Two-loop supergravity on $AdS_5 \mathbf{x} S^5$ from CFT

> Hynek Paul IPhT Saclay

Based on: [2204.01829] w/ James Drummond

See also: [2112.15174] by Huang and Yuan: Online seminar on motives and period integrals in QFT and ST, 08/02/2023

Motivation

Can we study (gravitational) scattering on curved space times?

- * Computing scattering amplitudes is already very hard already at tree-level!
- * Even harder at loop-order (direct computations only in some toy-models)
- * Let us use the AdS/CFT duality, which is an arena relating
 - × theories on curved space times (AdS)
 - × QFT's at strong coupling
- * Can be used to describe strongly coupled gauge theory in terms of weakly coupled gravity theory
- * Here: Thanks to analytic bootstrap methods even weakly coupled AdS gravity is more tractable from the dual CFT perspective!

General setup

AdS/CFT correspondence

 $\mathcal{N} = 4 \;\; \mathrm{SYM}$ with gauge group SU(N)

single-particle operators \mathcal{O}_p

4pt correlation functions

large N, strong coupling limit: $N \rightarrow \infty, \ \lambda \rightarrow \infty$

 $\begin{array}{c} \text{supergravity on} \\ AdS_5 \times S^5 \end{array}$

single-particle states

AdS amplitudes (Witten diagrams)

supergravity limit: $g_s \to 0, \ \alpha' \to 0$

't Hooft coupling $\lambda = g_{\rm YM}^2 N$

Interested in corrections to supergravity in AdS: loop-corrections (1/N) and string corrections (1/ λ)

General setup

4pt-function of graviton multiplet: $\langle O_2 O_2 O_2 O_2 O_2 \rangle$

 N^0 :

 $1/N^2$:

 $1/N^4$:

 $1/N^{6}$:

Generalised free fields \checkmark

Tree-level supergravity

[Arutyunov,Sokatchev,D'Hoker,Rastelli,...] [Rastelli-Zhou'16'17]

One-loop supergravity \checkmark

[Alday-Bissi'17] [Alday-CaronHuot'17] [Aprile-Drummond-Heslop-HP'17-'19]

Two-loop supergravity this talk

+ higher derivative corrections $O(1/\lambda)$

Outline

- (1) The object of interest: the $\langle O_2 O_2 O_2 O_2 \rangle$ correlator
- (2) The large N strong coupling expansion
- (3) Consider loops: the leading log to any loop order
- (4) Review of tree-level & one-loop correlators
- (5) Bootstrapping the two-loop correlator
- (6) Extracting the two-loop anomalous dimension
- (7) Summary & Outlook

The $\langle O_2 O_2 O_2 O_2 \rangle$ correlator

Simplest operator to consider: $\mathcal{O}_2(x,y) = y^i y^j \operatorname{Tr}(\Phi_i(x)\Phi_j(x))$ $y^2 = 0$

- → half-BPS single-trace operator, protected dimension $\Delta = 2$
- → transforms in [0,2,0] representation of su(4) R-symmetry
- → dual to supergraviton multiplet
- → higher-charge operators \mathcal{O}_p dual to KK-modes on S^5

Two & three-point functions protected: study four-point functions

$$\langle \mathcal{O}_2(x_1, y_1) \mathcal{O}_2(x_2, y_2) \mathcal{O}_2(x_3, y_3) \mathcal{O}_2(x_4, y_4) \rangle = g_{12}^2 g_{34}^2 \mathcal{G}(u, v; \sigma, \tau)$$

Dependence on conformal and R-symmetry cross-ratios:

$$u = x\bar{x} = \frac{x_{12}^2 x_{34}^2}{x_{13}^2 x_{24}^2}, \qquad v = (1-x)(1-\bar{x}) = \frac{x_{14}^2 x_{23}^2}{x_{13}^2 x_{24}^2},$$
$$\frac{1}{\sigma} = y\bar{y} = \frac{y_{12}^2 y_{34}^2}{y_{13}^2 y_{24}^2}, \qquad \frac{\tau}{\sigma} = (1-y)(1-\bar{y}) = \frac{y_{14}^2 y_{23}^2}{y_{13}^2 y_{24}^2}.$$

The $\langle O_2 O_2 O_2 O_2 \rangle$ correlator

[Eden-Petkou-Schubert-Sokatchev, Nirschl-Osborn]

Consequence of superconformal symmetry ('partial non-renormalisation theorem'):

Presente in the second second

$$\mathcal{G}(u, v; \sigma, \tau) = \mathcal{G}_{\text{free}}(u, v; \sigma, \tau) + \mathcal{I}_{\mathcal{H}}(u, v)$$

→ Free-theory correlator given by Wick-contractions: $\mathcal{G}_{\text{free}}(u,v;\sigma,\tau) = 4\left(1 + u^2\sigma^2 + \frac{u^2\tau^2}{v^2}\right) + 16a\left(u\sigma + \frac{u\tau}{v} + \frac{u^2\sigma\tau}{v}\right)$

