GKZ approach to Feynman integrals and beyond

Leonardo de la Cruz

Based on JHEP 12 (2019) 123, JHEP 10 (2023) 098 (arXiv:1907.00507, arXiv:2307.16678)

Institut de Physique Theorique, CEA/Saclay

Seminar series on motives and period integrals in QFT and string theory

erc

European Research Council

Contents

(1) Introduction
(2) GKZ systems and A-hypergeometric functions
(3) Feynman integrals as A-hypergeometric functions
(4) Amplitudes
(5) Summary and outlook

(1) Introduction

(2) GKZ systems and A-hypergeometric functions

(3) Feynman integrals as A-hypergeometric functions
(4) Amplitudes
(5) Summary and outlook

What Feynman integrals evaluate to?

In 1963 Regge conjectured that the convergent Feynman integrals form a new class of special functions satisfying certain differential equations. He called them generalized hypergeometric functions. His justification for this

V A Golubeva, 1976 Russ.Math.Surv. 31139

- Answer from Mellin-Barnes ${ }^{\text {Boos-Davydychev, }}{ }^{\prime 90}$ techniques: ${ }_{p} F_{q}$, Appell, Lauricella, etc. Horn-type multivariable hypergeometric functions Kalmykov-Bytev-Kniehl-Ward-Yost, '09
- IBPs ${ }^{\text {Chetyrkin-Tkachov, }{ }^{81} \text { +Differential Equations }{ }^{\text {Gehrmann-Remiddi, ' } 99}+\epsilon \text {-form }}$

Henn, '13. Goncharov polylogarithms and related elliptic structures

- Gel'fand-Kapranov-Zelevinsky (GKZ) observation: A-hypergeometric functions
with integral representations. We only note that among the Euler type integrals associated with systems of the form (0.2) there are the integrals $\int \Pi P_{i}\left(t_{1}, \ldots, t_{n}\right)^{\alpha_{i}} t_{1}^{p_{1}} \ldots t_{n}^{p_{n}} d t_{1} \ldots d t_{n}$, where P_{i} are polynomials, i.e., practically all integrals which arise in quantum field theory.

Remarks

- All the above answers expressible as infinite sums
- State of the art based on the most popular answer \rightarrow efficiency
- Precise answer to this question not only of mathematical relevance

Invitation to GKZ: Bubble

- Suppose we want to study the Feynman integral

$$
I_{\text {bubble }}=\int_{\mathbb{R}}\left(\frac{\mathrm{d}^{d} k}{\pi^{d / 2}}\right) \frac{1}{\left[(k)^{2}\right]^{\alpha_{1}}\left[(k-p)^{2}+m^{2}\right]^{\alpha_{2}}}
$$

- Lee-Pomeransky ($\beta=d / 2$)

$$
I_{\text {bubble }} / \xi_{\Gamma_{\alpha}}:=I_{g}(\alpha, \beta)=\int_{\mathbb{R}_{+}^{2}} \frac{z_{1}^{\alpha_{1}} z_{2}^{\alpha_{2}}}{\left(z_{1}+z_{2}+\left(m^{2}+s\right) z_{1} z_{2}+m^{2} z_{2}^{2}\right)^{\beta}} \frac{\mathrm{d} z_{1}}{z_{1}} \frac{\mathrm{~d} z_{2}}{z_{2}}
$$

- GKZ approach: consider the more general version of this integral

$$
I_{g}(\alpha, \beta, c)=\int_{\Omega} \frac{z_{1}^{\alpha_{1}} z_{2}^{\alpha_{2}}}{\left(c_{1} z_{1}+c_{2} z_{2}+c_{3} z_{1} z_{2}+c_{4} z_{2}^{2}\right)^{\beta}} \frac{\mathrm{d} z_{1}}{z_{1}} \frac{\mathrm{~d} z_{2}}{z_{2}}
$$

- Consider the matrix of exponents of $g(c, z)$

$$
g(c, z)=\left(c_{1} z_{1}+c_{2} z_{2}+c_{3} z_{1} z_{2}+c_{4} z_{2}^{2}\right) \Longleftrightarrow \mathrm{A}=\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 1 & 2
\end{array}\right)
$$

Invitation to GKZ: Bubble

- Integral satisfies the system of PDEs $\left(\partial_{i}:=\partial / \partial c_{i}\right)$

$$
\begin{aligned}
\left(\partial_{2} \partial_{3}-\partial_{1} \partial_{4}\right) I(\alpha, \beta, c) & =0, \\
\left(c_{1} \partial_{1}+c_{2} \partial_{2}+c_{3} \partial_{3}+c_{4} \partial_{4}+\beta\right) I(\alpha, \beta, c) & =0, \\
\left(c_{1} \partial_{1}+c_{3} \partial_{3}+\alpha_{1}\right) I(\alpha, \beta, c) & =0, \\
\left(c_{2} \partial_{2}+c_{3} \partial_{3}+2 c_{4} \partial_{4}+\alpha_{2}\right) I(\alpha, \beta, c) & =0 .
\end{aligned}
$$

- Canonical series solutions (Saito-Sturmfels-Takayama) ($\beta:=d / 2$)

$$
\begin{aligned}
& \phi_{1}=c^{\gamma_{1}}{ }_{2} F_{1}\left(\alpha_{1}, \alpha_{1}+\alpha_{2}-\beta ; 2 \alpha_{1}+\alpha_{2}-2 \beta+1 ; \frac{c_{2} c_{3}}{c_{1} c_{4}}\right) \\
& \phi_{2}=c^{\gamma_{2}}{ }_{2} F_{1}\left(2 \beta-\alpha_{1}-\alpha_{2}, \beta-\alpha_{1} ; 2 \beta-2 \alpha_{1}-\alpha_{2}+1 ; \frac{c_{2} c_{3}}{c_{1} c_{4}}\right) .
\end{aligned}
$$

- γ_{i} roots of a system of polynomial equations obtained from \mathbf{A}
- General solution is

$$
I(\alpha, c)=K_{1} \phi_{1}+K_{2} \phi_{2}
$$

- Feynman integral is the restriction of $I(\alpha, c) \rightarrow c_{1}=c_{2}=1, c_{3}=\left(s+m^{2}\right)$, $c_{4}=m_{2}$
(2) GKZ systems and A-hypergeometric functions
(3) Feynman integrals as A-hypergeometric functions
(4) Amplitudes
(5) Summary and outlook

