AdS Virasoro-Shapiro from single-valued periods

Tobias Hansen, University of Oxford

Seminar on motives and period integrals in quantum field theory and string theory November 2022

Based on 2204.07542, 2209.06223 with Luis F. Alday, João Silva

1

1 Intro: How to bootstrap a string amplitude?

- 2 Derivation of dispersive sum rules
- 3 Solution from flat space
- 4 Solution at order $1/\sqrt{\lambda}$
- 5 Resumming the low energy expansion

1 Intro: How to bootstrap a string amplitude?

- 2 Derivation of dispersive sum rules
- 3 Solution from flat space
- 4 Solution at order $1/\sqrt{\lambda}$
- 5 Resumming the low energy expansion

 \rightarrow

Veneziano (1968) and Virasoro/Shapiro (1969/1970) made assumptions on amplitude A(S, T) (from pheno):

- crossing symmetry
- IR: only simple poles: on linear Regge trajectories

superconvergence sum rules relating IR and UV

The birth of string theory

Virasoro-Shapiro amplitude in flat space

Tree-level 4 graviton amplitude in type IIb superstring
$$(g_s \ll 1)$$

$$A(S, T) = -\frac{\Gamma(-S)\Gamma(-T)\Gamma(-U)}{\Gamma(S+1)\Gamma(T+1)\Gamma(U+1)}$$

$$S = -\frac{\alpha'}{4}(p_1 + p_2)^2$$
, $T = -\frac{\alpha'}{4}(p_1 + p_3)^2$, $U = -\frac{\alpha'}{4}(p_1 + p_4)^2$

Low energy expansion $(g_s \ll \alpha' \ll 1)$ $A(S,T) = \frac{1}{STU} + 2\sum_{a,b=0}^{\infty} \hat{\sigma}_2^a \hat{\sigma}_3^b \alpha_{a,b}^{(0)}$

 $\hat{\sigma}_2 = \frac{1}{2}(S^2 + T^2 + U^2), \qquad \hat{\sigma}_3 = STU, \qquad S + T + U = 0$

AdS/CFT

type IIb string theory in $AdS_5 \times S^5$

- worldsheet theory unknown
- We want to derive the genus 0, 4pt amplitude (Virasoro-Shapiro of AdS)

 $\mathcal{N} = 4$ SYM theory with SU(N) gauge group

• CFT provides rigid structure

Dictionary:
$$g_s = \frac{g_{YM}^2}{4\pi} = \frac{1}{4\pi} \frac{\lambda}{N}, \qquad \alpha' = \frac{R_{AdS}^2}{\sqrt{\lambda}}$$

=

Tree level string theory at low energy
$$g_{s} \ll lpha' \ll 1 \quad \Leftrightarrow \quad N \gg \sqrt{\lambda} \gg 1$$

Consider the four-point function

 $\langle \mathcal{O}_2 \mathcal{O}_2 \mathcal{O}_2 \mathcal{O}_2
angle \sim \mathcal{T}(u,v) = \mbox{ reduced correlator}$

 $\mathcal{O}_2=$ superconformal primary of stress-tensor supermultiplet in $\mathcal{N}=4$ SYM theory We will concentrate on

$$M(s_1, s_2) =$$
 Mellin transform of $\mathcal{T}(u, v)$

Crossing symmetry:

$$M(s_1, s_2) = M(s_2, s_1) = M(s_1, s_3), \qquad s_1 + s_2 + s_3 = 0$$

 $M(s_1, s_2)$ has analytic structure similar to a scattering amplitude.

Operator product expansion (OPE)OPE data
$$\mathcal{O}_2(x)\mathcal{O}_2(0) = \sum_{\mathcal{O}_{\tau,\ell} \text{ primaries}} C_{\tau,\ell}^2 c_{\tau,\ell}(x,\partial_y)\mathcal{O}_{\tau,\ell}(y)|_{y=0}$$
 $OPE data$ • $\ell = \text{spin}$ • $\ell = \text{spin}$ • $\tau = \Delta - \ell = \text{twist}$ • $C_{\tau,\ell}^2 = \text{OPE coefficients}$

 $M(s_1, s_2)$ has only simple poles, given by [Mack;2009], [Penedones,Silva,Zhiboedov;2019]

Poles and residues of $M(s_1, s_2)$

$$M(s_1, s_2) \sim rac{C_{ au, \ell}^2 Q_{\ell, m}^{ au+4, d=4}(s_2 - rac{8}{3})}{s_1 - au - 2m + rac{4}{3}}$$

The low energy expansion

Low energy expansion in flat space

$$A(S,T) = \frac{1}{STU} + 2\sum_{a,b=0}^{\infty} \hat{\sigma}_2^a \hat{\sigma}_3^b \alpha_{a,b}^{(0)}$$

