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Neutrinos masses

From oscillation experiments:

m22 - m12 ≈ (0.009 eV)2 ,    |m32 - m12| ≈(0.05 eV)2

Either “normal” or “inverted” hierarchies
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Neutrinos masses

• Total mass not (yet) measured by particle 
physics experiments, but must be at least            
∑mν ≳ 0.06 eV (normal hierarchy)  or            
∑mν ≳ 0.1 eV (inverted hierarchy)

• Cosmological observations mostly probe the 
total mass. If sensitive enough can eventually 
lead to the absolute neutrino masses. 

Current constraint: ∑mν ≲ 0.2 - 0.3 eV



Cosmological neutrinos

• Decouple at T ~ 1 MeV, while ultra-relativistic.

• Keep a relativistic Fermi-Dirac distribution

f(p, z) = g
h3

⇣
exp[

p
T⌫(z)

] + 1

⌘�1
, T⌫(z) = (1 + z)T⌫(0)

T⌫(0) = 1.95 K = 1.68⇥ 10�4 eV

• Become non-relativistic at 

• Contribute a fraction of the total DM

znr ⇡ 200

P
m⌫

0.3 eV

f⌫ =
1

⌦mh2

P
m⌫

94eV
⇡ 0.02

P
m⌫

0.3eV



• Affect the background expansion (in particular time 
of matter-radiation equality), hence CMB.              
WMAP + H0 + BAO:      ∑mν ≲ 0.6 eV          
Planck +WMAP +SPT+ACT+BAO: ∑mν ≲ 0.23 eV 

Cosmological effects
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Fig. 13. Ratio of the matter power spectrum including three degenerate massive neutrinos with density fraction f! to that with three massless
neutrinos. The parameters ("m,#$)= (0.147, 0.70) are kept fixed, and from top to bottom the curves correspond to f! =0.01, 0.02, 0.03, . . . , 0.10.
The individual masses m! range from 0.046 to 0.46 eV, and the scale knr from 2.1 × 10−3h Mpc−1 to 6.7 × 10−3h Mpc−1 as shown on the top of
the figure. keq is approximately equal to 1.5 × 10−2h Mpc−1.
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Fig. 14. CMB temperature anisotropy spectrum CT
l and matter power spectrum P(k) for three models: the neutrinoless $CDM model of section

4.4.6, a more realistic $CDM model with three massless neutrinos (f! # 0), and finally a $MDM model with three massive degenerate neutrinos
and a total density fraction f! = 0.1. In all models, the values of ("b, "m, #$, As, n, %) have been kept fixed.

is found to be in excellent agreement with the analytical prediction of Eq. (141). For simplicity, the growth factor
g(a0) # 0.8 can even be replaced by one in Eq. (141) without changing the result significantly. The well-known
formula P(k)f!/P (k)f!=0 # −8f! is a reasonable first-order approximation for 0 < f! < 0.07.

4.6. Summary of the neutrino mass effects

4.6.1. Effects on CMB and LSS power spectra for fixed ("m, #$) and degenerate masses
In Fig. 14, we show CT

l and P(k) for two models: $CDM with f! = 0 and $MDM with N! = 3 massive neutrinos
and a total density fraction f! = 0.1. We also display for comparison the neutrinoless model of Section 4.4.6. In all
models, the values of ("b, "m, #$, As, n, %) have been kept fixed, with the increase in "! being compensated by a
decrease in "cdm. There is a clear difference between the neutrinoless and massless neutrino cases, caused by a large

from Lesgourgues & Pastor (2006)



• Slow down the growth of structure on scales smaller 
than the free-streaming scale. 

kfs ≈ 0.08 (1+z)1/2 (∑mν/0.3 eV)

Cosmological effects
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is found to be in excellent agreement with the analytical prediction of Eq. (141). For simplicity, the growth factor
g(a0) # 0.8 can even be replaced by one in Eq. (141) without changing the result significantly. The well-known
formula P(k)f!/P (k)f!=0 # −8f! is a reasonable first-order approximation for 0 < f! < 0.07.