All non-trivial dynamics (i.e. coupling dependence) is captured by the 'interacting part' $\mathcal{H}(u, v)$ Note:

(1) independent of R-symmetry cross-ratios

(2) is fully crossing symmetric:
$$\mathcal{H}(u,v) = \frac{1}{v^2}\mathcal{H}(u/v,1/v) = \frac{u^2}{v^2}\mathcal{H}(v,u)$$

large N expansion parameter

$$a = \frac{1}{N^2 - 1}$$

(3) admits a large N expansion $\mathcal{H}(u,v) = a \mathcal{H}^{(1)}(u,v) + a^2 \mathcal{H}^{(2)}(u,v) + a^3 \mathcal{H}^{(3)}(u,v) + O(a^4)$

 $\mathcal{I} = \frac{(x-y)(x-\bar{y})(\bar{x}-y)(\bar{x}-\bar{y})}{(y\bar{y})^2}$

The large \mathcal{N} , strong coupling expansion

The large \mathcal{N} , strong coupling expansion

The large N, strong coupling expansion

tower of higher derivative corrections

The large \mathcal{N} , strong coupling expansion

tower of higher derivative corrections

The large N, strong coupling expansion

Ok, so far I have shown you the overall structure of the correlator... ... but how do you compute any of this? Ok, so far I have shown you the overall structure of the correlator... ... but how do you compute any of this?

 \rightarrow Main tool: exploit consistency of the OPE

The OPE expansion and the double-trace spectrum

$$\langle \mathcal{O}_{2}\mathcal{O}_{2}\mathcal{O}_{2}\mathcal{O}_{2}\mathcal{O}_{2}\rangle_{\text{long}} = g_{12}^{2}g_{34}^{2} \mathcal{I} \sum_{t,\ell} A_{t,\ell} G_{t,\ell}(x,\bar{x})$$

$$(-1)^{\ell}(x\bar{x})^{t} \frac{x^{\ell+1}F_{t+\ell+2}(x)F_{t+1}(\bar{x}) - \bar{x}^{\ell+1}F_{t+\ell+2}(\bar{x})F_{t+1}(x)}{x-\bar{x}}$$

$$(Dolan,Osborn)$$

$$OPE \text{ coefficients } \langle \mathcal{O}_{2}\mathcal{O}_{2}\mathcal{O}_{t,\ell,i} \rangle^{2}$$

sum over unprotected (long) operators $\mathcal{O}_{t,\ell,i}$ of twist $t = \frac{1}{2}(\Delta^{(0)} - \ell)$ and spin ℓ

What is the spectrum of exchanged operators?

 $\mathcal{O}_{t,\ell,i}$

 \mathcal{O}_{2}

The OPE expansion and the double-trace spectrum Recall: N=4 SYM at large N & strong coupling \Leftrightarrow supergravity limit

 \rightarrow long single-trace operators ('string states') decouple!

Remaining spectrum:

- → made from products of half-BPS operators
- → at leading order in large N: only double-trace operators

(correspond to bound, two-particle states in supergravity)

The OPE expansion and the double-trace spectrum Recall: N=4 SYM at large N & strong coupling \Leftrightarrow supergravity limit

 \rightarrow long single-trace operators ('string states') decouple!

Remaining spectrum:

- → made from products of half-BPS operators
- → at leading order in large N: only double-trace operators
- \rightarrow These operators are degenerate and they mix:

(correspond to bound, two-particle states in supergravity)

 $\mathcal{O}_2 \Box^{t-2} \partial^{\ell} \mathcal{O}_2, \ \mathcal{O}_3 \Box^{t-3} \partial^{\ell} \mathcal{O}_3, \ \dots, \ \mathcal{O}_t \Box^0 \partial^{\ell} \mathcal{O}_t$

 $\gamma_i^{(1)} = -\frac{2(t-1)_4(t+\ell)_4}{(\ell+2i-1)_c}$

Good news: the mixing problem has been solved

- * by considering many tree-level correlators, one can resolve the degeneracy
- → leading-order three-point functions and anomalous dimensions are known!

[Aprile-Drummond-Heslop-HP'17'18]

The structure of the leading log $\langle \mathcal{O}_2 \mathcal{O}_2 \mathcal{O}_2 \mathcal{O}_2 \rangle_{\text{long}} = g_{12}^2 g_{34}^2 \mathcal{I} \sum_{t,\ell} A_{t,\ell} G_{t,\ell}(x,\bar{x})$

 $\Delta_{t,\ell,i} = \Delta^{(0)} + 2\left(a\gamma_i^{(1)} + a^2\gamma_i^{(2)} + a^3\gamma_i^{(3)} + O(a^4)\right)$ $A_{t,\ell,i} = A_{t,\ell,i}^{(0)} + aA_{t,\ell,i}^{(1)} + a^2A_{t,\ell,i}^{(2)} + a^3A_{t,\ell,i}^{(3)} + O(a^4)$

Combining the OPE decomposition with the large N expansion, one finds:

 $\mathcal{H}^{(1)} = \left\{ \log^{1}(u) \left[A^{(0)} \gamma^{(1)} \right] G_{t,\ell}(x, \bar{x}) \right\}$ + $\log^{0}(u) \left[A^{(1)} + 2A^{(0)} \gamma^{(1)} \partial_{\Delta} \right] G_{t,\ell}(x, \bar{x}),$ $\mathcal{H}^{(2)} = \langle \log^2(u) [\frac{1}{2}A^{(0)}(\gamma^{(1)})^2] G_{t,\ell}(x,\bar{x})$ $+ \log^{1}(u) \left[(\overline{A^{(1)}\gamma^{(1)}} + A^{(0)}\gamma^{(2)}) + 2A^{(0)}(\gamma^{(1)})^{2}\partial_{\Delta} \right] G_{t,\ell}(x,\bar{x})$ + log⁰(u) $\left[A^{(2)} + 2(A^{(1)}\gamma^{(1)} + A^{(0)}\gamma^{(2)})\partial_{\Delta} + 2A^{(0)}(\gamma^{(1)})^{2}\partial_{\Delta}^{2}\right]G_{t,\ell}(x,\bar{x}),$ $\mathcal{H}^{(3)} = \langle \log^3(u) \left[\frac{1}{6} A^{(0)} (\gamma^{(1)})^3 \right] G_{t,\ell}(x, \bar{x})$ $+ \log^{2}(u) \left[\left(\frac{1}{2} \overline{A^{(1)}} (\gamma^{(1)})^{2} + A^{(0)} \gamma^{(1)} \gamma^{(2)} \right) + A^{(0)} (\gamma^{(1)})^{3} \partial_{\Lambda} \right] G_{t\ell}(x, \bar{x})$ $+ \log^{1}(u) \left[(A^{(2)}\gamma^{(1)} + A^{(1)}\gamma^{(2)} + A^{(0)}\gamma^{(3)}) \right]$ + 2($A^{(1)}(\gamma^{(1)})^2$ + 2 $A^{(0)}\gamma^{(1)}\gamma^{(2)}$) ∂_{Δ} + 2 $A^{(0)}(\gamma^{(1)})^3\partial_{\Delta}^2$] $G_{t,\ell}(x,\bar{x})$ $+\log^{0}(u) \left[A^{(3)} + 2(A^{(2)}\gamma^{(1)} + A^{(1)}\gamma^{(2)} + A^{(0)}\gamma^{(3)}) \partial_{\Delta} \right]$ + 2($A^{(1)}(\gamma^{(1)})^2$ + 2 $A^{(0)}\gamma^{(1)}\gamma^{(2)}$) ∂^2_{Δ} + $\frac{4}{3}A^{(0)}(\gamma^{(1)})^3\partial^3_{\Delta}$] $G_{t,\ell}(x,\bar{x})$.

18

The structure of the leading log $\langle \mathcal{O}_2 \mathcal{O}_2 \mathcal{O}_2 \mathcal{O}_2 \rangle_{\text{long}} = g_{12}^2 g_{34}^2 \mathcal{I} \sum_{t,\ell} A_{t,\ell} G_{t,\ell}(x,\bar{x})$

 $\Delta_{t,\ell,i} = \Delta^{(0)} + 2\left(a\gamma_i^{(1)} + a^2\gamma_i^{(2)} + a^3\gamma_i^{(3)} + O(a^4)\right)$ $A_{t,\ell,i} = A_{t,\ell,i}^{(0)} + aA_{t,\ell,i}^{(1)} + a^2A_{t,\ell,i}^{(2)} + a^3A_{t,\ell,i}^{(3)} + O(a^4)$

Combining the OPE decomposition with the large N expansion, one finds:

$$\mathcal{H}^{(n)}(u,v)|_{\log^n(u)} = \frac{1}{n!} \sum_{t,\ell} \sum_{i=1}^{t-1} A^{(0)}_{t,\ell,i} (\gamma^{(1)}_i)^n G_{t,\ell}(x,\bar{x})$$

the leading log is determined by tree-level data only!

The structure of the leading log

$$\mathcal{H}^{(n)}(u,v)|_{\log^n(u)} = \frac{1}{n!} \sum_{t,\ell} \sum_{i=1}^{t-1} A^{(0)}_{t,\ell,i} (\gamma^{(1)}_i)^n G_{t,\ell}(x,\bar{x})$$

 \rightarrow one finds that these expressions resum to

$$\frac{u^2 f_{\log}^{(n)}(x,\bar{x})}{(x-\bar{x})^{8n-1}}$$

HPL's up to weight n with polynomial coefficients

The structure of the leading log

$$\mathcal{H}^{(n)}(u,v)|_{\log^n(u)} = \frac{1}{n!} \sum_{t,\ell} \sum_{i=1}^{t-1} A^{(0)}_{t,\ell,i} (\gamma^{(1)}_i)^n G_{t,\ell}(x,\bar{x})$$

 \rightarrow one finds that these expressions resum to

$$\frac{u^2 f_{\log}^{(n)}(x,\bar{x})}{(x-\bar{x})^{8n-1}}$$

HPL's up to weight n with polynomial coefficients

H

H

Harmonic Polylogarithms (HPL's) are a class of transcendental functions of one real variable