Low energy expansion of Mellin amplitude

$$M(s_1, s_2) = \frac{8}{(s_1 - \frac{2}{3})(s_2 - \frac{2}{3})(s_3 - \frac{2}{3})} + \sum_{a,b=0}^{\infty} \frac{\Gamma(2a + 3b + 6)}{8^{a+b}\lambda^{\frac{3}{2} + a + \frac{3}{2}b}} \sigma_2^a \sigma_3^b \left(\alpha_{a,b}^{(0)} + \frac{\alpha_{a,b}^{(1)}}{\sqrt{\lambda}} + \frac{\alpha_{a,b}^{(2)}}{\lambda} + \cdots \right)$$

$$\sigma_2^a \sigma_3^b = \text{ contact diagrams }, \quad \sigma_2 = s_1^2 + s_2^2 + s_3^2, \quad \sigma_3 = s_1 s_2 s_3$$

 $\alpha_{a,b}^{(k)} = \text{ Wilson coefficients}$

• AdS: expand also in dimensionless parameter $1/\sqrt{\lambda} = \alpha'/R_{AdS}^2$ • $\alpha_{a,b}^{(0)}$ are the same due to flat space limit [Penedones;2010] Constraints on $M(s_1, s_2)$ (from CFT):

- superconformal and crossing symmetry
- **②** IR: only simple poles: positions and residues \leftrightarrow CFT data
- Iow energy expansion

Dispersive sum rules

 \Rightarrow

$$lpha_{{m{a}},{m{b}}}^{(k)} = \sum_{ au,\ell} f \left(\mathsf{OPE} \; \mathsf{data} \; \mathsf{of} \; \mathsf{stringy} \; \mathsf{operators}
ight)$$

stringy operators: single-trace, $\Delta\propto\lambda^{\frac{1}{4}}$

Flat space Wilson coefficients

Extract $\alpha_{a,b}^{(0)}$ from the flat space amplitude:

 $\hat{\sigma}_2 = \frac{1}{2}(S^2 + T^2 + U^2)$ $\hat{\sigma}_3 = STU$

$$\begin{aligned} \frac{1}{STU} + 2\sum_{a,b=0}^{\infty} \hat{\sigma}_2^a \hat{\sigma}_3^b \alpha_{a,b}^{(0)} &= -\frac{\Gamma(-S)\Gamma(-T)\Gamma(-U)}{\Gamma(S+1)\Gamma(T+1)\Gamma(U+1)} \\ &= \frac{1}{STU} \exp\left(2\sum_{n=1}^{\infty} \frac{\zeta(2n+1)}{2n+1} \left(S^{2n+1} + T^{2n+1} + U^{2n+1}\right)\right) \end{aligned}$$

Example:

$$\alpha_{a,0}^{(0)} = \zeta(3+2a), \qquad \alpha_{a,1}^{(0)} = \sum_{\substack{i_1, i_2 = 0\\i_1+i_2 = a}}^{a} \zeta(3+2i_1)\zeta(3+2i_2), \qquad \dots$$

 $\alpha_{a,b}^{(0)}$ is in the ring of single-valued MZVs of weight 3 + 2a + 3b and depth $\leq b + 1$. One can solve the dispersive sum rule for leading OPE data (in $1/\sqrt{\lambda}$ expansion). The next sum rule

$$lpha_{\mathsf{a},\mathsf{b}}^{(1)} = \sum_{ au,\ell} f \left(\mathsf{OPE} \;\mathsf{data}
ight)$$

has unknown data on both sides. We find a unique solution by assuming:

- $\alpha_{a,b}^{(1)}$ is in the ring of single-valued MZVs of weight 4 + 2a + 3b and depth $\leq b + 2$
- an ansatz for f (OPE data) in terms of Euler-Zagier sums

Solution agrees with integrability and passes various consistency checks!

$$-\frac{\Gamma(-S)\Gamma(-T)\Gamma(-U)}{\Gamma(S+1)\Gamma(T+1)\Gamma(U+1)} = \frac{1}{STU} + 2\sum_{a,b=0}^{\infty} \hat{\sigma}_{2}^{a} \hat{\sigma}_{3}^{b} \alpha_{a,b}^{(0)}$$

Sum for flat space [Zagier, Zerbini; 2019]

$$2\sum_{a,b=0}^{\infty} \hat{\sigma}_{3}^{a} \hat{\sigma}_{3}^{b} \alpha_{a,b}^{(0)} = \sum_{\delta=1}^{\infty} \frac{1}{\delta^{3}} \frac{y+2}{1-x-y} {\binom{z+\delta-1}{\delta-1}}^{2} \qquad (\text{poles at } S, T, U = \delta)$$

Sum for $1/\sqrt{\lambda}$ correction

$$2\sum_{a,b=0}^{\infty}\hat{\sigma}_{2}^{a}\hat{\sigma}_{3}^{b}\alpha_{a,b}^{(1)} = \sum_{\delta=1}^{\infty}\sum_{n=0}^{\delta-1}\frac{1}{\delta^{4}}\mathcal{D}_{n}(\delta)\frac{y+2}{1-x-y}\binom{z+\delta-\frac{n}{2}-1}{\delta-n-1}^{2}$$

$$\begin{aligned} x &= \hat{\sigma}_2 / \delta^2 \,, \quad y &= \hat{\sigma}_3 / \delta^3 \,, \quad z &= \delta \left(\sqrt{1 - 4y} - 1 \right) / 2 \\ \mathcal{D}_n(\delta) &= \text{ degree 3 differential operator in } x, y, z \end{aligned}$$

Intro: How to bootstrap a string amplitude?