4.6. Summary of the neutrino mass effects

4.6.1. Effects on CMB and LSS power spectra for fixed ("m, #$) and degenerate masses
In Fig. 14, we show CT

l and P(k) for two models: $CDM with f! = 0 and $MDM with N! = 3 massive neutrinos
and a total density fraction f! = 0.1. We also display for comparison the neutrinoless model of Section 4.4.6. In all
models, the values of ("b, "m, #$, As, n, %) have been kept fixed, with the increase in "! being compensated by a
decrease in "cdm. There is a clear difference between the neutrinoless and massless neutrino cases, caused by a large
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from Lesgourgues & Pastor (2006)

In linear 
regime:



• Most LSS probes are sensitive to mildly non-linear 
modes (Ly α, galaxy distribution) or to full non-
linear evolution (clusters). 

• Current constraints:  ∑mν ≲ 0.2-0.3 eV.  Could get 
much better in future, provided we model their 
effect accurately enough.

• Neutrinos are “simple” (gravity only!), so we should 
be able to model their effect very precisely.

Cosmological effects



3PT With Non-linear Pressure 13

Third Order Solutions

For n = 3, the continuity and Euler equations are given by

3ȧ(τ)a2(τ)g3(k, τ)δ3,c(k) + a3(τ)ġ3(k, τ)δ3,c(k) + ȧ(τ)a2(τ)h3(k, τ)θ3,c(k)

= ȧ(τ)a2(τ)
1

(2π)6

∫ ∫ ∫

dq1dq2dq3δD(q1 + q2 + q3 − k)δ1,c(q1)δ1,c(q2)δ1,c(q3)

×
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q2
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(s)
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q2
12

h2(q12)g1(q3)G
(s)
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]

≡ ȧ(τ)a2(τ)A3(k), (B18)
[

ä(τ)a2(τ) + 2ȧ2(τ)a(τ)
]

h3(k, τ)θ3,c(k) + ȧ(τ)a2(τ)ḣ3(k, τ)θ3,c(k) +
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τ
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+
6

τ2
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J
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1

(2π)6
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g2(q12)g1(q3)F
(s)
2 (q1,q2) +

1
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k2

k2
J

g1(q1)g1(q2)g1(q3)

]

≡ ȧ2(τ)a(τ)B3(k). (B19)

In an EdS universe, a(τ) = τ2

9 , we have

δ3,c(k)ġ3(k, τ) +
6

τ
δ3,c(k)g3(k, τ) +

2

τ
θ3,c(k)h3(k, τ)=

2

τ
A3(k), (B20)
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τ2
h3(k, τ)θ3,c(k) +

2

τ
ḣ3(k, τ)θ3,c(k) +

6

τ2
δ3,c(k) −

6

τ2

k2

k2
J

δ3,c(k)g3(k, τ)=
4

τ2
B3(k). (B21)

Combining Eqs. [B20] and [B21], we have the second-order differential equation:

g̈3(k, τ) +
14

τ
ġ3(k, τ) +

1

τ2

(

42 + 6
k2

k2
J

)

g3(k, τ) +
1

τ2

(

−6 −
14A3(k)

δ3,c(k)
+

4B3(k)

δ3,c(k)

)

= 0. (B22)

Solving this, we obtain

g3(k, τ) =
1 + 7A3(k)

3δ3,c(k) −
2B3(k)
3δ3,c(k)

7 + k2

k2
J

+ O(τ−13/2), (B23)

where the oscillation component,

O(τ−13/2) ∝ τ
−13/2

„

1±
r

1− 24

169
(7+ k2

k2
J

)

«

, (B24)

decays for any 0 ≤ k
kJ

. The velocity divergence filtering function at the 3rd-order is

h3(k) =
1

θ3,c(k)
[A3(k) − 3δ3,c(k)g3(k)] , (B25)

where we have ignored the decaying term.
Let us rewrite 7A3(k) − 2B3(k) in Eq. [B23] as

7A3(k) − 2B3(k)=
1

(2π)6

∫ ∫ ∫

dq1dq2dq3δD(q1 + q2 + q3 − k)δ1,c(q1)δ1,c(q2)δ1,c(q3)