- generalisation of log's and polylog's
- → labelled by and index: word w with letters $a_i \in \{0, 1\}$
- iterative definition: →

$$H_{0w}(x) = \int_0^x dx' \frac{H_w(x')}{x'}$$
$$H_{1w}(x) = \int_0^x dx' \frac{H_w(x')}{1-x'}$$

or

weight := length of word •

Examples:

$$H_0 = \log(x)$$
 $H_1 = -\log(1-x)$
 $H_{0^m} = \frac{1}{m!} \log^m(x)$

$$H_{0^n 1} = \operatorname{Li}_{n+1}(x)$$

The structure of the leading log

[Aprile-Drummond-Heslop-HP'18] [CaronHuot-Trinh'18]

 $(\mathbf{A} (\mathbf{8})) k$

One can considerably simplify the leading log by the use of a differential operator

and the second second

$$\Delta^{(8)} = \frac{u^4}{(x-\bar{x})} \partial_{\bar{x}}^2 (1-\bar{x})^2 \partial_{\bar{x}}^2 \partial_x^2 (1-x)^2 \partial_x^2 (x-\bar{x}) \qquad \qquad \rightarrow \text{ with symmetries } \begin{array}{c} \left(\Delta^{(8)}\right)^k & \xrightarrow{x \to x'} & \left(\Delta^{(8)}\right)^k \\ \left(\Delta^{(8)}\right)^2 & \xrightarrow{x \to 1-x} & \frac{u^4}{v^4} \left(\Delta^{(8)}\right)^2 \end{array}$$

its eigenvalue is the numerator of the anomalous dimension: $\Delta^{(8)} u^2 G_{t,\ell}(x,\bar{x}) = (t-1)_4 (t+\ell)_4 u^2 G_{t,\ell}(x,\bar{x})$

one can therefore pull it out from the leading log! **>**

up to (n-1) times

$$\mathcal{H}^{(n)}(u,v)|_{\log^{n}(u)} = \frac{1}{n!} \sum_{t,\ell} \sum_{i=1}^{t-1} A^{(0)}_{t,\ell,i} (\gamma^{(1)}_{i})^{n} G_{t,\ell}(x,\bar{x}) \qquad \qquad \mathcal{H}^{(n)}(u,v)|_{\log^{n}(u)} = \frac{1}{u^{2}} (\Delta^{(8)})^{n-1} g^{(n)}(x,\bar{x})$$

much simpler expression!

there are further simplifications possible, but here is the main point:

The leading log can be explicitly computed (case by case) and its transcendental structure is entirely captured by zigzag-integrals and derivatives thereof!

The zigzag-integrals $Z^{(L)}$

They are a special class of 4d loop-integrals:

- $\stackrel{\scriptstyle \bullet}{}$ they arise from a generalisation of the ladder integrals $\phi^{(L)}$
- determined by a differential equation →

 $x\bar{x}\partial_x\partial_{\bar{x}}Z^{(L)}(x,\bar{x}) = Z^{(L-1)}(1-x,1-\bar{x})$ with $Z^{(1)}(x,\bar{x}) = \phi^{(1)}(x,\bar{x})$

In terms of SVHPL's:

one- and two-loop ladder integrals

 $Z^{(2)}(x,\bar{x}) = \phi^{(2)}(x,\bar{x})$

The zigzag-integrals $Z^{(L)}$

They are a special class of 4d loop-integrals:

- $\ensuremath{\stackrel{\scriptstyle \bullet}{}}$ they arise from a generalisation of the ladder integrals $\phi^{(L)}$
- → determined by a differential equation

$$x\bar{x}\partial_x\partial_{\bar{x}}Z^{(L)}(x,\bar{x}) = Z^{(L-1)}(1-x,1-\bar{x})$$
 with

In terms of SVHPL's:

$$Z^{(1)} = \mathcal{L}_2 - \mathcal{L}_{10},$$

$$Z^{(2)} = \mathcal{L}_{200} - \mathcal{L}_{30},$$

$$Z^{(3)} = \mathcal{L}_{2210} - \mathcal{L}_{2120} - 2\zeta_3(3\mathcal{L}_{20} + 2\mathcal{L}_{21}),$$

$$Z^{(4)} = \mathcal{L}_{2230} - \mathcal{L}_{2320} - 4\zeta_3(\mathcal{L}_{23} - \mathcal{L}_{220}) - 20\zeta_5\mathcal{L}_{20},$$

$$Z^{(5)} = \mathcal{L}_{222120} - \mathcal{L}_{221220} + 4\zeta_3(\mathcal{L}_{2221} - \mathcal{L}_{2212}) + \zeta_5(4\mathcal{L}_{221} + 15\mathcal{L}_{220}),$$

$$- 12\zeta_3^2\mathcal{L}_{22} - \frac{441}{8}\zeta_7\mathcal{L}_{20} + 18\zeta_3\zeta_5\mathcal{L}_2.$$

$$Z^{(1)}(x,\bar{x}) = \phi^{(1)}(x,\bar{x})$$
$$Z^{(2)}(x,\bar{x}) = \phi^{(2)}(x,\bar{x})$$

one- and two-loop ladder integrals

Single-valued HPL's:

$$\mathcal{L}_w(x,\bar{x}) = H_w(x) + \sum_{w_1,w_2} c_{w_1,w_2} H_{w_1}(x) H_{w_2}(\bar{x})$$

