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• High-precision theoretical description of Standard
Model processes is of crucial importance. In particular,
the New Physics — new particles and interactions — is
likely to appear as small deviations from SM and
therefore can be detected only with high precision of
theoretical predictions at hand.

• From the computational point of view, our ability to
obtain high-precision results depends crucially on
multiloop calculation techniques. Complexity grows
both qualitatively and quantitatively in an explosive
way with the number of loops and/or scales.

• Besides these practical purposes, multiloop calculations
provide a perfect polygon for trying the methods from
various mathematical fields: differential equations,
complex analysis, number theory, algebraic geometry
etc.
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Example: g − 2 at one loop [Schwinger, 1948] 3/46

• Electron scattering in electromagnetic field is described by two form factors F1,2:

jµ = u(p′)
[

γµF1(q2) −
σµνqν

2m
F2(q2)

]
u(p), p′ = p + q, σµν = 1

2 [γµ, γν ] .

• F1(0) = 1 and it can be shown that F2(0) = 1
2 (g − 2) is the anomalous magnetic

moment (AMM).

• In the leading approximation j(0)
µ = = u(p′)γµu(p) =⇒

F (0)
1 = 1, F (0)

2 = 0.

• In the next-to-leading (NLO) approximation we have

j(1)
µ = = −ie2

ˆ d4k
(2π)4

u(p′)γν(p̂′ − k̂ + m)γµ(p̂ − k̂ + m)γνu(p)
[(p′ − k)2 − m2 + i0][k2 + i0][(p − k)2 − m2 + i0]

Each element of the diagram corresponds to a specific factor in the expression.
The expression is already somewhat complicated, but we still can treat it manually if
we use Feynman parametrization

1
[(p′ − k)2 − m2 + i0][k2 + i0][(p − k)2 − m2 + i0]

= 2
1ˆ

0

1ˆ

0

dxxdz
[k2 − 2k · (zp + z̄p′)x + i0]3

,

and make a shift k → k + (zp + z̄p′)x .



Calculation of g − 2 @ 1 loop 4/46

After some γ-matrix algebra we get

j(1)
µ = −2ie2

1ˆ

0

1ˆ

0

dxxdz
ˆ d4k

(2π)4 [
−k2 + (zp + zp′)2 x2 − i0

]3

× u(p′)
{

γµ

[
2x2

(
m2 + zzq2

)
− 2x

(
2m2 − q2

)
− k2

]
−

σµνqν

2m
(

4xxm2
)}

u(p)

The highlighted parts contribute to F (1)
1 and F (1)

2 , respectively.

Performing Wick rotation k0 → i k̃0 and taking the integrals we obtain Schwinger’s
celebrated result: F (1)

2 (0) = 2π2e2 ´ 1
0
´ 1

0 dxxdz
´ dk̃2 k̃2(4xxm2)

(2π)4[k̃2+m2x2−i0]3 = α
2π .
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Dimensional regularization

Note that already in one loop we will encounter problems when calculating

F (1)
1 (q2) = 2e2

1ˆ

0

1ˆ

0

dxxdz
ˆ d4k̃

(2π)4
k̃2−2x

(
2m2 − q2

)
+ 2x2

(
m2 + zzq2

)[
k̃2 + (zp + zp′)2 x2 − i0

]3 .

F1 diverges both at large (UV) and at small (IR) k̃2.

Both UV and IR diver-
gencies are regularized within dimensional regularization d = 4 − 2ϵ .
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Next corrections

At two loops the calculations of g − 2 get much more involved [Sommerfield,
1957]. Starting from 3 loops it is practically impossible to do calculations by
hand. Current world records for analytical g−2 is 4 loops [Laporta, 2017] (earlier
calculated numerically with impressive efforts by Kinoshita and collaborators).

Incomplete list of modern multi-loop methods and tools

• Parametric representations
• alpha- (or Feynman)

representation (also LP repr.).
• Baikov representation.
• Mellin-Barnes representation.

• Expansion by regions.
• In momentum representation
• In Feynman representation.

• IBP reduction.
• In momentum representation.
• In parametric representations.

• Differential equations.
• Reduction to ϵ-form.
• Frobenius expansion near

singular point.
• Using ϵ-regular basis.

• Recurrence relations
• with respect to dimensionality

d .
• with respect to powers of

denominators.
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1. Diagram generation ✓

Generate diagrams contributing to the chosen order of perturbation theory.

Tools: qgraf [Nogueira, 1993], FeynArts [Hahn, 2001], tapir [Gerlach et al., 2022],. . .

2. IBP reduction

Setup IBP reduction, derive differential system for master integrals.

Tools: FIRE6 [Smirnov and Chuharev, 2020], Kira2 [Klappert et al., 2021], LiteRed [RL,
2012], . . .

3. DE Solution

Reduce the system to ϵ-form, write down solution in terms of polylogarithms.
Fix boundary conditions by auxiliary methods.

Tools: Fuchsia [Gituliar and Magerya, 2017], epsilon [Prausa, 2017], Libra [RL, 2021]

NB: 3rd step is not always doable.



IBP reduction



IBP identities [Chetyrkin and Tkachov, 1981] 7/46

Given a Feynman diagram, consider a family

j(n) = j(n1, . . . , nN) =
ˆ

dµLD−n =
ˆ L∏

i=1

dd li
N∏

k=1

D−nk
k ,

l1, . . . lL –loop momenta, p1, . . . pE — external momenta.

p1p2

pE

-p1-p2...-pE

There are N = L(L + 1)/2︸ ︷︷ ︸
# of li ·lj

+ L · E︸︷︷︸
# of li ·pj

scalar products involving loop momenta.

D1, . . . , DM — denominators of the diagram, DM+1, . . . , DN — irreducible
numerators, such that D1, . . . , DN form a basis, i.e. any scalar product can be
uniquely expressed via linear function of Dk .

IBP identities

In dim. reg. the integral of divergence is zero (no surface terms):

0 =
ˆ

dµL
∂
∂li

· qj D−n=
∑

s

cs(n)j(n + δs).

Explicitly differentiating, we obtain relations between integrals.
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Laporta algorithm (FIRE, Kira, Reduze, . . . )

• generate identities for many numeric n ∈ ZN .

• use Gauss elimination and collect reduction rules
to database.

• twist: mapping to finite fields Fp +
reconstruction.⇐= naturally parallelizable

Heuristic search (LiteRed)

1. Generate identities for shifts around n with
symbolic entries.

2. Use Gauss elimination until acceptable rule is
found.

3. Solve Diophantine equations to derive
applicability condition.
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Operators A and B

Ak f (n1, . . . , nk , . . . , nN) = nk f (n1, . . . , nk + 1, . . . , nN) ,

Bk f (n1, . . . , nk , . . . , nN) = f (n1, . . . , nk − 1, . . . , nN) ,

It is easy to check that [Ak , Bm] = δkm, i.e., these operatorsa implement (a
representation of) N-th Weyl algebra AN .
aNB: these notations imply that operators act on function rather than on its value. So Ak f = f̃ , such

that f̃ (. . . , nk , . . .) = nk f (. . . , nk + 1, . . .). Thus we will sometimes use braces, like in (Ak f )(n).