2 Derivation of dispersive sum rules

- 3 Solution from flat space
- 4 Solution at order $1/\sqrt{\lambda}$
- 5 Resumming the low energy expansion

$$\mathsf{Result:} \qquad \mathsf{M}(\mathsf{s}_1,\mathsf{s}_2) = \sum_{\tau,\ell} C^2_{\tau,\ell} \omega_{\tau,\ell}(\mathsf{s}_1,\mathsf{s}_2)$$

Imposing

low energy expansion
$$= M(s_1, s_2) = \sum_{\tau, \ell} C^2_{\tau, \ell} \omega_{\tau, \ell}(s_1, s_2)$$

relates Wilson coefficients and OPE data:

$$lpha_{s,b}^{(k)} = \sum_{ au, \ell} f$$
 (OPE data of stringy operators)

The stringy operators must have $\tau \sim \lambda^{\frac{1}{4}}$ to produce string states of mass $m \sim 1/\sqrt{\alpha}$ in the flat space limit.

r = quantum numbers

$\mathcal{OPE \text{ coefficients}}$ $\mathcal{C}^{2}(r;\lambda) = \underbrace{\frac{\pi^{3}}{4^{6+\ell+\tau(r;\lambda)}} \frac{\tau(r;\lambda)^{6}}{\sin^{2}(\frac{\pi\tau(r;\lambda)}{2})} \frac{1}{\ell+1}}_{\text{cancels factor in }\lim_{\tau\to\infty}\omega_{\tau,\ell}(s_{1},s_{2})} f(r;\lambda)$

Expansion in $1/\lambda^{\frac{1}{4}}$

$$\tau(r;\lambda) = \tau_0(r)\lambda^{\frac{1}{4}} + \tau_1(r) + \tau_2(r)\lambda^{-\frac{1}{4}} + \dots$$

$$f(r;\lambda) = f_0(r) + f_1(r)\lambda^{-\frac{1}{4}} + f_2(r)\lambda^{-\frac{1}{2}} + \dots$$

First dispersive sum rule:

$$\zeta(3+2a) \stackrel{\text{flat space}}{=} \alpha_{a,0}^{(0)} = \sum_{r} \left(\frac{4}{\tau_0^2(r)}\right)^{3+2a} f_0(r)$$

Expand at large a:

$$\frac{1}{1^{3+2a}} + \frac{1}{2^{3+2a}} + \frac{1}{3^{3+2a}} + \ldots = \left(\frac{4}{\tau_0^2(r_1)}\right)^{3+2a} \sum_{r_1} f_0(r_1) + \left(\frac{4}{\tau_0^2(r_2)}\right)^{3+2a} \sum_{r_2} f_0(r_2) + \ldots$$
$$\Rightarrow \quad \tau_0(r) = 2\sqrt{\delta} \,, \quad \delta \in \mathbb{N}$$

Agrees with [Gubser,Klebanov,Polyakov;1998]!

Quantum numbers

In terms of spin ℓ and Regge trajectory *n*:

$$\tau_0(r) = 2\sqrt{\delta} = 2\sqrt{\ell/2 + n + 1}$$

 $\ell = 0, 2, \ldots, 2(\delta - 1)$

Our quantum numbers:

$$r = (\delta, \ell, \hat{r})$$

 \hat{r} not accessible from $\langle \mathcal{O}_2 \mathcal{O}_2 \mathcal{O}_2 \mathcal{O}_2 \rangle$ alone:

$$\sum_{\hat{r}}\ldots=\langle\ldots\rangle$$

Intro: How to bootstrap a string amplitude?

2 Derivation of dispersive sum rules

Solution from flat space

4 Solution at order $1/\sqrt{\lambda}$

5 Resumming the low energy expansion

Sum rule for $\alpha_{a,b}^{(0)}$

First dispersive sum rule

$$\alpha_{a,b}^{(0)} = \sum_{\delta=1}^{\infty} \sum_{m=0}^{b} \frac{c_{a,b,m}^{(0)}}{\delta^{3+2a+3b}} F_m^{(0)}(\delta), \qquad F_m^{(0)}(\delta) = \sum_{\ell=0,2,\dots}^{2(\delta-1)} (\ell-m+1)_m (\ell+2)_m \langle f_0(\delta,\ell) \rangle$$