A-philosophy I

- GKZ (Discriminants, Resultants and Multidimensional Determinants): "The study of many problems becomes more transparent if we consider not individual polynomials but polynomials with indeterminate coefficients'"
- Multi-index notation $\left(\alpha \in \mathbb{Z}^{N}\right)$

$$
z^{\alpha}:=z_{1}^{\alpha_{1}} \cdots z_{N}{ }_{N}^{\alpha_{N}}
$$

- Laurent polynomials in N variables of the form

$$
b_{i}(z)=\sum_{j=1}^{n_{i}} c_{i j} z^{\alpha_{i j}}, \quad c_{i j} \in \mathbb{C}_{*}=\mathbb{C} \backslash\{0\}, \quad i=1, \ldots, q
$$

- For each $b_{i}(z)$, we have the $N \times n_{i}$ configuration matrix

$$
A_{i}=\left(\alpha_{i 1} \cdots \alpha_{i k} \cdots \alpha_{i n_{i}}\right), \quad \alpha_{i k} \in \mathbb{Z}^{N}
$$

- Each column of A_{i} associated with a monomial term in $b_{i}(z)$
- $n=n_{1}+\cdots+n_{q}$ is the total number of monomials

A-philosophy II

- Product of Laurent polynomials

$$
b(z):=b_{1}(z) \cdots b_{q}(z)
$$

- Define the $(N+q) \times n$ matrix

$$
\mathrm{A}:=\left(\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
0 & 1 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 1 \\
A_{1} & A_{2} & \ldots & A_{q}
\end{array}\right)
$$

- Here $0=(0, \ldots, 0)$ and $1=(1, \ldots, 1)$ are row vectors of length $\left|A_{i}\right|$.

$$
\operatorname{co}(\mathrm{A}):=n-N-q
$$

Comment

One can associate a polytope to the matrix A and study its combinatorial properties. In this talk we will not follow this approach.

Example: ${ }_{2} F_{1}$

- Single polynomial $n_{1}=4, N=2, q=1$

$$
\begin{gathered}
b(c, z)=c_{1}+c_{2} z_{1}+c_{3} z_{2}+c_{4} z_{1} z_{2} \Longleftrightarrow A=\left(\begin{array}{llll}
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1
\end{array}\right) \\
\mathrm{A}=\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1
\end{array}\right)
\end{gathered}
$$

- Product of polynomials $n_{1}=2, n_{2}=2, N=1, q=2$

$$
b(z)^{\beta}=b_{1}^{\beta_{1}} b_{2}^{\beta_{2}}=\left(c_{1}+c_{2} z\right)^{\beta_{1}}\left(c_{3}+c_{4} z\right)^{\beta_{2}} \Longleftrightarrow \mathrm{~A}=\left(\begin{array}{cccc}
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1
\end{array}\right)
$$

Gel'fand-Kapranov-Zelevinsky systems

Defined by the following data
(1) $(N+q) \times n$ matrix A such that the vector $(1, \ldots, 1)$ lies in its row span

$$
b(z)=b_{1}(z) \cdots b_{q}(z) .
$$

(2) A vector of parameters $\kappa=\left(\kappa_{1}, \ldots, \kappa_{N+q}\right), \kappa_{i} \in \mathbb{C}$
(3) A system of partial differential equations(PDEs) associated with A. Let $u, v \in \mathbb{N}^{n}$ and consider

$$
\left(\partial^{u}-\partial^{v}\right) F(c)=0, \quad \text { where } \quad \mathrm{A} u=\mathrm{A} v
$$

$$
\left(\sum_{j=1}^{n} a_{i j} \theta_{j}-\kappa_{i}\right) F(c)=0, \quad i=1, \ldots, N+q
$$

$\theta_{j}=c_{j} \partial / \partial c_{j}$ and $\partial^{u}=\partial_{1}^{u_{1}} \cdots \partial_{n}^{u_{n}}$

A-hypergeometric functions

A holomorphic function $F(c)$ or formal series is called A-hypergeometric if it satisfies the system of PDEs

GKZ and D-modules

- GKZ systems as holonomic ideals in the Weyl algebra D
- $D=\mathbb{C}\left\langle c_{1}, \ldots, c_{n}, \partial_{1}, \ldots, \partial_{n}\right\rangle$ modulo commutation rules beetwen c_{i}, ∂_{j}

$$
D \ni p(z, \partial)=\sum_{\alpha, \beta} a_{\alpha \beta} c^{\alpha} \partial^{\beta}
$$

- Toric ideal of A

$$
I_{\mathrm{A}}:=\left\langle\partial^{u}-\partial^{v}: \mathrm{A} u=\mathrm{A} v, \quad u, v \in \mathbb{N}^{n}\right\rangle \subset \mathbb{C}\left[\partial_{1}, \ldots, \partial_{n}\right]
$$

- Ideal generated by κ^{T} and $\theta=\left(\theta_{1}, \ldots, \theta_{n}\right)^{T}$

$$
\left\langle\mathrm{A} \theta-\kappa^{T}\right\rangle \subset \mathbb{C}\left[\theta_{1}, \ldots, \theta_{n}\right]
$$

- $H_{\mathrm{A}}(\kappa)$ is the left ideal on D generated by I_{A} and $\left\langle\mathrm{A} \theta-\kappa^{T}\right\rangle$

A-hypergeometric functions

A holomorphic function $F(c)$ or formal series is A-hypergeometric of degree κ if

$$
H_{\mathrm{A}}(\kappa) \bullet F(c)=0, \quad \operatorname{rank}\left(H_{\mathrm{A}}(\kappa)\right) \geq \operatorname{vol}(\mathrm{A})
$$

Generic $\kappa: \operatorname{rank}\left(H_{\mathrm{A}}(\kappa)\right)=\operatorname{vol}(\mathrm{A})=\operatorname{degree}\left(I_{\mathrm{A}}\right)$

Euler type solutions

- Vector of parameters $\kappa:=(-\beta,-\alpha), \beta \in \mathbb{C}^{q}, \alpha \in \mathbb{C}^{N}$

$$
I_{b}(\kappa)=\int_{\Omega} \frac{z^{\alpha}}{b(c, z)^{\beta}} \mathrm{d} \eta_{N}, \quad \mathrm{~d} \eta_{N}=\frac{d z_{1}}{z_{1}} \wedge \frac{d z_{2}}{z_{2}} \wedge \cdots \wedge \frac{d z_{N}}{z_{N}},
$$