Using linearity of Dk in sij and completeness, we can write qj · ∂
∂li

Dk = c(ij)
km Dm + c(ij)

k ,

where c(ij)
km and c(ij)

k are some coefficients independent of loop momenta. Then IBP
identities can be written as

IBP identities in terms of A and B operators

ˆ
dµL

∂
∂li︸︷︷︸

O(ij)

·qj D−n = − [c(ij)
km AkBm + c(ij)

k Ak − dδij ]︸ ︷︷ ︸
P(ij)(A,B)

j(n) = 0.

NB: by construction c(ij)
km and c(ij)

k are independent of n and d .
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IBP reduction as reduction wrt sum of left and right ideals in AN I 10/46

Operators P(ij)(A, B) generate a left ideal

L = ⟨P(11), . . . , P(L, L+E)⟩left =
{∑

ij Cij (A, B)P(ij)(A, B)
∣∣∣Cij (A, B) ∈ AN

}
.

Informally, L consists of all linear combinations of IBP identities. Any combination of
IBP identities can be written as Lj(1) = 0, L ∈ L .

Let us write the integral j(n) in the form

j(n) = Y n j(1) =
N∏

k=1

Y nk
k j(1), Y nk

k =

{
B1−nk

k nk ⩽ 0
1

(nk −1)! Ank −1
k nk > 0

One might think of reducing j(n) by finding the decomposition
Y n = L(A, B) + M(A, B), where L ∈ L and the “remainder” M is simplest possible1.
Finding this decomposition is algorithmically solved via construction of Groebner basis
of L (implemented, e.g., in Singular). Substituting this decomposition and using the
fact that Lj = 0, we have j(n) = Mj(1) . Assuming M is simple enough, we
might hope for the reduction.

Unfortunately, a little experimenting shows that this reduction is not satisfactory, the
quotient ring AN/L is not even finite-dimensional (the number of “master integrals” is
infinite).
1NB: We have to fix monomial order to talk about simplicity/complexity.
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What relations have we missed? We missed relations

(BkAk f )(. . . 1k . . .) = 0

Therefore, along with the left ideal L = ⟨P(11), . . . , P(L, L+E)⟩left we have to consider
also the right ideal
R = ⟨B1A1, . . . , BNAN⟩right =

{∑
k BkAkCk(A, B)

∣∣Ck(A, B) ∈ AN
}

and try to find
the decomposition

IBP reduction as reduction wrt L + R

Y n = L(A, B) + R(A, B) + M(A, B),

where L ∈ L, R ∈ R, and the “remainder” M is simplest possible.

Substituting this decomposition, we get the reduction j(n) = Mj(1) .
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Y n = L(A, B) + R(A, B) + M(A, B),

where L ∈ L, R ∈ R, and the “remainder” M is simplest possible.

Substituting this decomposition, we get the reduction j(n) = Mj(1) .
It is easy to understand that finding this L + R + M decomposition gives a full
reduction. Suppose we have rule j(n) → Mj(1), reducing j(n) to master integrals. It
means that there exists L ∈ L, such that [Y n − L − M]f (1) = 0 for arbitrary function
f . We then claim that R = [Y n − L − M] belongs to R.
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What relations have we missed? We missed relations

(BkAk f )(. . . 1k . . .) = 0

Therefore, along with the left ideal L = ⟨P(11), . . . , P(L, L+E)⟩left we have to consider
also the right ideal
R = ⟨B1A1, . . . , BNAN⟩right =
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IBP reduction as reduction wrt L + R

Y n = L(A, B) + R(A, B) + M(A, B),

where L ∈ L, R ∈ R, and the “remainder” M is simplest possible.

Substituting this decomposition, we get the reduction j(n) = Mj(1) .

Despite an apparent similarity to L + M decomposition, there seem to be no
known effective algorithm of finding L + R + M decomposition. In particular,
Groebner bases can not help. The problem looks very similar to D-modules
theoretical integration problem, so there maybe such an algorithm. One should be
warned though that existing (implementations of) D-modules algorithms are
extremely slow.
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To derive Feynman representation for the integral

j(n1 . . . , nM ) =
ˆ ∏L

i=1
dd li

πLd/2
∏M

k=1
Dnk

k

we use exponential parametrization D−nk
k =

´∞
0

dzk znk −1
k

Γ(nk ) e−zk Dk to obtain

j(n1 . . . , nM ) =
ˆ ∏L

i=1
dd li

πLd/2

ˆ

RM
+

M∏
k=1

dzk znk −1
k

Γ(nk )
e−ΣM

k=1zk Dk

Since Dk are linear functions of li · lj and li · pj , we can represent

ΣkzkDk = aij li · lj + 2bi · li + c,

where a, b, c are linear combinations of zk . Taking the integrals over li , we obtain

j(n1 . . . , nM) =
ˆ

RM
+

M∏
k=1

dzkznk −1
k

Γ(nk)
U(z)−d/2e−F (z)/U(z),

where U = det a and F = [c − (a−1)ij bi · bj ]U are Symanzik polynomials.

Note that both U and F are homogeneous polynomials of zk of degree L and L + 1,
respectively.
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Now we insert 1 =
´∞

0 dsδ
(

s − Σ̃kzk
)

, where Σ̃k denotes any nonempty partial sum
(i.e., k runs over any nonempty subset of {1, . . . , M}). After rescaling zk → szk , we
pull out s from the argument of δ-function and then take the integral over s. We
obtain

Feynman representation (aka alpha-representation, parametric representation)

j(n1 . . . , nM) = Γ[Σknk − L d
2 ]
ˆ

RM
+

M∏
k=1

dzkznk −1
k

Γ(nk)
F Ld/2−Σk nk

U(L+1)d/2−Σk nk
δ
(

1 − Σ̃kzk
)

Inserting instead 1 = 1
Γ((L+1) d

2 −Σk nk)
´

ds s(L+1) d
2 −Σk nk −1e−s and rescaling zk → szk

we obtain a modified representation [RL and Pomeransky, 2013]:

Lee-Pomeransky representation

j(n1 . . . , nM) =
Γ(d/2)

Γ[(L + 1)d/2 − Σknk ]

ˆ

RM
+

M∏
k=1

dzkznk −1
k

Γ(nk)
G−d/2 , G = U + F

To prove equivalence, insert 1 =
´∞

0 dsδ
(

s − Σ̃kzk
)