Next task: complete the leading log to a fully crossing symmetric function

Review of tree-level and one-loop

✓ The tree-level correlator is given by $\mathcal{H}^{(1)} = -16u^2\overline{D}_{2422}$

 $\mathcal{H}^{(1)} = \sum_{i} \frac{p_i(x,\bar{x})}{(x-\bar{x})^{d_i}} \mathcal{Q}_i(x,\bar{x})$

denominator power 7

SVHPL's up to weight 2: $Z^{(1)}$ $\log(u) \quad \log(v)$

[Arutyunov-Frolov'00, Dolan-Osborn'01]

Review of tree-level and one-loop

✓ The tree-level correlator is given by $\mathcal{H}^{(1)} = -16u^2\overline{D}_{2422}$

$$\mathcal{H}^{(1)} = \sum_{i} \frac{p_i(x,\bar{x})}{(x-\bar{x})^{d_i}} \mathcal{Q}_i(x,\bar{x})$$

denominator power 7

SVHPL's up to weight 2: $Z^{(1)}$ $\log(u) \quad \log(v)$

✓ One-loop correlator obtained by 'bootstrap method'

[Aprile-Drummond-Heslop-HP'17]

[Arutyunov-Frolov'00, Dolan-Osborn'01]

$$\mathcal{H}^{(2)} = \sum_{i} \frac{p_{i}(x,\bar{x})}{(x-\bar{x})^{d_{i}}} \mathcal{Q}_{i}(x,\bar{x})$$
denominator power 15
SVHPL's up to weight 4: $3 \times Z^{(2)}$
 $2 \times \log(u)Z^{(1)}$ $3 \times \Psi^{(2)}$
 $Z^{(1)}$
 $\log(u)$ $\log(v)$
 1

Nomenclature: these functions are built from the 'letters' $\{x, \bar{x}, 1-x, 1-\bar{x}\}$

Review of tree-level and one-loop

However, this can be considerably simplified using $\Delta^{(8)}$!

 \rightarrow the entire correlator can be written with $\Delta^{(8)}$ pulled out:

$$\mathcal{H}^{(2)} = \frac{1}{u^2} \Delta^{(8)} \mathcal{L}^{(2)} + \mathcal{H}^{(1)}$$

[Aprile-Drummond-Heslop-HP'19]

much simpler 'preamplitude':

- denominator power 7
- same complexity as the tree-level correlator!

Note: the bootstrap conditions leave one free parameter: lpha

- \rightarrow due to a one-loop divergence: counter-term ambiguity!
- \rightarrow related to super-leading term $\mathcal{R}^4|_{\text{genus-1}}$
- \rightarrow given by tree-level contact diagram $u^2 \overline{D}_{4444}$,

which gives rise to a non-analytic contribution at spin 0: $\gamma_{2,\ell}^{(2)} = \frac{1344(\ell-7)(\ell+14)}{(\ell-1)(\ell+1)^2(\ell+6)^2(\ell+8)} - \frac{2304(2\ell+7)}{(\ell+1)^3(\ell+6)^3} - \frac{18\alpha}{7} \delta_{\ell,0}$ supersymmetric localisation determines $\alpha = 60$ [Chester-Pufu]

Structure of leading log + intuition from tree-level & one-loop correlators

Natural proposal for a 'minimal ansatz' for $\mathcal{H}^{(3)}$:

$$\mathcal{H}^{(3)} = rac{1}{u^2} (\Delta^{(8)})^2 \, \mathcal{P}^{(3)} + a_2 \mathcal{H}^{(2)} + a_1 \mathcal{H}^{(1)}$$
 with preamplitude $\mathcal{P}^{(3)}(x, \bar{x}) = \sum_i rac{p_i(x, x)}{(x - \bar{x})^{d_i}} \, \mathcal{Q}_i(x, \bar{x})$

Structure of leading log + intuition from tree-level & one-loop correlators

Natural proposal for a 'minimal ansatz' for $\mathcal{H}^{(3)}$:

$$\mathcal{H}^{(3)} = rac{1}{u^2} (\Delta^{(8)})^2 \, \mathcal{P}^{(3)} + a_2 \mathcal{H}^{(2)} + a_1 \mathcal{H}^{(1)}$$
 with preamplitude $\mathcal{P}^{(3)}(x, \bar{x}) = \sum_i rac{p_i(x, x)}{(x - \bar{x})^{d_i}} \, \mathcal{Q}_i(x, \bar{x})$

Basis of functions $\mathcal{Q}_i(x, \bar{x})$:

- SVHPL's up to weight 6
- * no $\log^4(u)$ in any channel
- * $\log^3(u)$ contributions from $Z^{(3)}$ and derivatives
- * subtlety: need to include new letter $x \bar{x}$ at weight 3:

(1) one-loop ambiguity lpha induces one-loop like contribution of the form of $\mathcal{H}^{(2,3)}$

(2) from one-loop string corrections, we know new function $f^{(3)}(x, \bar{x})$ is required

	w	$x \leftrightarrow \bar{x}$	$\mathcal{Q}_i(x,ar{x})$	total
this leads to the following	6	-	$(6 \times Z^{(3)}), A^{(6)}, 3 \times B^{(6)}, \zeta_3 f^{(3)}, 2 \times \zeta_3 \log(u) Z^{(1)}$	13
15 Dasis functions		+	-	0
- N 25/	5	_	$6 \times \widetilde{\Psi}^{(3)}, \ 3 \times \widetilde{\Pi}^{(5)}, \ \zeta_3 Z^{(1)}$	10
FUR PAN		+	$6 \times \Psi^{(3)}, \ 6 \times \Pi^{(5)}, \ \Omega^{(5)}, \ 2 \times \log(u) (Z^{(1)})^2, \ 3 \times \zeta_3 \log^2(u)$	18
MIT I MARKEN	4	_	$3 \times \log^2(u) Z^{(1)}, (3 \times Z^{(2)})$	6
FILL IN IN		+	$6 \times \Upsilon^{(3)}, \ 2 \times \log^3(u) \log(v), \ (Z^{(1)})^2$	9
	3	_	$f^{(3)}, \ 2 imes \log(u) Z^{(1)}$	3
		+	$4 \times \log^3(u), \ 3 \times \Psi^{(2)}$	7
I have the	2	_	$Z^{(1)}$	1
		+	$3 \times \log^2(u)$	3
initial ansatz has	1	_	-	0
2308 free parameters		+	$2 \times \log(u)$	2
	0	_	-	0
		+	1	1

30

Impose bootstrap constraints:

(1) Preamplitude can be made fully crossing symmetric

$$\mathcal{P}^{(3)}(x,\bar{x}) = \mathcal{P}^{(3)}(x',\bar{x}') = \mathcal{P}^{(3)}(1-x,1-\bar{x})$$

(2) Matching the leading log, i.e. $log^{3}(u)$

(3) Pole cancellation: (Euclidean) correlator has no singularity at $x = \bar{x}$

Impose bootstrap constraints:

(1) Preamplitude can be made fully crossing symmetric

$$\mathcal{P}^{(3)}(x,\bar{x}) = \mathcal{P}^{(3)}(x',\bar{x}') = \mathcal{P}^{(3)}(1-x,1-\bar{x})$$

(2) Matching the leading log, i.e. $log^{3}(u)$

(3) Pole cancellation: (Euclidean) correlator has no singularity at $x = \bar{x}$

Constraints on $\mathcal{H}^{(3)}$

(4) Below twist 4 cancellation (this fixes $a_1 = -1$)

 $\sum_{\ell} \left(\frac{1}{2} A_{2,\ell}^{(1)} \left(\gamma_{2,\ell}^{(1)} \right)^2 + A_{2,\ell}^{(0)} \gamma_{2,\ell}^{(1)} \gamma_{2,\ell}^{(2)} + A_{2,\ell}^{(0)} \left(\gamma_{2,\ell}^{(1)} \right)^3 \partial_\Delta \right) G_{2,\ell}(x,\bar{x})$

(5) Matching the $\log^2(u)$ prediction at twist 4 using OPE data from previous orders (this fixes $a_2 = 5$)

(6) Matching the flat space correlator: two-loop supergravity in 10d

Bootstrapping the two-loop correlator: results

Lo and behold, we are left with only 8 free parameters!

$$\mathcal{H}^{(3)} = \frac{1}{u^2} (\Delta^{(8)})^2 \mathcal{P}^{(3)} + 5 \mathcal{H}^{(2)} - \mathcal{H}^{(1)}$$

Due to complexity \rightarrow ancillary file

- * Free parameters are of the form of tree-level contact diagrams: $4 \times \overline{D}$ and $4 \times \zeta_3 \overline{D}$
- * They are the expected ambiguities from $\partial^{10} \mathcal{R}^4|_{\text{genus-2}}$, corresponding to: $\sigma_2 \frac{16}{7}$ $\sigma_3 + \frac{32}{7}$ $\sigma_2^2 \frac{128}{7}$ $\sigma_2 \sigma_3 \frac{256}{7}$
- * Note they are part of the preamplitude only (just like in the one-loop case)

Mellin amplitude '1' is not independent ambiguity any more: no $\mathcal{R}^4|_{genus-2}$

Bootstrapping the two-loop correlator: results

Lo and behold, we are left with only 8 free parameters!

$$\mathcal{H}^{(3)} = \frac{1}{u^2} (\Delta^{(8)})^2 \mathcal{P}^{(3)} + 5 \mathcal{H}^{(2)} - \mathcal{H}^{(1)}$$