×
[

7k · q1

q2
1

g1(q1)g2(q23)F
(s)
2 (q2,q3) +

7k · q12

q2
12

h2(q12)g1(q3)G
(s)
2 (q1,q2)

+
k2(q1 · q23)

q2
1q

2
23

g1(q1)h2(q23)G
(s)
2 (q2,q3) +

k2(q12 · q3)

q2
12q

2
3

h2(q12)g1(q3)G
(s)
2 (q1,q2)

+
3

2

k2

k2
J

g1(q1)g2(q23)F
(s)
2 (q2,q3) +

3

2

k2

k2
J

g2(q12)g1(q3)F
(s)
2 (q1,q2) −

k2

k2
J

g1(q1)g1(q2)g1(q3)

]

≡
18

(2π)6

∫ ∫ ∫

dq1dq2dq3δD(q1 + q2 + q3 − k)F3(q1,q2,q3)δ1,c(q1)δ1,c(q2)δ1,c(q3)

≡18δ′3,c(k). (B26)

Shoji & Komatsu 2009

Nonlinear regime: 
I) higher-order perturbations

See also Lesgourgues et al 2009

Still, simplifying assumptions for neutrinos 
(either described with simple pressure term 

or assumed linear)



II) Particle-based simulations

Grid Based Linear Neutrino Perturbations in Cosmological N-body Simulations 8

Figure 3. Density grids for the CDM (left), neutrino particle (middle) and neutrino
grid (right) components. In all cases the total neutrino mass is 0.6 eV. The top
row is at z = 49, the middle row at z = 4, and the bottom row at z = 0. In the
bottom row the square root has been taken of the first two density distributions. The
images are centered at the highest density region in the simulation volume and they
have a thickness of 20 h−1Mpc and a side length of 512 h−1Mpc. The particle density
distributions are found using the adaptive smoothing length kernel from [14] (taken
from model C3), and the neutrino grid density distribution is an inverse FFT of the
linear neutrino Fourier grid imbedded in the N -body simulation volume (model C1).

from where the particle neutrino power spectra break away from the linear theory

evolution. The highest wavenumber at which the non-linear correction term matters

is not only determined by non-linear neutrino modes at that scale but also by mode-
coupling between the CDM perturbations at that scale and the extra non-linear neutrino

Simulation from Brandyge & Hannestad (2009). 
∑mν = 0.6 eV, z=4

CDM Neutrinos
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Figure 2. Neutrino power spectra for a total neutrino mass of 0.3 eV (left), 0.6 eV (middle) and
1.2 eV (right) at various redshifts. The linear theory neutrino power spectrum, convolved with our
chosen random numbers, are shown with solid lines (models B1, C1 and D1), simulations with 2563

neutrino particles with dotted lines (models B2, C2 and D2) and finally simulations with 5123 neutrino
particles are shown with dashed lines (models C3 and D3).

component contribute up to more than 10% at this redshift (see the left panel of figure 8),
as well as the fact that the neutrino component is evolved in two different integrators.

As the redshift falls below 4 the two representations begin to differ in the range k ! 0.1−
1hMpc−1. This difference is a non-linear correction coming from the fact that the neutrino N -
body particles are coupled to the non-linear gravitational potential whereas the neutrino grid
is only evolved in linear theory. The wavenumber range where this difference appears can be
explained by the convolution of two terms. A non-linear term growing rapidly on small scales
and the fact that the neutrinos contribute most on large scales, as can be seen in figure 8.

The lowest wavenumber at which this non-linear correction term becomes important, can
also be identified in the middle and right panel of figure 2, as the range from where the particle
neutrino power spectra break away from the linear theory evolution. The highest wavenumber
at which the non-linear correction term matters is not only determined by non-linear neutrino
modes at that scale but also by mode-coupling between the CDM perturbations at that scale
and the extra non-linear neutrino contribution at larger scales.

