Eric Pichon-Pharabod
 Numerical Computation of the Homology and Periods of Complex Surfaces

Joint work with Pierre Lairez and Pierre Vanhove

Periods are integrals of rational fractions

A is homogeneous of degree $k \operatorname{deg} P-\operatorname{deg} \Omega$

The period matrix

We chose generating families $\gamma_{1}, \ldots, \gamma_{r} \in H_{n}(\mathscr{X})$ and $\omega_{1}, \ldots, \omega_{r} \in H_{D R}^{n}(\mathscr{X})$.

Define the period matrix

$$
\Pi=\left(\int_{\gamma_{j}} \omega_{i}\right)_{\substack{1 \leq i \leq r \\ 1 \leq j \leq r}}
$$

It is an invertible matrix that describes the isomorphism between DeRham cohomology and homology.

Our goal is to find a way, given P, to compute the period matrix of $\mathscr{X}=V(P)$.

Why are periods interesting?

The period matrix of \mathscr{X} contains information about fine algebraic invariants \mathscr{X}.
Torelli-type theorems : the period matrix of \mathscr{X} determines its isomorphism class (in certain cases).

Feynman integrals are relative periods that give scattering amplitudes of particle interactions in quantum field theory.

Previous works

[Deconinck, van Hoeij 2001], [Bruin, Sijsling, Zotine 2018], [Molin, Neurohr 2017]: Algebraic curves (Riemann surfaces)

[Elsenhans, Jahnel 2018], [Cynk, van Straten 2019]:
Higher dimensional varieties (double covers of \mathbb{P}^{2} ramified along 6 lines / of \mathbb{P}^{3} ramified along 8 planes)
[Sertöz 2019]: compute the period matrix by deformation.

Previous works

Sertöz 2019: compute the periods matrix by deformation :
We wish to compute $\int_{\gamma} \frac{\Omega}{X^{3}+Y^{3}+Z^{3}+X Y Z}$.
Let us consider instead $\pi_{t}=\int_{\gamma_{t}} \frac{\Omega}{X^{3}+Y^{3}+Z^{3}+t X Y Z}$,
Exact formulae are known for π_{0} [Pham 65, Sertöz 19]
Furthermore π_{t} is a solution to the differential operator $\mathscr{L}=\left(t^{3}+27\right) \partial_{t}^{2}+3 t^{2} \partial_{t}+t$ (Picard-Fuchs equation)

We may numerically compute the analytic continuation of π_{0} along a path from 0 to 1 [Chudnovsky², Van der Hoeven, Mezzarobba] This way, we obtain a numerical approximation of π_{1}.

Previous works

Sertöz 2019: compute the periods matrix by deformation :

Two drawbacks :

We rely on the knowledge of the periods of some variety.
[Pham 65, Sertöz 19] provides the periods of the Fermat hypersurfaces $V\left(X_{0}^{d}+\ldots+X_{n}^{d}\right)$. In more general cases (e.g. complete intersections), we do not have this data.

The differential operators that need to be integrated quickly go beyond what current software can manage:
To compute the periods of a smooth quartic surface in \mathbb{P}^{3}, one needs to integrate an operator of order 21.

Goal: a more intrinsic description of the integrals should solve both problems.

Contributions

New method for computing periods with high precision:
\rightarrow implementation in Sagemath (relying on OreAlgebra) - lefschetz_family
\rightarrow sufficiently efficient to compute periods of new varieties (generic quartic surface)
\rightarrow homology of complex algebraic varieties
\rightarrow generalisable to other types of varieties (e.g. complete intersections, varieties with isolated singularities, etc.)

First example: algebraic curves

Let \mathscr{X} be the elliptic curve defined by $P=y^{3}+x^{3}+1=0$ and let $f:(x, y) \mapsto y /(2 x+1)$.

In dimension 1, we are looking for closed paths in X, up to deformation (1-cycles).

What happens when you loop around a critical point?

A loop ℓ in \mathbb{C} pointed at t_{1} induces a permutation of $\mathscr{X}_{t_{1}}=f^{-1}\left(t_{1}\right)$.

This permutation is called the action of monodromy along ℓ on $X_{t_{1}}$. It is denoted ℓ_{*} If ℓ is a simple loop around a critical value, ℓ_{*} is a transposition.

