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Periods are integrals of rational fractions

∫γ

A
Pk Ω

Some integration domain

without boundary

 defines a smooth 

complex projective hypersurface


P

$ = V(P) = {P = 0}

 is the volume 

form of 

Ω
ℙn

 is homogeneous of 

degree 

A
k deg P − deg Ω

2
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The period matrix
We chose generating families  and .γ1, …, γr ∈ Hn($) ω1, …, ωr ∈ Hn

DR($)

Define the period matrix

Π = ∫γj

ωi
1 ≤ i ≤ r
1 ≤ j ≤ r

It is an invertible matrix that describes the isomorphism between DeRham cohomology and homology.

Our goal is to find a way, given , to compute the period matrix of .P $ = V(P)

3
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Why are periods interesting?

4

The period matrix of  contains information about fine algebraic invariants . 

Torelli-type theorems : the period matrix of  determines its isomorphism class (in certain 

cases).

$ $
$

Feynman integrals are relative periods that give scattering amplitudes of particle 
interactions in quantum field theory.
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Previous works

5

[Sertöz 2019]: compute the period matrix by deformation.

[Deconinck, van Hoeij 2001], [Bruin, Sijsling, Zotine 2018], [Molin, Neurohr 2017]: 

Algebraic curves (Riemann surfaces)

[Elsenhans, Jahnel 2018], [Cynk, van Straten 2019]: 

Higher dimensional varieties (double covers of  ramified along 6 lines / of  ramified along 8 planes)ℙ2 ℙ3
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Previous works

6

Sertöz 2019: compute the periods matrix by deformation :

We wish to compute . ∫γ

Ω
X3 + Y3 + Z3 + XYZ

0 1
ℂ

π0 π1

We may numerically compute the analytic continuation of  

along a path from 0 to 1   [Chudnovsky2, Van der Hoeven, Mezzarobba] 


This way, we obtain a numerical approximation of .

π0

π1

Let us consider instead , πt = ∫γt

Ω
X3 + Y3 + Z3 + tXYZ

Exact formulae are known for  [Pham 65, Sertöz 19]π0

Furthermore  is a solution to the differential operator

  (Picard-Fuchs equation)

πt
ℒ = (t3 + 27)∂2

t + 3t2∂t + t
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Previous works

7

Sertöz 2019: compute the periods matrix by deformation :

Two drawbacks :

We rely on the knowledge of the periods of some variety.

[Pham 65, Sertöz 19] provides the periods of the Fermat hypersurfaces .V(Xd

0 + … + Xd
n)

In more general cases (e.g. complete intersections), we do not have this data.

The differential operators that need to be integrated quickly go beyond what current software can manage:
To compute the periods of a smooth quartic surface in , 


one needs to integrate an operator of order 21. 
ℙ3

Goal: a more intrinsic description of the integrals should solve both problems. 
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Contributions
New method for computing periods with high precision:


 implementation in Sagemath (relying on OreAlgebra) — lefschetz_family


 sufficiently efficient to compute periods of new varieties (generic quartic surface)


 homology of complex algebraic varieties


 generalisable to other types of varieties (e.g. complete intersections, varieties with 

isolated singularities, etc.)

→

→

→

→

8

Hundreds of digits
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First example: algebraic curves

9

t1 t2
ℂ

ℓ

f −1(t1) f −1(t2)

Let  be the elliptic curve defined by  

and let .

$ P = y3 + x3 + 1 = 0
f : (x, y) ↦ y/(2x + 1)

The fibre above  is 

.


It deforms continuously with respect to .

t ∈ ℂ $t = f −1(t)
= {(x, t(2x + 1)) ∣ P (x, t(2x + 1)) = 0}

tIn dimension 1, we are looking for 

closed paths in , up to deformation (1-cycles).$

ℂ

ℓ


f(loop)
= loop

 ?f −1(loop) = loop
Not always, see next slide

Values of  for which 
 

has double roots (critical values)

t
P(x, t(2x + 1)) = t3(2x + 1)3 + x3 + 1
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What happens when you loop around a critical point?