, rescale zk → szk and take the
integral

´
ds sΣk nk −Ld/2−1(U + sF )−d/2.
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The integrand in the loop integral depends on loop momenta via scalar products
si,j = li · qj . Therefore, we may think of “integrating out” other integration variables.
Indeed, it appears to be possible [Baikov, 1997]. Let us write

j(n1 . . . , nN) =
ˆ ∏L

i=1 dd li
πLd/2 f (n, sij ) , f (n, sij ) =

N∏
k=1

D−nk
k

We start from the integral over l1. The integrand depends on l1 via scalar products
s1,1, . . . , s1,K , where K = L + E . We write

dd l1

π
d
2

=
dK−1l1∥

π
K−1

2

dd−K+1l1⊥

π
d−K+1

2
=

ds12 . . . ds1K

π
K−1

2 V
1
2 (q2, . . . qK )

dl21 =dl21⊥︷︸︸︷
ds11

( l21⊥︷ ︸︸ ︷
V (q1, . . . qK )
V (q2, . . . qK )

)d−K−1
2

Γ(d − K + 1)/2]

where l1∥ (l1⊥) denote the components in (the orthogonal complement of) the linear
subspace spanned by q2 = l2, . . . , qL = lL, qL+1 = p1, . . . , qL+E = pE .

Here V (q1, . . . qK ) = det{qi · qj |i,j=1...K } is the Gram determinant = square of
volume of the parallelepiped constructed on q1, . . . qK . Respectively, the matrix
V̂ (q1, . . . qK ) = {qi · qj |i,j=1...K } is called the Gram matrix.



Baikov representation II 15/46

Repeating the same transformation for l2, . . . , lL, we obtain

π(L−N)/2

Γ
[

d−K+1
2 , . . . , d−E

2

] ˆ L∏
i=1

K∏
j=i

dsij
[V (q1, . . . , qK )](d−K−1)/2

[V (p1, . . . , pE )](d−E−1)/2 f (n, sij )

Since D1, . . . DN are linear in sij and form a basis, we have∏L
i=1

∏K
j=i dsij = J

∏N
k=1 dDN , where J =

(
det ∂Dk

∂sij

)−1
(here ij should be

understood as index running over N distinct values). Also
V (q1, . . . , qK ) = P(D1, . . . , DN) is polynomial in Dk (called Baikov polynomial).
Finally we have

Baikov representation

j(n) =
π(L−N)/2J

Γ
[

d−K+1
2 , . . . , d−E

2

] ˆ
D

N∏
k=1

dDk
Dnk

k

[P (D1, . . . DN)](d−K−1)/2

[V (p1, . . . , pE )](d−E−1)/2

With some reservations, the integration region is

D =
{

(D1, . . . , DN) ∈ RN
∣∣P (D1, . . . DN) > 0

}
.



IBP reduction in parametric
representations



IBP reduction in Baikov repr. [Zhang, 2014; Larsen and Zhang, 2016] I 16/46

Both Lee-Pomeransky and Baikov representations depend on one polynomial
raised to the power, depending on d . It is obvious that if we act on the in-
tegrand with a random differential operator, the power of this polynomial will be
shifted. Therefore, we will get relations between integrals not only with shifted
indices, but also with shifted dimension. If we don’t want this, we have to choose
the differential operator very carefully.

Let us consider the operator ∂mQm = ∂Qm
∂Dm

+ Qm
∂
∂Dm

, where Qm are some
polynomials of Dk . If we act with this operator on the integrand of Baikov
representation j(n) ∝

´ ∏
k

dDk
Dnk

k
P

d−K−1
2 , we have

ˆ
dDP

d−K−1
2

[
∂

(
D−nQm

)
∂Dm

+
d − K − 1

2
D−nQm

∂P
P∂Dm

]
Here we used notations dD =

∏
k

dDk , D−n =
∏

k
D−nk

k . Extra power of P in the
denominator may appear due to the term Qm

∂P
P∂Dm

. However, if we choose Qm s.t.
Qm∂mP = −QP , where Q is also some polynomial, the P in the denominator gets

cancelled.



IBP reduction in Baikov repr. [Zhang, 2014; Larsen and Zhang, 2016] II 17/46

Let p = (p1, . . . pn) be a vector of polynomials, then Q = (Q1, . . . , Qn) is called
syzygy of (p1, . . . pn) if the following relation holds

Qp =
n∑

m=1

Qmpm = 0 .

Finding a basis of syzygy module is a classical task of commutative algebra.
It is implemented in many CAS, including Singular, Macaulay2, CoCoA.

Thus, finding a syzygy basis of the set ∂P
∂D1

, . . . , ∂P
∂DN

, P we can construct IBP
identities not shifting dimensions. Let Qm(D) ∂P

∂Dm
+ QP = 0 then we have

IBP identity from syzygy via A and B

[Qm(B1, . . . , BN)Am + 1
2 (d − K − 1)Q(B1, . . . , BN)]j(n) = 0, K = L + E

NB: In Ref. [Böhm et al., 2018] it was shown, that the syzygy module provides exactly
the same information as momentum-space IBP identities. However, syzygy approach
in Baikov representation provides a more flexible setup.



IBP reduction in LP representation I [RL, 2014] 18/46

Note that N = L(L + 1)/2 + L · E grows quadratically with L, while M, the # of lines
in the diagram, grows only linearly. Parametric representation: only M indices.
Therefore, the IBP reduction in LP representation might be more effective for higher L.

Integration region RM
+ has boundary, therefore surface terms are likely to appear.

Let us write the LP representation in the form

j(n) =
Γ [d/2] j̃(n)

Γ [(L + 1) d/2 − Σknk ]
, j̃(d)(n) = In

[
G−d/2

]
=

∏
k

Ink
k

[
G−d/2

]
,

where the functionals In
k are determined as

In
k [ϕ(zk)] =

{ ´∞
0

dzk zn−1
k

Γ(n) ϕ(zk) n > 0
(−∂zk )|n|ϕ(0) n ⩽ 0

These functionals allow us to account also for negative nk . It can be checked that

Im
k [−∂ϕ(zk)/∂zk ] = Im−1

k [ϕ(zk)] , Im
k [zkϕ(zk)] = mIm+1

k [ϕ(zk)] .



IBP reduction in LP representation II 19/46

Suppose now that we have a syzygy QG + Qk∂kG = 0. Then we can transform
In

[
−∂k(Qk/Gd/2)

]
in two different ways.

• Using the first relation we get In
[

− ∂k(Qk/Gd/2)
]

=
∑

k In−1k
[
Qk/Gd/2

]
.

• Explicitly differentiating and using the syzygy relation, we get

In
[

− ∂k(Qk/Gd/2)
]

= In
[

( d
2 Q − ∂kQk)/Gd/2

]
.

