Surprises in UV Behavior of Gravity Theories

December 6, 2012 IHES Zvi Bern, UCLA

Based on papers with John Joseph Carrasco, Scott Davies, Tristan Dennen, Lance Dixon, Yu-tin Huang, Henrik Johansson and Radu Roiban.

- 1) A hidden structure in gauge and gravity amplitudes
 - a duality between color and kinematics.
 - gravity as a double copy of gauge theory.
- 2) Examples of theories where duality and double copy holds.
- 3) Application: Reexamination of gravity UV divergences
 - Lightning review of supergravity UV properties.
 - Various surprises in UV behavior of supergravity and super-Yang-Mills theory,
 - Prospects for future.

Purpose of Talk

- 1) Attempt to point out spots where we could use help from our mathematician colleagues.
- 2) Show some amazing connections between two fundamental theories: gravity and gauge theory.
- **3**) Give you a flavor of how these ideas are applied to questions of interest in physics.

Duality Between Color and Kinematics

Jacobi Identity $f^{a_1 a_2 b} f^{b a_4 a_3} + f^{a_4 a_2 b} f^{b a_3 a_1} + f^{a_4 a_1 b} f^{b a_2 a_3} = 0$

Use 1 = s/s = t/t = u/uto assign 4-point diagram to others.

ZB, Carrasco, Johansson (BCJ)

$$s = (k_1 + k_2)^2$$

$$t = (k_1 + k_4)^2$$

$$u = (k_1 + k_3)^2$$

Color factors satisfy Jacobi identity: Numerator factors satisfy similar identity: $c_u = c_s - c_t$ $n_u = n_s - n_t$

Color and kinematics satisfy the same identity

Claim: At n-points we can always find a rearrangement so color and kinematics satisfy the same algebraic constraint equations. Nontrivial constraints on amplitudes in field theory and string theory

BCJ, Bjerrum-Bohr, Feng, Damgaard, Vanhove; Stieberger; Mafra, Stieberger, Schlotterer; Tye and Zhang; Feng, Huang, Jia; Chen, Du, Feng; Du, Feng, Fu; Naculich, Nastase, Schnitzer See talk from Bjerrum-Bohr

5

BCJ
BCJ
Gravity and Gauge Theory
kinematic numerator
gauge
theory:
$$\frac{1}{g^{n-2}} \mathcal{A}_n^{\text{tree}}(1,2,3,\ldots,n) = \sum_i \frac{n_i c_i}{\prod_{\alpha_i} p_{\alpha_i}^2}$$
 sum over diagrams
with only 3 vertices
 $c_i \sim f^{a_1 a_2 b_1} f^{b_1 b_2 a_5} f^{b_2 a_4 a_5}$
Assume we have:
 $c_1 + c_2 + c_3 = 0 \iff n_1 + n_2 + n_3 = 0$
Then: $c_i \Rightarrow \tilde{n}_i$ kinematic numerator of second gauge theory
Proof: ZB, Dennen, Huang, Kiermaier
gravity: $-i\left(\frac{2}{\kappa}\right)^{(n-2)} \mathcal{M}_n^{\text{tree}}(1,2,\ldots,n) = \sum_i \frac{n_i \tilde{n}_i}{\prod_{\alpha_i} p_{\alpha_i}^2}$

Gravity numerators are a double copy of gauge-theory ones.

This works for ordinary Einstein gravity and susy versions.

Cries out for a unified description of the sort given by string theory!

Gravity From Gauge Theory

$$-i\left(\frac{2}{\kappa}\right)^{(n-2)}\mathcal{M}_{n}^{\text{tree}}(1,2,\ldots,n) = \sum_{i} \frac{n_{i}\,\tilde{n}_{i}}{\prod_{\alpha_{i}}p_{\alpha_{i}}^{2}}$$

 $n \qquad \tilde{n}$ $N = 8 \text{ sugra:} \quad (N = 4 \text{ sYM}) \times (N = 4 \text{ sYM})$ $N = 4 \text{ sugra:} \quad (N = 4 \text{ sYM}) \times (N = 0 \text{ sYM})$ $N = 0 \text{ sugra:} \quad (N = 0 \text{ sYM}) \times (N = 0 \text{ sYM})$

N = 0 sugra: graviton + antisym tensor + dilaton

BCJ

Duality for BLG Theory

BLG based on a 3 algebra

Bagger,Lambert,Gustavsson (BLG)

 $[T^a, T^b, T^c] = f^{abc}{}_d T^d$ **D** = 3 Chern-Simons gauge theory

Four-term color identity:

Such numerators explicitly found at 6 points.

