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Periods are integrals of rational fractions

A is homogeneous of
degree kdeg P — deg Q2

\ Q2 is the volume
q / form of P"

Pk
/ P defines a smooth

Some integration domain complex projective hypersurface
without boundary 2 =V(P)={P =0}
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The period matrix

We chose generating families yy, ..., 7, € H (X)) and @y, ..., ®, € H} ().

Define the period matrix

It is an invertible matrix that describes the isomorphism between DeRham cohomology and homology.

Our goal is to find a way, given P, to compute the period matrix of 2~ = V(P).
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Why are periods interesting?

The period matrix of 2" contains information about fine algebraic invariants 2.

Torelli-type theorems : the period matrix of 2~ determines its isomorphism class (in certain
cases).

Feynman integrals are relative periods that give scattering amplitudes of particle
interactions in quantum field theory.
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Previous works

[Deconinck, van Hoeij 2001], [Bruin, Sijsling, Zotine 2018], [Molin, Neurohr 2017]:
Algebraic curves (Riemann surfaces)

[Elsenhans, Jahnel 2018], [Cynk, van Straten 2019]:
Higher dimensional varieties (double covers of [P? ramified along 6 lines / of P3 ramified along 8 planes)

[Sertd6z 2019]: compute the period matrix by deformation.
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Previous works

Sert6z 2019: compute the periods matrix by deformation :

Q
X3+ Y3+27Z34+XYZ

We wish to compute J
Y

Q (). o : '1
X34+ Y3+ 2Z3+1XYZ

Let us consider instead 7, = J
Vi

Exact formulae are known for 7; [Pham 65, Sert6z 19]

Furthermore 7, is a solution to the differential operator
L=0F+ 27)dt2 + 31‘20, + t (Picard-Fuchs equation)

We may numerically compute the analytic continuation of
along a path from0to 1 [Chudnovsky?, Van der Hoeven, Mezzarobbal]
This way, we obtain a numerical approximation of ;.
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Previous works

Sert6z 2019: compute the periods matrix by deformation :
Two drawbacks :

We rely on the knowledge of the periods of some variety.
[Pham 65, Sert6z 19] provides the periods of the Fermat hypersurfaces V(Xg + ...+ X,f).

In more general cases (e.g. complete intersections), we do not have this data.

The differential operators that need to be integrated quickly go beyond what current software can manage:

To compute the periods of a smooth quartic surface in |]3’3,
one needs to integrate an operator of order 21.

Goal: a more intrinsic description of the integrals should solve both problems.
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Contributions
/ Hundreds of digits

New method for computing periods with high precision:
— implementation in Sagemath (relying on OreAlgebra) — lefschetz_family
— sufficiently efficient to compute periods of new varieties (generic quartic surface)
— homology of complex algebraic varieties

— generalisable 1o other types of varieties (e.g. complete intersections, varieties with

isolated singularities, etc.)
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First example: algebraic curves

Let 2 be the elliptic curve definedby P =y> + x>+ 1 =0 The fibre above t € Cis &, = f'(¢)
and let f: (x,y) = y/(2x + 1). = {(x,t2x+ 1)) | P (x,12x + 1)) = 0}.

In dimension 1, we are looking for It deforms continuously with respect to 1.

closed paths in X', up to deformation (1-cycles).

@) ()
¢ ®
¢ ®
f(ioop) - ’ ’
f " (loop) = loop ?
= loop Not always, see next slide
°
. . - . ° °
°
h ° .tz
[ ) C

[ ]
Values of ¢ for which /"
PO, t2x+ 1) =832x+ 1) +x3+ 1

has double roots (critical values)
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What happens when you loop around a critical point?

A loop ¢ in C pointed at ¢, induces a permutation of Sl’tl =f_1(t1).

2

@)

-2 =1 1 2

2L

This permutation is called the action of monodromy along £ on & ;- It is denoted s

If £ is a simple loop around a critical value, Z. is a transposition.
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Periods of algebraic curves

The lift of a simple loop £ around a critical value ¢ that has a non-trivial boundary in X',
is called the thimble of c. It is an element of H (X', X,).

Relative homology
b of the pair (2, Z,)
A]
., .@ % Simple loop

around ¢,

Thimbles serve as building blocks to recover H,(X).
It is sufficient to glue thimbles together in a way such that their boundaries cancels.