In the
∑

mν = 0.6 eV case at z = 0 the two methods differ by at most 1.25% at roughly
k ! 0.25hMpc−1. Focusing on the

∑
mν = 1.2 eV case,1 we see from figure 1 that the

non-linear correction is at the 5% level. As expected the non-linear correction is greater
as the neutrino mass is increased because Ων increases and the neutrino thermal velocity
decreases. Since Ων is proportional to the total neutrino mass and the thermal velocity is
roughly inverse proportional to the one-particle neutrino mass this explains the (

∑
mν)2

dependence on the size of the non-linear neutrino correction term. This scaling can also be
seen to roughly hold in the

∑
mν = 0.3 eV case, where the maximum non-linear neutrino

correction to the matter power spectrum is at a negligible 0.25% level today (the discrepancy
at large scales is due to a finite number of neutrino N -body particles, see section 4). Note that
as expected the wavenumber corresponding to the maximum non-linear neutrino correction

1This high neutrino mass was only used to illustrate when the linear neutrino approach breaks down.

– 6 –

Particle-based simulations: shot noise

∑mν = 0.3 eV ∑mν = 0.6 eV ∑mν = 1.2 eV

Particle-based simulations
Neutrino power-spectrum from Brandyge & Hannestad (2009). 

Shot noise P(k) = 1/n
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Echelles caractéristiques

kkfs

knl
Linear regime

Free streaming

➡ Neutrinos should be nearly linear at all scales

Characteristic scales



Linear evolution of neutrino perturbations with non-linear CDM :

• Vlasov equation for neutrino distribution function f(⌧, ~x, ~q ⌘ am~v) :

@

⌧

f +

~q

ma

· @
~x

f �ma @

~x

� · @
~q

f = 0

• Linearize around f

0

(q) then Fourier transform :

@

⌧

(�f) + i

~q · ~k
ma

�f = i

ma

q

(~q · k)df0
dq

�

•Write down explicit integral solution

• Integrate over momenta to get �

⌫

:

�

⌫

(⌧,

~

k) = F [�f(⌧

i

,

~

k)] +

Z
⌧

⌧i

G(k, ⌧

0
, ⌧)�(

~

k, ⌧

0
)d⌧

0
,

G(k, ⌧

0 ! ⌧) ! 0,

G(⌧ � ⌧

0 � ⌧

cross

(k)) ! 0.



! We have a prescription for �⌫ given previous �

•Given �, update �c with N-body code

• Close the system with Poisson equation:

k2� = �4⇡a2(⇢c�c + ⇢⌫�⌫)

☛ We have replaced following 109 neutrinos by 
performing a simple integral



Results
Effect on the total matter power spectrum

fully linear theory
particles (Bird et al 2012)
this work 

Agreement with 
particle method:

at z = 0,
0.2% for ∑mν = 0.3 eV
1% for ∑mν = 0.6 eV
4% for ∑mν = 1.2 eV

at z > 1, all agree to 
better than 1%
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Figure 6. The power spectrum of the neutrino component at (Left) z = 0 (Right) z = 1. Solid black shows the results of our semi-linear
fourier-based method from simulation S10. Dashed red shows the particle method, from S10P, to obtain lower shot noise. Dotted green
shows pure linear theory. The vertical dashed grey line shows the approximate non-linear scale for the dark matter.

trum only take place at relatively late times, the impact on
the total power spectrum is minimal. Moreover, on scales
much smaller than the free-streaming scale, the main e↵ect
of including neutrinos is essentially to reduce the matter
overdensity by a factor (1 � f⌫), while keeping the same
background expansion rate (Lesgourgues & Pastor 2006).
As long as |�⌫ | ⌧ |�

cdm

|, the exact value of the neutrino
overdensity does not matter very much. The same conclu-
sion was reached by Shoji & Komatsu (2009), who com-
pared their thrid-order perturbation theory calculations (for
both CDM and neutrinos, the latter approximated as a per-
fect fluid with pressure) to a computation where CDM is
treated to third order but neutrinos are computed to linear
order (without accounting for non-linear growth of poten-
tials), similar to the treatment of Saito et al. (2008). They
found that although neutrino overdensities can be underes-
timated by order unity on non-linear scales, the total matter
power spectrum is very accurately obtained, even with the
simpler method6.