- Free parameters are of the form of tree-level contact diagrams: $4 \times \overline{D}$ and $4 \times \zeta_3 \overline{D}$
- They are the expected ambiguities from $\partial^{10} \mathcal{R}^4|_{\text{genus-2}}$, corresponding to: $\sigma_2 \frac{16}{7}$ $\sigma_3 + \frac{32}{7}$ $\sigma_2^2 \frac{128}{7}$ $\sigma_2 \sigma_3 \frac{256}{7}$ →
- Note they are part of the preamplitude only (just like in the one-loop case)

And further:

- We observe the absence of some functions at weight 6: $3 \times B^{(6)}$, $2 \times \zeta_3 \log(u) Z^{(1)}$ +
- Contribution from one-loop ambiguity lpha proportional to one-loop string correction $\mathcal{H}^{(2,3)}$ •

i.e. can be written as part of the preamplitude $\rightarrow \mathcal{H}^{(2,3)} = \frac{1}{u^2} (\Delta^{(8)})^2 \mathcal{P}^{(2,3)}$

Mellin amplitude '1' is not independent ambiguity any more: no $\mathcal{R}^4|_{\text{genus-2}}$

The large N strong coupling expansion

Comparison with results of Huang-Yuan

We find agreement upon setting X=0:

 $\mathcal{H}_{\text{our}}^{(3)} - \mathcal{H}_{\text{HY}}^{(3)}|_{\mathcal{X}=0} = \frac{36}{7} \zeta_3 \mathcal{H}^{(2,3)} - \left(\frac{5849}{1008} - \frac{\alpha}{240}\right) \mathcal{H}^{(2,3)} + \left(\overline{D} \text{- and } \zeta_3 \overline{D} \text{-ambiguities}\right)$

Note: X is a free parameter in their result, contributing with up to weight 6 functions and with infinite spin support in the OPE.

- We find X=0 since it is sourced by a preamplitude containing weight 4 functions with letter x-xb! (even though it does not appear in the full correlator, i.e. it is annihilated by the action of $(\Delta^{(8)})^2$)
- Second reason: even if we include this extra letter at weight 4, we find that (crossing symmetry of $\mathcal{P}^{(3)}$) + (matching leading log) \rightarrow X=0

in words: one can add things in the kernel of $(\Delta^{(8)})^2$ to make it crossing symmetric, but this introduces $\log^3(u)$ contributions!

Lastly, we fix the one-loop ambiguities in their result by carefully tracking the contribution of the one-loop ambiguity α to order a³.

Comment on contributions from triple-trace operators

Now, what have we learned?

(1) We can see new operators (beyond the well understood double-trace sector) contributing to the OPE:

In particular, we find that (based on the consistency of the OPE) that new operators need to contribute to $\log^2(u)$ starting from twist 6!

twist of first triple-trace operators $\mathcal{O}_2\partial^{\ell_1}\mathcal{O}_2\partial^{\ell_2}\mathcal{O}_2$

This argument shows that they mix with double-trace operators and this information is already present in lower order correlators...

(2) Having obtained the two-loop correlator, we can extract from it new OPE data!

two-loop anomalous dimensions $\gamma^{(3)}$...

The two-loop anomalous dimension

focus on twist 4 double-trace operators O2dO2 (no mixing)

 $\gamma^{(3)}$ appears in the log(u) part of the correlator:

$$\begin{aligned} \mathcal{H}^{(3)} &= \log^{3}(u) \left[\frac{1}{6}A^{(0)}(\gamma^{(1)})^{3}\right] G_{t,\ell}(x,\bar{x}) \\ &+ \log^{2}(u) \left[\left(\frac{1}{2}A^{(1)}(\gamma^{(1)})^{2} + A^{(0)}\gamma^{(1)}\gamma^{(2)}\right) + A^{(0)}(\gamma^{(1)})^{3}\partial_{\Delta}\right] G_{t,\ell}(x,\bar{x}) \\ &+ \log^{1}(u) \left[\left(A^{(2)}\gamma^{(1)} + A^{(1)}\gamma^{(2)} + A^{(0)}\gamma^{(3)}\right)\right) \\ &+ 2(A^{(1)}(\gamma^{(1)})^{2} + 2A^{(0)}\gamma^{(1)}\gamma^{(2)})\partial_{\Delta} + 2A^{(0)}(\gamma^{(1)})^{3}\partial_{\Delta}^{2}\right] G_{t,\ell}(x,\bar{x}) \\ &+ \log^{0}(u) \left[A^{(3)} + 2(A^{(2)}\gamma^{(1)} + A^{(1)}\gamma^{(2)} + A^{(0)}\gamma^{(3)})\partial_{\Delta} \\ &+ 2(A^{(1)}(\gamma^{(1)})^{2} + 2A^{(0)}\gamma^{(1)}\gamma^{(2)})\partial_{\Delta}^{2} + \frac{4}{3}A^{(0)}(\gamma^{(1)})^{3}\partial_{\Delta}^{3}\right] G_{t,\ell}(x,\bar{x}) \end{aligned}$$