Equating these two expressions and using the second relation, we get

IBP identity from syzygy in LP representation

[Qk(A1, . . . , AM)Bk + d
2 Q(A1, . . . , AM)]̃j(n) = 0

Note that this derivation holds both for positive and non-positive indices.

IBP reduction in Lee-Pomeransky representation is quite promising, but a fast
algorithm for constructing a minimal (rather than Groebner) basis of syzygy
module is very desirable.

NB: Special case of syzygy module needed for parametric reduction is closed wrt Lie
bracket [Q(1), Q(2)] = [Q(1)

m ∂m, Q(2)
n ∂n]. Maybe it can be used somehow?



IBP reduction with intersection theory? [Mastrolia and Mizera, 2019] 20/46

• Integral in LP representation is understood as
bilinear pairing between integration cycle C and
differential form ϕ.

ˆ
C

G−νϕ = ⟨ϕ|C ] , Pochhammer contour.

• This bilinear form is invariant under ϕ → ϕ + ∇ν ϕ̃ and/or C → C + ∂C̃ , where
∇ν = d − νG−1dG is twisted differential. Therefore, ⟨·|·] is correctly defined on
the elements of twisted de Rham cohomology and twisted homology —
finite-dimensional spaces. Twisted cycles C can be understood as ordinary cycles
on the Riemann surface of the function G−ν .

• Ref. [Cho and Matsumoto, 1995] introduced a pairing ⟨ϕ1|ϕ2⟩, correctly defined
for ∇ν and ∇−ν de Rham cohomologies. Then the IBP reduction is a basis
expansion

⟨ϕ|C ] =
∑

i

⟨ϕ|ϕi ⟩ ⟨ϕi |C ] ,

where ji = ⟨ϕi |C ] are master integrals.

• Unfortunately, ⟨ϕ1|ϕ2⟩ is still very difficult to calculate in general. All examples
considered so far correspond to integrals with only a few (1 or 2) indexes.



Dimension shifts and differentiation



Dimension shift relations [Tarasov, 1996; Derkachov et al., 1990] 21/46

Feynman representation in d − 2 dimensions

j(d−2|n) = Γ[Σknk+L−L d
2 ]
ˆ

RM
+

M∏
k=1

dzkznk −1
k

Γ(nk)
U

F Ld/2−Σk nk −L
U(L+1)d/2−Σk nk −L δ

(
1 − Σ̃kzk

)
Note an extra factor of U. Highlighted are the modifications which appeared due to
the shift d → d−2. Then it is easy to check that the following relation holds:

Dimension raising relation [Tarasov, 1996]

j(d − 2|n) = U(A1, . . . , AN)j(d |n) (U is 1st Symanzik polynomial)

Similarly, from Baikov representation we obtain

Dimension lowering relation [Derkachov, Honkonen, and Pis’mak, 1990]

j(d+2|n) =
2LV −1(p1, . . . , pE )

(d − K + 1)L
P(B1, . . . , BN)j(d |n) (P is Baikov polynomial)

Note a remarkable correspondence:

Feynman parameters zk ⇔ Ak Baikov parameters Dk ⇔ Bk .



Differentiating wrt kinematic parameters. 22/46

Differentiating the integral j (n) wrt to m2 reduces to differentiating the integrand.
Differentiating wrt some invariant (pi · pj ) is trickier as the integrand depends on the
scalar products of pi , pj with loop momenta. We have to express the derivative wrt
(pi · pj ) via derivatives wrt pi and/or pj

Differentiating wrt invariant [Remiddi, 1997]

∂

∂ (pi · pj )
j (n) = 2−δij

[
P̂−1

]
ik

pk · ∂pj j (n) .

Here P̂ = {pi · pj |i , j = 1, . . . , E} is Gram matrix.
The derivative ∂pj can now be applied to the integrand of j(n).

Alternatively, one might consider differentiation in Feynman or Baikov representations.
Usually those also shift dimension, but this can be fixed as shown poreviously. E.g.,
using Lee-Pomeransky representation it is easy to obtain the following formula

Differentiating in Feynman representation

∂

∂x
j (d − 2|n) = −

∂F (A1, . . . , AN)
∂x

j(d |n).

Here x is any kinematic parameter. Note the dimension shift in the lhs.



Differential equations and dimensional recurrences 23/46

As a result of IBP reduction we express amplitudes via a finite set of master integrals
j = (j1, . . . , jK )⊺. What is even more important, we can obtain closed equations for
the master integrals. To obtain these equations we simply apply the dimensional shifts
and/or differentiate the master integrals and then IBP-reduce the result. Then the
dimension shifts and/or derivatives of the master integrals is expressed as linear
combination of the same set of master integrals j = (j1, . . . , jK )⊺. We obtain

Differential equations

[Kotikov, 1991; Remiddi, 1997]

∂x j = M(x , d)j

Dimensional recurrences

[Tarasov, 1996; Derkachov et al., 1990]

j(d − 2) = R(x , d)j(d)

It appears that in multi-loop case it is often easier to solve these equations than to use
direct methods for calculation of the master integrals.



Dimensional Recurrences and Analyticity (DRA) method [RL, 2010] 24/46

Dimensional recurrence relations are especially useful for one-scale integrals, when the
differential equations can not help. The approach is very effective when the matrix R
in j(d − 2) = R(d)j(d) is triangular. Using analytical properties of integrals as
functions of d to fix the arbitrary periodic functions, one can obtain the solution in the
form of multiple sums with factorized summand. High-precision evaluation of these
sums can be done with SummerTime package [RL and Mingulov, 2016]. Using PSLQ
algorithm, one can turn the obtained numerical results into analytical expressions.

Four-loop HQET propagators with DRA method [RL and Pikelner, 2023]



Differential equations



Differential equations for master integrals 25/46

• Differential equations for master integrals have the form

∂x j = M(x , ϵ)j

• One can try to simplify the equation by transformation j = T j̃ , so that

∂x j̃ = M̃ j̃ , M̃ = T −1 [MT − ∂x T ]

• [Henn, 2013]: there is often a “canonical” basis J = T −1j such that

∂x J = ϵS(x)J (ϵ-form)

• General solution for d.e. in ϵ-form is easily expanded in ϵ:

U(x , x0) = Pexp

ϵ

x̂

x0

dxS(x)

 =
∑

n

ϵn
˚

x>xn>...>x0

dxn . . . dx1S(xn) . . . S(x1)

The algorithm of finding transformation to ϵ-form was devised in [RL, 2015]. It
is implemented in 3 publicly available codes: Fuchsia [Gituliar and Magerya,
2017], epsilon [Prausa, 2017], and recently in Libra [RL, 2021].
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Algorithm proceeds in three major stages, each involving a sequence of “elementary”
transformations.

1. Fuchsification: Eliminating higher-order poles

Input: Rational matrix M (x , ϵ)
Output: Rational matrix with only simple poles on the extended complex plane,
M (x , ϵ) =

∑
k

Mk (ϵ)
x−ak

.

