmetry

A1

A2

B1 B2

Σ

• Homology and cohomology
– One-cycles H1(Σ,Z) ≈ Z4 with intersection pairing J(·, ·) → Z

– Canonical basis J(AI,AJ) = 0, J(BI,BJ) = 0 with I, J = 1, 2

J(AI,BJ) = δIJ, J(BI,AJ) = −δIJ

– Canonical dual basis of holomorphic one-forms ωI in H(1,0)(Σ)
∮

AI

ωJ = δIJ

∮

BI

ωJ = ΩIJ

– Period matrix Ω obeys Riemann relations Ωt = Ω, Im(Ω) > 0
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Modular transformations and geometry

• Transformation Sp(4,Z) : H1(Σ,Z) → H1(Σ,Z) leaves J(·, ·) invariant
– action on basis cycles given by

(

BI

AI

)

→
∑

J

MIJ

(

BJ

AJ

)

M
t
JM = J

– action on 1-forms ωI and periods ΩIJ given by

ω → ω (CΩ+D)−1

Ω → (AΩ+B) (CΩ+D)−1 M =

(

A B
C D

)

• Siegel upper half space S2

S2 =
{

ΩIJ ∈ C with Ωt = Ω and Y = Im(Ω) > 0
}

– S2 =
Sp(4,R)

SU(2)×U(1) =
SO(3,2)

SO(3)×SO(2) is Kähler with invariant metric

ds22 =
∑

I,J,K,L=1,2

Y −1
IJ dΩ̄JK Y −1

KL dΩLI

– Moduli space of genus-two surfaces is S2/Sp(4,Z) (minus diagonal Ω)
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Green function and volume form

• How to generalize the genus-one formula to a genus-two formula ?
– recall the genus-one formula

B(1)(sij|τ) =
N
∏

i=1

∫

Σ1

d2zi
τ2

exp
{

∑

1≤i<j≤N

sij g(zi − zj|τ)
}

• Canonical metric and Kähler form for genus-two Σ
– modular invariant and smooth

κ =
i

4

∑

I,J

Y −1
IJ ωI ∧ ωJ

∫

Σ

κ = 1

• Natural “Arakelov Green function” G(w, z|Ω) = G(z, w|Ω)
– Inverse of scalar Laplace operator for canonical metric

∂w̄∂wG(w, z|Ω) = −πδ(w, z) + πκ(w)
∫

Σ

κ(w)G(w, z|Ω) = 0
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A natural genus-two candidate

• A natural candidate formula for a string amplitude would be

C(2)(sij|Ω) =
N
∏

i=1

∫

Σ

κ(zi) exp

{

∑

1≤i<j≤N

sij G(zi, zj|Ω)

}

– Integrals absolutely convergent for |sij| < 1; analytic near sij = 0,
– Expanding in powers of sij gives genus-two modular graph functions.

• But ... Genus-two string amplitudes are NOT given by C(2)(sij|Ω)

• For integration over a single copy of Σ
– κ is the only natural modular invariant volume form.

• For integration over multiple copies of Σ
– Sp(4,Z) modular invariants other than

∏

i κ(zi) allowed.
– For example, when N = 2 we can have κ(z1)κ(z2) as well as

∑

I,J,K,L

Y −1
IL Y −1

JK ωI(z1)ωJ(z1)ωK(z2)ωL(z2)
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Genus-two string amplitude

• Instead the N = 4 graviton amplitude was calculated (ED, Phong 2005)

B(2)(sij|Ω) =

∫

Σ4

Y ∧ Ȳ

(detY )2
exp

{

∑

1≤i<j≤4

sij G(zi, zj)

}

• The key difference with the candidate C(2) is the structure of Y

3Y = (t− u)∆(z1, z2) ∧∆(z3, z4) s = s12 = s34

+(s− t)∆(z1, z3) ∧∆(z4, z2) t = s13 = s24

+(u− s)∆(z1, z4) ∧∆(z2, z3) u = s14 = s23

– where ∆ is a holomorphic (1, 0)i × (1, 0)j form on Σ× Σ

∆(zi, zj) = εIJωI(zi) ∧ ωJ(zj)

– The combination Y ∧ Ȳ/(detY )2 is Sp(4,Z)-invariant,
– and produces a modular invariant B(2)(sij|Ω).
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Low energy expansion