10

f −1(t1)

t1

ℂ

ℓ

A loop  in  pointed at  induces a permutation of .ℓ ℂ t1 $t1 = f −1(t1)

This permutation is called the action of monodromy along  on . It is denoted 

If  is a simple loop around a critical value,  is a transposition.

ℓ $t1 ℓ*
ℓ ℓ*
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ℂ

b

Δ1

Δ2

Δ3

ℓ1

ℓ2ℓ3

c1

c2
c3

11

The lift of a simple loop  around a critical value  that has a non-trivial boundary in  
is called the thimble of . It is an element of .

ℓ c $b
c H1($, $b)

Concretely, we take the kernel of the boundary map δ : H1($, $b) → H0($b)

Fact: all of  can be recovered this way.H1($)

Periods of algebraic curves

Thimbles serve as building blocks to recover . 

It is sufficient to glue thimbles together in a way such that their boundaries cancels.


H1($)

Relative homology 

of the pair ($, $b)

0 → H1($) → H1($, $b) → H0($b)

Simple loop 

around c1

Generated 

by thimbles
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ℂ

b

Extensions along contractible paths in  

have a trivial homology class in .

ℙ1∖{crit. val.}
H1($)

Certain combinations of thimbles are trivial

ℙ1

∞

b

Fact: these are the only ones — the kernel of the map , 
 is generated by these extensions “around infinity”.

ℤr ↦ H1($, $b)
k1, …, kr ↦ ∑

i
kiΔi
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Computing periods of algebraic curves

13

b

ℂ

1. Compute simple loops  around the critical values — basis of ℓ1, …, ℓ#crit. π1(ℂ∖{crit. val.})
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2. For each  compute the action of monodromy along  on  (transposition)i ℓi $b

$b

b

ℂ

ℓ

Computing periods of algebraic curves

1. Compute simple loops  around the critical values — basis of ℓ1, …, ℓ#crit. π1(ℂ∖{crit. val.})
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b

ℂ

ℓ

3. This provides the thimble . Its boundary is the difference of the two points of  that are permuted.Δi $b

Computing periods of algebraic curves

1. Compute simple loops  around the critical values — basis of ℓ1, …, ℓ#crit. π1(ℂ∖{crit. val.})

2. For each  compute the action of monodromy along  on  (transposition)i ℓi $b
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4. Compute sums of thimbles without boundary  basis of → H1($)

ℂ

b

Δ1

Δ2

Δ3

ℓ1

ℓ2ℓ3

c1

c2
c3

Computing periods of algebraic curves

1. Compute simple loops  around the critical values — basis of ℓ1, …, ℓ#crit. π1(ℂ∖{crit. val.})

3. This provides the thimble . Its boundary is the difference of the two points of  that are permuted.Δi $b

2. For each  compute the action of monodromy along  on  (transposition)i ℓi $b
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5. Periods are integrals along these loops 

 we have an explicit parametrisation of these paths  numerical integration.→ →

∫γ
ω = ∫ℓ

ωt

Computing periods of algebraic curves

1. Compute simple loops  around the critical values — basis of ℓ1, …, ℓ#crit. π1(ℂ∖{crit. val.})

3. This provides the thimble . Its boundary is the difference of the two points of  that are permuted.Δi $b

2. For each  compute the action of monodromy along  on  (transposition)i ℓi $b

4. Compute sums of thimbles without boundary  basis of → H1($)

DEMO
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Insight into higher dimensions: surfaces

19

We take a projection .

The fibre  is a variety of dimension 1. 


It deforms continuously with respect to .

$ → ℙ1

$t
t

γ′ 

γ

$t1

t1 t2
ℂ

ℓ

∫τ
f(x, y)dxdy = ∫ℓ ∫γy

f(x, y)dx dy

τ

Period of algebraic curve

Period of algebraic surface

Induction on dimension
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Comparison with dimension 1

20

The monodromy along a loop  is an isomorphism of 
.

