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◦ We will discuss a restriction on a Calabi-Yau manifold X ’s
complex structure, so that X is weight-two modular.

◦ By developing methods for quickly calculating the zeta
function when X is multiparameter, we are able to produce
extensive tables of data to support our claim. We expect these
methods to see use beyond this project.

◦ For illustration, our examples will be mirrors of favourable
CICY manifolds. However, the story is much more general than
this.
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Suppose we have some CY threefold Xφ whose complex
structure moduli φ are rational (or more generally belong to
some algebraic extension of Q).

If we consider Xφ as a variety over a finite field Fpn for p prime,
we will find that this variety consists of #pn(φ) points.

Now fix a prime p and collect these point-counts into the
exponentiated generating function

ζp(φ;T ) = exp

( ∞∑
n=1

#pn(φ)

n
· Tn

)
.
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Weil gave the remarkable conjecture that the zeta function so
defined is actually a rational function of T , with the form

ζp(φ;T ) =
Rp(φ;T )

(1− T )(1− pT )h1,1(1− p2T )h1,1(1− p3T )
,

where Rp(φ;T ) is a degree b3 = 2h2,1 + 2 polynomial in T .

Upon varying φ, the numerators Rp(φ;T ) will change.

Our discussion will turn to a restriction in φ-space, so that Rp

possesses a particular property: persistent factorisation.
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It may happen that for some φ∗, the polynomials Rp(φ∗;T )
have for every4 prime p a degree-2 factor:

Rp(φ∗;T ) = (1− αp pT + p3T 2)R̃p , degT

(
R̃
)
= 2h2,1 .

Further, αp is the coefficient of qp in the q-expansion of some
weight-two modular newform .

In this case the manifold Xφ is said to be weight-two modular.

There is a question:

For which values φ∗ do we have weight-two modularity?

4Up to the subtlety of bad primes



A (nonexhaustive) survey of CY modularity 16

[Yui 2011, references therein] A review up to 2011.

[Hulek, Verrill, 2005] Proved weight-four modularity for a number of
manifolds associated to the A4 lattice.

[Gouveau, Yui, 2009] Proved weight-four modularity of rigid
threefolds defined over Q.

[Candelas, Elmi, de la Ossa, van Straten, 2019] Computed tables of zeta
functions for the HV family, identifying a rank-two attractor: a
nonsingular threefold with weight-four modularity.

[Bönisch, Klemm, Scheidegger, Zagier, 2022] Studied the one-parameter
hypergeometric families, exhibiting modularity at conifolds and
new rank-two attractors. Provided a proven example, by
constructing a modular parametrisation (see also Bönisch’s talk
in this series).

[Bönisch, Elmi, Kashani-Poor, Klemm, 2022] Gave a number of new
examples of rank-two attractors.
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Flux modularity 23

[Kachru, Nally, Yang, 2020], provide the

Flux modularity conjecture:

◦ For complex structure moduli φ that give a supersymmetric
flux vacuum (SFV), the manifold Xφ is weight-two modular.

The SFV condition can be stated as the existence of a suitable
pair of Q-linear relations between the periods of Xφ.

KNY tested their conjecture by using two sources of
information:

◦ An SFV construction due to [DeWolfe, 2005] for mirrors of
hypersurfaces in weighted projective space.

◦ Tables of zeta functions for the mirror of the octic
hypersurface in WP(1, 1, 2, 2, 2) as computed in [Kadir, 2004].

We study both of these problems, and so provide a large
number of new examples supporting the conjecture.
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Compactify type IIB supergravity on a CY manifold X .

Additionally, turn on fluxes F3 = dC2 and H3 = dB2 on the
internal geometry X .

In the presence of these fluxes, the 4-d action will acquire a
potential term V (φi, τ) for the moduli and axiodilaton τ .

This potential term is built out of a superpotential

W =

∫
X
(F3 − τH3) ∧ Ω = (F − τH) · Σ ·Π ,

with Σ being the standard symplectic form Σ =

(
0 Ih2,1

−Ih2,1 0

)
.
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We seek vacua of this 4d theory, where the potential vanishes.
Supersymmetry requires vanishing of the superpotential, so we
seek solutions to

V = 0 , W = 0 .

After some manipulation, these conditions amount to

F · Σ ·Π = 0 , H · Σ ·Π = 0 ,

(F − τH) · Σ · ∂φiΠ = 0 .

There is an additional consistency condition: F · Σ ·H ̸= 0.