• Contributions to local effective interactions
– Expand B(2)(sij|Ω) in powers of sij and integrate over M2 = S2/Sp(4,Z)

R4, D2R4 zero, since Y vanishes for s = t = u = 0
D4R4 Siegel volume form on M2

D6R4 one factor of G in expansion in powers of sij

B(2)(sij|Ω) = 32(s2 + t2 + u2) + 192 stuϕ(Ω) +O(s4ij)

ϕ(Ω) = −
1

4

∑

I,J,K,L

Y −1
IL Y −1

JK

∫

Σ2
G(x, y)ωI(x)ωJ(x)ωK(y)ωL(y)

• ϕ(Ω) coincides with the Kawazumi-Zhang invariant (ED, Green 2013)

– introduced as a spectral invariant (Kawazumi 0801.4218 and Zhang 0812.0371)

– related to the genus-two Faltings invariant (De Jong 2010)

– formulated in terms of modular tensors (Kawazumi OIST lecture notes 2016)

AIJ;KL =

∫

Σ2
G(x, y)ωI(x)ωJ(x)ωK(y)ωL(y)
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Higher string-invariants

• The KZ-invariant exists for all genera ≥ 2 (Kawazumi 2008; Zhang 2008)

– unknown if correct object for string theory at genus ≥ 3.

• But the Taylor expansion coefficients of B(2)(sij|Ω)
– are modular graph functions at genus-two;
– do naturally emerge from string theory at genus-two;
– provide a string-motivated generalization of KZ-invariants at genus-two.

• Higher string-invariants (contribute to D8R4 and D10R4) (ED, Green 2013)

B
(2)

(2,0)
=

∫

Σ4

|∆(1, 2)∆(3, 4)|2

(detY )2

(

G(1, 4) + G(2, 3) − G(1, 3) − G(2, 4)

)2

B
(2)

(1,1)
=

∫

Σ4

|∆(1, 2)∆(3, 4) − ∆(1, 4)∆(2, 3)|2

(detY )2

(

G(1, 2) + G(3, 4)

+G(1, 4) + G(2, 3) − 2G(1, 3) − 2G(2, 4)

)3

· · · = · · ·
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Differential equations and Asymptotics

• Genus-one modular graph functions satisfy
– System of inhomogeneous Laplace-eigenvalue equations
– Laurent polynomial behavior near the cusp of degree bounded by weight

• Genus-two KZ-invariant ϕ satisfies
– Characteristic class relations and role in Johnson homomorphism

(Kawazumi 2008; Zhang 2008; DeJong 2010)

– Eigenvalue equations for Sp(4,R)-invariant differential operators
(ED, Green, Pioline, Russo 2014; Pioline 2015)

– Theta-lift analogous to Borcherds for Igusa cusp form (Pioline 2015)

– Laurent polynomial of degree (1, 1) near non-separating divisor
(De Jong 2010; Pioline 2015; ED, Green, Pioline 2017)

• Genus-two higher string-invariants satisfy
– Laurent polynomial of bounded degree near non-separating degeneration

(ED, Green, Pioline 2017)

– System of differential equations for invariant differential operators
(in progress ED, Green, Pioline 201?)
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Differential equations

• Theorem 1 Laplace eigenvalue equation (ED, Green, Pioline, Russo 2014)

(∆− 5)ϕ = −2πδSN

– δSN has support on separating node (into two genus-one surfaces)
– ∆ is the Laplace-Beltrami operator on S2 with Siegel metric

∆ = 4
∑

I,J,K,L

YIKYJL∂̄
IJ∂KL ∂IJ =

1

2
(1 + δIJ)

∂

∂ΩIJ

– proven by theory and methods of deformations of complex structures

• Theorem 2 Quartic differential operator eigenvalue equation (Pioline 2015)

(32✷∗
2✷0 − 15)ϕ = 0

– ✷0,✷2 are Maass-Siegel operators

✷0 = εIJεKL∇IK∇JL ∇IJ = YIKYJL∂
KL

• System of differential equations satisfied by higher string invariants ?
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Asymptotics