 $\alpha_{a,b}^{(0)}$ is known from flat space in terms of multiple zeta values (MZVs):

$$\zeta(s_{1},...,s_{d}) = \sum_{n_{1}>...>n_{d}>0} \frac{1}{n_{1}^{s_{1}}\cdots n_{d}^{s_{d}}} = \sum_{\delta=1}^{\infty} \frac{Z_{s_{2},s_{3},...}(\delta-1)}{\delta^{s_{1}}}$$

Euler-Zagier sums: $Z_{s_{1},...,s_{d}}(N) = \sum_{\substack{n_{1},...,n_{d} \ N \ge n_{1}>...>n_{d}>0}} \frac{1}{n_{1}^{s_{1}}\cdots n_{d}^{s_{d}}}$
Sum rules implies: $F_{m}^{(0)}(\delta) = \sum_{d=\lfloor\frac{m+1}{2}\rfloor}^{m} \sum_{\substack{s_{1},...,s_{d}\in\{1,2\}\\s_{1}+...+s_{d}=m}} 2^{\sum_{i}\delta_{s_{i},1}}\delta^{m}Z_{s_{1},...,s_{d}}(\delta-1)$

Resulting $\langle f_0(\delta, \ell) \rangle$ agrees with [Costa,Goncalves,Penedones;2012].

Intro: How to bootstrap a string amplitude?

2 Derivation of dispersive sum rules

3 Solution from flat space

4 Solution at order $1/\sqrt{\lambda}$

5 Resumming the low energy expansion

Sum rule for $\alpha^{(1)}_{{\scriptscriptstyle a},{\scriptscriptstyle b}}$

Second dispersive sum rule

$$\alpha_{a,b}^{(1)} = \sum_{\delta=1}^{\infty} \sum_{m=0}^{b} \frac{1}{\delta^{4+2a+3b}} \left(c_{a,b,m}^{(0)} \left(F_{m}^{(2)}(\delta) - (3+2a+3b)T_{m}^{(2)}(\delta) \right) + c_{a,b,m}^{(2)}F_{m}^{(0)}(\delta) \right)$$

$$T_{m}^{(2)}(\delta) = \sum_{\ell=0,2,...}^{2(\delta-1)} \sqrt{\delta}(\ell - m + 1)_{m}(\ell + 2)_{m} \langle f_{0}(\delta, \ell) \tau_{2}(\delta, \ell) \rangle$$

$$F_{m}^{(2)}(\delta) = \sum_{\ell=0,2,...}^{2(\delta-1)} (\ell - m + 1)_{m}(\ell + 2)_{m} \left(\delta \langle f_{2}(\delta, \ell) \rangle - \frac{39}{4} \ell \langle f_{0}(\delta, \ell) \rangle \right)$$

$$c_{a,b,m}^{(2)} = c_{a,b,m}^{(0)} \times \text{ degree 3 polynomial in } a, b, m$$

Now: Unknown data on both sides of equation.

The dispersive sum rules hold for

$$b = 0, 1, 2, \dots, \qquad a = -b, -b + 1, \dots$$

Low energy expansion requires

$$lpha_{\mathsf{a},\mathsf{b}}^{(k)} = 0$$
, for $\mathsf{a} = -\mathsf{b}, \dots, -1$

One can check that this holds for $\alpha_{a,b}^{(0)}$.

Constrains $\alpha_{a,b}^{(1)}$, but not enough to fix it.

We will demand that $\alpha_{a,b}^{(1)}$ for $a \ge 0$ is in the ring of single-valued MZVs.

weight $= s_1 + \ldots + s_d$, depth = d

Multiple polylogarithms

$$\operatorname{Li}_{s_1,...,s_d}(z) = \sum_{n_1 > ... > n_d > 0} \frac{z^{m_1}}{n_1^{s_1} \cdots n_d^{s_d}}$$

Multiple zeta values (MZVs)

$$\zeta(s_1,\ldots,s_d) = \mathsf{Li}_{s_1,\ldots,s_d}(1) = \sum_{n_1 > \ldots > n_d > 0} rac{1}{n_1^{s_1} \cdots n_d^{s_d}}$$

Francis Brown constructed single-valued multiple polylogarithms $Li_{s_1,...,s_d}^{sv}(z)$

Single-valued MZVs

$$\zeta^{\mathsf{sv}}(s_1,\ldots,s_d) = \mathsf{Li}^{\mathsf{sv}}_{s_1,\ldots,s_d}(1)$$

 $\zeta^{\mathrm{sv}}(2k) = 0, \qquad \zeta^{\mathrm{sv}}(2k+1) = 2\zeta(2k+1), \qquad k \in \mathbb{N}$

Vector space of MZVs

MZVs of given weight form a finite-dimensional vector space over the rational numbers. We expand in a basis to take into account relations between MZVs of the same weight.

weight	2	3	4	5	6	7	8
generators	ζ(2)	ζ(3)		$\zeta(5)$		$\zeta(7)$	$\zeta(5,3)$
basis	ζ(2)	$\zeta(3)$	$\zeta(2)^2$	$\zeta(5)$	$\zeta(3)^2$	$\zeta(7)$	$\zeta(5,3)$
				$\zeta(3)\zeta(2)$	$\zeta(2)^3$	$\zeta(5)\zeta(2)$	$\zeta(5)\zeta(3)$
						$\zeta(3)\zeta(2)^2$	$\zeta(3)^{2}\zeta(2)$
							$\zeta(2)^4$