- Cycle $\Omega \subset\left(\mathbb{C}_{*}\right)^{N} \backslash \mathcal{V}(b)$ usually assumed to be compact
- Set of zeros of $b(c, z)$ is the algebraic variety $\mathcal{V}(b)$
- GKZ, '90: If the integral $I_{b}(\kappa)$ converges and defines a germ of analytic functions in the variables z, then it represents a solution of the A-hypergeometric system $H_{\mathrm{A}}(\kappa)$
- Also ${ }^{\text {GKZ, ' } 90}$... if all b_{i} have real coefficients one can take the integral also over some connected component of $\mathbb{R}^{N} \backslash \mathcal{V}(b)$
- Non-compact cycles for A-hypergeometric functions (Coamoeba)

Non compact cycles: Euler-Mellin integrals

- Berkesh-Forsgård-Passare(BFP), '13 Euler-Mellin integral is an integral of the form of $I_{b}(\kappa)$ taken over a cycle $\Omega=\operatorname{Arg}^{-1}(\theta)$, related to coameba of $\mathcal{V}(b)$

Amoeba and Coamoeba of an algebraic variety

$$
\begin{array}{ll}
\mathcal{A}_{b}:=\log (\mathcal{V}(b)), & \log (z)=\left(\log \left|z_{1}\right|, \ldots, \log \left|z_{N}\right|\right) \\
\mathcal{A}_{b}^{\prime}:=\operatorname{Arg}(\mathcal{V}(b)), & \operatorname{Arg}(z)=\left(\arg \left(z_{1}\right), \ldots, \arg \left(z_{N}\right)\right)
\end{array}
$$

- BFP consider the Euler-Mellin integral

$$
I_{b}(\kappa)=\int_{\mathbb{R}_{+}^{N}} \frac{z^{\alpha}}{b(z)^{\beta}} \mathrm{d} \eta_{N}=\int_{\mathbb{R}^{N}} \frac{e^{(\alpha, x)}}{b\left(e^{x}\right)^{\beta}} \mathrm{d} x
$$

- Simplest case is $\Omega \in \mathbb{R}_{+}^{N}$ which covers Feynman integrals
- The convergence of these integrals is controlled by a theorem due to Berkesh, Forsgård and Passare (BFP).

Amoebas and coamoebas

Amoeba(shaded) $[-4,4] \times[-4,4]$

Coamoeba(shaded) $[-\pi, \pi] \times[-\pi, \pi]$ $b\left(z_{1}, z_{2}\right)=1+z_{1}^{2}+z_{2}^{2}+z_{1} z_{2}^{2}+z_{2} z_{1}^{2}=0$ [Credit: Jens Forsgård mathematica package]

- Noncompact cycle is given by a representative $\theta \in \Theta$ of a connected component of $\mathbb{R}^{N} \backslash \overline{\mathcal{A}_{b}^{\prime}}$

$$
\Omega=\operatorname{Arg}^{-1} \theta
$$

- For a Feynman integral we should choose θ such that $\Omega \in \mathbb{R}_{+}^{N}$, in other words such that $0 \in \mathbb{R}^{N} \backslash \overline{\mathcal{A}}_{b}^{\prime}$

BFP: From Euler-Mellin to GKZ

- Let us consider the weighted Newton polytopes of $b_{j} \tau \Delta_{b}=\sum_{j=1}^{q} \tau_{j} \Delta_{b_{j}}$.
- $I(\kappa)$ converges and defines and analytic funcion with parameters $\kappa=(-\beta,-\alpha)$ on the tube domain

$$
\left\{(\alpha, \beta) \in \mathbb{C}^{N+q} \mid \tau:=\operatorname{Re} \beta \in \mathbb{R}_{+}^{q}, \quad \sigma:=\operatorname{Re} \alpha \in \operatorname{int}\left(\tau \Delta_{b}\right)\right\}
$$

- If the polynomials $b(z)$ vanish on the positive orthant we can take a connected component Θ of $\mathbb{R}^{N} \backslash \overline{\mathcal{A}}_{b}^{\prime}$, where $\overline{\mathcal{A}}_{b}^{\prime}$ denotes the closure of the coamoeba of b and consider the integral

$$
I_{b}(\kappa)=\int_{\operatorname{Arg}^{-1} \theta} \frac{z^{\alpha}}{b(z)^{\beta}} \mathrm{d} \eta_{N}=\int_{\mathbb{R}^{N}} \frac{e^{\alpha \cdot(x+\mathrm{i} \theta)}}{b\left(e^{x+\mathrm{i} \theta}\right)^{\beta}} \mathrm{d} x,
$$

- Promoting the coefficients of $b(z)$ to indeterminates

$$
I_{b}(c, \kappa)=\int_{\operatorname{Arg}^{-1} \theta} \frac{z^{\alpha}}{b(c, z)^{\beta}} \mathrm{d} \eta_{N}
$$

represents an A-hypergeometric function (Theorem 4.2 in BFP)

- For generic parameters κ provides a basis of solutions of $H_{\mathrm{A}}(\kappa)$
- Each integral is evaluated on a representative of Θ for each connected component of $\mathbb{R}^{N} \backslash \overline{\mathcal{A}}_{b}^{\prime}$

Formal series Solutions

- $\mathcal{L}:=\left\{u \in \mathbb{Z}^{n}: \mathrm{A} u=0\right\}$
- For $u \in \mathcal{L}$, we can write $u=u_{+}-u_{-}$, where $u_{ \pm} \in \mathbb{N}^{n}$ have disjoint support
- For $\gamma \in \mathbb{C}^{n}$ we define (falling factorials)

$$
\begin{aligned}
{[\gamma]_{u_{-}} } & :=\prod_{i: u_{i}<0} \prod_{j=1}^{-u_{i}}\left(\gamma_{i}-j+1\right)=\prod_{i: u_{i}<0}(-1)^{-u_{i}}\left(\gamma_{i}\right)_{-u_{i}}, \\
{[\gamma+u]_{u_{+}} } & :=\prod_{i: u_{i}>0} \prod_{j=1}^{u_{i}}\left(\gamma_{i}+u_{i}-j+1\right)=\prod_{i: u_{i}>0} \prod_{j=1}^{u_{i}}\left(\gamma_{i}+j\right)=\prod_{i: u_{i}>0}\left(\gamma_{i}+1\right)_{u_{i}}
\end{aligned}
$$