ℓ
Hn−1($b)

Thimbles are -cycles obtained by extending 
-cycles along loops.

n
n − 1

γ

$b

t1

ℂ

ℓ

γ′ 

τ

If the projection is generic (Lefschetz), 
singular fibres are simple.

There is a single thimble per critical value.

We get almost every possible -cycle by 
gluing thimbles.

n

Hn($b) → Hn($) → Hn($, $b) → Hn−1($b)
Almost  

generated 

by thimbles

Possibly

nontrivial
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Obtaining a fibration from a hypersurface

21

The fibration of  is given by a hyperplane pencil 
, with .

$
{Ht}t∈ℙ1 $t = $ ∩ Ht

This pencil has an axis  that intersects .A = ∩t∈ℙ1 Ht $

The total space of the fibration is not isomorphic to , but to 
a blow up  of  along , called the modification of . 

$
! $ $′ $

We compute , which contains the homology 
classes of exceptional divisors. 

To recover  we need to be able to identify these 
classes.

Hn(!)

Hn($)

A

0 → Hn−2($′ ) → Hn(!) → Hn($) → 0
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Some complications

22

Not all cycles of  are lift of loops, and thus not all are combinations of thimbles.Hn(!)

More precisely, we are missing the homology class of the 
fibre  


and a section (an extension to  to all of ).
Hn($b)

Hn−2($b) ℙ1

b
ℂ

Hn($b)

4

Hn−2($b)

We have a filtration  such that






ℱ0 ⊂ ℱ1 ⊂ ℱ2 = Hn(!)
ℱ0 ≃ Hn($b)
ℱ1/ℱ0 ≃ 4

ℱ2/ℱ1 ≃ Hn−2(Xb)

 is also known as the parabolic cohomology of the local system.4



/32

Monodromy of a differential operator

23

f(t) −
m

∑
k=0

f (k)(α)
k! (t − α)k ≤ 8(m)2−m

In a disk around , the precision given by the 
Taylor formula is exponential in its order.

α

polynomial 

in  (effective)m

Linear complexity:

Recover  digits in  operationsm 9(m)

α t From the derivatives at , 

we can recover the derivatives at .

α
t

[Chudnovsky2 90, Van der Hoeven 99, Mezzarobba 2010] In a small radius around :α

We compute  from .f k(α) ℒ

(using binary splitting)
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Computing monodromy -  I

24

π1(ℂ∖{critical values}) → GL(Hn−1(Xb))

γ1

γ2

ℓ*γ1

ℓ*γ2

b bℓ

Hn−1(Xb)
Hn−1(Xb)

Tools we use: 


• induction on dimension — we know cycles of 


• isomorphism between homology and DeRham cohomology  we gain analytical structure


• monodromy of a differential operator (Picard-Fuchs equation) [Mezzarobba]

Hn−1(Xb)
→

Given by 

periods!
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Computing monodromy -  I

25

Πij = ∫γj

∂i
tωt Π̃ij = ∫∑k ckjγk

∂i
tωt = ∑

k
ckj ∫γk

∂i
tωt

Thus       i.e. Π̃ = ΠC

Π−1Π̃ = C ∈ GLr(ℤ)

Computation of

transcendental


nature

Πij

Π̃ij

It is sufficient to carry out this 
computation with precision  

to recover  exactly
< 1/2

C

Analytical 

continuation

Solution to 
Picard-Fuchs 

equation of ωt

Globally defined

= no monodromyγ̃j = ∑

k
ckjγk
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Computing monodromy - II

26

f1

f2

b

b′ 

ℓ

ℓ′ 

Critical values of  
move as  moves in 

f2 : $t → ℙ1

b ℙ1

Thus a loop in  
induces a braid action on 

, which lifts to an 
action on .