For genus one, there is only one type of degeneration, as modulus τ → i∞

• Behavior of holomorphic Eisenstein series

G2k(τ) = −
B2k

2k
+

∞
∑

n=1

σ2k−1(n)q
n q = e2πiτ

• Behavior of non-holomorphic Eisenstein series, y = πIm(τ)

Ek(τ) =
2ζ(2k)

π2k
yk + 4

(

2k − 3
k − 1

)

ζ(2k − 1)

(4y)k−1
+O(|q|)

• Behavior of general genus-one modular graph functions.
– Finite degree Laurent polynomial in y plus exponentials,
– eg two-loop modular graph functions (ED, Bill Duke 2017)

Ca,b,c(τ) = cwy
w +

c2−w

yw−2
+

w−1
∑

k=1

cw−2k−1ζ(2k + 1)

y2k+1−w
+ O(|q|)

c2−w =
w−2
∑

m=1

γm ζ(2m + 1) ζ(2w − 2m − 3)

– with w = a+ b+ c and cw, γm, cw−2k−1 ∈ Q.
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Degenerations of genus-two Riemann surfaces Ω =

(

τ v

v σ

)

– Separating degeneration

v → 0

– Non-separating degeneration

σ → i∞

– Maximal degeneration (or “tropical limit”)

τ, v, σ→ i∞



Eric D’Hoker Higher genus modular graph functions

Non-separating degeneration

• A genus-two surface Σ degenerates to a torus Σ1 with two punctures pa, pb
– keep the cycles A1,B1,A2 fixed, and let B2 → ∞

Ω =

(

τ v
v σ

)

Im(σ) → ∞

– τ is the modulus of Σ1 and v =
∫ pb
pa

ω1 = pb − pa

• The genus-two Sp(4,Z) restricts to SL(2,Z)⋉ Z3 (Fourier-Jacobi group)

– SL(2,Z) subgroup of M ∈ Sp(4,Z) such that MB2 = B2 is

M =









a 0 b 0
0 1 0 0
c 0 d 0
0 0 0 1















τ ′ = (aτ + b)/(cτ + d)
v′ = v/(cτ + d)
σ′ = σ − cv2/(cτ + d)

– Z3 subgroup shifts v by Z+ τZ and Re(σ) by Z;
– The degeneration parameter σ is not invariant under SL(2,Z)
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Degeneration of Siegel modular forms

• A genus-two (“rank two”) Siegel modular form S of modular weight k
– is holomorphic and transforms under Sp(4,Z) by,

S(Ω′) = det(CΩ+D)kS(Ω) Ω′ = (AΩ+B)(CΩ+D)−1

– Fourier expansion in powers of e2πiσ near non-separating node

S(Ω) =

∞
∑

m=0

e2πimσφm(v|τ)

– φm(v|τ) is a Jacobi form of modular weight k and index m
– transforms under the residual modular group SL(2,Z) by

φm

(

v

cτ + d

∣

∣

∣

∣

aτ + b

cτ + d

)

= (cτ + d)ke2πimcv2/(cτ+d)φm(v|τ)

(Eichler and Zagier, “The theory of Jacobi forms”, 1985)
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Degeneration of the KZ-invariant

• Non-separating degeneration of non-holomorphic modular functions
– is governed by a real SL(2,Z)-invariant parameter t > 0

t ≡
det(ImΩ)

Im τ
Ω =

(

τ v
v σ

)

– with the non-separating node characterized by t → ∞

• Theorem 3 Non-separating degeneration of KZ-invariant (Pioline 2015)

ϕ(Ω) =
πt

6
+

1

2
g(v|τ) +

1

4πt

(

E2(τ)− g2(v|τ)
)

+O(e−2πt)

– g(v|τ) is the torus Green function;
– E2 is the non-holo Eisenstein series;
– g2(v|τ) =

∫

Σ1
d2z/τ2 g(v − z|τ)g(z|τ);

– Derived using the Laplace-eigenvalue equation for ϕ.

