Two-loop supergravity

on $\mathcal{A d} S_{5} \times S^{5}$ from $\mathcal{C F T}$

Hynek Paul

IPhT Saclay

Based on:
[2204.01829] w/ James Drummond
Online seminar on motives and period integrals in QFT and ST,

08/02/2023

Motivation

Can we study (gravitational) scattering on curved space times?
\rightarrow Computing scattering amplitudes is already very hard already at tree-level!
\rightarrow Even harder at loop-order (direct computations only in some toy-models)
\rightarrow Let us use the AdS/CFT duality, which is an arena relating
x theories on curved space times (AdS)
x QFT's at strong coupling
\rightarrow Can be used to describe strongly coupled gauge theory in terms of weakly coupled gravity theory
\rightarrow Here: Thanks to analytic bootstrap methods even weakly coupled AdS gravity is more tractable from the dual CFT perspective!

General setup

AdS/CFT correspondence

$$
\mathcal{N}=4 \quad \mathrm{SYM}
$$

with gauge group $\mathrm{SU}(\mathrm{N})$

supergravity on $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$
single-particle states

AdS amplitudes
(Witten diagrams)
supergravity limit:

$$
g_{s} \rightarrow 0, \alpha^{\prime} \rightarrow 0
$$

[^0]Interested in corrections to supergravity in AdS: loop-corrections $(1 / N)$ and string corrections $(1 / \lambda)$

General setup

4pt-function of graviton multiplet: $\left\langle\mathrm{O}_{2} \mathrm{O}_{2} \mathrm{O}_{2} \mathrm{O}_{2}\right\rangle$

Outline

(1) The object of interest: the $\left\langle\mathrm{O}_{2} \mathrm{O}_{2} \mathrm{O}_{2} \mathrm{O}_{2}\right\rangle$ correlator
(2) The large N strong coupling expansion
(3) Consider loops: the leading log to any loop order
(4) Review of tree-level \& one-loop correlators
(5) Bootstrapping the two-loop correlator
(6) Extracting the two-loop anomalous dimension
(7) Summary \& Outlook

The $\left\langle\mathrm{O}_{2} \mathrm{O}_{2} \mathrm{O}_{2} \mathrm{O}_{2}\right\rangle$ correlator

Simplest operator to consider: $\quad \mathcal{O}_{2}(x, y)=y^{i} y^{j} \operatorname{Tr}\left(\Phi_{i}(x) \Phi_{j}(x)\right) \quad y^{2}=0$
\rightarrow half-BPS single-trace operator, protected dimension $\Delta=2$
\rightarrow transforms in $[0,2,0]$ representation of $\operatorname{su}(4) R$-symmetry
\rightarrow dual to supergraviton multiplet
\rightarrow higher-charge operators \mathcal{O}_{p} dual to KK-modes on S^{5}

Two \& three-point functions protected: study four-point functions

$$
\left\langle\mathcal{O}_{2}\left(x_{1}, y_{1}\right) \mathcal{O}_{2}\left(x_{2}, y_{2}\right) \mathcal{O}_{2}\left(x_{3}, y_{3}\right) \mathcal{O}_{2}\left(x_{4}, y_{4}\right)\right\rangle=g_{12}^{2} g_{34}^{2} \mathcal{G}(u, v ; \sigma, \tau)
$$

Dependence on conformal and R-symmetry cross-ratios:

$$
\begin{aligned}
u=x \bar{x}=\frac{x_{12}^{2} x_{34}^{2}}{x_{13}^{2} x_{24}^{2}}, & v=(1-x)(1-\bar{x})=\frac{x_{14}^{2} x_{23}^{2}}{x_{13}^{2} x_{24}^{2}} \\
\frac{1}{\sigma}=y \bar{y}=\frac{y_{12}^{2} y_{34}^{2}}{y_{13}^{2} y_{24}^{2}}, & \frac{\tau}{\sigma}=(1-y)(1-\bar{y})=\frac{y_{14}^{2} y_{23}^{2}}{y_{13}^{2} y_{24}^{2}}
\end{aligned}
$$

The $\left\langle\mathrm{O}_{2} \mathrm{O}_{2} \mathrm{O}_{2} \mathrm{O}_{2}\right\rangle$ correlator

Consequence of superconformal symmetry ('partial non-renormalisation theorem'):

$$
\mathcal{G}(u, v ; \sigma, \tau)=\mathcal{G}_{\text {free }}(u, v ; \sigma, \tau)+\mathcal{I} \mathcal{H}(u, v)
$$

\rightarrow Free-theory correlator given by Wick-contractions:

$$
\mathcal{I}=\frac{(x-y)(x-\bar{y})(\bar{x}-y)(\bar{x}-\bar{y})}{(y \bar{y})^{2}}
$$

$$
\mathcal{G}_{\text {free }}(u, v ; \sigma, \tau)=4\left(1+u^{2} \sigma^{2}+\frac{u^{2} \tau^{2}}{v^{2}}\right)+16 a\left(u \sigma+\frac{u \tau}{v}+\frac{u^{2} \sigma \tau}{v}\right)
$$