$(a)_{x}$ are Pochhammer symbols

- Series solution

$$
\phi_{\gamma}:=\sum_{u \in \mathcal{L}} \frac{[\gamma]_{u_{-}}}{[\gamma+u]_{u_{+}}} c^{(\gamma+u)}
$$

Canonical series algorithm (Saito-Sturmfels-Takayama)

Frobenious method

$$
\frac{d^{2} y}{d x^{2}}+\omega^{2} y=0
$$

(1) Try series solution

$$
y(x)=\sum_{n=0}^{\infty} a_{n} x^{n+k}, a_{0} \neq 0
$$

(2) Indicial equation

$$
k(k-1)=0
$$

Canonical Series

$$
H_{\mathrm{A}}(\kappa) \bullet F(c)=0
$$

(1) Formal solution

$$
\phi_{\gamma}:=\sum_{u \in \mathcal{L}} \frac{[\gamma]_{u_{-}}}{[\gamma+u]_{u_{+}}} c^{(\gamma+u)}
$$

(2) Fake indicial ideal

$$
\operatorname{find}_{w}\left(H_{\mathrm{A}}(\kappa)\right)
$$

Convergence

Weight vector w chooses a region of convergence: representative of the Gröbner fan of I_{A}

Canonical series algorithm (Saito-Sturmfels-Takayama)

2F1 two integral

$\ln [54]:=A=\{\{1,1,1,1\},\{0,1,0,1\},\{0,0,1,1\}\} ;$
kerfromM2[A]
finwIA[A, $\{0,1,1,1\},\{-\beta,-\alpha[1],-\alpha[2]\}]$
fakeExp[\%, Table[$\theta[i],\{i, 1,4\}]]$
$\operatorname{co1} \operatorname{res}[A,\{0,1,1,1\},\{-\beta,-\alpha[1],-\alpha[2]\}]$
Out[55] $=\{\{1\},\{-1\},\{-1\},\{1\}\}$
Out[56] $=\{\theta[2] \times \theta[3], \beta+\theta[1]+\theta[2]+\theta[3]+\theta[4], \alpha[1]+\theta[2]+\theta[4], \alpha[2]+$
Out[57] $=\{\{-\beta+\alpha[1],-\alpha[1]+\alpha[2], 0,-\alpha[2]\},\{-\beta+\alpha[2], 0, \alpha[1]-\alpha[2]$,
Outl[58] $=\{\{-\mathrm{n}, \mathrm{n}, \mathrm{n},-\mathrm{n}\},\{-\mathrm{n}\},\{\mathrm{n}\},\{\theta[2] \times \theta[3], \beta+\theta[1]+\theta[2]+\theta[3]+\theta$
$\{\{-\beta+\alpha[1],-\alpha[1]+\alpha[2], 0,-\alpha[2]\},\{-\beta+\alpha[2], 0, \alpha[1]-\alpha[2$
$\left\{\left(\begin{array}{cc}(\beta-\alpha(1))_{\mathrm{n}} & (\alpha(2))_{\mathrm{n}} \\ (-\alpha(1)+\alpha(2)+1)_{\mathrm{n}} & (1)_{\mathrm{n}}\end{array}\right),\left(\begin{array}{cc}(\beta-\alpha(2))_{\mathrm{n}} & (\alpha(1))_{\mathrm{n}} \\ (1)_{\mathrm{n}} & (\alpha(1)-\alpha(2)+1)_{\mathrm{n}}\end{array}\right.\right.$

Interface: Macaulay2+Mathematica

(2) GKZ systems and A-hypergeometric functions

(3) Feynman integrals as A-hypergeometric functions
(4) Amplitudes
(5) Summary and outlook

Lee-Pomeransky representation of Feynman integrals

$$
I_{F}(\alpha)=\xi_{\Gamma_{\alpha}} \int_{\mathbb{R}_{+}^{N}}\left(\prod_{i=1}^{N} \frac{\mathrm{~d} z_{i}}{z_{i}} z_{i}^{\alpha_{i}}\right) \frac{1}{(\mathcal{U}+\mathcal{F})^{d / 2}}=\xi_{\Gamma_{\alpha}} \int_{\mathbb{R}_{+}^{N}} \frac{z^{\alpha}}{(\mathcal{U}+\mathcal{F})^{d / 2}} \mathrm{~d} \eta_{N}
$$

- Factor independent of the kinematics

$$
\xi_{\Gamma_{\alpha}}:=\frac{\Gamma(d / 2)}{\Gamma\left((L+1) d / 2-\sum_{i=1}^{N} \alpha_{i}\right) \prod_{i=1}^{N} \Gamma\left(\alpha_{i}\right)}
$$

Symanzik polynomials

- Dimensionless (scaling in \mathcal{F} assumed)
- Euclidean kinematics: invariants $-\left(p_{i}+p_{j}\right)^{2}>0$
- \mathcal{U} homogeneous polynomial of degree L
- \mathcal{F} homogeneous polynomial of degree $L+1$
- \mathcal{U}, \mathcal{F} positive functions of their parameters
- kinematic dependence is in \mathcal{F}
- \mathcal{U} and \mathcal{F} can only vanish on the boundaries of the integration region

Proposal based on canonical series

Idea

Consider Feynman integrals as special points of A-hypergeometric functions. A Feynman integral is A-hypergeometric whenever we can compute its canonical series ϕ_{i}.

$$
I_{F}(\kappa)=K_{1} \phi_{1}+\cdots+K_{r} \phi_{r}
$$

Feynman integrals

- Consider the coefficients in $g(z)=\mathcal{U}+\mathcal{F}$ as indeterminate

$$
g(z) \rightarrow g(z, c)=\mathcal{U}(c)+\mathcal{F}(c) \Leftrightarrow \mathrm{A}
$$