The problem is to find pairs of flux vectors F,H and values for
the moduli φi and axiodilaton τ that solve the above equations.
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In many cases, an exchange of two moduli φj ↔ φk will swap
pairs of components of the period vector:

Πj ↔ Πk , Πh2,1+1+j ↔ Πh2,1+1+k .

So as to refer back to this, call this property S.
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In many cases, an exchange of two moduli φj ↔ φk will swap
pairs of components of the period vector:

Πj ↔ Πk , Πh2,1+1+j ↔ Πh2,1+1+k .

So as to refer back to this, call this property S.

If our compactification manifold X has the property S, then
one can solve the SFV equations by choosing fluxes

F = e(i) − e(k) , H = e(h2,1+1+k) − e(h2,1+1+j) ,

and constraining the moduli to the invariant locus φj = φk.

The vectors e(i) are the standard orthonormal basis of R2h1,2+2 .
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With this choice of fluxes and moduli, all but two of the SFV
equations are immediately solved.

The remaining equations are

(F − τH) ·Σ·∂φjΠ

∣∣∣∣
φj=φk

= 0 , (F − τH) ·Σ·∂φkΠ

∣∣∣∣
φj=φk

= 0 .

By the S property, these equations are actually the same
condition. To solve them, set

τ =
F · Σ · ∂φjΠ

H · Σ · ∂φjΠ

∣∣∣∣
φj=φk

.

τ is ab initio a function of the h2,1 − 2 unconstrained moduli
and the shared value of φj = φk = θ . In several cases the θ
dependence drops out.
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(Following [Candelas, Dale, Lütken, Schimmrigk, 1988])

Complete Intersection Calabi-Yau manifolds are given by the
vanishing of some polynomials in a product of projective spaces.

Consider the configuration
P1

P3

[
2
4

]
, which specifies the vanishing

locus in P1 × P3 of a polynomial with degrees 2 and 4 in each
factor of the ambient space.

Consider also the configuration
P3

P3

[
1 1 2
1 2 1

]
, which specifies the

vanishing locus of three polynomials in P3 × P3 with
multidegrees (1, 1), (1, 2), and (2, 1).
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More generally we can look at an intersection of c hypersurfaces

Pn1

...
Pnk
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More generally we can look at an intersection of c hypersurfaces

Pn1

...
Pnk

d1,1 ... d1,c
... ...

...
dk,1 ... dk,c

,
i.e. the zero locus of c polynomials in Pn1 × ...× Pnk . The ath

polynomial has degree di,a in the projective coordinates of Pni .

For this to be a threefold, one should have n1 + ...+ nk = c+ 3.

Most such threefolds are not Calabi-Yau. You get a Calabi-Yau
if you have

∑c
a=1 di,a = ni + 1.
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The mirrors of favourable CICY’s. 49

We shall for now only consider CICY manifolds Y whose second
cohomology H2(Y,Z) is generated by the pullbacks to Y of the
Kähler classes Kj of the ambient factors Pnj .

These will necessarily have h1,1(Y) = k, the number of rows in
the configuration matrix.

The mirrors to these manifolds are intersections X in toric
varieties, with k complex structure parameters.

By the mirror map, each coefficient of Kj in the expansion of
Y’s Kähler form is mapped to the coefficient of a monomial
defining the mirror X as an intersection in a toric variety.

A swapping of the ambient factors Pnj and Pnk thereby effects
a swap of a pair of X ’s complex structure moduli.
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[Hosono, Klemm, Theisen, Yau, 1995] provide a means of computing X ’s
periods in an expansion about the Large Complex Structure
point φ = 0.

The holomorphic period is
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∏c
a=1

(∑k
b=1 db,amb

)
!∏k
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[Hosono, Klemm, Theisen, Yau, 1995] provide a means of computing X ’s
periods in an expansion about the Large Complex Structure
point φ = 0.

The holomorphic period is

ϖ0 =

∞∑
m1,...,mk=0

∏c
a=1

(∑k
b=1 db,amb

)
!∏k

b=1(mb!)nb+1

k∏
b=1

(
φb
)mb

≡
∑
m≥0

c (m)φm .

Obviously (?) if the configuration matrix is symmetric under
the exchange of the ith and jth rows, then ϖ0 is a symmetric
function of φi and φj .
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The triple intersection numbers Yijk can be computed as the
coefficient of the volume form in the expansion of

eiejek

c∏
a=1

(
1 +

k∑
b=1

db,aeb

)
.
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The triple intersection numbers Yijk can be computed as the
coefficient of the volume form in the expansion of

eiejek

c∏
a=1

(
1 +

k∑
b=1

db,aeb

)
.

