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Diagrammatic exponentiation in multi-leg amplitudes

Motivation:

» The exponent is simpler — we wish to compute it directly!

» Non-Abelian exponentiation theorem for the colour-singlet case (cusp) :
Diagrams contributing to the exponent have

a) Irreducible (maximally non-Abelian) colour structure
b) No subdivergences.

How does this generalize to the multi-leg case?



Exponentiation in an Abelian theory

» The exponent only receives contributions from connected diagrams:

» Expanding the exponential exactly reproduces all disconnected diagrams:

(4 <



Non-abelian exponentiation (colour-singlet case)

Two new features:
» 3 and 4 gluon vertices — more complicated connected diagrams

» Non-commuting generators for multiple emissions from a given
Wilson line — colour-connected diagrams

(c)
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Non-abelian exponentiation (colour-singlet case)

Two new features:

» 3 and 4 gluon vertices — more complicated connected diagrams

» Non-commuting generators for multiple emissions from a given
Wilson line — colour-connected diagrams
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Non-abelian exponentiation
colour-singlet case (cusp configuration)

» Reducible colour structure: Diagram D is reducible if it can be
decomposed into two subdiagrams such that C'(D) = C(H;)C(H>)

()

Irreducible Irreducible Reducible

» Reducible diagrams have subdivergences.

» Webs have irreducible colour structure; they have no subdivergences.



Non-abelian exponentiation (colour-singlet case)

» In the colour-singlet case diagrams fall into two classes

Reducible - Has a cusp-related
Irreducible - No subdivergences - Contributes to exponent subdivergence - Does not contribute

» This goes hand-in-hand with the renormalization of the cusp: webs have a
single overall divergence —generating an (J(1/¢) singularity at each order (plus
higher poles due to running coupling):
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Diagrams contributing to the exponent have no subdivergences!



Non-abelian exponentiation: the multi-leg case

In the multi-leg case this separation breaks down:

reducible diagrams do contribute to the exponent ...

» Is the exponent still “"maximaly non-abelian’’?
» Reducible diagrams have subdivergences — is this consistent with renormalizability?

» What is the proper generalization of WEBS to the multi-leg case?
How can one compute directly the exponent?



Consequences of renormalization in multi-leg amplitudes

In the multiparton case:
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multiple poles occur due to two distinct reasons:
1) running coupling
2) commutators (only in the multi-leg case, and beyond the planar limit)

Specific subdivergences of the multi-eikonal vertex survive in the exponent,
BUT all multiple poles are predicted by lower orders. Only O(1/¢) are new.
In particular, there no 1/€n at O(al).



Non-abelian exponentiation: the multi-leg case

Exponentiating:
+
(la) (1b)

At 2-loops, do we get

j% ;bb § I
(2a) (2b)



Non-abelian exponentiation: the multi-leg case

Exponentiating: 2

D@y + D(lb) = ;<W >é F(1a)T T + Fap)T T
1

At 2-loops we get: D(la) D(lb) S D1ty + D1y D1a) + - }

2
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F(2a) + F( 2b C’(Qa) + C(Qb)}

While
% F(2a) C'(2a) + F(2b) C'(2b)
(2a) (2b)



Non-abelian exponentiation: the multi-leg case

Exponentiating 1-loop diagrams yields:
1 2 1
> [Daw + Dan)” = 5[ F(20) + F(2b)| |C(20) + C(20)

While the 2-loop amplitude is:
. = F(2a) C(2a) + F(2b) C(2b)

(2a) (2b)

The 2-loop contribution to the exponent is therefore:

% (F(2a) - F(20)] [C(20) - C(20)

In the multi-leg case, reducible diagrams do contribute to the exponent!



Non-abelian exponentiation: the multi-leg case

The 2-loop contribution to the exponent

is the anti-symmetric part of % + %
(24) (20)
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These properties (single pole, maximally non-Abelian colour structure)
are familiar from the colour singlet case.



Non-abelian exponentiation: the multi-leg case

» In contrast to the colour-singlet case, reducible diagrams enter the exponent.
Each diagram enters the exponent with a modified colour factor C (D)

» Individual diagrams do not have “web properties”, but only particular linear
combinations that do - enter the exponent:

S=exp |y W Wi =Y F(D)C(D)
) i {D},

» modified colour factors C'( D) are linear combination of (ordinary) colour factors
of diagrams that are obtained by permuting attachments to the Wilson lines, so:

W; = » F(D) Z Rpp C(D') = ]—"T]%O

é(D) web mixing matrix

J/

> Using the replica trick we derived a general combinatorial formula for /%



Three-loop example

(@) (b) () (d)

The entire web contributes:

F(3a) \ 1 -1 -1 1 C(3a)
o Fey ] 1] 2 2 2 2 C(3b)
| F(3¢) 61 -2 2 2 =2 C(3c)
F(3d) 1 -1 -1 1 C(3d)

| | |

Kinematics Web mixing matrix R Colour



Three-loop example

(@) (b) () (d)

The entire web contributes:

F(3a) 1 -1 -1 1 C'(3a)
| F@y) | 1| -2 2 2 -2 C(3b)
| FBe) 6| 2 2 2 -2 C(3c)

F(3d) 1 -1 -1 1 C(3d)

4 G
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subdivergences cancel




Properties of web mixing matrices

Any web mixing matrix R admits:

A. ltis idempotent:
R*=R
R is diagonalisable, with all its eigenvalues 0 or 1.

B. Its rows sum to zero:

ZRDD/ =0
D’

C. Its columns, weighted by a symmetry factor s(D), sum to zero:

Z S(D) RDD’ =0

s(D) counts the number of way of sequentially shrinking subdiagrams to the vertex.