Focus on twist 4 double-trace operators to avoid mixing: there is one unique operator for each spin

Analytic function of spin is most elegantly obtained using the Lorentzian inversion formula

[CaronHuot'17]

$$\gamma_{2,\ell}^{(3)} = c_3 \left(S_{-3} - S_3 - 2S_{1,-2} + 3\zeta_3 \right) + c_2 S_{-2} + c_1 S_1 + c_0 + c_0^{(a)} + \alpha \, \tilde{\gamma}_{2,\ell}^{(2,3)} \quad \text{for } \ell \ge 6$$

The two-loop anomalous dimension

$$\gamma_{2,\ell}^{(3)} = c_3 \left(S_{-3} - S_3 - 2S_{1,-2} + 3\zeta_3 \right) + c_2 S_{-2} + c_1 S_1 + c_0 + c_0^{(a)} + \alpha \,\tilde{\gamma}_{2,\ell}^{(2,3)}$$

with coefficients
being functions of

$$J^{2} = (\ell+3)(\ell+4)$$

$$c_{3} = \frac{-221184J^{2}(J^{2}-2)(J^{8}-50J^{6}-653592J^{4}+30292416J^{2}+15169835520)}{5(J^{2}-6)^{2}(J^{2}-12)(J^{2}-20)(J^{2}-30)(J^{2}-42)(J^{2}-56)(J^{2}-72)},$$

$$c_{2} = \frac{-18432}{(J^{2}-6)^{2}(J^{2}-12)^{2}(J^{2}-20)(J^{2}-30)^{2}(J^{2}-42)(J^{2}-56)^{2}(J^{2}-72)(J^{2}-90)(J^{2}-132)},$$

$$c_{1} = \frac{-27648J^{2}(J^{2}-2)(J^{8}+525J^{6}+1730258J^{4}-79817784J^{2}-39925126080)}{(J^{2}-6)^{2}(J^{2}-6)^{2}(J^{2}-12)(J^{2}-20)(J^{2}-30)(J^{2}-42)(J^{2}-56)(J^{2}-72)},$$

× Contains nested (alternating) harmonic sums

 $S_{\vec{a}} \equiv S_{\vec{a}}(\ell+3)$

$$S_{a_1,a_2,\dots,a_n}(m) = \sum_{k=1}^m \frac{(\operatorname{sgn}(a_1))^k}{k^{|a_1|}} S_{a_2,\dots,a_n}(k), \qquad S_{\emptyset}(m) = 1$$

 $c_0 = \frac{384 \, q_0(J^2)}{5J^2(J^2 - 6)^5(J^2 - 12)^2(J^2 - 20)^2(J^2 - 30)^2(J^2 - 42)(J^2 - 56)^2(J^2 - 72)(J^2 - 90)(J^2 - 132)},$

***** The formula is analytic in spin down to l=6:

apparent poles at spins l=6,8 cancel non-trivially in the combination $c_2S_{-2} + c_0$

× pole at l=5: signals presence of non-analytic contributions for spins l=0,2,4 \rightarrow consistent ambiguities from $\partial^{10} \mathcal{R}^4|_{\text{genus-2}}$

* obeys reciprocity symmetry: $\ell \mapsto -\ell - 7$ and its large spin expansion has only even powers in $1/J^2$

Summary

- × We have constructed two-loop supergravity (order $1/N^6$) correlator from an educated ansatz for the preamplitude
 - * Only free parameters correspond to the expected tree-level ambiguities consistent with the $\partial^{10} \mathcal{R}^4|_{\text{genus-2}}$ correction
 - * Our result is consistent with the one obtained by Huang-Yuan and we argued that their free parameter X=0

- **×** Identified zigzag-integrals as basis for leading log at any loop order
- * Revisited the bulk-point limit and understood the role of the extra letter $x \bar{x}$ (not in this talk!)
- * From the two-loop correlator, we extracted the two-loop anomalous dimension as a function of spin, which passes some non-trivial consistency conditions (analyticity in spin and reciprocity symmetry)

Open Questions

- **×** Higher loop orders?
 - Analogous 'minimal' ansatz at any loop order reads -
 - Complexity grows only in basis, not in coefficient functions!
 - * Space of SVHPL's grows exponentially! \rightarrow need better understanding of transcendental basis
 - → Two-loop order was special due to enhanced crossing symmetry of $(\Delta^{(8)})^2$...
- × It would be interesting to compute the Mellin space representation of our result.
- × Higher external charges (KK-modes): leading log for any correlator predicted by 10d symmetry
- **×** Can we bootstrap two-loop string corrections using similar ansatz?
 - * However, corresponding flat space counterpart not known...
- ***** A data point for exploration of double-copy in AdS

Recent super-gluon result [2301.13240]

 $\mathcal{H}^{(n)} = \frac{1}{u^2} (\Delta^{(8)})^{n-1} \mathcal{P}^{(n)} + \sum_{i=1}^{n-1} a_i \mathcal{H}^{(i)}$

× Can we apply this to other holographic theories? Maybe yes for cases with hidden conformal symmetry $\rightarrow AdS_3, ...$