ℓ ∈ π1(ℙ1∖Σ, b)

π1(ℙ1∖Σb, b′ )
Hn−1($b, $bb′ 

)

More precisely, we have that 



(assuming  has trivial monodromy 
with respect to )

ℓ*τℓ′ 
(γ) = τℓ*ℓ′ 

(γ)
$tb′ 

t
Take  s.t.

 

b′ 

$tb′ 
= $′ 

$b

$

(cf parabolic cohomology [Dettweiler, Wewers 2006])

Σb
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f1

f2

b

b′ 

ℓ

ℓ′ 

t1

t2

b′ b′ b′ 

ℓ*ℓ′ 

ℓ

b bt1 t2

The braid action on π1(ℙ1∖Σb, b′ )

$b

$

ℓ*τℓ′ 
(γ) = τℓ*ℓ′ 

(γ)

We recover the action of monodromy on H1($b, $′ )

Computing monodromy - II
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Morsifications

28

b = b0 bu

Let  be the fibration of a surface, 

with possibly non-Lefschetz fibres.
S → ℙ1

We consider a morsification of 

i.e. a family of fibrations  parametrised by 

S → ℙ1

Su → ℙ1 u ∈ D
such that  coincides with ,


 is a Lefschetz fibration for ,

and  is a smooth fibration.

S0 → ℙ1 S → ℙ1

Su → ℙ1 u ≠ 0
S̃ → D

As  for , we may compute 
a description of  in terms of thimbles of .

H2(S) = H2(S0) ≃ H2(Su) u ≠ 0
H2(S) Su

Some cycles of  can be obtained as extensions in .

These are sufficient to recover the periods of .

Su S
S

disk

All  fibresI1
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Elliptic surfaces

30

Fact: Morsifications always exist 
[Moishezon 1977]

Fact: The monodromy representation of the 
morsification is determined by the monodromy 

representation of . [Cadavid, Vélez 2009]S

b = b0
bt

ℓ ℓ4

ℓ3

ℓ2

ℓ1

ℓ* = ℓ4*ℓ3*ℓ2*ℓ1* DEMO
. . . 

Kodaira classification
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Results and perspectives

31

holomorphic periods of quartic surfaces in an hour.

A singular example: Tardigrade family (a very generic family of quartic K3 surfaces). 
[Doran, Harder, PP, Vanhove 2023] 


 able to embed Néron-Severi lattice in standard K3 lattice→

Found smooth quartic surface in  with Picard rank 2, 3, 5
ℙ3

$ = V (
X4 − X2Y2 − XY3 − Y4 + X2YZ + XY2Z + X2Z2 − XYZ2 + XZ3

−X3W − X2YW + XY2W − Y3W + Y2ZW − XZ2W + YZ2W − Z3W + XYW2

+Y2W2 − XZW2 − XW3 + YW3 + ZW3 + W4 )
can be applied to more general types of varieties, e.g. complete intersections

Bottleneck for accessing higher dimensions is still the order/degree of the differential operators

up next: K3 surfaces given as double covers of  ramified along sextics.ℙ2
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Results and perspectives

32

holomorphic periods of quartic surfaces in an hour.

A singular example: Tardigrade family (a very generic family of quartic K3 surfaces). 
[Doran, Harder, PP, Vanhove 2023] 


 able to embed Néron-Severi lattice in standard K3 lattice→

Found smooth quartic surface in  with Picard rank 2, 3, 5
ℙ3

$ = V (
X4 − X2Y2 − XY3 − Y4 + X2YZ + XY2Z + X2Z2 − XYZ2 + XZ3

−X3W − X2YW + XY2W − Y3W + Y2ZW − XZ2W + YZ2W − Z3W + XYW2

+Y2W2 − XZW2 − XW3 + YW3 + ZW3 + W4 )
can be applied to more general types of varieties, e.g. complete intersections

Bottleneck for accessing higher dimensions is still the order/degree of the differential operators

up next: K3 surfaces given as double covers of  ramified along sextics.ℙ2

Thank you!