2. Normalization: Normalizing eigenvalues

Input: Matrix from the previous step, M (x , ϵ) =
∑

k
Mk (ϵ)
x−ak

.
Output: Matrix of the same form, but with the eigenvalues of all Mk (ϵ) being
proportional to ϵ.

3. Factorization: Factoring out ϵ

Input: Matrix from the previous step.
Output: Matrix in ϵ-form, M (x , ϵ) = ϵS(x) = ϵ

∑
k

Sk
x−ak

.



Balance 27/46

Both reduction to Fuchsian form and normalization of the matrix residues can be done
with the following

Balance transformation

T (x) = B(P, x1, x2|x) def= P + x−x2
x−x1

P ,

T −1 (x) = B(P, x2, x1|x) = P + x−x1
x−x2

P ,

where P is some projector and P = I − P. When
x1 = ∞ or x2 = ∞ omit denominator or numerator,
respectively.
Balance transformation changes properties (pole or-
der and eigenvalues of matrix residue) of the differ-
ential system at x = x1 and x = x2 without chang-
ing its properties at any other point.

x2

x1
P

The basic idea of the algorithm is to adjust the image and coimage of P to the
properties of the system at x1 and x2, respectively, so as to improve those at
x1 without worsening them at x2.



Libra program [RL, 2021] 28/46

• Libra is a Mathematica package useful for treatment of differential systems
which appear in multiloop calculations.

• Tools for reduction to ϵ-form
• Visual interface
• Algebraic extensions
• Birkhoff-Grothendieck factorization (for irreducibility criterion)

In[1]: t=VisTransformation[M,x,ϵ];

In[2]: t=FactorOut[M,x,ϵ,µ];

In[3]: {L,d,R}=BirkhoffGrothendieck[T,x];

• Tools for constructing solution
• Determining boundary constants via asymptotic coefficients.
• Constructing ϵ-expansion of Pexp.
• Constructing Frobenius expansion of Pexp.

In[3]: U=PexpExpansion[{M,6},x];



Example of using Libra 29/46

One of many 4-loop massless vertex topologies with two off-shell legs.

• Differential system

∂x j =




︸ ︷︷ ︸

374 × 374 matrix

j, where j =



...

...

...

...


• Maximum size of the diagonal blocks is “only” 11 × 11.

• No global rationalizing variable. Three algebraic extensions are needed for the
reduction to ϵ-form:

x1 =
√

x , x2 =
√

x − 1/4, x3 =
√

1/x − 1/4



Non-polylogarithmic integrals
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• As we know from Bolybrukh counterexample to Hilbert’s 21st problem2,
[Bolibrukh, 1989], the reduction algorithm may break already in the first step —
reduction to global Fuchsian form. But with generic ϵ it is quite unlikely. I am
not aware of any such case for multiloop integrals.

• The algorithm may and does sometimes break in the second step — in making all
eigenvalues of all matrix residues proportional to ϵ. A strict criterion of
irreducibility is devised in Ref. [RL and Pomeransky, 2017]. The question
(ir)reducibility of the system is formulated as that of (non)triviality of a certain
holomorphic vector bundle and thus can be decided via Birkhoff-Grothendieck
factorization.

With some reservations, the (ir)reducibility to ϵ-form corresponds to the
(non)polylogarithmic integrals.

2Hilbert’s 21st pr.: Proof of the existence of linear differential equations having a prescribed monodromic group.



Non-polylogarithmic integrals: “Systematic” approach 31/46

1. “Systematic” approach.
• Reduce the system to (A + ϵB)-form:

∂x j = (A + ϵB)j.

• “Integrate out” the ϵ0 form: make substitution j = U0J, where U0 is a fundamental
matrix for the unperturbed system ∂x U0 = AU0.

• The system for J is in ϵ-form:

∂x J = ϵB̃J, B̃ = U−1
0 BU0.

• The general solution U1 = Pexp
[

ϵ
´

dxB̃(x)
]

is expanded in terms of iterated

integrals with weights being the elements of B̃.
NB: irreducibility to ϵ-form means that elements of B̃ are transcendental functions. In
particular, the weights might be possible to represent in terms of modular forms.

• Pros: to some extent decouples the solution of unperturbed equation and ϵ-expansion.
• Cons: Iterated integrals with transcendental weights are poorly investigated as

compared to polylogarithms. When it comes to numerical evaluation, it is often
necessary to reside to some sort of Frobenius method anyway.

2. Meanwhile, the Frobenius method can be applied directly to the differential
system. It seems to be the most effective approach for numerical evaluation. In
particular, it works for 3-loop massive form factors [Fael, Lange, Schönwald, and
Steinhauser, 2022].

3. For many cases of non-polylogarithmic integrals there exists a one-fold integral
representation in terms of polylogarithms and algebraic functions.



Example: maximal cut of non-planar vertex 32/46

Consider one solution of the homogeneous differential system,
J1 = 2F1

(
1
2 , 1

2 + 2ϵ, 1 + ϵ|x
)

. Integrating out ϵ0 gives

J1 =
∑

k

ϵk
∑

i∈{1,2}k+1

2K (xi0 )
π

I(Ωi0 i1 , Ωi1 i2 , . . . , Ωik−1 ik , Ωik 1|x) ,

where I denotes iterated integral, x1 = x , x2 = x = 1 − x , and

Ω =
(

Ω11 Ω12
Ω21 Ω22

)
= B̃(x)dx =

(
u(x)v(x) −u(x)v(x)
u(x)v(x) −u(x)v(x)

)
dx

πxx
,

u(x) = K(x) − 2E(x), v(x) = 2xK(x) − 2E(x) .

Ω can be expressed via modular forms. Meanwhile, there are much simpler
representations in terms of one-fold integrals:

J1 =
Γ(ϵ + 1)

√
πΓ

(
ϵ + 1

2

) ∑
k

ϵk
1ˆ

0

dt√
t(1 − t)(1 − tx)

lnk 1−t
(1−tx)2

k!

J1 =
1

iπ2

‰
√

x<|t|<1

dt K(x/t2)
t(1 − t2)

[
1−2ϵ(1−2t)H1+2ϵ2 [2H0,1 − (1 − 2t) (3H1,−1 + H1,1)]+. . .

]
,

where Hn = Hn(t) is harmonic polylogarithm.



Quadratic relations. 33/46

• There is a nontrivial symmetry in all available examples of differential systems for
multiloop integrals. It is closely related to the intersection theory for twisted
(co)homology groups.

• In particular, this symmetry results in the nontrivial quadratic relations for the
terms of ϵ-expansion of non-polylogarithmic integrals.