Example:
$$\zeta(3,2,1) = 3\zeta(3)^2 - \frac{29}{30}\zeta(2)^3$$

Single-valued MZVs form a much smaller vector space. All generators have odd weight.

weight	3	5	7	9	11	13
generators	$\zeta^{sv}(3)$	$\zeta^{\sf sv}(5)$	$\zeta^{\sf sv}(7)$	$\zeta^{\sf sv}(9)$	$\zeta^{\sf sv}(11)$	$\zeta^{\sf sv}(13)$
					$\zeta^{sv}(5,3,3)$	$\zeta^{sv}(7,3,3)$
						$\zeta^{sv}(5,5,3)$

Example:
$$\zeta^{\text{sv}}(5,3,3) = 2\zeta(5,3,3) - \frac{8}{7}\zeta(5)\zeta(2)^3 + \frac{12}{5}\zeta(7)\zeta(2)^2 + 90\zeta(9)\zeta(2) - 5\zeta(3)^2\zeta(5)$$

We make the assumptions:

- $\alpha_{a,b}^{(1)}$ is in the ring of single-valued MZVs and has uniform weight 4 + 2a + 3b.
- $T_m^{(2)}(\delta)$: Euler-Zagier sums (and svMZVs) of weight $\leq m+2$ and depth $\leq m+1$
- $F_m^{(2)}(\delta)$: Euler-Zagier sums (and svMZVs) of weight $\leq m+3$ and depth $\leq m+1$

Fixing $\alpha_{a,0}^{(1)}$

Ansatz for unknown terms in $\alpha_{s,0}^{(1)}$ (8 parameters):

$$T_0^{(2)}(\delta) = d_0 + d_1 \delta Z_1(\delta - 1) + d_2 \delta^2 Z_2(\delta - 1)$$

$$F_0^{(2)}(\delta) = c_0 + c_1 \delta Z_1(\delta - 1) + c_2 \delta^2 Z_2(\delta - 1) + c_3 \delta^3 Z_3(\delta - 1) + \tilde{c} \delta^3 \zeta(3)$$

Demand convergence:

$$\alpha_{0,0}^{(1)} = \sum_{\delta=1}^{\infty} \left(\frac{\tilde{c}\zeta(3) + c_3 Z_3(\delta - 1)}{\delta} + O(\delta^{-2}) \right) \qquad \Rightarrow \qquad \tilde{c} = -c_3$$

Demand single-valuedness:

$$\begin{aligned} \alpha_{0,0}^{(1)} &= \frac{1}{10} \left(4c_0 + c_1 + 3c_2 - 5c_3 - 12d_0 - 3d_1 - 9d_2 - 44 \right) \zeta(2)^2 ,\\ \alpha_{1,0}^{(1)} &= \left(\dots \right) \zeta(2)^3 + \left(\dots \right) \zeta(3)^2 , \qquad \alpha_{2,0}^{(1)} &= \left(\dots \right) \zeta(2)^4 + \left(\dots \right) \zeta(3)\zeta(5) + \left(\dots \right) \zeta(5,3) ,\\ \alpha_{3,0}^{(1)} &= \left(\dots \right) \zeta(2)^5 + \left(\dots \right) \zeta(3)\zeta(7) + \left(\dots \right) \zeta(5)^2 + \left(\dots \right) \zeta(7,3) . \end{aligned}$$

Use localisation result: $\alpha_{1,0}^{(1)} = -2\zeta(3)^2$ [Chester,Pufu;2020] All parameters fixed!

The result is

$$\begin{aligned} \alpha_{a,0}^{(1)} &= 2\zeta(2a+1)\zeta(3) - 2\zeta(2a+1,3) - (2a+1)\zeta(2a+2,2) \\ &+ \frac{1}{3} \left(6a^2 + 23a + 3 \right) \zeta(2a+3,1) - \frac{1}{3} \left(4a^3 + 16a^2 + 13a + 6 \right) \zeta(2a+4) \end{aligned}$$

Can be rewritten as

$$\alpha_{a,0}^{(1)} = -\left(a^2 + \frac{35}{6}a + \frac{1}{2}\right)\sum_{\substack{i_1, i_2 = 0\\i_1 + i_2 = a - 1}}^{a-1} \zeta(3 + 2i_1)\zeta(3 + 2i_2) - 2\sum_{\substack{i_1, i_2 = 0\\i_1 + i_2 = a - 1}}^{a-1} i_1i_2\zeta(3 + 2i_1)\zeta(3 + 2i_2)$$

This shows it is in the ring of single-valued MZVs for all values of *a*.