A symmetry between the j, k rows of the configuration matrix
gives rise to Yijk = Yikj .
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The remaining h2,1 logarithmic Frobenius periods, h2,1

log-squared periods, and the final log-cubed period are found by
taking

ϖ1,i = ∂ϵiϖ
ϵ

∣∣∣∣
ϵ=0

,

ϖ2,i =
1

2
Yijk∂ϵj∂ϵkϖ

ϵ

∣∣∣∣
ϵ=0

,

ϖ3 =
1

6
Yijk∂ϵi∂ϵjϖ

ϵ

∣∣∣∣
ϵ=0

,

with ϖϵ ≡
∑

m≥0
c(m+ϵ)
c(ϵ) φm+ϵ
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The integral period vector Π is found after a change of basis.
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The integral period vector Π is found after a change of basis.

Π = ρν−1ϖ ,

where ν = diag(1, 2πi1, (2πi)2 1, (2πi)3) and

ρ =


−1

3Y000 −1
2Y

T
00 0T 1

−1
2Y00 −Y0 −I 0

1 0T 0T 0

0 I 0 0

 .
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The integral period vector Π is found after a change of basis.

Π = ρν−1ϖ ,

where ν = diag(1, 2πi1, (2πi)2 1, (2πi)3) and

ρ =


−1

3Y000 −1
2Y

T
00 0T 1

−1
2Y00 −Y0 −I 0

1 0T 0T 0

0 I 0 0

 .

This matrix contains the topological data

Y00i = − 1

12

∫
X
c2∧ei , Y000 =

3χ
(
X
)
ζ(3)

(2πi)3
, Y0ij ∈

{
0,

1

2

}
.
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The mirror X to a CICY Y, whose matrix is unchanged by the
exchange of two rows, possesses the property S.

It follows then that we can find a hypersurface in the moduli
space of X that supports supersymmetric flux vacua.

Conjecturally then, and supported by our tables, such
manifolds are weight-two modular.

We make a comment on the form of the axiodilaton:

τ(φ) =
i

2π

∂φi (ϖi −ϖj)

∂φi (ϖi −ϖj)

∣∣∣∣
φi=φj

+ Y0ij − Y0ii
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The mirrors of the following manifolds possess S:

P4

P4

[
1 1 1 1 1
1 1 1 1 1

]
,

P2

P2

[
3
3

]
,

P3

P3

[
1 1 2
1 1 2

]
,

P3

P3

[
1 1 2
1 2 1

]
,

P2

P2

P2

1 1 1
1 1 1
1 1 1

 ,
P1

P1

P2

22
3

 ,

P1

P1

P1

P1


2
2
2
2

 ,

P1

P1

P1

P1

P1


1 1
1 1
1 1
1 1
1 1

 .

Counter example: the mirror to
P1

P3

[
2
4

]
does not possess S.

So far we have computed tables of modular forms for the first
two and final families in the above list.
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First, consider the five-parameter mirror to

P1

P1

P1

P1

P1


1 1
1 1
1 1
1 1
1 1

 .

The periods (in the LCS region) are

ϖ
0
(φ) =

∫ ∞

0
dz z K0(z)

5∏
i=1

I0

(√
φi z

)
,

ϖ
j
(φ) = −2

∫ ∞

0
dz z K0(z)K0

(√
φj z

) ∏
i̸=j

I0

(√
φi z

)
,

ϖj(φ) = 8
∑

m<n
m,n ̸=j

∫ ∞

0
dz z K0(z)K0

(√
φm z

)
K0

(√
φn z

) ∏
i̸=m,n

I0

(√
φi z

)
− 4π

2
ϖ0(φ) .

(1)
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First, consider the five-parameter mirror to

P1

P1

P1

P1

P1


1 1
1 1
1 1
1 1
1 1

 .

To get an SFV, set φ4 = φ5. The axiodilaton is

τ
(
φ
1
, φ

2
, φ

3
)

=
2i

π
·

∫∞
0 dz z K0(z)

[
K0

(√
φ1z

)
I0

(√
φ2z

)
I0

(√
φ3z

)
+ cyclic

]
∫∞
0 dz z K0(z) I0

(√
φ1z

)
I0

(√
φ2z

)
I0

(√
φ3z

) .
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This function τ satisfies

j
(
τ
(
φ1, φ2, φ3

))
=

(
∆F + 16φ1φ2φ3

)3
∆F (φ1φ2φ3)2

,

where

∆F =

((
1 − φ

1 − φ
2 − φ

3
)2

− 4
(
φ
1
φ
2
+ φ

2
φ
3
+ φ

3
φ
1
))2

− 64 φ
1
φ
2
φ
3

.