Periods of algebraic curves

The lift of a simple loop ℓ around a critical value c that has a non-trivial boundary in \mathscr{X}_{b} is called the thimble of c. It is an element of $H_{1}\left(\mathscr{X}, X_{b}\right)$.

Thimbles serve as building blocks to recover $H_{1}(\mathscr{X})$.
It is sufficient to glue thimbles together in a way such that their boundaries cancels.
Concretely, we take the kernel of the boundary map $\delta: H_{1}\left(\mathscr{X}, X_{b}\right) \rightarrow H_{0}\left(X_{b}\right)$
Fact: all of $H_{1}(\mathscr{X})$ can be recovered this way.

$$
0 \rightarrow H_{1}(X) \rightarrow H_{1}\left(X, X_{b}\right) \rightarrow H_{0}\left(X_{b}\right)
$$

Certain combinations of thimbles are trivial

Extensions along contractible paths in $\mathbb{P}^{1} \backslash\{$ crit. val. $\}$ have a trivial homology class in $H_{1}(X)$.

Fact: these are the only ones - the kernel of the map $\mathbb{Z}^{r} \mapsto H_{1}\left(\mathcal{X}, \mathscr{X}_{b}\right)$, $k_{1}, \ldots, k_{r} \mapsto \sum_{i} k_{i} \Delta_{i}$ is generated by these extensions "around infinity".

Computing periods of algebraic curves

1. Compute simple loops $\ell_{1}, \ldots, \ell_{\# \text { \#rit. }}$ around the critical values - basis of $\pi_{1}(\mathbb{C} \backslash\{$ crit. val. $\})$

Computing periods of algebraic curves

1. Compute simple loops $\ell_{1}, \ldots, \ell_{\# \text { crit. }}$ around the critical values - basis of $\pi_{1}(\mathbb{C} \backslash\{$ crit. val. $\})$
2. For each i compute the action of monodromy along ℓ_{i} on \mathscr{X}_{b} (transposition)

Computing periods of algebraic curves

1. Compute simple loops $\ell_{1}, \ldots, \ell_{\# \text { crit. }}$ around the critical values - basis of $\pi_{1}(\mathbb{C} \backslash\{$ crit. val. $\})$
2. For each i compute the action of monodromy along ℓ_{i} on \mathscr{X}_{b} (transposition)
3. This provides the thimble Δ_{i}. Its boundary is the difference of the two points of \mathscr{X}_{b} that are permuted.

Computing periods of algebraic curves

1. Compute simple loops $\ell_{1}, \ldots, \ell_{\# \text { crit. }}$ around the critical values - basis of $\pi_{1}(\mathbb{C} \backslash\{$ crit. val. $\})$
2. For each i compute the action of monodromy along ℓ_{i} on \mathscr{X}_{b} (transposition)
3. This provides the thimble Δ_{i}. Its boundary is the difference of the two points of \mathscr{X}_{b} that are permuted.
4. Compute sums of thimbles without boundary \rightarrow basis of $H_{1}(\mathscr{X})$

Computing periods of algebraic curves

1. Compute simple loops $\ell_{1}, \ldots, \ell_{\# \text { crit. }}$ around the critical values - basis of $\pi_{1}(\mathbb{C} \backslash\{$ crit. val. $\})$
2. For each i compute the action of monodromy along ℓ_{i} on \mathscr{X}_{b} (transposition)
3. This provides the thimble Δ_{i}. Its boundary is the difference of the two points of \mathscr{X}_{b} that are permuted.
4. Compute sums of thimbles without boundary \rightarrow basis of $H_{1}(\mathscr{X})$
5. Periods are integrals along these loops
\rightarrow we have an explicit parametrisation of these paths \rightarrow numerical integration.

$$
\int_{\gamma} \omega=\int_{\ell} \omega_{t}
$$

Insight into higher dimensions: surfaces

We take a projection $\mathscr{X} \rightarrow \mathbb{P}^{1}$.
The fibre \mathscr{X}_{t} is a variety of dimension 1.
It deforms continuously with respect to t.

Comparison with dimension 1

Thimbles are n-cycles obtained by extending $n-1$-cycles along loops.

The monodromy along a loop ℓ is an isomorphism of

$$
H_{n-1}\left(X_{b}\right)
$$

If the projection is generic (Lefschetz), singular fibres are simple.
There is a single thimble per critical value.