More $\alpha^{(1)}_{\mathbf{a},\mathbf{b}}$ solutions

In the same way we find unique solutions for $\alpha^{(1)}_{a,b}$ with $b=1,\ldots,6$

Can not be written in terms of single zeta values, example:

$$\alpha_{3,1}^{(1)} = -\frac{209279}{300}\zeta(13) - 166\zeta(3)^2\zeta(7) - 174\zeta(3)\zeta(5)^2 + \frac{2}{25}\zeta^{\text{sv}}(5,5,3)$$

Examples for $T_m^{(2)}(\delta)$: (Z's are evaluated at $\delta - 1$)

$$\begin{aligned} T_0^{(2)}(\delta) &= \delta^2 Z_2 + \frac{1}{4} \delta Z_1 + 2 \\ T_1^{(2)}(\delta) &= \delta^3 \left(Z_3 + 2 Z_{1,2} + 3 Z_{2,1} \right) + \delta^2 \left(\frac{7}{4} Z_2 + Z_{1,1} \right) + \frac{9}{2} \delta Z_1 \\ T_2^{(2)}(\delta) &= \delta^4 \left(2 Z_{1,3} + 3 Z_{3,1} + 3 Z_{2,2} + 4 Z_{1,1,2} + 6 Z_{1,2,1} + 8 Z_{2,1,1} \right) \\ &+ \delta^3 \left(2 Z_3 + \frac{15}{4} Z_{1,2} + \frac{23}{4} Z_{2,1} + 3 Z_{1,1,1} \right) + \delta^2 \left(2 Z_2 + 9 Z_{1,1} \right) \end{aligned}$$

Similar for $F_m^{(2)}(\delta)$

Based on the results for $b = 0, \ldots, 6$:

$$T_m^{(2)}(\delta) = \sum_{w=m}^{m+2} \sum_{d=\lfloor\frac{m+1}{2}\rfloor}^{m+1} \sum_{\substack{s_1,\dots,s_d \in \{1,2,3\}\\s_1+\dots+s_d=w}} t_{s_1,\dots,s_d}^m \delta^w Z_{s_1,\dots,s_d}(\delta-1)$$

$$F_m^{(2)}(\delta) = 2\delta^3\zeta(3)F_m^{(0)}(\delta) + \sum_{w=m}^{m+3} \sum_{d=\lfloor\frac{m+1}{2}\rfloor}^{m+1} \sum_{\substack{s_1,\dots,s_d \in \{1,2,3,4\}\\s_1+\dots+s_d=w}} f_{s_1,\dots,s_d}^m \delta^w Z_{s_1,\dots,s_d}(\delta-1)$$

Found general formula for coefficients $t^m_{s_1,...,s_d}$ and $f^m_{s_1,...,s_d} \rightarrow \text{solution for all } \alpha^{(1)}_{a,b}$!

$$r_n(\delta) = \frac{4^{2-2\delta}\delta^{2\delta-2n-1}(2\delta-2n-1)}{\Gamma(\delta)\Gamma\left(\delta-\lfloor\frac{n}{2}\rfloor\right)}$$

Leading Regge trajectory $\ell = 2(\delta - 1)$ (non-degenerate)

$$\begin{split} f_0(\delta, 2(\delta - 1)) &= \frac{r_0(\delta)}{\delta}, \qquad \tau_2(\delta, 2(\delta - 1)) = \frac{3\delta^2 - \delta + 2}{2\sqrt{\delta}} \\ f_2(\delta, 2(\delta - 1)) &= -\frac{r_0(\delta)}{96\delta^2} \left(112\delta^3 - 1872\delta^2 + 344\delta + 201\right) + 2\delta^2\zeta(3)f_0(\delta, 2(\delta - 1)) \end{split}$$

 $\tau_2(\delta, 2(\delta - 1))$ agrees with integrability result [Gromov, Serban, Shenderovich, Volin; 2011]!

Next Regge trajectory

$$\langle f_0 \tau_2 \rangle (\delta, 2(\delta - 2)) = rac{r_1(\delta)}{18\sqrt{\delta}} \left(18\delta^4 + 25\delta^3 - 57\delta^2 + 50\delta - 72
ight)$$
 etc.

We determine $\langle f_0 \tau_2 \rangle$ and $\langle f_2 \rangle$ for many Regge trajectories.

Single-valuedness (and zeros for a < 0) of $\alpha_{a,b}^{(1)}$:

- imposed for $b = 0, \ldots, 6$ and a = 0, 1, 2, 3
- checked for $b \le 6$, $4 + 2a + 3b \le 28$ and $b \le 12$, $4 + 2a + 3b \le 25$ (using HyperlogProcedures by Oliver Schnetz)

2 Equations for OPE data are overconstrained, with solution, e.g.

$$T_m^{(2)}(\delta)|_{\text{definition}} = T_m^{(2)}(\delta)|_{\text{solution}}, \qquad \delta \text{ fixed}$$

•
$$\delta$$
 unknowns: $\ell = 0, 2, \dots, 2(\delta - 1)$

• $2\delta - 1$ equations: $m = 0, 1, \dots, 2(\delta - 1)$

Intro: How to bootstrap a string amplitude?