Properties of web mixing matrices

Any web mixing matrix R admits:

A. Itis idempotent:
R2 — R R is a projection operator

R is diagonalisable, with all its eigenvalues 0 or 1.

B. Its rows sum to zero:

E RDD’ =0 Colour-symmetric terms
D!

are projected out

C. Its columns, weighted by a symmetry factor s(D), sum to zero:

E S (D) RDD/ — O Subdivergences cancel
D

s(D) counts the number of way of sequentially shrinking subdiagrams to the vertex.



Connected colour factors: generalised non-
Abelian exponentiation theorem

S =expiwy = (¢p, gy - -+ D)

Theorem: all colour structures in the expongpt

correspond to connected graphs




Mixing matrices: four-loop example

([1,2].[2,3],[4,3],[4,1]]

[[1,2].[1,3],[4,3],[4,2]]

[[1,2].01,3],[4,3],[2,4]]

il

[[1,21,[3,11,[3,41,[4,2]1] [[1,2],[3,21,[4,31,[4,11] [[1,2],[3,1],[4,3],[2,4]] [[1,21,[2,31,[3,41,[4,11]



four-loop example

Mixing matrices

The resulting mixing matrix:
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Mixing matrices: four-loop example

This mixing matrix has rank 5 (5 eigenvectors with eigenvalue 1, the rest 0) corresponding to
the colour factors:




Diagrammatic exponetiation: conclusions

» Diagrammatic exponentiation has been extended to the multi-parton case.
We can now compute the exponent directly!

v Webs are formed by sets of (reducible) diagrams, related by permutations.
Contributions to the exponent appear through mixing between kinematic and
colour factors of the diagrams in the set.

v" A general formula for the mixing matrices was derived using the replica trick.
v' Mixing matrices have interesting mathematical properties. This structure
leads to non-Abelian colour structure and a singularity structure that is

consistent with renormalization (verified explicitly at three loops).

» Theorem:
All colour factors appearing in the exponent correspond to connected graphs




Non-abelian exponentiation using the replica trick

» Each hard parton, [ = 1..[,, is represented by a Wilson line ray:

7

(I)Ezll)bl p— (73 eXPp [igS/ dtﬁl A(tﬁﬂ])
0 a1 b;

» Generating functional for the Eikonal amplitude:
Wilson lines are sources for the soft gluon field A%

Mbl...bL (p17 * e 7pL) — Hal...aLZal...aL,bl...bL
Z = / DA S5AL] [q)(l) 20? %...o @L)}

> We want to write 2 — exp { . } : we wish to compute ln Z directly



Non-abelian exponentiation using the replica trick

> Replicate the theory [V times, such that different replicas do not interact:
N .
S[A] — > S[A]
1=1
» The generating functional for the replicated theory is:

i ) i 1 1 1 2 2 2 L L L
zZN :/[DA}J ... [DAN] T SIAL [(cpg 'V o) g @@ . oM g...... ® (@1 o! )~--<I>§V))]

» The order of attachments to the Wilson lines is important:

[@1(1)@2(5)._.@]\[(”} = (Pexp [igs/dw;‘ALD (Pexp [igs/dtﬁl"AfYD
a1by aico cN b1

N

750 oef) .. o] # | Pexp igsZ/dtﬁlﬂAz
a0 )

i=1 a;b;



Non-abelian exponentiation using the replica trick

> Replicate the theory [V times, such that different replicas do not interact:
N .
S[A] — > S[A]
1=1
» The generating functional for the replicated theory is:

i ) i 1 1 1 2 2 2 L L L
zZN :/[DA}J ... [DAN] T SIAL [(cpg 'V o) g @@ . oM g...... ® (@1 o! )~--<I>§v))]

» The order of attachments to the Wilson lines is important:

[@1(1)@2(5)._.@]\[(”} = (Pexp [igs/dw;‘ALD (Pexp [igs/dtﬁl"AfYD
a1by aico cN b1

N
» Instead [cbgl)q)él) o (I)E\l[)] , — | RP exp 198 Z / dt B;LAL
a0y 1=1

albl
» ‘R is a replica-ordering operator



Non-abelian exponentiation using the replica trick

» The generating functional for the replicated theory can be written as:

N
zZN _ / [DAH [DAQT] el S[AZ]R{PeXp [igSZ/dtﬁ/fAL
i=1

}

N
®...® Pexp [igSZ/dtBZAL
1=1

> Diagram [) computed in this theory will have kinematic dependence F (D)
as in the original theory, but colour factor C'y (D) which differ from C'(D)
due to the action of .

» Now expand in powers of N
ZN =14 Nln Z + O(N?)

> Contribution of a given diagram [ to In Z canbe readily determined as
the coefficient of N1 in the expansion ofF(D) C'n (D) :

» That’s it! Here is an algorithm to compute the exponent directly: diagram D
contributes with a modified colour factor C'(D), which is O(N") term in the
expansion its colour factor in the replicated theory.