\rightarrow All non-trivial dynamics (i.e. coupling dependence) is captured by the 'interacting part` $\mathcal{H}(u, v)$
Note:
(1) independent of R-symmetry cross-ratios large N expansion parameter
(2) is fully crossing symmetric: $\mathcal{H}(u, v)=\frac{1}{v^{2}} \mathcal{H}(u / v, 1 / v)=\frac{u^{2}}{v^{2}} \mathcal{H}(v, u)$

$$
a=\frac{1}{N^{2}-1}
$$

(3) admits a large \mathbf{N} expansion $\mathcal{H}(u, v)=a \mathcal{H}^{(1)}(u, v)+a^{2} \mathcal{H}^{(2)}(u, v)+a^{3} \mathcal{H}^{(3)}(u, v)+O\left(a^{4}\right)$

The large \mathcal{N}, strong coupling expansion

The large \mathcal{N}, strong coupling expansion

The large \mathcal{N}, strong coupling expansion

tower of higher derivative corrections

[Binder,Chester,Pufu,Wang,Aprile,Drummond, HP,Rigatos,Santagata,Alday,Hansen,Silva,...]
[see T. Hansen's talk from November]

The large \mathcal{N}, strong coupling expansion

[Binder,Chester,Pufu,Wang,Aprile,Drummond, HP,Rigatos,Santagata,Alday,Hansen,Silva,...] [see T. Hansen's talk from November]
[D'Hoker,Green,Russo,Vanhove, Gutperle,Phong,Gomez,Mafra,Pioline,...]
low energy expansion of massless 4-particle amplitude of 10 d type IIB string amplitude

$$
\lambda^{-\frac{1}{2}} \sim \alpha^{\prime} \quad a \sim g_{s}^{2}\left(\alpha^{\prime}\right)^{4}
$$

The large \mathcal{N}, strong coupling expansion

low energy expansion of massless 4-particle amplitude of 10 d type IIB string amplitude

$$
\lambda^{-\frac{1}{2}} \sim \alpha^{\prime} \quad a \sim g_{s}^{2}\left(\alpha^{\prime}\right)^{4}
$$

Ok, so far I have shown you the overall structure of the correlator...
... but how do you compute any of this?

Ok, so far I have shown you the overall structure of the correlator... ... but how do you compute any of this?
\rightarrow Main tool: exploit consistency of the OPE

The OPE expansion and the double-trace spectrum

\rightarrow correlator admits an expansion into (super)conformal blocks:

What is the spectrum of exchanged operators?

The OPE expansion and the double-trace spectrum

Recall: N=4 SYM at large \mathbf{N} \& strong coupling \Leftrightarrow supergravity limit
\rightarrow long single-trace operators ('string states') decouple!

Remaining spectrum:
\rightarrow made from products of half-BPS operators
\rightarrow at leading order in large N : only double-trace operators
(correspond to bound, two-particle states in supergravity)

The OPE expansion and the double-trace spectrum

Recall: N=4 SYM at large \mathbf{N} \& strong coupling \Leftrightarrow supergravity limit
\rightarrow long single-trace operators ('string states') decouple!

Remaining spectrum:
\rightarrow made from products of half-BPS operators
\rightarrow at leading order in large N : only double-trace operators
\rightarrow These operators are degenerate and they mix:

$$
\mathcal{O}_{2} \square^{t-2} \partial^{\ell} \mathcal{O}_{2}, \quad \mathcal{O}_{3} \square^{t-3} \partial^{\ell} \mathcal{O}_{3}, \ldots, \mathcal{O}_{t} \square^{0} \partial^{\ell} \mathcal{O}_{t}
$$

Good news: the mixing problem has been solved
\rightarrow by considering many tree-level correlators, one can resolve the degeneracy
\rightarrow leading-order three-point functions and anomalous dimensions are known!

(correspond to bound, two-particle states in supergravity)

The structure of the leading log

$\left\langle\mathcal{O}_{2} \mathcal{O}_{2} \mathcal{O}_{2} \mathcal{O}_{2}\right\rangle_{\text {long }}=g_{12}^{2} g_{34}^{2} \mathcal{I} \sum_{t, \ell} A_{t, \ell} G_{t, \ell}(x, \bar{x})$

$$
\begin{aligned}
& \Delta_{t, \ell, i}=\Delta^{(0)}+2\left(a \gamma_{i}^{(1)}+a^{2} \gamma_{i}^{(2)}+a^{3} \gamma_{i}^{(3)}+O\left(a^{4}\right)\right) \\
& A_{t, \ell, i}=A_{t, \ell, i}^{(0)}+a A_{t, \ell, i}^{(1)}+a^{2} A_{t, \ell, i}^{(2)}+a^{3} A_{t, \ell, i}^{(3)}+O\left(a^{4}\right)
\end{aligned}
$$

Combining the OPE decomposition with the large N expansion, one finds:

$$
\begin{aligned}
& \mathcal{H}^{(1)}=\left(\underline{\log }^{1}(\underline{u})\left[A^{(0)} \gamma^{(1)}\right] G_{t, \ell}\left(x_{2} \bar{x}\right)\right. \\
& +\log ^{0}(u)\left[\overline{A^{(1)}}+2 \bar{A}^{(\overline{0})} \gamma^{(1)} \partial_{\Delta}\right] G_{t, \ell}(x, \bar{x}), \\
& \mathcal{H}^{(2)}=\left(\log ^{\overline{2}} \overline{(u)}\left[\frac{1}{2} A^{(0)}\left(\gamma^{(1)}\right)^{2}\right] \overline{G_{t, l}}(x, \bar{x})\right. \\
& +\log ^{1}(\bar{u})\left[\left(\bar{A}^{(\overline{1})} \gamma^{(1)}+A^{(0)} \gamma^{(2)}\right)+2 A^{(0)}\left(\gamma^{(1)}\right)^{2} \partial_{\Delta}\right] G_{t, \ell}(x, \bar{x}) \\
& +\log ^{0}(u)\left[A^{(2)}+2\left(A^{(1)} \gamma^{(1)}+A^{(0)} \gamma^{(2)}\right) \partial_{\Delta}+2 A^{(0)}\left(\gamma^{(1)}\right)^{2} \partial_{\Delta}^{2}\right] G_{t, \ell}(x, \bar{x}), \\
& \mathcal{H}^{(3)}=\left(\log ^{3}(u)\left[\frac{1}{6} A^{(0)}\left(\gamma^{(1)}\right)^{3}\right] \bar{G}_{t \downarrow \ell}(x, \bar{x})\right. \\
& \left.\left.+\log ^{2}(u) \overline{\left[\left(\frac{1}{2}\right.\right.} \overline{A^{(1)}}\left(\gamma^{(1)}\right)^{2}+A^{(0)} \gamma^{(1)} \gamma^{(2)}\right)+A^{(0)}\left(\gamma^{(1)}\right)^{3} \partial_{\Delta}\right] G_{t, \ell}(x, \bar{x}) \\
& +\log ^{1}(u)\left[\left(A^{(2)} \gamma^{(1)}+A^{(1)} \gamma^{(2)}+A^{(0)} \gamma^{(3)}\right)\right. \\
& \left.+2\left(A^{(1)}\left(\gamma^{(1)}\right)^{2}+2 A^{(0)} \gamma^{(1)} \gamma^{(2)}\right) \partial_{\Delta}+2 A^{(0)}\left(\gamma^{(1)}\right)^{3} \partial_{\Delta}^{2}\right] G_{t, \ell}(x, \bar{x}) \\
& +\log ^{0}(u)\left[A^{(3)}+2\left(A^{(2)} \gamma^{(1)}+A^{(1)} \gamma^{(2)}+A^{(0)} \gamma^{(3)}\right) \partial_{\Delta}\right. \\
& \left.+2\left(A^{(1)}\left(\gamma^{(1)}\right)^{2}+2 A^{(0)} \gamma^{(1)} \gamma^{(2)}\right) \partial_{\Delta}^{2}+\frac{4}{3} A^{(0)}\left(\gamma^{(1)}\right)^{3} \partial_{\Delta}^{3}\right] G_{t, \ell}(x, \bar{x}) .
\end{aligned}
$$

The structure of the leading log

$$
\left\langle\mathcal{O}_{2} \mathcal{O}_{2} \mathcal{O}_{2} \mathcal{O}_{2}\right\rangle_{\text {long }}=g_{12}^{2} g_{34}^{2} \mathcal{I} \sum_{t, \ell} A_{t, \ell} G_{t, \ell}(x, \bar{x})
$$

$$
\begin{aligned}
& \Delta_{t, \ell, i}=\Delta^{(0)}+2\left(a \gamma_{i}^{(1)}+a^{2} \gamma_{i}^{(2)}+a^{3} \gamma_{i}^{(3)}+O\left(a^{4}\right)\right) \\
& A_{t, \ell, i}=A_{t, \ell, i}^{(0)}+a A_{t, \ell, i}^{(1)}+a^{2} A_{t, \ell, i}^{(2)}+a^{3} A_{t, \ell, i}^{(3)}+O\left(a^{4}\right)
\end{aligned}
$$

Combining the OPE decomposition with the large N expansion, one finds:

$$
\left.\mathcal{H}^{(n)}(u, v)\right|_{\log ^{n}(u)}=\frac{1}{n!} \sum_{t, \ell} \sum_{i=1}^{t-1} A_{t, \ell, i}^{(0)}\left(\gamma_{i}^{(1)}\right)^{n} G_{t, \ell}(x, \bar{x})
$$

the leading \log is determined by tree-level data only!

The structure of the leading log

\rightarrow one finds that these expressions resum to

HPL's up to weight n with polynomial coefficients

The structure of the leading log

$$
\left.\mathcal{H}^{(n)}(u, v)\right|_{\log ^{n}(u)}=\frac{1}{n!} \sum_{t, \ell} \sum_{i=1}^{t-1} A_{t, \ell, i}^{(0)}\left(\gamma_{i}^{(1)}\right)^{n} G_{t, \ell}(x, \bar{x})
$$

\rightarrow one finds that these expressions resum to $\frac{u^{2} f_{\log }^{(n)}(x, \bar{x})}{(x-\bar{x})^{8 n-1}}$

HPL's up to weight n with polynomial coefficients

Harmonic Polylogarithms (HPL's) are a class of transcendental functions of one real variable
\rightarrow generalisation of log's and polylog's
\rightarrow labelled by and index: word w with letters $a_{i} \in\{0,1\}$
\rightarrow iterative definition: $H_{0 w}(x)=\int_{0}^{x} d x^{\prime} \frac{H_{w}\left(x^{\prime}\right)}{x^{\prime}}$

$$
H_{1 w}(x)=\int_{0}^{x} d x^{\prime} \frac{H_{w}\left(x^{\prime}\right)}{1-x^{\prime}}
$$