Rational equivalence

We will say that two systems are rationally equivalent if ∃ a rational transfor-
mation T which maps the first system to the second, M2 = T −1(M1T −∂x T ).
We will write M2

R
≂ M1 for matrices of rationally equivalent systems.

• The monodromy groups of rationally equivalent systems are isomorphic.

• Thanks to dimensional recurrences we have M(ϵ − 1)
R
≂ M(ϵ).

• The ϵ-reducibility means the rational equivalence to the system
∂x J = ϵS(x)J with S being independent of ϵ.

Using the same tools (e.g. Libra) as for the reduction to ϵ-form it is easy to
check whether the two systems are rationally equivalent.



Symmetry of the homogeneous differential equations 34/46

The differential systems for master integrals have a block-triangular form, with each
block corresponding to the master integrals of the specific sector. The corresponding
homogeneous systems are satisfied by the maximally cut master integrals of the sector.
Our observation concerns homogeneous differential systems corresponding to each
diagonal block.

Observation

Let
∂x j = M(ϵ, x)j (DE)

be such a homogeneous differential system corresponding to some block irre-
ducible to block-triangular form. Then we observe on many examples that the
differential system

∂x j̃ = −M⊺(−ϵ, x )̃j (DE⋆)

is rationally equivalent to the original system (DE).

Can this statement be strictly proved from twisted intersection theory?
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Remarks

1. Note that if M(ϵ)
R
≂ −M⊺(−ϵ) holds for d = d0 − 2ϵ then it necessarily

holds for any d = d0 + k − 2ϵ (k ∈ Z can be both even and odd) —
thanks to dimensional recurrences.

2. Note that for −M⊺(−ϵ)
R
≂ M(ϵ) to be possible, the eigenvalues of the

matrix residues should be either integer or half-integer at ϵ = 0. The
latter is a widely known observation.

Let us now consider the general solution of ∂j = Mj in the form of path-ordered
exponent, U(x , x0|ϵ) = Pexp

[´ x
x0

M dx
]
. It is easy to see that

U−1⊺(x , x0| − ϵ) = Pexp
[
−
´ x

x0
M⋆ dx

]
, so, is a general solution of ϵ-conjugated

differential system ∂j = M⋆j .

Now we use our observation: M = T −1((−M⋆) T − ∂T ). For path-ordered exponents
it translates to

U(x , x0|ϵ) = T −1(x , ϵ)U−1⊺(x , x0| − ϵ)T (x0, ϵ)

Therefore, we have

U⊺(x , x0| − ϵ)T (x , ϵ)U(x , x0|ϵ) = T (x0, ϵ)
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Remarks

1. Note that if M(ϵ)
R
≂ −M⊺(−ϵ) holds for d = d0 − 2ϵ then it necessarily

holds for any d = d0 + k − 2ϵ (k ∈ Z can be both even and odd) —
thanks to dimensional recurrences.

2. Note that for −M⊺(−ϵ)
R
≂ M(ϵ) to be possible, the eigenvalues of the

matrix residues should be either integer or half-integer at ϵ = 0. The
latter is a widely known observation.

Let us now consider the general solution of ∂j = Mj in the form of path-ordered
exponent, U(x , x0|ϵ) = Pexp

[´ x
x0

M dx
]
. It is easy to see that

U−1⊺(x , x0| − ϵ) = Pexp
[
−
´ x

x0
M⋆ dx

]
, so, is a general solution of ϵ-conjugated

differential system ∂j = M⋆j .

Now we use our observation: M = T −1((−M⋆) T − ∂T ). For path-ordered exponents
it translates to

U(x , x0|ϵ) = T −1(x , ϵ)U−1⊺(x , x0| − ϵ)T (x0, ϵ)

Therefore, we have

U⊺(x , x0| − ϵ)T (x , ϵ)U(x , x0|ϵ) = T (x0, ϵ)
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Quadratic constraints (outcome)

Let j1(x , ϵ) and j2(x , ϵ) be any two (possibly coinciding) solutions of the system
∂x j = M(x , ϵ)j . Then it is possible to find (using the available techniques) a
rational matrix T (x , ϵ), such that

j⊺1 (x , −ϵ)T (x , ϵ)j2(x , ϵ) = const

is independent of x . (The right-hand side can be found by considering some
suitable asymptotics.)

Note that the opposite sign of ϵ in j⊺1 (x , −ϵ), so this relation concerns the solutions of
two different differential systems (related via ϵ → −ϵ). But within dimensional
regularization we are interested in the coefficients of ϵ expansion, which are the same,
up to alternating sign, for j1(x , −ϵ) and j1(x , ϵ). Thus, expanding the above relation
in ϵ, we obtain an infinite set of quadratic relations for the expansion coefficients of
the solution of the original differential system.

These quadratic relations seem to be the same as those which come from the
intersection theory.
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Two-loop equal mass cut sunrise in d = 2 − 2ϵ dimensions can be expressed via
hypergeometric functions 2F1

(
1
3 , 2

3 ; 1 − ϵ; y
)

and 2F1
(

4
3 , 2

3 ; 1 − ϵ; y
)

[Tarasov, 2006].
The quadratic constraint reads

2F1
(

1
3 , 2

3 ; 1 − ϵ; y
)

2F1
(

1
3 , 2

3 ; ϵ + 1; y
)

+ (y−1)
3ϵ 2F1

(
4
3 , 2

3 ; 1 − ϵ; y
)

2F1
(

1
3 , 2

3 ; ϵ + 1; y
)

+ (1−y)
3ϵ 2F1

(
1
3 , 2

3 ; 1 − ϵ; y
)

2F1
(

4
3 , 2

3 ; ϵ + 1; y
)

= 1 .

When expanded in ϵ it results to the following “shuffling-like” identities (N = 0, 1, . . .):

N∑
n=0

(−)nHα,1n Hα,1N−n + [1 + (−)N ]y(1 − y)
N+1∑
n=0

(−)n
(

∂Hα,1n

)
Hα,1N+1−n = δN0 .

where

Hα,1n (y) =
∞∑
j=0

(3j)!
33j (j!)3 y j S1, . . . , 1︸ ︷︷ ︸

n

(j)
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Multiloop sunrise integrals in d = 2 in coordinate space are expressed via functions

IKM[{a0, b0}m0 , {a1, b1}m1 , . . . , s] =
ˆ

dx x s
∏

k

[I0(mkx)]ak [K0(mkx)]bk .

Our approach allows one to obtain quadratic relations for those functions. E.g., for
two-loop sunrise we obtain

IKM [{2, 1}m, {0, 1}1, 1] IKM [{3, 0}m, {0, 1}1, 3]

− IKM [{2, 1}m, {0, 1}1, 3] IKM [{3, 0}m, {0, 1}1, 1] =
4
(

1 − 5m2
)

(1 − m2)2 (1 − 9m2)2 .