Concretely, we take the kernel of the boundary map 6 : H(X', X',) = Hy(X'})

Fact: all of H;(X') can be recovered this way.
Generated
0 - H(X) - H(X, X)) > Hy(X ) by thimbles
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Certain combinations of thimbles are trivial

S @

Extensions along contractible paths in P!\ {crit. val.}
have a trivial homology class in H,(X).

Fact: these are the only ones — the kernel of the map Z" — H|(Z, Z,),
ki,....k.— Z k;A; is generated by these extensions “around infinity”.
i
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Computing periods of algebraic curves

1. Compute simple loops £, ..., Cacrit. @round the critical values — basis of z;(C\ { crit. val. })
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Computing periods of algebraic curves

1. Compute simple loops £, ..., Cacrit. @round the critical values — basis of z;(C\ { crit. val. })

2. For each i compute the action of monodromy along ¢; on &', (transposition)

e
tl‘/
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Computing periods of algebraic curves

1. Compute simple loops £, ..., Cacrit. @round the critical values — basis of z;(C\ { crit. val. })
2. For each i compute the action of monodromy along ¢; on &', (transposition)

3. This provides the thimble A;. Its boundary is the difference of the two points of X', that are permuted.
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Computing periods of algebraic curves

1. Compute simple loops £, ..., Cacrit. @round the critical values — basis of z;(C\ { crit. val. })
2. For each i compute the action of monodromy along ¢; on &', (transposition)
3. This provides the thimble A;. Its boundary is the difference of the two points of X', that are permuted.

4. Compute sums of thimbles without boundary — basis of H;()

.
oy E
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Computing periods of algebraic curves

1. Compute simple loops £, ..., Cacrit. @round the critical values — basis of z;(C\ { crit. val. })
2. For each i compute the action of monodromy along ¢; on &', (transposition)
3. This provides the thimble A .. Its boundary is the difference of the two points of Sl”b that are permuted.

4. Compute sums of thimbles without boundary — basis of H;()

5. Periods are integrals along these loops
— we have an explicit parametrisation of these paths — numerical integration.

sz[ @y DEMO
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Insight into higher dimensions: surfaces

We take a projection 2 — P
The fibre ', is a variety of dimension 1.
It deforms continuously with respect to 7.

Period of algebraic surface

J J(x, y)dxdy =[ [ Jfx, y)dx | dy
T 4

— /

Period of algebraic curve

o — |Induction on dimension

19/32



Comparison with dimension 1

Thimbles are n-cycles obtained by extending

Z, n — l-cycles along loops.
4 The monodromy along a loop £ is an isomorphism of
Hn—l('%‘b)'

If the projection is generic (Lefschetz),
singular fibres are simple.
There is a single thimble per critical value.

. . . We get almost every possible n-cycle by
gluing thimbles.

: c H(Z,) —» H(Z) > H(L, Z,) = H,_(L},)

_ Almost
Possibly / \ generated

nontrivial by thimbles
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Obtaining a fibration from a hypersurface

The fibration of 2 is given by a hyperplane pencil

{Ht}tepl, W|th ‘%‘[ = z%‘ ﬂ Hl' '

This pencil has an axis A = N,cpi H, that intersects .

The total space of the fibration is not isomorphic to ', but to

a blow up % of & along ", called the modification of 2. »

We compute H, (%), which contains the homology
classes of exceptional divisors.

To recover H, (') we need to be able to identify these 0->H, () > H(¥) - H(ZX) -0
classes. " " "
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Some complications

Not all cycles of H (%) are lift of loops, and thus not all are combinations of thimbles.

More precisely, we are missing the homology class of the
fibre H (X})
and a section (an extension to H, ,(2,) to all of P!).

H (L)) 0)

O We have a filtration F° ¢ F! c F? = H (?) such that
0
F~H(X})
FUFO ~
by c FF! ~

is also known as the parabolic cohomology of the local system.
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Monodromy of a differential operator

[Chudnovsky290, Van der Hoeven 99, Mezzarobba 2010]

In a small radius around a:

m (k)(l
1= 3D~ | < pmpn )
- k! We compute f*(a) from &Z.
polynomial
in m (effective)
In a disk around a, the precision given by the
Y Taylor formula is exponential in its order.
O
®
) From the derivatives at a,
‘e we can recover the derivatives at .

Linear complexity:
o Recover m digits in O(m) operations
(using binary splitting)
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Computing monodromy - |

m;(C\{critical values}) - GL(H,_,(X,))

72

H _ (X
Y1 n—l( b)
5%

Given by .
periods!