\rightarrow weight $:=$ length of word
Examples:

$$
\begin{aligned}
& H_{0}=\log (x) \quad H_{1}=-\log (1-x) \\
& H_{0^{m}}=\frac{1}{m!} \log ^{m}(x) \\
& H_{0^{n} 1}=\operatorname{Li}_{n+1}(x)
\end{aligned}
$$

The structure of the leading log

One can considerably simplify the leading \log by the use of a differential operator

$$
\left.\Delta^{(8)}=\frac{u^{4}}{(x-\bar{x})} \partial_{\bar{x}}^{2}(1-\bar{x})^{2} \partial_{\bar{x}}^{2} \partial_{x}^{2}(1-x)^{2} \partial_{x}^{2}(x-\bar{x}) \quad \rightarrow \text { with symmetries }\left(\Delta^{(8)}\right)^{k} \xrightarrow{x \rightarrow x^{\prime}}\left(\Delta^{(8)}\right)^{k}\right)\left(\Delta^{(8)}\right)^{2} \xrightarrow{x \rightarrow 1-x} \frac{u^{4}}{v^{4}}\left(\Delta^{(8)}\right)^{2}
$$

\rightarrow its eigenvalue is the numerator of the anomalous dimension: $\Delta^{(8)} u^{2} G_{t, \ell}(x, \bar{x})=(t-1)_{4}(t+\ell)_{4} u^{2} G_{t, \ell}(x, \bar{x})$
\rightarrow one can therefore pull it out from the leading log! up to ($\mathrm{n}-1$) times

$$
\left.\mathcal{H}^{(n)}(u, v)\right|_{\log ^{n}(u)}=\frac{1}{n!} \sum_{t, \ell} \sum_{i=1}^{t-1} A_{t, \ell, i}^{(0)}\left(\gamma_{i}^{(1)}\right)^{n} G_{t, \ell}(x, \bar{x})
$$

$$
\left.\mathcal{H}^{(n)}(u, v)\right|_{\log ^{n}(u)}=\frac{1}{u^{2}}\left(\Delta^{(8)}\right)^{n-1} g^{(n)}(x, \bar{x})
$$

much simpler expression!
there are further simplifications possible, but here is the main point:
The leading log can be explicitly computed (case by case) and its transcendental structure is entirely captured by zigzag-integrals and derivatives thereof!

The zigzag-integrals $Z^{(L)}$

They are a special class of 4 d loop-integrals:
\rightarrow they arise from a generalisation of the ladder integrals $\phi^{(L)}$
\rightarrow determined by a differential equation
[Drummond'12]

$$
x \bar{x} \partial_{x} \partial_{\bar{x}} Z^{(L)}(x, \bar{x})=Z^{(L-1)}(1-x, 1-\bar{x}) \quad \text { with }
$$

$$
\begin{aligned}
& Z^{(1)}(x, \bar{x})=\phi^{(1)}(x, \bar{x}) \\
& Z^{(2)}(x, \bar{x})=\phi^{(2)}(x, \bar{x})
\end{aligned}
$$

In terms of SVHPL's:

The zigzag-integrals $Z^{(L)}$

They are a special class of 4 d loop-integrals:
\rightarrow they arise from a generalisation of the ladder integrals $\phi^{(L)}$
\rightarrow determined by a differential equation

$$
x \bar{x} \partial_{x} \partial_{\bar{x}} Z^{(L)}(x, \bar{x})=Z^{(L-1)}(1-x, 1-\bar{x}) \quad \text { with }
$$

$$
\begin{aligned}
& Z^{(1)}(x, \bar{x})=\phi^{(1)}(x, \bar{x}) \\
& Z^{(2)}(x, \bar{x})=\phi^{(2)}(x, \bar{x})
\end{aligned}
$$

In terms of SVHPL's:

$$
\begin{aligned}
Z^{(1)}= & \mathcal{L}_{2}-\mathcal{L}_{10} \\
Z^{(2)}= & \mathcal{L}_{200}-\mathcal{L}_{30} \\
Z^{(3)}= & \mathcal{L}_{2210}-\mathcal{L}_{2120}-2 \zeta_{3}\left(3 \mathcal{L}_{20}+2 \mathcal{L}_{21}\right) \\
Z^{(4)}= & \mathcal{L}_{2230}-\mathcal{L}_{2320}-4 \zeta_{3}\left(\mathcal{L}_{23}-\mathcal{L}_{220}\right)-20 \zeta_{5} \mathcal{L}_{20} \\
Z^{(5)}= & \mathcal{L}_{222120}-\mathcal{L}_{221220}+4 \zeta_{3}\left(\mathcal{L}_{2221}-\mathcal{L}_{2212}\right)+\zeta_{5}\left(4 \mathcal{L}_{221}+15 \mathcal{L}_{220}\right) \\
& -12 \zeta_{3}^{2} \mathcal{L}_{22}-\frac{441}{8} \zeta_{7} \mathcal{L}_{20}+18 \zeta_{3} \zeta_{5} \mathcal{L}_{2}
\end{aligned}
$$

Review of tree-level and one-loop

\checkmark The tree-level correlator is given by $\mathcal{H}^{(1)}=-16 u^{2} \bar{D}_{2422}$
[Arutyunov-Frolov'00, Dolan-Osborn'01]

$$
\mathcal{H}^{(1)}=\sum_{\begin{array}{c}
i \\
\text { denominator power } 7
\end{array}} \frac{p_{i}(x, \bar{x})}{\left(x-\bar{x} d^{d_{i}}\right.} \mathcal{Q}_{i}(x, \bar{x}) \longrightarrow \text { SVHPL's up to weight 2: } Z^{(1)} \underset{1}{ } \log (u) \log (v)
$$