- In general we add a deformation to $g(z, c)$ to ensure canonical series when $\operatorname{co}(\mathrm{A})=0, g(z, c) \rightarrow g_{r}(z, c):=r(z)+g(z, c)$
- Feynman integrals are obtained from the restriction of canonical series to kinematics values.
- Designed for algorithmic evaluation of Feynman integrals

Proposal based on canonical series

Theorem

Let

$$
g_{r}(c, z)=\sum_{i=1}^{n} c_{i} z^{a_{i}} \Longleftrightarrow \mathrm{~A}=\left(\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
a_{1} & a_{2} & \ldots & a_{n}
\end{array}\right) .
$$

The Euler-Mellin integral

$$
I_{g_{r}}(\kappa)=\int_{\Omega} \frac{z^{\alpha}}{g_{r}(c, z)^{d / 2}} \mathrm{~d} \eta_{N}
$$

is a solution of the A -hypergeometric system $H_{\mathrm{A}}(\kappa)$ of degree $\kappa=(-d / 2,-\alpha)$. Noncompact cycles Ω considering the coamoeba of of $\mathcal{V}\left(g_{r}(c, z)\right)$ and choosing representatives $\theta \in \Theta$ in $\mathbb{R}^{N} \backslash{\overline{\mathcal{A}^{\prime}}}_{g_{r}}$.

Proof.

Show that $I_{g_{r}}(\kappa)$ satisfies the GKZ system. Validity for non-compact cycles demonstrated by as we discussed before BFP, '13

Relation to other proposals and methods

- Maximal cuts and n-loop bananas, fixed dimensions, compact cycles: Vanhove, '18 Klemm-Nega-Safari, '19 Bönish-Fischbach-Klemm-Nega-Safari, '20
- Full massive sunset with emphasis on triangulations of polytopes: Klausen, '19
- Feynman Integrals satysfying GKZ differential equations also in Nasrollahpoursamami, '16

Remark

- Above approaches emphasize triangulations of Convex Polytopes \rightarrow Gamma series representations
- Canonical series through Gröbner bases for some w and triangulations of polytopes are intimately connected

[^0]
More recent developments

- Cohen-Macaulay property Tellander-Helmer'21

$$
\operatorname{in}_{(w,-w)}\left(H_{\mathrm{A}}(\kappa)\right)=\left\langle A \theta-\kappa^{T}\right\rangle+\operatorname{in}_{w}\left(I_{\mathrm{A}}\right)
$$

- Choice of w can simplify sum representation
- Kinematic singularities of Feynman integrals through A-determinants Klausen '21, Mizera-Telen'21, Fevola-Mizera-Tellen, '23

$$
g(z)=\mathcal{U}+\mathcal{F}
$$

- Banana Feynman integrals from series representation (Frobenius method) Bönisch-Duhr-Fischbach-Klemm-Nega'21
- Analytic continuation tool Ananthanarayan-Bera-Friot-Pathak'21

FeynGKZ

Ananthanarayan-Banik, Souvik Bera-Datta, '22 A Mathematica package for solving
Feynman integrals using GKZ hypergeometric systems

Example: Triangle

$$
s_{1}=-p_{1}^{2}, s_{2}=-p_{2}^{2}, s_{3}=-\left(p_{1}+p_{2}\right)^{2}
$$

- Polynomial

$$
g(z)=z_{1}+z_{2}+z_{3}+s_{3} z_{1} z_{2}+s_{1} z_{1} z_{3}+s_{2} z_{2} z_{3} \Longleftrightarrow \mathrm{~A}=\left(\begin{array}{cccccc}
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 1
\end{array}\right)
$$

- $c o(A)=2$. Two variable hypergeometric function

Example: Triangle

$$
I_{g}(\kappa)=\int_{\Omega} \mathrm{d} \eta_{3} \frac{z_{1}^{\alpha_{1}} z_{2}^{\alpha_{2}} z_{3}^{\alpha_{3}}}{\left(c_{1} z_{1}+c_{2} z_{2}+c_{3} z_{3}+c_{4} z_{1} z_{2}+c_{5} z_{1} z_{3}+c_{6} z_{2} z_{3}\right)^{\beta}}
$$

Macaulay $2+$ Mathematica

- Input: $w=(0,0,1,0,0,0), \mathrm{A}$
- $\operatorname{fin}_{w}\left(H_{\mathrm{A}}(\kappa)\right)=\left\langle\theta_{2} \theta_{5}, \theta_{3} \theta_{4}\right\rangle+\left\langle\mathbf{A} \theta-\kappa^{T}\right\rangle$
- Output:

$$
\begin{aligned}
\left\{\gamma_{i}\right\}=\{ & \left(-\alpha_{1}, C-\beta, B-\beta, 0,0, \beta-A\right),\left(\alpha_{2}-\beta, C-\beta, 0, \beta-B, 0,-\alpha_{3}\right), \\
& \left.\left(\alpha_{3}-\beta, 0, B-\beta, 0, \beta-C,-\alpha_{2}\right),\left(A-2 \beta, 0,0, \beta-B, \beta-C, \alpha_{1}-\beta\right)\right\}
\end{aligned}
$$

$A=\alpha_{1}+\alpha_{2}+\alpha_{3}, B=\alpha_{1}+\alpha_{2}$, and $C=\alpha_{1}+\alpha_{3}$.

Example: Triangle

Mathematica

$$
\begin{aligned}
& \phi_{1}=c^{\gamma_{1}} \sum_{m \geq 0, n \in \mathbb{Z}} \frac{\left(\alpha_{1}\right)_{m+n}(A-\beta)_{m+n}}{(-\beta+C+1)_{n}(-\beta+B+1)_{m}(1)_{m}(1)_{n}} x^{m} y^{n}, \\
& \phi_{2}=c^{\gamma_{2}} \sum_{m \geq 0, n \in \mathbb{Z}} \frac{\left(\beta-\alpha_{2}\right)_{m+n}\left(\alpha_{3}\right)_{m+n}}{(-\beta+C+1)_{n}(1)_{m}(\beta-B+1)_{m}(1)_{n}} x^{m} y^{n}, \\
& \phi_{3}=c^{\gamma_{3}} \sum_{m \geq 0, n \in \mathbb{Z}} \frac{\left(\beta-\alpha_{3}\right)_{m+n}\left(\alpha_{2}\right)_{m+n}}{(1)_{n}(-\beta+B+1)_{m}(1)_{m}(\beta-C+1)_{n}} x^{m} y^{n}, \\
& \phi_{4}=c^{\gamma_{4}} \sum_{m \geq 0, n \in \mathbb{Z}} \frac{(2 \beta-A)_{m+n}\left(\beta-\alpha_{1}\right)_{m+n}}{(1)_{n}(1)_{m}(\beta-B+1)_{m}(\beta-C+1)_{n}} x^{m} y^{n}, \\
& x=\left(c_{3} c_{4}\right) /\left(c_{1} c_{6}\right) \text { and } y=\left(c_{2} c_{5}\right) /\left(c_{1} c_{6}\right) .
\end{aligned}
$$