What is the double copy?

Bargheer, He, and McLoughlin ; Huang and Johansson

Explicit check at 4 and 6 points shows it is the $E_{8(8)}$ N = 16 supergravity of Marcus and Schwarz. Very non-trivial!

A hidden 3 algebra structure exists in this supergravity. This story is not limited to ordinary gauge theories.

Loop-level is identical to tree-level one except for symmetry factors and loop integration. Double copy works when numerator satisfies duality.

Explicit Three-Loop Construction

ZB, Carrasco, Johansson (2010)

Integral $I^{(x)}$

(a)-(d)

(e)–(g)

(h)

(i)

(j)-(l)

$$c_i = c_j - c_k \implies n_i = n_j - n_k$$

For *N*=4 sYM we have the ability to go to high loop orders. Go to 3 loops. (1 & 2 loops works.)

$$\tau_{ij} = 2k_i \cdot l_j$$

Duality works! Double copy works!

 $s t A^{\text{tree}}$ prefactor removed

 $\mathcal{N} = 4$ Super-Yang-Mills ($\sqrt{\mathcal{N} = 8}$ supergravity) numerator

 $s(-\tau_{35}+\tau_{45}+t)-t(\tau_{25}+\tau_{45})+u(\tau_{25}+\tau_{35})-s^2)/3$

 $s\left(2\tau_{15} - \tau_{16} + 2\tau_{26} - \tau_{27} + 2\tau_{35} + \tau_{36} + \tau_{37} - u\right)$

 $+t(\tau_{16}+\tau_{26}-\tau_{37}+2\tau_{36}-2\tau_{15}-2\tau_{27}-2\tau_{35}-3\tau_{17})+s^2)/3$

 $\left(s\left(-\tau_{25} - \tau_{26} - \tau_{35} + \tau_{36} + \tau_{45} + 2t\right) + t\left(\tau_{26} + \tau_{35} + 2\tau_{36} + 2\tau_{45} + 3\tau_{46}\right) + u\tau_{25} + s^2\right)/3$

s(t-u)/3

One diagram to rule them all

ZB, Carrasco, Johansson (2010)

N = 4 super-Yang-Mills integrand

Diagram (e) is the master diagram.

Determine the master integrand in proper form and duality gives all others.

N = 8 sugra given by double copy.