Finally, let us point out that for z > 0.5, subtracting
the scale-free shot noise from P⌫ in the particle simulation
produces very good agreement with the semi-linear Fourier
method, even at scales where the shot noise dominates. This
is further evidence that neutrino shot noise is not having a
strong dynamical e↵ect, and is not causing spurious cluster-
ing.

5.4 Performance

Simulations S05-S20 were consistently faster when using our
Fourier method. The speed increase was 13% of the total
walltime (which includes time spent reading and writing to
disc). Note that the slowest single algorithm in GADGET is
the Tree method for computing short-range forces, which

6 In the notation of Shoji & Komatsu (2009), our method as-
sumes P

tot

= f

2

c P1,c + (2fcf⌫g
1

+ f

2

⌫ g
2

1

)P1,c, which is better
than the treatment of Saito et al. (2008), in the sense that we use
the full non-linear CDM power spectrum as a source for neutrino
overdensities.

is disabled for neutrinos even for our particle based sim-
ulations, hence a large proportion of the execution time is
independent of the method used to simulate neutrinos. More
importantly, the total memory usage of GADGETwas 40%
smaller in the Fourier method than with particle neutrinos,
essentially identical to the memory usage of a pure dark mat-
ter simulation. This is important because memory is often
the limiting factor when performing large modern simula-
tions.

The S10P simulation, which had 8 times more dark mat-
ter particles than S10, took 12 times longer. This scaling is
similar to that expected for a pure dark matter simulation,
demonstrating that our neutrino method scales well. In fact,
the only limit to scalability in the neutrino calculation is the
need for inter-process communication when computing the
power spectrum.

Overall, our Fourier method appears to have similar
performance characteristics to a pure dark matter simu-
lation, as should be expected; the time to compute the
neutrino power spectrum is completely negligible compared
to the N -body algorithms, and the most costly part of
our Fourier algorithm is summing modes on the Fourier-
transformed density grid to compute the power spectrum.

6 APPLICATIONS

6.1 Lyman-↵ Forest

The Lyman-↵ forest is an indirect probe of the matter power
spectrum at small, non-linear scales (k = 0.1 � 4h�1 Mpc),
and at high redshift, z = 2� 4. The power spectrum of the
Lyman-↵ flux measures the clustering of the absorption sig-
nal from neutral hydrogen in quasar spectra, and can be used
to place constraints on the amplitude of primordial pertur-
bations. When combined with constraints from large scales,
this can lead to tight constraints on neutrino mass (Seljak
2000; Gratton et al. 2008; Viel et al. 2010). At these high
redshifts, shot noise could be an issue for light neutrinos, so
it is a natural place to apply our method. In addition, sim-
ulations with neutrino particles, dark matter and baryons
can become unwieldy.

c� 2012 RAS, MNRAS 000, 1–15

Results

Neutrino power spectrum at z = 1, ∑mν = 0.3 eV

ν’s all linear

ν’s, this work

ν’s all N-body



Limitation
This method does not account for the non-linear 
clustering of neutrinos in massive clusters at z = 0

Massive neutrinos in the non-linear regime of structure formation 9

Figure 2. The power spectrum of the neutrino component at

z = 0. Solid lines show the neutrino power spectum for our fourier-

based method (blue) and the particle method (red). Simulations

shown have a 256Mpch

�1
box. Dashed line shows the neutrino

power spectrum in linear theory. Vertical dashed grey line shows

the approximate non-linear scale for the dark matter. Solid cyan

and and dashed purple lines show the non-linear and linear, re-

spectively power spectra for the dark matter. Notice that �⌫ < 1

always.

Figure 3. The power spectrum of the neutrino component at

z = 3. Solid lines show the neutrino power spectum for our fourier-

based method (blue) and the particle method (red). Dashed line

shows the neutrino power spectrum in linear theory. Vertical

dashed grey line shows the approximate non-linear scale for the

dark matter. Solid cyan lines shows the neutrino power spectrum

for the 60Mpch

�1
box using the particle method. The equivalent

line for the fourier method is not shown as it is identical to that

for the 256Mpch

�1
box.

by strongly non-linear e↵ects on smaller scales. [SPB: We
definitely need some more explanation here. This
is not just �⌫ > 1; the non-linear scale is in fact
something a bit different, see the halofit paper
http://arxiv.org/abs/astro-ph/0207664]

For the z = 3 plot, these non-linear e↵ects are not ap-
parent. Note that the small scales probed by the Lyman-
↵ forest are strongly a↵ected by shot noise at these redshifts.