Example: Triangle

Integration constants from positions of zero's in roots

$$
K_{r}=\frac{1}{\Gamma(\beta)} \prod_{i \neq 0} \Gamma\left(-\gamma_{r}^{i}\right)
$$

Restriction to physical values

$$
\begin{aligned}
& c_{1}=c_{2}=c_{3}=1 \text { and } c_{4}=s_{3}, c_{5}=s_{1}, c_{6}=s_{2} \\
& I(\alpha, \beta)= \\
& K_{1} s_{2}^{\beta-A} F_{4}\left(\alpha_{1}, A-\beta ;-\beta+\alpha_{13}+1,-\beta+\alpha_{12}+1 ; s_{3} / s_{2}, s_{1} / s_{2}\right) \\
& +K_{2} s_{2}^{-\alpha_{3}} s_{3}^{\beta-B} F_{4}\left(\beta-\alpha_{2}, \alpha_{3} ; C-\beta+1,-B+\beta+1 ; s_{3} / s_{2}, s_{1} / s_{2}\right) \\
& +K_{3} s_{2}^{-\alpha_{2}} s_{1}^{\beta-C} F_{4}\left(\beta-\alpha_{3}, \alpha_{2} ; B-\beta+1,-C+\beta+1 ; s_{3} / s_{2}, s_{1} / s_{2}\right) \\
& +K_{4} s_{1}^{\beta-C} s_{2}^{\alpha_{1}-\beta} s_{3}^{\beta-B} F_{4}\left(2 \beta-A, \beta-\alpha_{1} ;-B+\beta+1,-C+\beta+1 ; s_{3} / s_{2}, s_{1} / s_{2}\right)
\end{aligned}
$$

- Mellin-Barnes Boos, Davydychev, '91 and negative dimension approach Anastasiou-Glover-Oleari, '00

(1) Introduction

(2) GKZ systems and A-hypergeometric functions

(3) Feynman integrals as A-hypergeometric functions
(4) Amplitudes

(5) Summary and outlook

Holonomic properties of scattering amplitudes

- GKZ ideal $H_{\mathrm{A}}(\kappa)$ is a holonomic D-ideal

$$
H_{\mathrm{A}}(\kappa)=I_{\mathrm{A}} \cup\langle\mathrm{~A} \theta-\kappa\rangle
$$

- Key property of Feynman integrals: holonomicity Kashiwara-Kawai, '77, Bitoun-Bogner-Klausen-Panzer '17
- Basic equation of generalized unitarity ${ }^{\text {Bern-Dixon-Dunbar-Kosower, ' } 94}$

$$
\mathcal{A}_{n}=\sum_{i} c_{i}\left(A^{\text {trees }}\right) I_{i}^{\text {basis }}+\text { rational }
$$

- Coefficients c_{i} can be computed from tree-level amplitudes (rational functions of spinor variables)
- More generally c_{i} are algebraic functions
- Algebraic functions are also holonomic hence amplitudes! Elementary consequence of holonomic D-modules (See Chapter 20 of Coutinho's book)
- Let us start with trees ...

Biadjoint scalars

- Biadjoint scalar amplitudes

$$
\mathcal{L}=\frac{1}{2} \partial_{\mu} \varphi_{a \alpha} \partial^{\mu} \varphi_{a \alpha}-\frac{\lambda}{3!} f^{a b c} \tilde{f}^{\alpha \beta \gamma} \varphi_{a \alpha} \varphi_{b \beta} \varphi_{c \gamma}
$$

- Admit a recursive formulaMafra, '16
$\phi_{w_{1}, w_{2}}=\frac{1}{s_{w_{1}}} \sum_{x y=w_{1}} \sum_{a b=w_{2}}\left[\phi_{x, a} \phi_{y, b}-(x \leftrightarrow y)\right], \quad \phi_{w_{1}, w_{2}} \equiv 0, \quad$ if $\quad w_{1} \backslash w_{2} \neq e$
with the start of the recursion defined as $\phi_{i, j}=\delta_{i j}$. The n-point amplitude is

$$
m_{n}\left(w_{1} n \mid w_{2} n\right)=(-1)^{(n-3)} s_{w_{1}} \varphi_{w_{1}, w_{2}}
$$

Weyl algebra

- Take $w_{1} n=12 \ldots n$
- Ring of Mandelstam invariants

$$
s_{i j k \ldots}:=\left(p_{i}+p_{j}+p_{k}+\ldots\right)^{2}
$$

- Examples

$$
m_{4}=-\frac{1}{s_{12}}-\frac{1}{s_{23}}, \quad m_{5}=\frac{1}{s_{12} s_{123}}+\frac{1}{s_{12} s_{34}}+\frac{1}{s_{123} s_{23}}+\frac{1}{s_{23} s_{234}}+\frac{1}{s_{234} s_{34}}
$$

- kinematic invariants $S_{n}=\left\{s_{w} \mid w \in B_{n}\right\}$, where $\left|S_{n}\right|=\frac{1}{2} n(n-3)=N$, so its associated ring is $\mathbb{C}\left[S_{n}\right]$.
- We then define the corresponding set of operators by $\partial_{S_{n}}:=\left\{\partial_{s_{w}} \mid w \in B_{n}\right\}$ so the associated Weyl algebra is

$$
D_{N}=\mathbb{C}\left[S_{n}\right]\left\langle\partial_{S_{n}}\right\rangle
$$