This same j-invariant appears in
[Verrill, 2004] and [Bloch, Kerr, Vanhove, 2016].
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The HV manifold is birational to the intersection in T5:

X0 +X1 +X2 = − (X3 +X4 +X5) ,

φ0

X0
+

φ1

X1
+

φ2

X2
= −

(
φ3

X3
+

φ4

X4
+

φ5

X5

)
,

As a consequence of these relations, we can write

(X0 +X1 +X2)

(
φ0

X0
+

φ1

X1
+

φ2

X2

)
t0 = t1 ,

(X3 +X4 +X5)

(
φ3

X3
+

φ4

X4
+

φ5

X5

)
t0 = t1 , (t0 : t1) ∈ P1 ,

And so a fibred product
Eφ0,φ1,φ2(t)×P1Eφ3,φ4,φ5(t) ⊂ P2 × P2 × P1 birational to the
Hulek-Verrill manifold is found.
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Consider the two-parameter mirror to
P4

P4

[
1 1 1 1 1
1 1 1 1 1

]
.

Set both moduli equal to φ. The axiodilaton is a ratio of
integrals of products of Meijer G functions, and the j-invariant
of this is

j(τ(φ)) =
(1 + 12φ+ 14φ2 − 12φ3 + φ4)3

φ5(φ2 − 11φ− 1)
.

Incidentally, this model also has a rank-two attractor at
φ1 = φ2 = −1, to which we will return in ongoing work.
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Finally, consider the 2-parameter mirror to
P2

P2

[
3
3

]
.

Once again, the axiodilaton is a ratio of integrals of a product
of Meijer G functions and the j-invariant of this is

j(τ(φ)) = − (24φ+ 1)3

φ3(27φ+ 1)
.
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We expect that an elliptic surface should be found in all
examples, as was done for Example 1.
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modular curve for all examples.
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We expect that an elliptic surface should be found in all
examples, as was done for Example 1.

In our second and third examples, the two moduli that are set
equal become moduli of the elliptic curve, unlike in example 1.

We do not presently have a systematic realisation of the
modular curve for all examples.

We have focussed here on examples where computations are the
simplest, mirrors of favourable CICYs. There could be many
more examples waiting in the set of mirrors to non-favourable
CICYs, or indeed in members of mirror-pairs not including a
CICY.
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In the F-theory uplift of these flux vacua, the axiodilaton that
we have computed is promoted to the modulus of an elliptic
fibration, which is constant over its base. [Kachru, Nally, Yang, 2020]
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The j-invariants that we have computed match those of the
F-theory fibres, and when a suitable choice of coordinates is
made the elliptic curve related to our modular forms by the
modularity theorem is precisely the F-theory curve.
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This was already the case in KNY’s example, which then
appears to hold in other cases as well.
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In the F-theory uplift of these flux vacua, the axiodilaton that
we have computed is promoted to the modulus of an elliptic
fibration, which is constant over its base. [Kachru, Nally, Yang, 2020]

The j-invariants that we have computed match those of the
F-theory fibres, and when a suitable choice of coordinates is
made the elliptic curve related to our modular forms by the
modularity theorem is precisely the F-theory curve.

This was already the case in KNY’s example, which then
appears to hold in other cases as well.

There is a surprise here, as the modularity conjecture then
suggests that in supersymmetric configurations the F-theory
fourfold should contain the modular curve once in the fibre and
again as part of a ruled surface in the base.
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Our flux vectors specify an integral lattice Λ2 ⊂ H3
dR(X ,Z) such

that C⊗Λ2 ⊂ H1,2(X ,C)⊕H2,1(X ,C). This provides us with a
critical elliptic motive.

Deligne’s conjecture predicts that for critical motives M , the
L-value L(M, 0) is a rational, possibly zero, multiple of the
Deligne period c+(M),

L(M, 0)

c+(M)
∈ Q .

L is computed from a Mellin transform of the modular form
read off from our zeta numerators, and c+(M) is computed
from our Calabi-Yau periods.
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Thank you for listening.