Figure 4. The suppression in the total power spectrum at z = 0.

Solid lines show a 256Mpch

�1
with our fourier-based method

(blue) and the particle method (red). The dashed line shows the

prediction of linear theory.

Figure 5. The suppression in the total power spectrum at z = 3.

Solid lines show a 256Mpch

�1
with our fourier-based method

(blue) and the particle method (red). The dashed line shows the

prediction of linear theory.

5.2 Total Power Spectra

Figures 4 and 3 show the suppression in the total matter
power spectrum, defined as the ratio between the total mat-
ter power spectrum including massive neutrinos with M⌫ =
0.3eV and the matter power spectrum with massless neu-
trinos, but unchanged ⌦0. The suppression for our fourier-
based method is systematically somewhat larger than for the
particle method. For z = 3 this is due to shot noise, while
for z = 0 this is due to non-linearities in the neutrino com-
ponent [SPB: I’m 99% sure this is true, but we need
to do some work to demonstrate it].

5.3 Flux Power Spectra

Figures 6 and 7 show the e↵ect on the flux power spectrum
of neutrinos using our two methods. Here the di↵erence is
quite significant, due to the sensitivity of the Lyman-↵ forest
to the absorber Jeans scale at around 0.1Mpch�1. The flux
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Non-linear neutrino clustering 
in massive haloes

• At z = 0, characteristic rhalo ≲ 1 Mpc << Lfs

• vν ≈500 km/s (0.1 eV/mν) << |ϕ|1/2 ~800-3000 km/s



Non-linear neutrino clustering 
in massive haloes

If halo grows on ~ Hubble timescale, neutrinos may be 
captured. Escape condition:

4 Y. Ali-Häımoud and S. Bird
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Figure 1. Non-linear scale (solid) and free-streaming scales for
various neutrino masses, as a function of redshift.

and ⌦
M

(a) is the relative contribution of the non-relativistic
components to the total energy density at scale factor a. On
scales much larger than the free-streaming scale, neutrinos
behave like CDM. We shall show later on that for k � k

fs

,
the (linearised) neutrino overdensity �⌫ relates to the total
(possibly non-linear) matter overdensity �

M

as

�⌫(k � k
fs

) ⇡
✓
k
fs

k

◆
2

�
M

. (8)

Numerically, we obtain

k
fs

(z) ⇡ 0.08p
1 + z

r
⌦

M

0.3
m⌫

0.1 eV
h Mpc�1. (9)

We show the non-linear scale k
nl

(defined such that the vari-
ance of CDM overdensity per log-k interval reaches unity on
that scale) and free-streaming scale as a function of neutrino
mass and redshift in Fig. 1. We see that for

P
m⌫ < 0.6 eV,

we always have k
fs

< k
nl

, with an increasing di↵erence at
large redshifts. Moreover, the non-linear matter power spec-
trum typically grows as k3P

M

(k) / k↵, with ↵ ⇠< 2 (Seljak
2000) and therefore we expect the power per log interval in
the neutrino component to be decreasing for k ⇠> k

nl

> k
fs

as k3P⌫(k) / k� , with � ⇠< �2.
We therefore expect the neutrino component to be lin-

early clustered on all scales for masses below the current
upper limit: for k < k

nl

neutrinos cluster at most like the
CDM, which is itself linearly clumped. For k > k

nl

> k
fs

,
the neutrino power per logarithmic interval is a decreasing
function of k.

This argument motivates our use of linear theory for
the neutrino component. However, this does not give the full
physical picture of neutrino clustering: the slowest neutrinos
may in fact significantly cluster in massive haloes. Before
moving to the core of our calculation, we first discuss in
which conditions it may break down.