Differential equations for biajoint scalars

- Annihihilators of amplitudes $\left(m_{n}=f / g\right)$

$$
\begin{aligned}
P_{i} & =g f \partial_{i}+\left(f \partial_{i} g-g \partial_{i} f\right), \quad i=1, \ldots, N, \\
H_{n} & =\left[\sum_{w \in B_{n}} \theta_{s_{w}}+(n-3)\right]
\end{aligned}
$$

$$
\left\langle P_{1}, \ldots, P_{N}, H_{n}\right\rangle \subset D_{N}
$$

- Canonical holonomic representation ${ }^{\text {Zeilberger, '90 }}$

$$
I_{n}=\left\langle\mathbf{A}_{n} \theta_{n}-\kappa_{n}\right\rangle \Rightarrow s_{w} \theta_{s_{w}} m_{n}(S)=\kappa_{w}, \quad \forall w \in B_{n}
$$

$\mathrm{A}_{n}=m_{n} \operatorname{diag}\left(s_{12}, s_{23}, \ldots\right), \quad \theta_{n}=\left(\theta_{s_{12}}, \theta_{s_{23}}, \ldots\right)^{T}, \quad \kappa_{n}=\left(\iota_{n}(12), \iota_{n}(23), \ldots\right)^{T}$, for $2 \leq|w| \leq n-2$ and zero otherwise

- Boundary condition $\left.m_{n}\right|_{S_{n} \rightarrow \infty}=0$.

(1) Introduction

(2) GKZ systems and A-hypergeometric functions

(3) Feynman integrals as A-hypergeometric functions
(4) Amplitudes
(5) Summary and outlook

Summary and Outlook

Summary

- GKZ systems are the most general tools to study hypergeometric functions
- Generalized Feynman integrals are A-hypergeometric,
- SST canonical series provide the tool to evaluate Feynman integrals
- Output of canonical series method equivalent to Mellin-Barnes
- Holonomicity is key to extend the approach to scattering amplitudes

Outlook

- Elephant in the room: efficiency and scaling (restriction of D-modules ${ }^{\text {Henn-Pratt-Sattelberger-Zoia, '23) }}$
- Relation between GKZ and PDEs from Griffiths-DworkLDLC-Vanhove, '24
- Generalized unitarity gives us hint to extend this approach to general scattering amplitudes

Canonical series algorithm (Saito-Sturmfels-Takayama)

Input: Matrix A, weight vector w, and complex parameters κ. Output: Roots of the fake indicial ideal fin $_{w}\left(H_{\mathrm{A}}(\kappa)\right)$.
(1) Compute the toric ideal associated with A

$$
I_{\mathrm{A}}=\left\langle\partial^{u}-\partial^{v}: \mathrm{A} u=\mathrm{A} v, \quad u, v \in \mathbb{N}^{n}\right\rangle .
$$

(2) Let $w \in \mathbb{R}^{n}$ be a generic weight vector. Compute the initial ideal $\mathrm{in}_{w}\left(I_{\mathrm{A}}\right)$ with respect to w and obtain its standard pairs $\mathcal{S}\left(\mathrm{in}_{w}\left(I_{A}\right)\right)$.
(3) Use the standard pairs to construct the indicial ideal

$$
\operatorname{ind}_{w}\left(I_{\mathrm{A}}\right)=\bigcap_{\left(\partial^{a}, F\right) \in \mathcal{S}\left(\mathrm{in}_{w}\left(I_{\mathrm{A}}\right)\right)}\left\langle\left(\theta_{j}-a_{j}\right), j \notin F\right\rangle \subset \mathbb{C}\left[\theta_{1}, \theta_{2}, \ldots, \theta_{n}\right]
$$

(4) Write the ideal $\left\langle\mathrm{A} \theta-\kappa^{T}\right\rangle \subset \mathbb{C}\left[\theta_{1}, \theta_{2}, \ldots, \theta_{n}\right]$.
(3) The fake indicial ideal with respect to w is given by

$$
\operatorname{fin}_{w}\left(H_{\mathrm{A}}(\kappa)\right):=\operatorname{ind}_{w}\left(I_{\mathrm{A}}\right)+\left\langle A \theta-\kappa^{T}\right\rangle .
$$

(0 Compute the roots of $\operatorname{fin}_{w}\left(H_{\mathrm{A}}(\kappa)\right)$. These are called fake exponents and we denote them by γ.

Standard Pairs

Let $R=\mathbb{K}\left[\partial_{1}, \ldots, \partial_{n}\right]$ and let I be a monomial ideal in R. Furthermore, let ∂^{α} be a monomial and $F \subseteq\{1, \ldots, n\}$, where $\alpha \in \mathbb{N}^{n}$. A standard pair of a monomial ideal I is a pair $\left(\partial^{\alpha}, F\right)$ satisfying three conditions:
(1) $\alpha_{i}=0$ for all $i \in F$,
(2) for all choices of integers $\beta_{j} \geq 0$, the monomial $\partial^{\alpha} \prod_{j \in F} \partial_{j}^{\beta_{j}} \notin I$,
(3) for all $l \notin F$, there exist $\beta_{j} \geq 0$ such that $\partial^{\alpha} \partial_{l}^{\beta_{l}} \prod_{j \in F} \partial_{j}^{\beta_{j}} \in I$.

Let us denoted by $\mathcal{S}(I)$ the set of all standard pairs of I. The decomposition of I into irreducible monomial ideals can be obtained from the identity.

$$
I=\bigcap_{\left(\partial^{\alpha}, F\right) \in \mathcal{S}(I)}\left\langle\partial_{i}^{\alpha_{i}+1}: i \in F\right\rangle .
$$

Example: Cantaloupe or dealing with deformation

$$
g\left(z_{1}, \ldots, z_{L+1}\right)=\sum_{i=1}^{L+1} \prod_{j \neq i}^{L} z_{j}+s \prod_{i=1}^{L+1} z_{i}
$$

where $s=-p^{2}$. The integral to be computed reads

$$
I(\alpha)=\int_{\mathbb{R}_{+}^{L+1}} \mathrm{~d} \eta_{L+1} \frac{z_{1}^{\alpha_{1}} \cdots z_{L+1}^{\alpha_{L+1}}}{g(z)^{\beta}}
$$