The right-hand side has been calculated from the limit m → 0.
At 3 loops we, e.g. have

9IKM
(

{3, 1} 1
4

, {0, 1}1, 1
)

IKM
(

{3, 1} 1
4

, {0, 1}1, 3
)

−16IKM
(

{3, 1} 1
4

, {0, 1}1, 1
)

2 = 20 ,

In Ref. [Broadhurst and Roberts, 2018] remarkable quadratic relations have been
conjectured∑

k,l

IKM [{ñ, N − ñ}1, k] Dkl (N, ñ, n)IKM [{n, N − n}1, l] = πN+1−ñ−nB(N, ñ, n) ,

where D(N, ñ, n) and B(N, ñ, n) are rational numerical matrices. Recently, these
relations have been proved in Ref. [Fresán et al., 2020], except that matrix D was
defined differently. Within our approach we have been able to do the same (with yet
another definition of D).
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z1
z2 z3

γ1

γ2 γ3

z0

• Monodromy group G⟲ ⊂ GL(n,C) of the differential system ∂z j = Mj with
j = (j1, . . . jn)⊺ determines how the solution space transforms under analytical
continuation along nonequivalent closed paths3. It is generated by the
monodromies around the loops encircling each singular point of the system.

• Monodromy group captures all nontrivial properties of the differential system
while being blind to a specific realization (in particular, G⟲ is invariant wrt
rational transformations of the system).
Hilbert’s 21st problem: Proof of the existence of linear differential equations
having a prescribed monodromic group.

3Reminder: Let U(z) is a fundamental matrix, ∂z U = MU determined in the vicinity of a regular point z0, and let
U(z)|γ denotes its analytical continuation along the closed path γ starting and ending in this vicinity. Then
U(z)|γ = U(z)g(γ), where g(γ) is a complex n × n matrix (i.e. g(γ) ∈ GL(n,C)). In fact, this matrix depends
only on homotopy class [γ] (they form a fundamental group π1(C)). Thus the monodromy group
G⟲ = {g([γ])| [γ] ∈ π1(C)} is a representation of the fundamental group π1(C).



Monodromy group at ϵ = 0 and (ir)reducibility 40/46

The ϵ-reducible and ϵ-irreducible systems differ intrinsically by the type of their
monodromy groups at ϵ = 0:

• ϵ-reducible with rational transformations: monodromy group is trivial, G⟲ = {1}.

• ϵ-reducible with algebraic transformations: monodromy group is finite, |G⟲| < ∞.
Monodromy group becomes trivial on the corresponding covering space.

• ϵ-irreducible: monodromy group is (isomorphic to) a subgroup of GL(n,Z)?

In particular, for elliptic cases G⟲ is a congruence subgroup of SL(2,Z), see [Broedel
et al., 2022] for the case of 2-loop sunrise and 3-loop banana graph. This fact allows
one to express the integration kernels via modular forms.
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Monodromy group can be obtained numerically from Frobenius expansion, so it is not
so easy to see the structure from, e.g.,

g1 =
(

1 0. 0
0 −1 0
0 0 −1

)
, g2 =

(
−2. −5.6325 −4.11456

0.618343 2.16094 0.84807
−0.117344 −0.220313 0.83906

)
,

g3 =
(

−8. + 0.i −16.8975 + 19.5116i −12.3437 + 102.816i
1.85503 − 0.296943i 3.83906 − 4.57912i −0.84807 − 21.5991i

−0.352031 + 0.406491i 0.220313 + 1.52637i 5.16094 + 4.57912i

)
.

We need to find a matrix t such that t−1gk t are all integer matrices. One needs some
experimentation to find such a matrix. However, it appears to be possible! We find

that t =

 1 0 3

−3c − 1
32c

i
(

1−96c2
)

16
√

3c
−3c − 1

32c
c 2ic√

3
c

 with c = 0.11734382... being some

unrecognized constant, renders

t−1g1t =
(

−2 0 −3
0 −1 0
1 0 2

)
, t−1g2t =

(
1 0 0
0 1 0
0 0 −1

)
, t−1g3t =

(
1 0 0
0 5 6
0 −4 −5

)
.
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Two-loop sunrise4: G⟲ ∼= Γ1(6) ⊂ SL(2,Z)

Two-loop massive vertex [von Manteuffel and Tancredi, 2017]: G⟲ ∼= Γ(2) ⊂ SL(2,Z).

Two-loop EW vertex [Broedel, Duhr, Dulat, Penante, and Tancredi, 2019]: G⟲ ∼= Γ1(6) ⊂ SL(2,Z).

p1 p1

p2 p2

3-loop forward box [Mistlberger, 2018]: G⟲ ∼= Γ1(5) ⊂ SL(2,Z).

φ

4-loop HQET vertex [Brüser, Dlapa, Henn, and Yan, 2020] : G⟲ ∼= Γ(3) ⊂ SL(2,Z).

3-loop equal-mass sunrise [Broedel, Duhr, and Matthes, 2022]:

G⟲ ∼=
〈( 1 6 −5

0 1 −1
0 0 1

)
,

( 1 0 0
2 3 −2
4 4 −3

)
,

(−3 −10 7
12 31 −21
16 40 −27

)〉
⊂ GL(3,Z).

3-loop HQET sunrise G⟲ ∼=
〈(−2 0 −3

0 −1 0
1 0 2

)
,

( 1 0 0
0 1 0
0 0 −1

)
,

( 1 0 0
0 5 6
0 −4 −5

)〉
⊂ GL(3,Z)

4Here

Γ1(N) =
{

g ∈ SL(2, Z)
∣∣ g =

(
1 ∗
0 1

)
mod N

}
, Γ(N) =

{
g ∈ SL(2, Z)

∣∣ g =
(

1 0
0 1

)
mod N

}
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There is a standard approach to the simplification of the polylogarithmic expressions
using symbol map. One might think of symbols as a cleaner way to represent iterated
(or path-ordered) integrals with logarithmic weights (with some reservations, though):

I =
˙

1>τn>...>τ1>0

d ln pn(τn) . . . d ln p1(τ1)
S

−−−−−−−−−−−−→ pn⊗ . . . ⊗p1

Formal symbol manipulation rules then easily follow, e.g.

d ln(pq) = d ln p + d ln q =⇒ (. . . ⊗pq⊗ . . .) = (. . . ⊗p⊗ . . .) + (. . . ⊗q⊗ . . .)

Similarly, by ordering the integration variables in the product of integrals, we get
S(I1I2) = S(I1)� S(I2), where � denotes a shuffle product, e.g.