Review of tree-level and one-loop

\checkmark The tree-level correlator is given by $\mathcal{H}^{(1)}=-16 u^{2} \bar{D}_{2422}$
[Arutyunov-Frolov'00, Dolan-Osborn'01]

$$
\mathcal{H}^{(1)}=\sum_{\begin{array}{c}
i \\
\text { denominator power 7 }
\end{array}} \frac{p_{i}(x, \bar{x})}{\left(x-\bar{x} d^{d_{i}}\right.} \mathcal{Q}_{i}(x, \bar{x}) \longrightarrow \text { SVHPL's up to weight 2: } \boldsymbol{Z}^{(1)} \underset{\substack{ \\
\log (u) \\
1}}{l o g(v)}
$$

\checkmark One-loop correlator obtained by 'bootstrap method'

$$
\mathcal{H}^{(2)}=\sum_{i} \frac{p_{i}(x, \bar{x})}{(x-\bar{x})^{d_{i}}} \mathcal{Q}_{i}(x, \bar{x})
$$ denominator power 15

$$
\begin{aligned}
& 2 \times \log (u) Z^{(1)} 3 \times \Psi^{(2)} \\
& Z^{(1)} \\
& \log (u) \log (v)
\end{aligned}
$$

$$
1
$$

Review of tree-level and one-Loop

However, this can be considerably simplified using $\Delta^{(8)}$!
\rightarrow the entire correlator can be written with $\Delta^{(8)}$ pulled out:

$$
\mathcal{H}^{(2)}=\frac{1}{u^{2}} \Delta^{(8)} \underline{\mathcal{L}}^{(2)}+\mathcal{H}^{(1)}
$$

much simpler 'preamplitude':
\rightarrow denominator power 7
\rightarrow same complexity as the tree-level correlator!

Note: the bootstrap conditions leave one free parameter: α
\rightarrow due to a one-loop divergence: counter-term ambiguity!
\rightarrow related to super-leading term $\left.\mathcal{R}^{4}\right|_{\text {genus-1 }}$
\rightarrow given by tree-level contact diagram $u^{2} \bar{D}_{4444}$,
which gives rise to a non-analytic contribution at spin 0 :

$$
\gamma_{2, \ell}^{(2)}=\frac{1344(\ell-7)(\ell+14)}{(\ell-1)(\ell+1)^{2}(\ell+6)^{2}(\ell+8)}-\frac{2304(2 \ell+7)}{(\ell+1)^{3}(\ell+6)^{3}}-\frac{18 \alpha}{7} \delta_{\ell, 0}
$$

Bootstrapping the two-loop correlator

Structure of leading log + intuition from tree-level \& one-loop correlators

Natural proposal for a 'minimal ansatz' for $\mathcal{H}^{(3)}$:

$$
\mathcal{H}^{(3)}=\frac{1}{u^{2}}\left(\Delta^{(8)}\right)^{2} \mathcal{P}^{(3)}+a_{2} \mathcal{H}^{(2)}+a_{1} \mathcal{H}^{(1)} \quad \text { with preamplitude } \quad \mathcal{P}^{(3)}(x, \bar{x})=\sum_{i} \frac{p_{i}(x, \bar{x})}{(x-\bar{x})^{d_{i}}} \mathcal{Q}_{i}(x, \bar{x})
$$

Bootstrapping the two-loop correlator

Structure of leading log + intuition from tree-level \& one-loop correlators

Natural proposal for a 'minimal ansatz' for $\mathcal{H}^{(3)}$:

$$
\mathcal{H}^{(3)}=\frac{1}{u^{2}}\left(\Delta^{(8)}\right)^{2} \mathcal{P}^{(3)}+a_{2} \mathcal{H}^{(2)}+a_{1} \mathcal{H}^{(1)} \quad \text { with preamplitude } \quad \mathcal{P}^{(3)}(x, \bar{x})=\sum_{i} \frac{p_{i}(x, \bar{x})}{(x-\bar{x})^{d_{i}}} \mathcal{Q}_{i}(x, \bar{x})
$$

Basis of functions $\mathcal{Q}_{i}(x, \bar{x})$:
\rightarrow SVHPL's up to weight 6
\rightarrow no $\log ^{4}(u)$ in any channel
$\rightarrow \log ^{3}(\mathrm{u})$ contributions from $\mathrm{Z}^{(3)}$ and derivatives
\rightarrow subtlety: need to include new letter $x-\bar{x}$ at weight 3:
(1) one-loop ambiguity α induces one-loop like contribution of the form of $\mathcal{H}^{(2,3)}$
(2) from one-loop string corrections, we know new function $f^{(3)}(x, \bar{x})$ is required