In order to perform such deformation systematically, let us introduce some notation. Let 1_{i} denote a sequence of 1 's of length i and similarly for 0_{j}. We have the relation $i+j=L+1$. Furthermore, let

$$
v:=\left(1_{L-1}, 0_{2}\right) .
$$

At each loop, we set a deformation monomial

$$
r(z)=c_{1} z^{v},
$$

hence we have

$$
g_{r}(c, z)=c_{1} z^{v}+\sum_{i=1}^{L+1} c_{L+3-i} \prod_{j \neq i}^{L} z_{j}+c_{L+3} \prod_{i=1}^{L+1} z_{i}
$$

where $c_{L+3}=s$. Let us give an example. For $L=3, v=(1,1,0,0)$ and $r(z)=c_{1} z_{1} z_{2}$, then we have the deformed toric polynomial

$$
g_{r}(c, z)=c_{1} z_{1} z_{2}+c_{2} z_{1} z_{2} z_{3}+c_{3} z_{1} z_{2} z_{4}+c_{4} z_{1} z_{3} z_{4}+c_{5} z_{2} z_{3} z_{4}+c_{6} z_{1} z_{2} z_{3} z_{4}
$$

$$
\begin{aligned}
A= & \left(\begin{array}{ccccc}
1 & 1 & \cdots & 1 & 1 \\
& 1_{L+1} & & 0 & 1_{1} \\
& 1_{L} & & 0 & 1_{2} \\
& & \vdots & & \\
& & & \\
& 1_{3} & 0 & 1_{L-1} \\
0 & 1 & 0 & 1_{L} \\
0 & 0 & 1 & 1_{L}
\end{array}\right) . \\
& I_{g_{r}}(\kappa)=\int_{\Omega} \mathrm{d} \eta_{L+1} \frac{z_{1}^{\alpha_{1}} \cdots z_{L+1}^{\alpha_{L+1}}}{g_{r}(c, z)^{\beta}}
\end{aligned}
$$

where $\kappa=\left(-\beta,-\alpha_{1}, \ldots,-\alpha_{L+1}\right)$. Computing the kernel of the above matrix leads to

$$
\mathcal{L}=\mathbb{Z}\left(1,-1,-1,0_{L-1}, 1\right),
$$

where by definition $0_{0}:=\emptyset$. We choose $w=\left(1,0_{L+2}\right)$, thus obtaining

$$
\operatorname{fin}_{w}\left(H_{\mathrm{A}}(\kappa)\right)=\left\langle\theta_{1} \theta_{L+3}\right\rangle+\left\langle\mathbf{A} \theta-\kappa^{T}\right\rangle .
$$

The roots can be written as

$$
\begin{aligned}
& \left\{\gamma_{i}\right\}=\left\{\left(0, \alpha_{L+1}-\beta, \ldots, \alpha_{1}-\beta, L \beta-\sum_{i=1}^{L+1} \alpha_{i}\right)\right. \\
& \left(\sum_{i=1}^{L} \alpha_{i}-L \beta,(L-1) \beta-\sum_{i=1}^{L} \alpha_{i},(L-1) \beta-\sum_{i \neq L}^{L+1} \alpha_{i},-\beta+\alpha_{L-1}, \ldots,\right. \\
& \left.\left.\quad-\beta+\alpha_{1}, 0\right)\right\}
\end{aligned}
$$

which lead to the canonical series

$$
\begin{aligned}
& \phi_{1}=c^{\gamma_{1}}{ }_{2} F_{1}\left(\beta-\alpha_{L+1}, \beta-\alpha_{L}, L \beta-\sum_{i=1}^{L+1} \alpha_{i}+1 ; x\right) \\
& \phi_{2}=c^{\gamma_{2}}{ }_{2} F_{1}\left(-(L-1) \beta+\sum_{i=1}^{L} \alpha_{i},-(L-1) \beta+\sum_{i \neq L}^{L+1} \alpha_{i} ; \sum_{i=1}^{L} \alpha_{i}-L \beta+1 ; x\right)
\end{aligned}
$$

where $x=\frac{c_{1} c_{L+3}}{c_{2} c_{3}}$. The relevant integration constant reads

$$
K_{1}=\frac{\Gamma\left(-L \beta+\sum_{i=1}^{L+1} \alpha_{i}\right)}{\Gamma(\beta)} \prod_{i=1}^{L+1} \Gamma\left(\beta-\alpha_{i}\right)
$$

Theorem

Let $g_{r}(c, z)$ be the deformed polynomial in N variables obtained from $g(c, z)=$ $\mathcal{U}(c)+\mathcal{F}(c)$, where $\mathcal{F}(c)$ and $\mathcal{U}(c)$ are obtained by considering the coefficients appearing in the Symanzik polynomials as variables. $g_{r}(c, z)$ is obtained by introducing a deformation $r(c, z)$ demanding that its matrix satisfies $\mathrm{co}(\mathrm{A})>0$. Let $A=\left(\begin{array}{llll}a_{1} & a_{2} \cdots & a_{n}\end{array}\right)$ be the configuration matrix associated with $g_{r}(c, z)$ and consider the polynomial with indeterminate generic coefficients

$$
g_{r}(c, z)=\sum_{i=1}^{n} c_{i} z^{a_{i}}, \quad c_{i} \in \mathbb{C}_{*}
$$

Let A be its associated $(N+1) \times n$ matrix

$$
\mathrm{A}=\left(\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
a_{1} & a_{2} & \ldots & a_{n}
\end{array}\right)
$$

Theorem

The Euler-Mellin integral

$$
I_{g_{r}}(\kappa)=\int_{\Omega} \frac{z^{\alpha}}{g_{r}(c, z)^{d / 2}} \mathrm{~d} \eta_{N}
$$

is a solution of the A-hypergeometric system $H_{\mathrm{A}}(\kappa)$ of degree $\kappa=(-d / 2,-\alpha)$. Noncompact cycles Ω can be obtained by taking the coamoeba of $g_{r}(c, z)$ and choosing representatives θ of connected components $\Theta \in \mathbb{R}^{N} \backslash \overline{\mathcal{A}^{\prime}}{ }_{g_{r}}$. Proof. Show that the above integral satisfies GKZ system. Validity for non-compact cycles demonstrated by Berkesh-Forsgdi-Passare.

Remark on cycles

Noncompact cycles for A-hypergeometric functions from coamoebas of \mathcal{A}_{g}^{\prime} simply gives $\Omega=\mathbb{R}_{+}^{N}$ thanks to positivity of coefficients in $g(z)$.

[^0]: Sturmfels, Gröbner bases and convex polytopes, '95