- 2 Derivation of dispersive sum rules
- 3 Solution from flat space
- 4 Solution at order $1/\sqrt{\lambda}$
- 5 Resumming the low energy expansion

The flat space transform

Flat space transform achieves Borel summation of low energy expansion.

$$M(s_1, s_2) = \frac{8}{(s_1 - \frac{2}{3})(s_2 - \frac{2}{3})(s_3 - \frac{2}{3})} + \sum_{a,b=0}^{\infty} \frac{\Gamma(2a + 3b + 6)}{8^{a+b}\lambda^{\frac{3}{2}+a+\frac{3}{2}b}} \sigma_2^a \sigma_3^b \left(\alpha_{a,b}^{(0)} + \frac{\alpha_{a,b}^{(1)}}{\sqrt{\lambda}}\right) + O(1/\lambda)$$

Flat space transform [Penedones;2010]

$$A(S,T) = \mathsf{FS}(M(s_1,s_2)) = 2\lambda^{\frac{3}{2}} c \int_{\kappa-i\infty}^{\kappa+i\infty} \frac{d\alpha}{2\pi i} e^{\alpha} \alpha^{-6} M\left(\frac{2\sqrt{\lambda}S}{\alpha},\frac{2\sqrt{\lambda}T}{\alpha}\right)$$

Result:

$$\begin{aligned} A(S,T) &= A^{(0)}(S,T) + \frac{1}{\sqrt{\lambda}} A^{(1)}(S,T) + O(1/\lambda) \\ &= \frac{1}{STU} - \frac{1}{3\sqrt{\lambda}} \frac{\hat{\sigma}_2}{\hat{\sigma}_3^2} + 2\sum_{a,b=0}^{\infty} \hat{\sigma}_2^a \hat{\sigma}_3^b \left(\alpha_{a,b}^{(0)} + \frac{\alpha_{a,b}^{(1)}}{\sqrt{\lambda}} \right) + O(1/\lambda) \end{aligned}$$

Recall sum rule:

$$\alpha_{a,b}^{(0)} = \sum_{\delta=1}^{\infty} \sum_{m=0}^{b} \frac{c_{a,b,m}^{(0)}}{\delta^{3+2a+3b}} F_{m}^{(0)}(\delta)$$

We use the generating series [Zagier,Zerbini;2019]:

$$\sum_{a,b=0}^{\infty} c_{a,b,m}^{(0)} x^a y^b = \frac{1}{2} \frac{y+2}{1-x-y} \left(\frac{\sqrt{1-4y}-1}{2} \right)^m, \qquad \sum_{m=0}^{\infty} F_m^{(0)}(\delta) \left(\frac{z}{\delta} \right)^m = \left(\frac{z+\delta-1}{\delta-1} \right)^2$$

Sum over a, b, m

$$2\sum_{a,b=0}^{\infty}\hat{\sigma}_{2}^{a}\hat{\sigma}_{3}^{b}\alpha_{a,b}^{(0)} = \sum_{a,b,m=0}^{\infty}\sum_{\delta=1}^{\infty}\frac{2}{\delta^{3}}x^{a}y^{b}c_{a,b,m}^{(0)}F_{m}^{(0)}(\delta) = \sum_{\delta=1}^{\infty}\frac{1}{\delta^{3}}\frac{y+2}{1-x-y}\binom{z+\delta-1}{\delta-1}^{2}$$

$$x = \hat{\sigma}_2/\delta^2, \ y = \hat{\sigma}_3/\delta^3, \ z = \delta\left(\sqrt{1-4y} - 1\right)/2, \quad \frac{y+2}{1-x-y} = 2 - \frac{S}{S-\delta} - \frac{T}{T-\delta} - \frac{U}{U-\delta}$$

Summing $\alpha^{(1)}_{a,b}$

Recall sum rule:

$$\alpha_{a,b}^{(1)} = \sum_{\delta=1}^{\infty} \sum_{m=0}^{b} \frac{1}{\delta^{4+2a+3b}} \left(c_{a,b,m}^{(0)} \left(F_m^{(2)}(\delta) - (3+2a+3b)T_m^{(2)}(\delta) \right) + c_{a,b,m}^{(2)}F_m^{(0)}(\delta) \right)$$

We find the generating series:

$$\sum_{m=0}^{\infty} F_m^{(2)}(\delta) \left(\frac{z}{\delta}\right)^m = \sum_{n=0}^{\delta-1} h_n(\delta) \left(\frac{z+\delta-\frac{n}{2}-1}{\delta-n-1}\right)^2, \quad \sum_{m=0}^{\infty} T_m^{(2)}(\delta) \left(\frac{z}{\delta}\right)^m = \sum_{n=0}^{\delta-1} g_n(\delta) \left(\frac{z+\delta-\frac{n}{2}-1}{\delta-n-1}\right)^2$$