Bootstrapping the two-loop correlator

this leads to the following 73 basis functions

w	$x \leftrightarrow \bar{x}$	$\mathcal{Q}_{i}(x, \bar{x})$	total
6	-	$6 \times Z^{(3)}, A^{(6)}, 3 \times B^{(6)}, \zeta_{3} f^{(3)}, 2 \times \zeta_{3} \log (u) Z^{(1)}$	13
	+	-	0
5	-	$6 \times \widetilde{\Psi}^{(3)}, 3 \times \widetilde{\Pi}^{(5)}, \zeta_{3} Z^{(1)}$	10
	+	$6 \times \Psi^{(3)}, 6 \times \Pi^{(5)}, \Omega^{(5)}, 2 \times \log (u)\left(Z^{(1)}\right)^{2}, 3 \times \zeta_{3} \log ^{2}(u)$	18
4	-	$3 \times \log ^{2}(u) Z^{(1)}, 3 \times Z^{(2)}$	
	+	$6 \times \Upsilon^{(3)}, 2 \times \log ^{3}(u) \log (v),\left(Z^{(1)}\right)^{2}$	6
3	-	$f^{(3)}, 2 \times \log (u) Z^{(1)}$	9
2	-	$4 \times \log ^{3}(u), 3 \times \Psi^{(2)}$	3
	+	$Z^{(1)}$	7
1	-	$3 \times \log { }^{2}(u)$	1
	+	-	3
0	-	$2 \times \log (u)$	0
	+	-	2

Bootstrapping the two-loop correlator

Impose bootstrap constraints:
(1) Preamplitude can be made fully crossing symmetric

$$
\mathcal{P}^{(3)}(x, \bar{x})=\mathcal{P}^{(3)}\left(x^{\prime}, \bar{x}^{\prime}\right)=\mathcal{P}^{(3)}(1-x, 1-\bar{x})
$$

(2) Matching the leading log, i.e. $\log ^{3}(u)$
(3) Pole cancellation: (Euclidean) correlator has no singularity at $x=\bar{x}$

Bootstrapping the two-loop correlator

Impose bootstrap constraints:

(1) Preamplitude can be made fully crossing symmetric

$$
\mathcal{P}^{(3)}(x, \bar{x})=\mathcal{P}^{(3)}\left(x^{\prime}, \bar{x}^{\prime}\right)=\mathcal{P}^{(3)}(1-x, 1-\bar{x})
$$

(2) Matching the leading log, i.e. $\log ^{3}(u)$
(3) Pole cancellation: (Euclidean) correlator has no singularity at $x=\bar{x}$

Constraints on $\mathcal{H}^{(3)}$
(4) Below twist 4 cancellation (this fixes $a_{1}=-1$) $\sum_{\ell}\left(\frac{1}{2} A_{2, \ell}^{(1)}\left(\gamma_{2, \ell}^{(1)}\right)^{2}+A_{2, \ell}^{(0)} \gamma_{2, \ell}^{(1)} \gamma_{2, \ell}^{(2)}+A_{2, \ell}^{(0)}\left(\gamma_{2, \ell}^{(1)}\right)^{3} \partial_{\Delta}\right) G_{2, \ell}(x, \bar{x})$
(5) Matching the $\log ^{2}(\mathbf{u})$ prediction at twist 4 using OPE data from previous orders (this fixes $a_{2}=5$)
(6) Matching the flat space correlator: two-loop supergravity in 10d

Bootstrapping the two-loop correlator: results

Lo and behold, we are left with only 8 free parameters!

$$
\mathcal{H}^{(3)}=\frac{1}{u^{2}}\left(\Delta^{(8)}\right)^{2} \mathcal{P}^{(3)}+5 \mathcal{H}^{(2)}-\mathcal{H}^{(1)}
$$

\rightarrow Free parameters are of the form of tree-level contact diagrams: $4 \times \bar{D}$ and $4 \times \zeta_{3} \bar{D}$
\rightarrow They are the expected ambiguities from $\left.\partial^{10} \mathcal{R}^{4}\right|_{\text {genus- }}$, corresponding to: $\quad \sigma_{2}-\frac{16}{7}$
\rightarrow Note they are part of the preamplitude only (just like in the one-loop case)

Mellin amplitude ' 1 ' is not independent ambiguity any more: no $\left.\mathcal{R}^{4}\right|_{\text {genus-2 }}$

Bootstrapping the two-loop correlator: results

Lo and behold, we are left with only 8 free parameters!

$$
\mathcal{H}^{(3)}=\frac{1}{u^{2}}\left(\Delta^{(8)}\right)^{2} \mathcal{P}^{(3)}+5 \mathcal{H}^{(2)}-\mathcal{H}^{(1)}
$$

Due to complexity \rightarrow ancillary file
\rightarrow Free parameters are of the form of tree-level contact diagrams: $4 \times \bar{D}$ and $4 \times \zeta_{3} \bar{D}$
\rightarrow They are the expected ambiguities from $\left.\partial^{10} \mathcal{R}^{4}\right|_{\text {genus- } 2}$, corresponding to: $\begin{array}{llllll}\sigma_{2}-\frac{16}{7} & \sigma_{3}+\frac{32}{7} & \sigma_{2}^{2}-\frac{128}{7} & \sigma_{2} \sigma_{3}-\frac{256}{7}\end{array}$
\rightarrow Note they are part of the preamplitude only (just like in the one-loop case)
Mellin amplitude ' 1 ' is not independent ambiguity any more: no $\left.\mathcal{R}^{4}\right|_{\text {genus-2 }}$

And further:

\rightarrow We observe the absence of some functions at weight 6: $\quad 3 \times B^{(6)}, 2 \times \zeta_{3} \log (u) Z^{(1)}$
\rightarrow Contribution from one-loop ambiguity α proportional to one-loop string correction $\mathcal{H}^{(2,3)}$
i.e. can be written as part of the preamplitude $\rightarrow \mathcal{H}^{(2,3)}=\frac{1}{u^{2}}\left(\Delta^{(8)}\right)^{2} \mathcal{P}^{(2,3)}$

The large \mathfrak{N} strong coupling expansion

low energy expansion of massless 4-particle amplitude of 10d type IIB string amplitude

$$
\begin{equation*}
\lambda^{-\frac{1}{2}} \sim \alpha^{\prime} \quad a \sim g_{s}^{2}\left(\alpha^{\prime}\right)^{4} \tag{35}
\end{equation*}
$$

Comparison with results of Huang-Yuan

We find agreement upon setting $X=0$:

$$
\mathcal{H}_{\text {our }}^{(3)}-\left.\mathcal{H}_{\mathrm{HY}}^{(3)}\right|_{\mathcal{X}=0}=\frac{36}{7} \zeta_{3} \mathcal{H}^{(2,3)}-\left(\frac{5849}{1008}-\frac{\alpha}{240}\right) \mathcal{H}^{(2,3)}+\left(\bar{D} \text { - and } \zeta_{3} \bar{D} \text {-ambiguities }\right)
$$

Note: X is a free parameter in their result, contributing with up to weight 6 functions and with infinite spin support in the OPE.
\rightarrow We find $\mathrm{X}=0$ since it is sourced by a preamplitude containing weight 4 functions with letter x -xb! (even though it does not appear in the full correlator, i.e. it is annihilated by the action of $\left.\left(\Delta^{(8)}\right)^{2}\right)$
\rightarrow Second reason: even if we include this extra letter at weight 4, we find that (crossing symmetry of $\mathcal{P}^{(3)}$) + (matching leading \log) $\rightarrow \mathrm{X}=\mathbf{0}$ in words: one can add things in the kernel of $\left(\Delta^{(8)}\right)^{2}$ to make it crossing symmetric, but this introduces $\log ^{3}(u)$ contributions!

Lastly, we fix the one-loop ambiguities in their result by carefully tracking the contribution of the one-loop ambiguity α to order \mathbf{a}^{3}.

Comment on contributions from triple-trace operators

Now, what have we learned?
(1) We can see new operators (beyond the well understood double-trace sector) contributing to the OPE:

In particular, we find that (based on the consistency of the OPE) that new operators need to contribute to $\log ^{2}(\mathrm{u})$ starting from twist 6 !
twist of first triple-trace operators $\mathcal{O}_{2} \partial^{\ell_{1}} \mathcal{O}_{2} \partial^{\ell_{2}} \mathcal{O}_{2}$
This argument shows that they mix with double-trace operators and this information is already present in lower order correlators...
(2) Having obtained the two-loop correlator, we can extract from it new OPE data!

The two-loop anomalous dimension

focus on twist 4 double-trace operators 02 dO (no mixing)
$\gamma^{(3)}$ appears in the $\log (\mathbf{u})$ part of the correlator:

$$
\begin{aligned}
\mathcal{H}^{(3)}= & \log ^{3}(u)\left[\frac{1}{6} A^{(0)}\left(\gamma^{(1)}\right)^{3}\right] G_{t, \ell}(x, \bar{x}) \\
+ & \log ^{2}(u)\left[\left(\frac{1}{2} A^{(1)}\left(\gamma^{(1)}\right)^{2}+A^{(0)} \gamma^{(1)} \gamma^{(2)}\right)+A^{(0)}\left(\gamma^{(1)}\right)^{3} \partial_{\Delta}\right] G_{t, \ell}(x, \bar{x}) \\
+ & \log ^{1}(u)\left[\left(A^{(2)} \gamma^{(1)}+A^{(1)} \gamma^{(2)}+A^{(9)} \gamma^{(3)}\right) \bar{b}\right. \\
& \left.+2\left(A^{(1)}\left(\gamma^{(1)}\right)^{2}+2 A^{(0)} \gamma^{(1)} \gamma^{(2)}\right) \partial_{\Delta}+2 A^{(0)}\left(\gamma^{(1)}\right)^{3} \partial_{\Delta}^{2}\right] G_{t, \ell}(x, \bar{x}) \\
+ & \log ^{0}(u)\left[A^{(3)}+2\left(A^{(2)} \gamma^{(1)}+A^{(1)} \gamma^{(2)}+A^{(0)} \gamma^{(3)}\right) \partial_{\Delta}\right. \\
& \left.+2\left(A^{(1)}\left(\gamma^{(1)}\right)^{2}+2 A^{(0)} \gamma^{(1)} \gamma^{(2)}\right) \partial_{\Delta}^{2}+\frac{4}{3} A^{(0)}\left(\gamma^{(1)}\right)^{3} \partial_{\Delta}^{3}\right] G_{t, \ell}(x, \bar{x}) .
\end{aligned}
$$

Focus on twist 4 double-trace operators to avoid mixing: there is one unique operator for each spin

Analytic function of spin is most elegantly obtained using the Lorentzian inversion formula
[CaronHuot'17]

$$
\gamma_{2, \ell}^{(3)}=c_{3}\left(S_{-3}-S_{3}-2 S_{1,-2}+3 \zeta_{3}\right)+c_{2} S_{-2}+c_{1} S_{1}+c_{0}+c_{0}^{(a)}+\alpha \tilde{\gamma}_{2, \ell}^{(2,3)} \text { for } \ell \geq 6
$$