• The Laurent polynomial is of finite degree in the variable t
– but it is not of finite degree in, say, t+ 1



Eric D’Hoker Higher genus modular graph functions

Non-separating node from a punctured surface

• Standard construction of a surface near a non-separating node (Fay 1973)

– start from a genus-one surface with two punctures pa, pb
– local coordinates za, zb which vanish respectively at pa, pb
– identify points zazb = t between two annuli C′

a = C′
b and C′′

a = C′′
b

A1

B1

Σ

pa

C
′′
a

Ca

C
′
a

pb

C
′′
b

Cb

C
′
b

– in practice not easy to implement, unless one can define cycles C naturally
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Non-separating node from a punctured surface (cont’d)

• Key is the existence of a real single-valued harmonic function f(z) on Σ
– such that in the degeneration limit

f(z) → −∞ as z → pa and f(z) → +∞ as z → pb
– for large t cycles prescribed by f(Ca) → −2πt and f(Cb) → +2πt

f(z) = −2πt+ 4π Im

∫ z

za

(

ω2 − Im(v)ω1/Im(τ)
)

• Funnel construction of the non-separating degeneration

C′
a Ca

f = −t

C′′
a C′

b Cb

f = +t

C′′
b

• •
pa pb

• •za zb
B1

A1

– The cycle A2 is homologous to the cycles Ca,C
′
a,C

′′
a and Cb,C

′
b,C

′′
b ;

– The cycles are pairwise identified by Ca ≈ Cb, C
′
a ≈ C′

b and C′′
a ≈ C′′

b ;
– The points are pairwise identified by za ≈ zb;
– The cycle B2 may be chosen to be a simple curve connecting za to zb.
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Degeneration of higher string invariants

• Consider the full genus-two string amplitude

B(sij|Ω) =

∫

Σ4

Y ∧ Y

(detY )2
exp

{

∑

i<j

sijG(zi, zj|Ω)

}

– Expanding in powers of sij and collecting all terms homogeneous of degree w
– gives modular graph functions of weight w for genus-two surfaces Σ

Bw(sij|Ω) =

∫

Σ4

Y ∧ Y

(detY )2

(

∑

i<j

sijG(zi, zj|Ω)

)w

• Theorem 4 Under non-separating degeneration of Σ (ED, Green, Pioline 2017)

– Bw(sij|Ω) has a Laurent polynomial of degree (w,w) in t

Bw(sij|Ω) =

w
∑

k=−w

B
(k)
w (sij|v, τ) t

k
+ O(e

−2πt
)

– B(k)
w (sij|v, τ) are invariant under SL(2, Z) ⊂ Sp(4, Z)

B
(k)
w

(

sij

∣

∣

∣

∣

v

cτ + d
,
aτ + b

cτ + d

)

= B
(k)
w (sij|v, ρ)

• Note – similarity with the Laurent polynomial expansion for genus one;

– B
(k)
w (sij|v, τ) generalize Jacobi forms to a non-holomorphic setting;

– combine genus-one modular graph functions and elliptic polylogarithms.
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Ingredients in proof of Theorem 4

• Uniform asymptotics of the Green function

G(x, y|Ω) =
πt

12
+ g(x − y|τ) −

f(x)f(y)

4πt
+ · · · + O(e−2πt)

– see DGP 2017 for the complete expression (improving on Wentworth 1991)

• Measure

4π
2
Y = dz1 ∧ dz2 ∧ dz3 ∧ dz4

∑

i<j

sij∂zi
f(zi)∂zj

f(zj)

• The cycles Ca,Cb have exponentially vanishing coordinate radius
– z ∈ Ca satisfies |z − pa|

2 ≈ e−2πt

– Power dependence in t arise from poles at pa, pb in the integrand
– Extract variation in t-dependence (cfr RG with cut-off t)

C′
a δCa

δf = −δt

C′′
a C′

b Cb

f = +t

C′′
b

• •pa pbB1

A1
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Summary and outlook

• Low energy expansion of string theory has revealed a rich structure of

– Modular graph functions for genus-one Riemann surfaces;
– Kawazumi-Zhang and higher string invariants for genus-two surfaces.

• Asymptotics for higher string invariants

– Remarkable structure in Laurent polynomial for non-sep degeneration
– Tested versus maximal degeneration limit (ED, Green, Pioline 2018)

– Similar result for separating degeneration (ED, Green, Pioline 2018)

– Crucial for the discovery of relations between modular graph functions

• Differential equations for higher string invariants

– In progress (ED, Green, Pioline)

– Asymptotics is expected to be a key guide