(a⊗b)�(c⊗d) = a⊗b⊗c⊗d+a⊗c⊗b⊗d+a⊗c⊗d⊗b+c⊗a⊗b⊗d+c⊗a⊗d⊗b+c⊗d⊗a⊗b

We have, in particular, symbols for classical polylogarithms

S(Lin(x)) = x⊗ . . . ⊗x︸ ︷︷ ︸
n−1

⊗(x − 1)



Simplifications with symbol map 44/46

Symbols are good for checking the identities, e.g., using S it is easy to establish5

7Li2
( 1+ε/z

1−iε

)
− 7Li2

( 1+ε̄/z
1+i ε̄

)
+ 7Li2

(
z+ε̄
ε̄−i

)
− 7Li2

(
z+ε
ε+i

)
+ 11Li2

(
z+ε
ε−i

)
− 11Li2

(
z+ε̄
ε̄+i

)
+4Li2(1+zε)−4Li2(1 + z ε̄)+18Li2(−iz)−18Li2(iz)+11Li2

( 1+ε̄/z
1−i ε̄

)
−11Li2

( 1+ε/z
1+iε

)
= 2iπ2

5
√

3
− 23

3 iπ ln z + 6iπ ln
(

2 −
√

3
)

− iψ′( 1
6 )

5
√

3
− 24iG, where ε = 1/ε̄ = e2πi/3.

However, strictly speaking, they are much less powerful in simplifying expressions.
E.g., if we omit in the left-hand side a couple of dilogs with not so simple arguments,
we could have failed to recognize in the symbol of the resulting expression that of the
sum of the omitted dilogs.

Simplification algorithm idea

For a given expression:

1. find all possible arguments of Lin which might enter the simplified form.

2. find equivalent form with the minimal number of polylogs.

5NB: This identity was used in real life (as well as some yet more complicated identities) for the simplification of
the total cross section of Compton scattering @NLO [RL, Schwartz, and Zhang, 2021].
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22-term relation for Li3

Introducing

f (x) = Li3(x) +
1
24

ln(1 − x) ln2
(

x2
)

−
π2

12
ln

(
x2

)
,

we can prove the identity

f (xyz) + 3f
(

x̂
x̂yz

)
+ 3f

(
xyẑ
x̂yz

)
− 3f

(
−xŷ ẑ
x̂ x̂yz

)
+ 6f

(
−xŷ

x̂

)
− 3f (xy) + 3f (x) +

3
2

π2 ln x − 3ζ3 + permutations = 0,

where â = 1 − a and x , y , z ∈ (0, 1).

This identity is probably equivalent to 22 term relation in [Goncharov, 1991].

NB: S3 symmetry is explicit here.
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• Each step towards increasing the # of loops and/or # of scales
requires new methods. Those involve both technological advances
and new algorithms coming from various fields of mathematics.

• IBP reduction still remains a bottleneck for some calculations. New
ideas of IBP reduction appear, whether they will be successful is yet
to find out.

• Differential equations method is already in a very good shape.
However, there is still no regular approach to the computation of
non-polylogarithmic integrals. From the practical point of view, there
is always a Frobenius method which might be used to obtain
numerical high-precision results.

• New ideas and approaches to multi-loop calculations are always very
welcome.

Thank you!
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Let us briefly explain how DRA method works for triangular R. It is convenient to
introduce ν = d/2 and to consider all integrals as functions of ν. Then for the
master integral J = jk we have the following inhomogeneous equation

J(ν − 1) = C(ν)J(ν) + D(ν),

where C(ν) = c
∏

i
(ai −ν)∏

i
(bi −ν)

is some rational function and D(ν) is a linear combination

of simpler master integrals. We assume that simpler masters are already calculated at
this stage by the same method (or evaluated explicitly in terms of Γ-functions).

Using the homogeneous solution S−1(ν) = c−ν

∏
i

Γ(ai −ν)∏
i

Γ(bi −ν)
, we obtain

Y (ν − 1) = Y (ν) + S(ν − 1)D(ν), Y (ν) = S(ν)J(ν)

The general solution of this equation reads

Y (ν) = ω(ν) + Σ±S(ν − 1)D(ν),

depending on which of the two sums converges. Here ω(ν) = ω(ν + 1) is arbitrary
periodic function and we have introduced notations

Σ−f (ν) = −
∞∑

k=0

f (ν − k) Σ+f (ν) =
∞∑

k=1

f (ν + k)



DRA method (fixing ω) 48/46

Y (ν) = ω(ν) + Σ±S(ν − 1)D(ν),

Two questions are in order:

1. How does one fix ω(ν).

2. Is it possible to calculate emerging multiple sums with high precision.

The answer to the first question is the essence of DRA method. First, let us introduce
z = e2iπν . Then the periodic function of ν shall be understood as function of z (since
z does not change upon ν → ν + 1) Let us write

ω(z) = S(ν)J(ν) − Σ±S(ν − 1)D(ν).

We know everything about the second term in the right-hand side, but J(ν) in the
first term is the goal of our calculation, so we do not know much about it. However
we can extract some information about analytical properties of J(ν), e.g., from
parametric representation. Suppose that we’ve succeeded to prove that the whole
right-hand side is analytic on some stripe Reν ∈ [ν0, ν0 + 1) and decays when
Imν → ±∞. Then we can claim that ω(z) has no singularities and decays when
|z| → ∞. These mild restrictions lead to a very concrete form: ω = 0 (Note that in
real analysis the same restrictions would not say much about ω).
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Mellin-Barnes representation (not considered here) is a powerful tool which can
provide expressions for the loop integrals in the form of multiple sums.

Form of the DRA results

The DRA results are expressed in
terms of the multiple sums∑

∞>k1⩾...⩾kn

f1 (k1) . . . fn (kn)

The summand is factorized.

Complexity scales linearly with n.
for k = 0..kmax do

for i = 0..n do
Si = Si + Ss−1fi (k)

end
end
return Sn

Form of the MB results

The MB results are expressed in
terms of the multiple sums∑

k1

. . .
∑

kn

f (k1 . . . kn)

The summand is not factorized.

Complexity scales exponentially.
for k1 = 0..kmax do ...//n-fold

for kn = 0..kmax do
S = S + f (k1, . . .)

end
end
return S



Establishing rational equivalence 50/46

It is easy to set up the following algorithm

1. Reduce both differential systems to normalized Fuchsian form with the same (but
otherwise arbitrary) normalization conditions. Let T1 and T2 be the
corresponding transformations.

2. If the reduced systems have different sets of singular points or different sets of
eigenvalues of their matrix residues at least in one point (counting with
multiplicities), the systems are not equivalent.

3. Otherwise, search for a constant (independent of x) invertible matrix T3(ϵ) such
that

M1T3 = T3M2 .

Here M1,2 are the matrices for two normalized fuchsian forms obtained at step 1.
This is just a system of linear equations for the elements of T3.

4. If such a T3 does not exist, the systems are not equivalent. Otherwise, they are
equivalent by means of the transformation

T = T1T3T −1
2

Proof becomes a trivial exercise given the Proposition of [RL and Pomeransky, 2017].
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