One diagram to rule them all

$$\begin{split} N^{(a)} &= N^{(b)}(k_1, k_2, k_3, l_5, l_6, l_7) ,\\ N^{(b)} &= N^{(d)}(k_1, k_2, k_3, l_5, l_6, l_7) ,\\ N^{(c)} &= N^{(a)}(k_1, k_2, k_3, l_5, l_6, l_7) ,\\ N^{(d)} &= N^{(a)}(k_1, k_2, k_3, l_5, l_6, l_7) ,\\ N^{(d)} &= N^{(b)}(k_3, k_1, k_2, l_7, l_6, k_{1,3} - l_5 + l_6 - l_7) + N^{(b)}(k_3, k_2, k_1, l_7, l_6, k_{2,3} + l_5 - l_7) ,\\ N^{(f)} &= N^{(e)}(k_1, k_2, k_3, l_5, l_6, l_7) ,\\ N^{(g)} &= N^{(e)}(k_1, k_2, k_3, l_5, l_6, l_7) ,\\ N^{(h)} &= -N^{(g)}(k_1, k_2, k_3, l_5, l_6, k_{1,2} - l_5 - l_7) - N^{(i)}(k_4, k_3, k_2, l_6 - l_5, l_5 - l_6 + l_7 - k_{1,2}, l_6) ,\\ N^{(i)} &= N^{(e)}(k_1, k_2, k_3, l_5, l_6, l_7) - N^{(e)}(k_3, k_2, k_1, -k_4 - l_5 - l_6, -l_6 - l_7, l_6) ,\\ N^{(j)} &= N^{(e)}(k_1, k_2, k_3, l_5, l_6, l_7) - N^{(e)}(k_2, k_1, k_3, l_5, l_6, l_7) ,\\ N^{(k)} &= N^{(f)}(k_1, k_2, k_3, l_5, l_6, l_7) - N^{(f)}(k_2, k_1, k_3, l_5, l_6, l_7) ,\\ N^{(l)} &= N^{(g)}(k_1, k_2, k_3, l_5, l_6, l_7) - N^{(g)}(k_2, k_1, k_3, l_5, l_6, l_7) ,\\ N^{(l)} &= N^{(g)}(k_1, k_2, k_3, l_5, l_6, l_7) - N^{(g)}(k_2, k_1, k_3, l_5, l_6, l_7) ,\\ N^{(l)} &= N^{(g)}(k_1, k_2, k_3, l_5, l_6, l_7) - N^{(g)}(k_2, k_1, k_3, l_5, l_6, l_7) ,\\ N^{(l)} &= N^{(g)}(k_1, k_2, k_3, l_5, l_6, l_7) - N^{(g)}(k_2, k_1, k_3, l_5, l_6, l_7) ,\\ N^{(l)} &= N^{(g)}(k_1, k_2, k_3, l_5, l_6, l_7) - N^{(g)}(k_2, k_1, k_3, l_5, l_6, l_7) ,\\ N^{(l)} &= N^{(g)}(k_1, k_2, k_3, l_5, l_6, l_7) - N^{(g)}(k_2, k_1, k_3, l_5, l_6, l_7) ,\\ N^{(l)} &= N^{(g)}(k_1, k_2, k_3, l_5, l_6, l_7) - N^{(g)}(k_2, k_1, k_3, l_5, l_6, l_7) ,\\ N^{(l)} &= N^{(g)}(k_1, k_2, k_3, l_5, l_6, l_7) - N^{(g)}(k_2, k_1, k_3, l_5, l_6, l_7) ,\\ N^{(l)} &= N^{(g)}(k_1, k_2, k_3, l_5, l_6, l_7) - N^{(g)}(k_2, k_1, k_3, l_5, l_6, l_7) ,\\ N^{(l)} &= N^{(g)}(k_1, k_2, k_3, l_5, l_6, l_7) - N^{(g)}(k_2, k_1, k_3, l_5, l_6, l_7) ,\\ N^{(l)} &= N^{(g)}(k_1, k_2, k_3, l_5, l_6, l_7) - N^{(g)}(k_2, k_1, k_3, l_5, l_6, l_7) ,\\ N^{(l)} &= N^{(g)}(k_1, k_2, k_3, l_5, l_6, l_7) - N^{(g)}(k_2, k_1, k_3, l_5, l_6, l_7) ,\\ N^{(l)} &= N^{(g)}(k_1, k_2, k_3, l_5, l_6, l_7) - N^{(g)}(k_2,$$

All numerators solved in terms of numerator (e)

N = 4 sYM Four Loops

ZB, Carrasco, Dixon, Johansson, Roiban (2012)

Generalized Gauge Invariance

т

ZB, Dennen, Huang, Kiermaier Tye and Zhang

BCJ

and Zhang
gauge theory

$$\frac{(-i)^{L}}{g^{n-2+2L}} \mathcal{A}_{n}^{\text{loop}} = \sum_{j} \int \prod_{l=1}^{L} \frac{d^{D} p_{l}}{(2\pi)^{D}} \frac{1}{S_{j}} \frac{n_{j} c_{j}}{\prod_{\alpha_{j}} p_{\alpha_{j}}^{2}}$$

$$n_{i} \rightarrow n_{i} + \Delta_{i} \qquad \sum_{j} \int \frac{d^{DL} p}{(2\pi)^{DL}} \frac{1}{S_{j}} \frac{\Delta_{j} c_{j}}{\prod_{\alpha_{j}} p_{\alpha_{j}}^{2}} = 0$$

$$(c_{\alpha} + c_{\beta} + c_{\gamma}) f(p_{i}) = 0$$

Above is just a definition of generalized gauge invariance

gravity
$$\frac{(-i)^{L+1}}{(\kappa/2)^{n-2+2L}} \mathcal{M}_n^{\text{loop}} = \sum_j \int \prod_{l=1}^L \frac{d^D p_l}{(2\pi)^D} \frac{1}{S_j} \frac{n_j \tilde{n}_j}{\prod_{\alpha_j} p_{\alpha_j}^2}$$
$$n_i \to n_i + \Delta_i \qquad \sum_j \int \frac{d^{DL} p}{(2\pi)^{DL}} \frac{1}{S_j} \frac{\Delta_j \tilde{n}_j}{\prod_{\alpha_j} p_{\alpha_j}^2} = 0$$

- Gravity inherits generalized gauge invariance from gauge theory!
- Double copy works even if only one of the two copies has duality manifest!