The two-loop anomalous dimension

$$
\gamma_{2, \ell}^{(3)}=c_{3}\left(S_{-3}-S_{3}-2 S_{1,-2}+3 \zeta_{3}\right)+c_{2} S_{-2}+c_{1} S_{1}+c_{0}+c_{0}^{(a)}+\alpha \tilde{\gamma}_{2, \ell}^{(2,3)}
$$

$$
\begin{array}{ll}
\begin{array}{l}
\text { with coefficients } \\
\text { being functions of }
\end{array} & c_{3}=\frac{-221184 J^{2}\left(J^{2}-2\right)\left(J^{8}-50 J^{6}-653592 J^{4}+30292416 J^{2}+15169835520\right)}{5\left(J^{2}-6\right)^{2}\left(J^{2}-12\right)\left(J^{2}-20\right)\left(J^{2}-30\right)\left(J^{2}-42\right)\left(J^{2}-56\right)\left(J^{2}-72\right)}, \\
J^{2}=(\ell+3)(\ell+4) & c_{2}=\frac{-18432 q_{2}\left(J^{2}\right)}{\left(J^{2}-6\right)^{2}\left(J^{2}-12\right)^{2}\left(J^{2}-20\right)\left(J^{2}-30\right)^{2}\left(J^{2}-42\right)\left(J^{2}-56\right)^{2}\left(J^{2}-72\right)\left(J^{2}-90\right)\left(J^{2}-132\right)}, \\
c_{1}=\frac{-27648 J^{2}\left(J^{2}-2\right)\left(J^{8}+525 J^{6}+1730258 J^{4}-79817784 J^{2}-39925126080\right)}{\left(J^{2}-6\right)^{2}\left(J^{2}-12\right)\left(J^{2}-20\right)\left(J^{2}-30\right)\left(J^{2}-42\right)\left(J^{2}-56\right)\left(J^{2}-72\right)}, \\
\text { ing }) \text { harmonic sums } & c_{0}=\frac{384 q_{0}\left(J^{2}\right)}{5 J^{2}\left(J^{2}-6\right)^{5}\left(J^{2}-12\right)^{2}\left(J^{2}-20\right)^{2}\left(J^{2}-30\right)^{2}\left(J^{2}-42\right)\left(J^{2}-56\right)^{2}\left(J^{2}-72\right)\left(J^{2}-90\right)\left(J^{2}-132\right)},
\end{array}
$$

x Contains nested (alternating) harmonic sums

$$
S_{\vec{a}} \equiv S_{\vec{a}}(\ell+3)
$$

$$
S_{a_{1}, a_{2}, \ldots, a_{n}}(m)=\sum_{k=1}^{m} \frac{\left(\operatorname{sgn}\left(a_{1}\right)\right)^{k}}{k^{\left|a_{1}\right|}} S_{a_{2}, \ldots, a_{n}}(k), \quad S_{\emptyset}(m)=1
$$

x The formula is analytic in spin down to $\mathrm{l}=6$:
apparent poles at spins $\mathbf{l}=\mathbf{6}, 8$ cancel non-trivially in the combination $c_{2} S_{-2}+c_{0}$
x pole at $\mathbf{l}=5$: signals presence of non-analytic contributions for spins $\mathbf{l}=\mathbf{0}, \mathbf{2 , 4} \rightarrow$ consistent ambiguities from $\left.\partial^{10} \mathcal{R}^{4}\right|_{\text {genus- }}$

Summary

x We have constructed two-loop supergravity (order $1 / \mathrm{N}^{6}$) correlator from an educated ansatz for the preamplitude
\rightarrow Only free parameters correspond to the expected tree-level ambiguities consistent with the $\partial^{10} \mathcal{R}^{4} \mid$ genus- 2 correction
\rightarrow Our result is consistent with the one obtained by Huang-Yuan and we argued that their free parameter $\mathrm{X}=0$
\times Identified zigzag-integrals as basis for leading log at any loop order
\times Revisited the bulk-point limit and understood the role of the extra letter $x-\bar{x}$ (not in this talk!)
x From the two-loop correlator, we extracted the two-loop anomalous dimension as a function of spin, which passes some non-trivial consistency conditions (analyticity in spin and reciprocity symmetry)

Open Questions

x Higher loop orders?
\rightarrow Analogous 'minimal' ansatz at any loop order reads
\rightarrow Complexity grows only in basis, not in coefficient functions!
\rightarrow Space of SVHPL's grows exponentially! \rightarrow need better understanding of transcendental basis
\rightarrow Two-loop order was special due to enhanced crossing symmetry of $\left(\Delta^{(8)}\right)^{2} \ldots$
x It would be interesting to compute the Mellin space representation of our result.
x Higher external charges (KK-modes): leading log for any correlator predicted by 10d symmetry
x Can we bootstrap two-loop string corrections using similar ansatz?
\rightarrow However, corresponding flat space counterpart not known...
x A data point for exploration of double-copy in AdS
Recent super-gluon result [2301.13240]
x Can we apply this to other holographic theories? Maybe yes for cases with hidden conformal symmetry \rightarrow AdS $_{3}, \ldots$

[^0]: t Hooft coupling $\lambda=g_{\mathrm{YM}}^{2} N$