Hn—l(Xb)

Tools we use:

« induction on dimension — we know cycles of H, _,(X})

» isomorphism between homology and DeRham cohomology — we gain analytical structure

 monodromy of a differential operator (Picard-Fuchs equation) [Mezzarobba]
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Computing monodromy - |

Analytical
continuation ~

I1; =[ 0, e 11;; = a;a)t Ck] O,

Solution to
) Globally defined

Picard-Fuchs
equation of w, Ckﬂ’k
k

Y Thus Il =1IC i.e.

o
I = C € GL (Z)

= no monodromy

It is sufficient to carry out this
ij Computation of computation with precision < 1/2

transcendental to recover C exactly
nature
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Computing monodromy - |l

Critical values of f, : &, — P
f move as b moves in P!

. Thus aloop in /€ m;(P'\Z, b)
Q induces a braid action on
b, m(P'\Z,, b"), which lifts to an
Q action on H,_ (X', L)
[ J

More precisely, we have that
tr) =7 AY)
(assuming X', has trivial monodromy

with respect to 1)

L ° Take b’ s.t. \/

L=

(cf parabolic cohomology [Dettweiler, Wewers 2006])
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fi

Computing monodromy - |l

T Ay) =7 AY)

2, L
.t
[
[ ]
Q ”
®
([ ]
o— ([
f l% b f t b
o 4 @ [ ]
® o
. The braid action on z;(P'\X,, b")

We recover the action of monodromy on H (X, L)
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Morsifications

Let S — P! be the fibration of a surface,

®
o .. | with possibly non-Lefschetz fibres.
.
\. We consider a morsification of § — P!
([ ]
i.e. a family of fibrations S, — P! parametrised by u € D
such that S, — P! coincides with S — P!, disk
L
b = b, .” S — P!lis a Lefschetz fibration for u # 0,
All I, fibres and S — D is a smooth fibration.
S
As Hy(S) = H,(S,) =~ H,(S,) for u # 0, we may compute /
a description of H,(S) in terms of thimbles of S,,.
P »(S) u ]P>1 < D
Some cycles of S, can be obtained as extensions in . \

These are sufficient to recover the periods of S. D
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Elliptic surfaces

Fact: Morsifications always exist Fact: The monodromy representation of the
[Moishezon 1977] morsification is determined by the monodromy

representation of S. [Cadavid, Vélez 2009]

f3 Kodaira classification
°®
1 v
f v
°® 1
) =
£ i ( 1 1 VU U ( )
° -1 0 ) 1
) -
111 (01 vuv V(—11)
-1 0 )
° ° A% ( 0 1 ) (VU)?
b -1 -1
b:b() !

t?* — Zfll*Zfi3ﬂ<Zfzz*Zfil*
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Results and perspectives

holomorphic periods of quartic surfaces in an hour.

A singular example: Tardigrade family (a very generic family of quartic K3 surfaces).
[Doran, Harder, PP, Vanhove 2023]

— able to embed Néron-Severi lattice in standard K3 lattice W

FIGURE 13. The tardigrade graph

Found smooth quartic surface in P3 with Picard rank 2,3,5
X = X2Y?2 - XY? - Y+ X?YZ + XY?°Z + X?Z? — XYZ? + X73
X =V _X3W = X2YW + XYW — VW + Y2ZW — XZ°W + YZ2W — Z3W + XYW?
+Y°W? — XZW? — XW3 + YW? + ZW3 + w*

can be applied to more general types of varieties, e.g. complete intersections
up next: K3 surfaces given as double covers of [P? ramified along sextics.

Bottleneck for accessing higher dimensions is still the order/degree of the differential operators
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Results and perspectives

holomorphic periods of quartic surfaces in an hour.

A singular example: Tardigrade family (a very generic family of quartic K3 surfaces).
[Doran, Harder, PP, Vanhove 2023]

— able to embed Néron-Severi lattice in standard K3 lattice W

FIGURE 13. The tardigrade graph

Found smooth quartic surface in P3 with Picard rank 2,3,5
X = X2Y?2 - XY? - Y+ X?YZ + XY?°Z + X?Z? — XYZ? + X73
X =V _X3W = X2YW + XYW — VW + Y2ZW — XZ°W + YZ2W — Z3W + XYW?
+Y°W? — XZW? — XW3 + YW? + ZW3 + w*

can be applied to more general types of varieties, e.g. complete intersections
up next: K3 surfaces given as double covers of [P? ramified along sextics.

Bottleneck for accessing higher dimensions is still the order/degree of the differential operators

Thank you!
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