15

Used to find expressions for N≥ 4 supergravity amplitudes at 1, 2 loops.
 ZB, Boucher-Veronneau and Johansson; Boucher-Veroneau and Dixon

Consider self dual YM. Work in light-cone gauge.

 $\frac{i}{2}\varepsilon_{\mu\nu\rho\sigma}F^{\rho\sigma} = F_{\mu\nu} \qquad u = t - z \\ w = x + iy \qquad y_2 \qquad$

The $X(p_1, p_2)$ are YM vertices, valid for self-dual configurations.

Explains why numerators satisfy Jacobi Identity

YM inherits diffeomorphism symmetry of gravity!

We need to understand general structure beyond this special case.

Recent progress from Bjerrum-Bohr, Damgaard, Monteiro and O'Connell

Questions for our math friends:

What infinite dimensional Lie algebra can be behind this (beyond the special self dual case)?

Is there a helpful machinery for solving the above functional graph operations?

One diagram to rule them all

$$\begin{split} N^{(a)} &= N^{(b)}(k_1, k_2, k_3, l_5, l_6, l_7) \,, \\ N^{(b)} &= N^{(d)}(k_1, k_2, k_3, l_5, l_6, l_7) \,, \\ N^{(c)} &= N^{(a)}(k_1, k_2, k_3, l_5, l_6, l_7) \,, \\ N^{(d)} &= N^{(a)}(k_1, k_2, k_3, l_5, l_6, l_7) \,, \\ N^{(d)} &= N^{(b)}(k_3, k_1, k_2, l_7, l_6, k_{1,3} - l_5 + l_6 - l_7) + N^{(b)}(k_3, k_2, k_1, l_7, l_6, k_{2,3} + l_5 - l_7) \,, \\ N^{(f)} &= N^{(e)}(k_1, k_2, k_3, l_5, l_6, l_7) \,, \\ N^{(g)} &= N^{(e)}(k_1, k_2, k_3, l_5, l_6, l_7) \,, \\ N^{(h)} &= -N^{(g)}(k_1, k_2, k_3, l_5, l_6, k_{1,2} - l_5 - l_7) - N^{(i)}(k_4, k_3, k_2, l_6 - l_5, l_5 - l_6 + l_7 - k_{1,2}, l_6) \,, \\ N^{(i)} &= N^{(e)}(k_1, k_2, k_3, l_5, l_6, l_7) - N^{(e)}(k_3, k_2, k_1, -k_4 - l_5 - l_6, -l_6 - l_7, l_6) \,, \\ N^{(j)} &= N^{(e)}(k_1, k_2, k_3, l_5, l_6, l_7) - N^{(e)}(k_2, k_1, k_3, l_5, l_6, l_7) \,, \\ N^{(k)} &= N^{(f)}(k_1, k_2, k_3, l_5, l_6, l_7) - N^{(f)}(k_2, k_1, k_3, l_5, l_6, l_7) \,, \\ N^{(l)} &= N^{(g)}(k_1, k_2, k_3, l_5, l_6, l_7) - N^{(g)}(k_2, k_1, k_3, l_5, l_6, l_7) \,, \\ N^{(l)} &= N^{(g)}(k_1, k_2, k_3, l_5, l_6, l_7) - N^{(g)}(k_2, k_1, k_3, l_5, l_6, l_7) \,, \\ N^{(l)} &= N^{(g)}(k_1, k_2, k_3, l_5, l_6, l_7) - N^{(g)}(k_2, k_1, k_3, l_5, l_6, l_7) \,, \\ N^{(l)} &= N^{(g)}(k_1, k_2, k_3, l_5, l_6, l_7) - N^{(g)}(k_2, k_1, k_3, l_5, l_6, l_7) \,, \\ N^{(l)} &= N^{(g)}(k_1, k_2, k_3, l_5, l_6, l_7) - N^{(g)}(k_2, k_1, k_3, l_5, l_6, l_7) \,, \\ N^{(l)} &= N^{(g)}(k_1, k_2, k_3, l_5, l_6, l_7) - N^{(g)}(k_2, k_1, k_3, l_5, l_6, l_7) \,, \\ N^{(l)} &= N^{(g)}(k_1, k_2, k_3, l_5, l_6, l_7) - N^{(g)}(k_2, k_1, k_3, l_5, l_6, l_7) \,, \\ N^{(l)} &= N^{(g)}(k_1, k_2, k_3, l_5, l_6, l_7) - N^{(g)}(k_2, k_1, k_3, l_5, l_6, l_7) \,, \\ N^{(l)} &= N^{(g)}(k_1, k_2, k_3, l_5, l_6, l_7) - N^{(g)}(k_2, k_1, k_3, l_5, l_6, l_7) \,, \\ N^{(l)} &= N^{(g)}(k_1, k_2, k_3, l_5, l_6, l_7) - N^{(g)}(k_2, k_1, k_3, l_5, l_6, l_7) \,, \\ N^{(l)} &= N^{(g)}(k_1, k_2, k_3, l_5, l_6, l_7) - N^{(g)}(k_2, k_1, k_3, l_5, l_6, l_7) \,, \\ N^{(l)} &= N^{(g)}(k_1, k_2, k_3, l_5, l_6, l_7) - N^{(g)}(k_2, k_1, k_3, l_5, l_6, l_7) \,, \\ N^{(l)} &= N^{(g)$$