2.4 Neutrino capture in massive haloes

In this section we qualitatively discuss under which condi-
tions neutrinos may significantly cluster in a potential well
of characteristic physical scale r

0

and characteristic depth
�
0

< 0. Let us consider, for simplicity, a spherical top hat
potential, �(r < r

0

) = �
0

and �(r > r
0

) = 0. We assume

that r
0

is constant in time, but allow the depth �
0

to vary
slowly, on a Hubble timescale, as is the case for the most
massive halos currently forming. We consider the fate of a
particle on a purely radial trajectory. If the particle enters
the potential at time ti, with initial velocity v(t�i ) = vi, its
velocity upon entry becomes

v(t+i ) =
q

v2i + 2|�
0

(ti)|. (10)

Since we have assumed the potential to be flat inside the
halo, the particle’s velocity is conserved until it reaches the
other end, at time tf . By then the gravitational potential
has grown a little deeper, and the particle will escape only
if its velocity is larger than the new escape velocity, i.e. if

v2i + 2|�
0

(ti)| > 2|�
0

(tf )|. (11)

Provided the crossing time is short compared to the evolu-
tion timescale of the potential, we can Taylor-expand this
equation and obtain the escape condition

v2i > 2(tf � ti)|�̇0

|. (12)

Inside the halo, provided 2|�
0

| � v2i , the velocity is approx-
imately

p
2|�

0

| and the crossing time is therefore

tf � ti ⇡ 2r
0p

2|�
0

| . (13)

If we define the timescale for variation of � as

�t� ⌘ |�
0

|
|�̇

0

| , (14)

the escape condition for neutrinos becomes

r
0

<
1
2
(H�t�)

v

H

vp
2|�

0

| , (15)

where we have purposefully inserted the Hubble parame-
ter to make the order-unity parameter H�t� appear. We
see that for deep potential wells varying on the Hubble
timescale, the condition for neutrinos to truly free-stream
and not be captured is more stringent than simply requiring
their characteristic scale to be smaller than the (physical)
free-streaming scale r

fs

⇠ v/H. Equation (15) can also be
turned into an escape condition for the neutrino momentum.
For z ⇡ 0, this is

p

T⌫
⇠>

m⌫

T⌫,0

1p
H

0

�t�

⇣
2H

0

r
0

p
|2�

0

|
⌘
1/2

⇡ (H
0

�t�)
�1/2 m⌫

0.1 eV

✓
r
0

0.5 h�1Mpc

◆
1/2
 p|�

0

|
3000 km/s

!
1/2

. (16)

We have normalised the lengthscale and depth of the grav-
itational well to values typical for the most massive haloes.
The outcome of this analysis is that in massive haloes
varying on a Hubble timescale, neutrinos with momentum
p ⇠< T⌫ are typically captured, while those with momen-
tum p ⇠> T⌫ can escape. We emphasise that the cuto↵ value
at p ⇡ T⌫ is a pure numerical coincidence, arising from
the characteristic sizes and depths of massive haloes, and
for neutrino masses of order 0.1 eV. Given that only about
6% of neutrinos have a momentum p < T⌫ , the qualitative
picture that emerges from this analysis is that a relatively
small fraction of neutrinos are e�ciently bound to massive
haloes, thereafter strongly clustering, while a majority re-
main weakly clustered.

c� 2012 RAS, MNRAS 000, 1–15

About 94 % of neutrinos have p > T for Fermi-
Dirac distribution. ☛ Most remain linear, a small 
fraction get captured and become very non-linear
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Figure 2. Neutrino halo profiles for
∑

mν = 0.3 eV (top),
∑

mν = 0.6 eV (middle) and
∑

mν =
1.2 eV (bottom) for halo masses of 1012, 1013, 1014 and 1015 M!. Profiles are calculated with the
N -one-body method (dotted) and the N -body method with a halo isolation criterion (solid) and
without (dot-dashed).
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Non-linear neutrino clustering 
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Brandbyge et al. 2010

∑mν = 0.3 eV
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Figure 3. Halo profiles from N -body simulations for a model without massive neutrinos, with
isolated halos (solid) and all halos (dot-dashed). The halo masses are 1012, 1013, 1014 and 1015 M!.
The profiles for the lowest 3 halo masses are taken from the 256 h−1 Mpc box and the profile for the
most massive halo is taken from the 1024 h−1 Mpc box. NFW profiles are also shown (dotted), and
the halo mass dependent virial radii are indicated by the ’+’ signs.

as the neutrino mass decreases, neutrinos free-stream out of ever larger halos, so that the
relative effect of even larger, more massive halos must be taken into account.