$-\quad$

c

$$
H_{n}\left(X_{b}\right) \rightarrow H_{n}(\mathscr{X}) \rightarrow H_{n}\left(\mathscr{X}, X_{b}\right) \rightarrow H_{n-1}\left(X_{b}\right)
$$

Obtaining a fibration from a hypersurface

The fibration of \mathscr{X} is given by a hyperplane pencil

$$
\left\{H_{t}\right\}_{t \in \mathbb{P}^{1}} \text {, with } X_{t}=\mathscr{X} \cap H_{t} \text {. }
$$

This pencil has an axis $A=\cap_{t \in \mathbb{P}^{1}} H_{t}$ that intersects X.

The total space of the fibration is not isomorphic to \mathscr{X}, but to a blow up \mathscr{Y} of \mathscr{X} along \mathscr{X}^{\prime}, called the modification of \mathscr{X}.

We compute $H_{n}(\mathscr{y})$, which contains the homology classes of exceptional divisors.
To recover $H_{n}(\mathcal{X})$ we need to be able to identify these

$$
0 \rightarrow H_{n-2}\left(X^{\prime}\right) \rightarrow H_{n}(\mathscr{Y}) \rightarrow H_{n}(X) \rightarrow 0
$$ classes.

Some complications

Not all cycles of $H_{n}(\mathscr{Y})$ are lift of loops, and thus not all are combinations of thimbles.

More precisely, we are missing the homology class of the fibre $H_{n}\left(X_{b}\right)$
and a section (an extension to $H_{n-2}\left(\mathscr{X}_{b}\right)$ to all of \mathbb{P}^{1}).

We have a filtration $\mathscr{F}^{0} \subset \mathscr{F}^{1} \subset \mathscr{F}^{2}=H_{n}(\mathscr{Y})$ such that

$$
\begin{gathered}
\mathscr{F}^{0} \simeq H_{n}\left(\mathscr{X}_{b}\right) \\
\mathscr{F}^{1} / \mathscr{F}^{0} \simeq \mathscr{T} \\
\mathscr{F}^{2} / \mathscr{F}^{1} \simeq H_{n-2}\left(X_{b}\right)
\end{gathered}
$$

\mathscr{T} is also known as the parabolic cohomology of the local system.

Monodromy of a differential operator

In a small radius around α :
[Chudnovsky² 90, Van der Hoeven 99, Mezzarobba 2010]

We compute $f^{k}(\alpha)$ from \mathscr{L}.

In a disk around α, the precision given by the Taylor formula is exponential in its order.

From the derivatives at α, we can recover the derivatives at t.

Linear complexity:
Recover m digits in $\mathcal{O}(m)$ operations
(using binary splitting)

Computing monodromy - I

$$
\pi_{1}(\mathbb{C} \backslash\{\text { critical values }\}) \rightarrow G L\left(H_{n-1}\left(X_{b}\right)\right)
$$

Tools we use:

- induction on dimension - we know cycles of $H_{n-1}\left(X_{b}\right)$
- isomorphism between homology and DeRham cohomology \rightarrow we gain analytical structure
- monodromy of a differential operator (Picard-Fuchs equation) [Mezzarobba]

Computing monodromy - I

Computing monodromy - II

Critical values of $f_{2}: \mathscr{X}_{t} \rightarrow \mathbb{P}^{1}$ move as b moves in \mathbb{P}^{1}

Thus a loop in $\ell \in \pi_{1}\left(\mathbb{P}^{\lambda} \backslash \Sigma, b\right)$ induces a braid action on $\pi_{1}\left(\mathbb{P}^{1} \backslash \Sigma_{b}, b^{\prime}\right)$, which lifts to an action on $H_{n-1}\left(X_{b}, X_{b b}\right)$.

More precisely, we have that
$\ell_{*} \tau_{\ell}(\gamma)=\tau_{\ell \ell}(\gamma)$
(assuming $\mathscr{X}_{t b^{\prime}}$ has trivial monodromy with respect to t)

Take b^{\prime} s.t.
$x_{t b^{\prime}}=x^{\prime}$
(cf parabolic cohomology [Dettweiler, Wewers 2006])

Computing monodromy - II

$$
\ell_{\ell} \tau_{\ell}(\gamma)=\tau_{\ell \ell}(\gamma)
$$

Morsifications

All I_{1} fibres

Let $S \rightarrow \mathbb{P}^{1}$ be the fibration of a surface, with possibly non-Lefschetz fibres.