All numerators solved in terms of numerator (e)

Application: UV Properties of Gravity

Power Counting at High Loop Orders

Extra powers of loop momenta in numerator means integrals are badly behaved in the UV.

Non-renormalizable by power counting.

Reasons to focus on N = 8 **supegravity:**

- With more susy expect better UV properties.
- High symmetry implies technical simplicity.

Ultraviolet properties

Our problem is simple to state: Given a collection of Feynman integrals composing a (super)gravity amplitude is it finite or is it infinite?

Answering this is highly nontrivial when:1) integrals are not manifestly finite.2) We are at high loop orders.

Finiteness of *N* **= 8 Supergravity?**

We are interested in possible UV finiteness of N = 8supergravity because it would imply a new symmetry or non-trivial dynamical mechanism. No previously known symmetry can render a UV theory finite.

The discovery of either would have a fundamental impact on our understanding of gravity.

Note: Perturbative finiteness is not the only issue for consistent gravity: Nonperturbative completions? High energy behavior of theory? Realistic models?

Constructing Multiloop Amplitudes

We do have powerful tools for complete calculations including nonplanar contributions and for discovering new structures:

See also talks from Arkani-Hamed and Trnka

• Unitarity Method.

ZB, Dixon, Dunbar, Kosower

• Method of Maximal Cuts.

ZB, Carrasco, Johansson, Kosower

- Duality between color and kinematics. ZB, Carrasco and Johansson
- Advanced loop integration technology.

Chetyrkin, Kataev and Tkachov; A.V. Smirnov; V. A. Smirnov, Vladimirov; Marcus, Sagnotti; Cazkon; etc **Talks from Smirnov; Weinzeirl; Kosower**

In this talk we will explain how the duality between color and kinematics allows us to uncover surprising UV properties in gravity theories.

Complete Three-Loop Result

Analysis of unitarity cuts shows highly nontrivial all-loop cancellations. ZB, Dixon and Roiban (2006); ZB, Carrasco, Forde, Ita, Johansson (2007) To test completeness of cancellations, we decided to directly calculate potential three-loop divergence.

Obtained via on-shell unitarity method:

Four-Loop Amplitude Construction

ZB, Carrasco, Dixon, Johansson, Roiban

Get 50 distinct diagrams or integrals (ones with two- or three-point subdiagrams not needed).

It's very finite!

Originally took more than a year. Today with the double copy we can reproduce it in a couple of days! Another non-trivial example.

Recent Status of Divergences

Consensus that in N = 8 supergravity trouble starts at 5 loops and by 7 loops we have valid UV counterterm in D = 4under all known symmetries, suggesting divergences.

Bossard, Howe, Stelle; Elvang, Freedman, Kiermaier; Green, Russo, Vanhove ; Green and Bjornsson ; Bossard , Hillmann and Nicolai; Ramond and Kallosh; Broedel and Dixon; Elvang and Kiermaier; Beisert, Elvang, Freedman, Kiermaier, Morales, Stieberger

For N = 8 sugra in D = 4:

• All counterterms ruled out until 7 loops!

