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Important note:

The first half of my presentation consists of results already
published by Doran and Malmendier in 2019.
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Let Xz be the hypersurface

z x50 + x51 + x52 + x53 + x54 − x0 x1 x2 x3 x4 = 0

in P4. For z 6= 0, 1/55 this defines a Calabi-Yau threefold with
Hodge diamond
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.

The group

G = {(α0, α1, α2, α3, α4) ∈ (µ5)5 |α0 α1 α2 α3 α4 = 1}

acts on Xz by xi 7→ αi xi . This gives a (1 1 1 1)-variation of Hodge
structures V over P1 \ {0, 1/55,∞} defined by Vz = H3(Xz)G .



Properties of V :

- Vz can be seen as the complete middle cohomology of a
mirror quintic (a suitable resolution of the quotient Xz/G ).

- A trivialization Ω of F 3V is given by the residue of∑4
i=0 xi dx0 ∧ · · · ∧ d̂xi ∧ · · · ∧ dx4

z x50 + x51 + x52 + x53 + x54 − x0 x1 x2 x3 x4
.

- Ω is annihilated by the Picard-Fuchs operator

L = Θ4 − 55 z (Θ + 1/5) (Θ + 2/5) (Θ + 3/5) (Θ + 4/5)

where Θ = z d
dz .

- For |z | < 1/55 one of the periods of Ω is given by
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Let Yz be the hypersurface

z x40 + x41 + x42 + x43 − x0 x1 x2 x3 = 0

in P3. For z 6= 0, 1/28 this defines a K3 surface with Hodge
diamond

1
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.

The group

G = {(α0, α1, α2, α3) ∈ (µ4)4 |α0 α1 α2 α3 = 1}

acts on Yz by xi 7→ αi xi . This gives a (1 1 1)-variation of Hodge
structures V over P1 \ {0, 1/28,∞} defined by Vz = H2(Yz)G .



Properties of V :

- A trivialization Ω of F 2V is given by the residue of∑3
i=0 xi dx0 ∧ · · · ∧ d̂xi ∧ · · · ∧ dx3

z x40 + x41 + x42 + x43 − x0 x1 x2 x3
.

- Ω is annihilated by the Picard-Fuchs operator

Θ3 − 28 z (Θ + 1/4) (Θ + 1/2) (Θ + 3/4)

where Θ = z d
dz .

- For |z | < 1/28 one of the periods of Ω is given by
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For |z | < 1/55 we have the elementary identity
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We have expressed a period of Xz as an integral of periods of φ∗zY
over a path γ1 ∈ π1(Mz , t0) with

Mz = φ−1z (P1 \ {0, 1/28,∞}) and t0 � 0 .

To get a complete 4× 4 period matrix we do the following:

- We take derivatives with respect to z .

- We consider the monodromy with respect to z .

We can then express a complete period matrix
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in terms of integrals of periods of φ∗zY . We say that we have
fibered out the periods of the mirror quintic.
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We now consider the conifold point z = 1/55. The associated
variety X1/55 has 125 nodes as singularities. Blowing these up gives

a smooth Calabi-Yau threefold X̂1/55 with Hodge diamond
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.

It was shown by Schoen that the Galois representations on the

third cohomology of X̂1/55 come from the unique newform
f ∈ S4(Γ0(25)) with Hecke eigenvalue a2 = 1.

Does this modularity also manifest in the periods?



For δ = 1− 55 z → 0 a basis of periods has the expansion
−
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with ν(δ) = δ + O(δ2).

In a paper with Klemm, Scheidegger and Zagier we numerically
identify (

w+ e+

w− e−

)
as a period matrix associated with f .

By fibering out we can now prove this and give similar relations for
the other entries of the mixed period matrix.



The calculation is as follows:

- The quartic family is modular, i.e.

t∗2$ = E2,2

with a Hauptmodul t2 of Γ∗0(2) and the Eisenstein series
E2,2 ∈ M2(Γ0(2)).

- There is a modular function t50 under Γ∗0(50) satisfying
φ1/55(t50(τ)) = t2(5 τ).

- We can pull back all period integrals at the conifold to
integrals of modular forms on the upper half plane. In
particular, we have
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with f50(τ) = f (τ)− 4 f (2τ).



This gives the following identifications:

- f50 → periods w±

- F50 =
t50 (7+13 t50+5 t250−25 t350)

2 (1−5t50)4 f50 → periods e±

- g50 = 5 t50 (1−t50)
(1−5 t50)2 f50 → periods a± and

√
5 (2πi)2 from

residues

- b, c and d come from integrals over open contours, e.g.
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The nature of f50 and F50 is well understood. Getting a better
understanding of g50 and the mixed periods is work in progress.
For example, we have the numerical identity
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In the following we work locally around z = 0. Let

f0 = 1 + O(z)

f1 = f0 log z + O(z)

be two solutions of the Picard-Fuchs operator L. The instanton
numbers n1, n2, n3, ... are defined by
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This gives the instanton numbers 2875, 609250, 317206375, ...



It was famously argued by Candelas et al. that nk is the number of
rational curves of degree k on a generic quintic hypersurface.

The instanton numbers asymptotically grow like
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Summary and outlook



- Simple manipulations of periods can lead to useful period
identities. This does not restrict to hypergeometric periods.

- In some examples this allows to relate modularity of
Calabi-Yau threefolds to modularity of families of K3 surfaces.

- The resulting identities involve:

- Periods of holomorphic modular forms.
- Periods of meromorphic modular forms with vanishing residues.
- Periods of meromorphic modular forms with non-vanishing

residues.
- Integrals of these forms along open contours.

- More generally, one might get identities involving objects
which are not quite modular forms. These suggest relations
like

periods of
E4√
j

= periods of the newform in S4(Γ0(24)) .
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