We consider a morsification of $S \rightarrow \mathbb{P}^{1}$ i.e. a family of fibrations $S_{u} \rightarrow \mathbb{P}^{1}$ parametrised by $u \in D$ such that $S_{0} \rightarrow \mathbb{P}^{1}$ coincides with $S \rightarrow \mathbb{P}^{1}$, disk $S_{u} \rightarrow \mathbb{P}^{1}$ is a Lefschetz fibration for $u \neq 0$, and $\tilde{S} \rightarrow D$ is a smooth fibration.

As $H_{2}(S)=H_{2}\left(S_{0}\right) \simeq H_{2}\left(S_{u}\right)$ for $u \neq 0$, we may compute a description of $H_{2}(S)$ in terms of thimbles of S_{u}.

Some cycles of S_{u} can be obtained as extensions in S.
These are sufficient to recover the periods of S.

Elliptic surfaces

Fact: Morsifications always exist [Moishezon 1977]

$$
\ell_{*}=\ell_{4^{*}} \ell_{3^{*}} \ell_{2^{*}} \ell_{1^{*}}
$$

Fact: The monodromy representation of the morsification is determined by the monodromy representation of S. [Cadavid, Vélez 2009]

Kodaira classification

$$
\begin{aligned}
& I_{v}, v \geq 1 \quad\left(\begin{array}{ll}
1 & v \\
0 & 1
\end{array}\right) \quad U^{v} \\
& I I \quad\left(\begin{array}{cc}
1 & 1 \\
-1 & 0
\end{array}\right) \quad V U \quad U=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \\
& \text { III } \quad\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \quad V U V \\
& V=\left(\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right) \\
& I V \quad\left(\begin{array}{cc}
0 & 1 \\
-1 & -1
\end{array}\right) \quad(V U)^{2}
\end{aligned}
$$

DEMO

Results and perspectives

holomorphic periods of quartic surfaces in an hour.

A singular example: Tardigrade family (a very generic family of quartic K3 surfaces).
[Doran, Harder, PP, Vanhove 2023]
\rightarrow able to embed Néron-Severi lattice in standard K3 lattice

Found smooth quartic surface in \mathbb{P}^{3} with Picard rank 2, 3, 5

$$
\mathscr{X}=V\left(\begin{array}{c}
X^{4}-X^{2} Y^{2}-X Y^{3}-Y^{4}+X^{2} Y Z+X Y^{2} Z+X^{2} Z^{2}-X Y Z^{2}+X Z^{3} \\
-X^{3} W-X^{2} Y W+X Y^{2} W-Y^{3} W+Y^{2} Z W-X Z^{2} W+Y Z^{2} W-Z^{3} W+X Y W^{2} \\
+Y^{2} W^{2}-X Z W^{2}-X W^{3}+Y W^{3}+Z W^{3}+W^{4}
\end{array}\right)
$$

can be applied to more general types of varieties, e.g. complete intersections up next: K3 surfaces given as double covers of \mathbb{P}^{2} ramified along sextics.

Bottleneck for accessing higher dimensions is still the order/degree of the differential operators

Results and perspectives

holomorphic periods of quartic surfaces in an hour.

A singular example: Tardigrade family (a very generic family of quartic K3 surfaces).
[Doran, Harder, PP, Vanhove 2023]
\rightarrow able to embed Néron-Severi lattice in standard K3 lattice

Found smooth quartic surface in \mathbb{P}^{3} with Picard rank 2, 3, 5

$$
\mathscr{X}=V\left(\begin{array}{c}
X^{4}-X^{2} Y^{2}-X Y^{3}-Y^{4}+X^{2} Y Z+X Y^{2} Z+X^{2} Z^{2}-X Y Z^{2}+X Z^{3} \\
-X^{3} W-X^{2} Y W+X Y^{2} W-Y^{3} W+Y^{2} Z W-X Z^{2} W+Y Z^{2} W-Z^{3} W+X Y W^{2} \\
+Y^{2} W^{2}-X Z W^{2}-X W^{3}+Y W^{3}+Z W^{3}+W^{4}
\end{array}\right)
$$

can be applied to more general types of varieties, e.g. complete intersections up next: K3 surfaces given as double covers of \mathbb{P}^{2} ramified along sextics.

Bottleneck for accessing higher dimensions is still the order/degree of the differential operators