• *D*⁸*R*⁴ counterterm apparently available at 7 loops (1/8 BPS) under all known symmetries. (No known nonrenormalization theorem) Bossard, Howe, Stelle and Vanhove

Based on this a reasonable person would conclude that N = 8 **supergravity almost certainly diverges at 7 loops in** D = 4

ZB, Carrasco, Dixon, Johannson, Roiban

~500 such diagrams with ~100s terms each

Being reasonable and being right are not the same

Place your bets:

- At 5 loops in *D* = 24/5 does
 - *N* = 8 supergravity diverge?
- •At 7 loops in D = 4 does
 - N = 8 supergravity diverge? $D^8 R^4$ counterterms

Zvi Bern: California wine "It won't diverge"

ZB, Carrasco, Dixon, Johannson, Roiban

~500 such diagrams with ~100s terms each

Being reasonable and being right are not the same

Place your bets:

- At 5 loops in D = 24/5 does
 - *N* = 8 supergravity diverge?
- •At 7 loops in D = 4 does
 - N = 8 supergravity diverge? $D^8 R^4$ counterterms

David Gross: California wine "It will diverge"

Zvi Bern: California wine "It won't diverge"

- Gravity UV divergence is directly proportional to subleadingcolor single-trace divergence of *N* = 4 super-Yang-Mills theory.
- Same happens at 1-3 loops.

Calculation of N = 4 **sYM 5 Loop Amplitude**

ZB, Carrasco, Johansson, Roiban (2012)

Key step for N = 8 supergravity is construction of complete 5 loop integrand of N = 4 sYM theory.

We are trying to figure out a BCJ form. If we can get it we should have supergravity finished very soon!

UV divergences *N* = **4 sYM 5 Loop Amplitude**

ZB, Carrasco, Johansson, Roiban (2012)

Critical dimension where divergences first occur: D = 26/5

- Expand in small external momenta.
- Apply integral consistency equations.
- Find all integral identities.
- Get astonishingly simple formula for UV

(a)

(b)

- Proves known finiteness bound is saturated.
- No double color trace. No $O(N_c)$ single trace.
- Note amazing similarity to four loops.

Stay tuned.

We now have key information needed to calculate the UV properties of N = 8 supergravity at five loops.

How long this will take depends on how quickly we can find a representation for N = 4 sYM amplitude where duality between color and kinematics holds.

Fine, but do we have any examples where a vanishing divergence is surprising, based on known understanding of the known symmetries ?

Yes.

Two examples in half-maximal supergravity :

- D = 5 at 2 loops.
- D = 4 at 3 loops.

Of course people are searching for symmetry explanations:

• If a full off-shell superspace exists, these divergences must vanish.

Bossard, Howe and Stelle (yesterday)

ZB, Davies, Dennen, Huang

- A hidden superconformal symmetry might lead to all-loop finiteness. Ferrara, Kallosh, Van Proeyen
- Link to gauge-theory cancellations of forbidden color terms. ZB, Davies, Dennen, Huang

ZB, Davies, Dennen, Huang

No surprises at one loop:

- Finite for D < 8
- R^4 divergence in D = 8

Very instructive to understand from double-copy vantage point

• F^4 four-matter multiplet amplitude diverges in D = 4.

A two-loop surprise:

• Finite in D = 5.

Tourkine and Vanhove

- A three loop surprise:
 - Finite for D = 4.

We now go through these examples

One-Loop Warmup in Half-Maximal Sugra

Generic color decomposition:

ZB, Davies, Dennen, Huang

$$\begin{aligned} \mathcal{A}_{Q}^{(1)} &= ig^{4} \Big[c_{1234}^{(1)} \mathcal{A}_{Q}^{(1)}(1,2,3,4) + c_{1342}^{(1)} \mathcal{A}_{Q}^{(1)}(1,3,4,2) + c_{1423}^{(1)} \mathcal{A}_{Q}^{(1)}(1,4,2,3) \Big] \\ \mathbf{Q} &= \texttt{\#} \, \texttt{supercharges} \qquad \mathbf{Q} = \mathbf{0} \, \text{ is pure non-susy YM} \\ \mathbf{To} \, \texttt{get} \, \mathbf{Q} + \mathbf{16} \, \texttt{supergravity} \, \texttt{take} \, \mathbf{2^{nd}} \, \texttt{copy} \, \mathbf{N} = \mathbf{4} \, \texttt{sYM} \\ \mathbf{N} &= \mathbf{4} \, \texttt{sYM} \, \texttt{numerators independent of loop momenta} \\ \mathbf{n}_{1234} &= n_{1342} = n_{1423} = st \mathcal{A}_{Q=16}^{\texttt{tree}}(1,2,3,4) \qquad c_{1234}^{(1)} \to n_{1234} \\ \mathcal{M}_{Q+16}^{(1)} &= i \Big(\frac{\kappa}{2} \Big)^{4} st \mathcal{A}_{Q=16}^{\texttt{tree}}(1,2,3,4) \Big[\mathcal{A}_{Q}^{(1)}(1,2,3,4) + \mathcal{A}_{Q}^{(1)}(1,3,4,2) + \mathcal{A}_{Q}^{(1)}(1,4,2,3) \Big] \end{aligned}$$

Note *exactly* the same combination as in U(1) decoupling identity of tree amplitudes.