Sum over *a*, *b*, *m*

$$2\sum_{a,b=0}^{\infty}\hat{\sigma}_{2}^{a}\hat{\sigma}_{3}^{b}\alpha_{a,b}^{(1)} = \sum_{\delta=1}^{\infty}\sum_{n=0}^{\delta-1}\frac{1}{\delta^{4}}\mathcal{D}_{n}(\delta)\frac{y+2}{1-x-y}\binom{z+\delta-\frac{n}{2}-1}{\delta-n-1}^{2}$$

Using $ax^a = x\partial_x x^a$ etc:

 $\mathcal{D}_n(\delta) = h_n(\delta) - g_n(\delta) \left(3 + 2x\partial_x + 3y\partial_y\right) + \delta_{n,0} (\text{third order differential operator in } x, y, z)$ $\Rightarrow A^{(1)}(S, T) \text{ has poles up to 4th order at } S, T, U = 1, 2, 3, \dots$

- bound on chaos
 - \Rightarrow dispersive sum rules
 - \Rightarrow operators with $\Delta\sim\lambda^{\frac{1}{4}}$ in planar $\mathcal{N}=$ 4 SYM at large λ

• assumption that
$$\alpha^{(1)}_{a,b}$$
 are single-valued periods \Rightarrow solution of sum rules

• low energy expansion can be Borel summed analytic structure generalises the flat space Virasoro-Shapiro amplitude

Future directions

- Next order (WIP): it looks like $\alpha_{a,b}^{(2)}$ can be fixed after we determine $\langle f_0 \tau_2^2 \rangle$. This requires solving a mixing problem by studying $\langle \mathcal{O}_2 \mathcal{O}_2 \mathcal{O}_p \mathcal{O}_p \rangle$.
- N = 4 SYM theory is modular invariant in the gauge coupling. Can we identify modular functions that have α^(k)_{a,b} as perturbative terms? The first few are the same as in flat space: E(³/₂, τ_s, τ̄_s), E(⁵/₂, τ_s, τ̄_s), ε(3, ³/₂, ³/₂, τ_s, τ̄_s) [Green,Gutperle,Kwon,Vanhove;1997-2006], [Chester,Green,Pufu,Wang,Wen;2019,2020]
- What is the worldsheet theory for strings in AdS? First step: find single-valued integral representation for $A^{(1)}(S, T)$, generalising

$$(S+T)^2 A^{(0)}(S,T) = -\frac{1}{2\pi i} \int_{\mathbb{P}^1(\mathbb{C})} |z|^{-2S-2} |1-z|^{-2T-2} dz d\bar{z}$$

Thank you!

Questions?

 $T_m^{(2)}(\delta)$ formula

$$\begin{split} T_m^{(2)}(\delta) &= \sum_{w=m}^{m+2} \sum_{d=\lfloor \frac{m+1}{2} \rfloor}^{m+1} \sum_{\substack{s_1, \dots, s_d \in \{1, 2, 3\}\\ s_1 + \dots + s_d = w}} t_s^m \delta^w Z_s(\delta-1) \\ t_s^m &= \begin{cases} 2^{n_1^s} \left(Q_w^m(n_1^s, n_2^s, n_3^s) + p_w^m P_s \right), & n_3^s \in \{0, 1\}, \\ 0, & n_3^s > 1, \end{cases} \end{split}$$

$$\boldsymbol{s}=(s_1,\ldots,s_d)$$

$$n_k^s = \#$$
 of k's in s

 Q_w^m = result for lexicographically ordered \boldsymbol{s}

$$\begin{aligned} Q_{m+2}^{m}(n_{1}^{s},n_{2}^{s},1) &= 1, \qquad Q_{m+2}^{m}(n_{1}^{s},n_{2}^{s},0) &= \frac{n_{2}^{s}(n_{2}^{s}+1)}{2}, \\ Q_{m+1}^{m}(n_{1}^{s},n_{2}^{s},1) &= 2, \qquad Q_{m+1}^{m}(n_{1}^{s},n_{2}^{s},0) &= \frac{n_{1}^{s}+n_{2}^{s}(8n_{2}^{s}+6)}{8}, \\ Q_{m}^{m}(n_{1}^{s},n_{2}^{s},1) &= 0, \qquad Q_{m}^{m}(n_{1}^{s},n_{2}^{s},0) &= 2 - \frac{n_{1}^{s}(n_{1}^{s}+4n_{2}^{s}-3)}{8} - \frac{n_{2}^{s}(n_{2}^{s}-1)}{2}, \end{aligned}$$

 $p_w^m P_s = \text{extra term for unordered } s$

$$p_{m+2}^{m} = \frac{1}{2}, \quad p_{m+1}^{m} = 1, \quad p_{m}^{m} = 0, \quad P_{s} = \sum_{i=1}^{d} \delta_{s_{i}, \max(s)} \sum_{j=i+1}^{d} s_{j} (1 - \delta_{s_{j}, \max(s)})$$
⁴¹