One-loop divergences in pure YM

 $D = 4 F^2$ counterterm: 1-loop color tensor *not* allowed. $D = 6 F^3$ counterterm: 1-loop color tensor *not* allowed.

$$F^{3} = f^{abc} F^{a\mu}_{\nu} F^{b\nu}_{\sigma} F^{c\sigma}_{\mu}$$

$$A^{(1)}_{Q}(1,2,3,4) + A^{(2)}_{Q}(1,3,4,2) + A^{(1)}_{Q}(1,4,2,3) \Big|_{D=4,6 \text{ div.}} = 0$$

$$M^{(1)}_{Q+16}(1,2,3,4) \Big|_{D=4,6 \text{ div.}} = 0$$

Two Loop Half Maximal Sugra in D = 5

ZB, Davies, Dennen, Huang

$$\mathcal{A}_{Q}^{(2)} = -g^{6} \Big[c_{1234}^{\mathrm{P}} A_{Q}^{\mathrm{P}}(1,2,3,4) + c_{3421}^{\mathrm{P}} A_{Q}^{\mathrm{P}}(3,4,2,1) \\ + c_{1234}^{\mathrm{NP}} A_{Q}^{\mathrm{NP}}(1,2,3,4) + c_{3421}^{\mathrm{NP}} A_{Q}^{\mathrm{NP}}(3,4,2,1) + \text{ cyclic} \Big]$$

 $D = 5 F^3$ counterterm: 1,2-loop color tensors forbidden! Demand this and plug into double copy:

- 1) Go to color basis.
- 2) Demand no forbidden color tensors in pure YM divegence.
- 3) Plug into the BCJ double-copy formula.

$$\mathcal{M}_{16+Q}^{(2)}(1,2,3,4)\Big|_{D=5\,\mathrm{div.}}=0$$

Half-maximal supergravity four-point divergence vanishes because forbidden color tensor cancels in pure YM theory. N = 4 Supergravity in D = 4

Fine, but do we have a D = 4 example?

N = 4 sugra at 3 loops ideal D = 4 test case to study.

ZB, Davies, Dennen, Huang

Consensus had it that a valid R^4 counterterm exists for this theory in D = 4. Analogous to 7 loop counterterm of N = 8.

Bossard, Howe, Stelle; Bossard, Howe, Stelle, Vanhove

Three-loop Construction ^Z

ZB, Davies, Dennen, Huang

N = 4 sugra : (N = 4 sYM) x (N = 0 YM)

- For *N* = 4 sYM copy use known BCJ representation.
- We will use a Feynman diagram representation for pure YM side.

Integral $I^{(x)}$	$\mathcal{N} = 4$ Super-Yang-Mills ($\sqrt{\mathcal{N} = 8}$ supergravity) numerator
(a)-(d)	s^2
(e)-(g)	$\left(s\left(-\tau_{35}+\tau_{45}+t\right)-t\left(\tau_{25}+\tau_{45}\right)+u\left(\tau_{25}+\tau_{35}\right)-s^{2}\right)/3$
(h)	$\left(s\left(2\tau_{15} - \tau_{16} + 2\tau_{26} - \tau_{27} + 2\tau_{35} + \tau_{36} + \tau_{37} - u\right)\right)$
	$+t\left(\tau_{16}+\tau_{26}-\tau_{37}+2\tau_{36}-2\tau_{15}-2\tau_{27}-2\tau_{35}-3\tau_{17}\right)+s^{2}\right)/3$
(i)	$\left(s\left(-\tau_{25} - \tau_{26} - \tau_{35} + \tau_{36} + \tau_{45} + 2t\right)\right)$
	$+t\left(\tau_{26}+\tau_{35}+2\tau_{36}+2\tau_{45}+3\tau_{46}\right)+u\tau_{25}+s^2\right)/3$
(j)-(l)	s(t-u)/3

BCJ form of the N = 4 sYM integrand **Three-Loop Construction**

N = 4 sugra : (N = 4 sYM) × (N = 0 YM)

Integrals have subdivergences which causes complications. But this was well understood 30 years ago by Vladimirov and by Marcus and Sagnotti.

The *N* **= 4 Supergravity UV Cancellation**

 $(\text{divergence})/(\langle 12 \rangle^2 [34]^2 st A^{\text{tree}}(\frac{\kappa}{2})^8)$ Graph (a)-(d) $\frac{263}{768} \frac{1}{\epsilon^3} + \frac{205}{27648} \frac{1}{\epsilon^2} + \left(-\frac{5551}{768}\zeta_3 + \frac{326317}{110592}\right) \frac{1}{\epsilon}$ (e) $-\frac{175}{2304}\frac{1}{\epsilon^3}-\frac{1}{4}\frac{1}{\epsilon^2}+\left(\frac{593}{288}\zeta_3-\frac{217571}{165888}\right)\frac{1}{\epsilon}$ (f) $-\frac{11}{36}\frac{1}{\epsilon^3} + \frac{2057}{6912}\frac{1}{\epsilon^2} + \left(\frac{10769}{2304}\zeta_3 - \frac{226201}{165888}\right)\frac{1}{\epsilon}$ (g) $-\frac{3}{32}\frac{1}{\epsilon^3} - \frac{41}{1536}\frac{1}{\epsilon^2} + \left(\frac{3227}{2304}\zeta_3 - \frac{3329}{18432}\right)\frac{1}{\epsilon}$ (h) $\frac{17}{128} \frac{1}{\epsilon^3} - \frac{29}{1024} \frac{1}{\epsilon^2} + \left(-\frac{2087}{2304}\zeta_3 - \frac{10495}{110592}\right) \frac{1}{\epsilon}$ (i) $-\frac{15}{32}\frac{1}{\epsilon^3}+\frac{9}{64}\frac{1}{\epsilon^2}+\left(\frac{101}{12}\zeta_3-\frac{3227}{1152}\right)\frac{1}{\epsilon}$ (j) $\frac{5}{64}\frac{1}{\epsilon^3} + \frac{89}{1152}\frac{1}{\epsilon^2} + \left(-\frac{377}{144}\zeta_3 + \frac{287}{432}\right)\frac{1}{\epsilon}$ (k) $\frac{25}{64}\frac{1}{\epsilon^3} - \frac{251}{1152}\frac{1}{\epsilon^2} + \left(-\frac{835}{144}\zeta_3 + \frac{7385}{3456}\right)\frac{1}{\epsilon}$ (1)

Spinor helicity used to clean up table, but calculation for all states

All three-loop divergences cancel completely! Cancellations much less trivial than from susy.

4-point 3-loop N = 4 sugra UV finite contrary to expectations Tourkine and Vanhove have understood this result by extrapolating from two-loop heterotic string amplitudes. **Obvious Next Steps**

Still want to understand gravity better at even high loops.

1) Five Loops: Compute the coefficient of the D^8R^4 five-loop counterterm of N = 8 supergravity in D = 24/5. ZB, Carrasco, Johansson, Roiban

2) Four Loops: Find the coefficient of the D²R⁴ four-loop counterterm of half-maximal supergravity in D = 4.
 ZB, Davies, Dennen, Smirnov & Smirnov

3) Can we prove that in general, surprising supergravity cancellations are tied to cancellations of forbidden color factors in gauge-theory divergences?

4) How many of the surprises might be explainable by more standard symmetries?

Bossard, Howe and Stelle (yesterday)

- A new duality conjectured between color and kinematics (not well understood, mathematical structure??)
- When duality between color and kinematics manifest, gravity integrands follow *immediately* from gauge-theory ones.
- We now have extremely powerful way to explore UV properties of gauge and gravity theories.
- Surprises, contrary to previous symmetry expectations and evidence of new structures.
 - Duality between color and kinematics is powerful but not well understood. We sure could use some help to unravel the underlying mathematical structure.

Workshop Announcement: "Physics and Mathematics of Scattering Amplitudes"

SIMONSCENTER

FOR GEOMETRY AND PHYSICS

Starts final week of August 2013, for period of 4 months

"A primary aim of this workshop is to bring together mathematicians and physicists for a significant period of time to make fundamental progress in understanding scattering amplitudes in quantum field theory."

Organizers: Zvi Bern, Lance Dixon, Michael Douglas, Sasha Goncharov, Lionel Mason

bern@physics.ucla.edu lance@slac.stanford.edu