The effect of tidal truncation on the N -body halo profiles can easily be seen in figure 2.
This effect is not included in the N -one-body approach. Furthermore, for the 1012M! halos it
can be seen that the neutrino density falls below its cosmic average beyond the virial radius.
This could be due to either the presence of underdensities at particular distances from the
halo centers, or due to the fact that we only select isolated halos, which are more likely to
be found in low density regions.

From the pure ΛCDM N -body simulations presented in figure 3 it can be seen that our
matter halos are perfectly fitted by a NFW profile over the mass range Mvir = 1012−1014M!

until 20h−1 kpc from the halo centers. Here our N -body results begin to lack particle reso-
lution. The profile for the larger halo mass is taken from a 1024h−1 Mpc box with the same
number of particles, and this halo is therefore only resolved until ∼ 100h−1kpc. Note that
our dominant background NFW profiles in the N -body simulation are valid down to scales
significantly smaller than the scales at which we present neutrino density profiles. Therefore,
our neutrino density profiles are not affected by insufficient CDM N -body particle resolution.

Since the CDM component is much more clustered than its neutrino counterpart, the
flat profile from the host halo or a nearby massive halo is only dominant relative to the
contribution from the halo itself on scales beyond the virial radius (see figure 3). From this
figure it can also be readily understood why the neutrino density profiles differ when only
low mass isolated halos are considered: The underlying CDM gravitational source term is

– 10 –



Still have < δν2 > << 1 on all scales, because haloes 
make a small fraction of the total volume. 

Massive neutrinos in the non-linear regime of structure formation 9

Figure 2. The power spectrum of the neutrino component at

z = 0. Solid lines show the neutrino power spectum for our fourier-

based method (blue) and the particle method (red). Simulations

shown have a 256Mpch

�1
box. Dashed line shows the neutrino

power spectrum in linear theory. Vertical dashed grey line shows

the approximate non-linear scale for the dark matter. Solid cyan

and and dashed purple lines show the non-linear and linear, re-

spectively power spectra for the dark matter. Notice that �⌫ < 1

always.

Figure 3. The power spectrum of the neutrino component at

z = 3. Solid lines show the neutrino power spectum for our fourier-

based method (blue) and the particle method (red). Dashed line

shows the neutrino power spectrum in linear theory. Vertical

dashed grey line shows the approximate non-linear scale for the

dark matter. Solid cyan lines shows the neutrino power spectrum

for the 60Mpch

�1
box using the particle method. The equivalent

line for the fourier method is not shown as it is identical to that

for the 256Mpch

�1
box.

by strongly non-linear e↵ects on smaller scales. [SPB: We
definitely need some more explanation here. This
is not just �⌫ > 1; the non-linear scale is in fact
something a bit different, see the halofit paper
http://arxiv.org/abs/astro-ph/0207664]

For the z = 3 plot, these non-linear e↵ects are not ap-
parent. Note that the small scales probed by the Lyman-
↵ forest are strongly a↵ected by shot noise at these redshifts.

Figure 4. The suppression in the total power spectrum at z = 0.

Solid lines show a 256Mpch

�1
with our fourier-based method

(blue) and the particle method (red). The dashed line shows the

prediction of linear theory.

Figure 5. The suppression in the total power spectrum at z = 3.

Solid lines show a 256Mpch

�1
with our fourier-based method

(blue) and the particle method (red). The dashed line shows the

prediction of linear theory.

5.2 Total Power Spectra

Figures 4 and 3 show the suppression in the total matter
power spectrum, defined as the ratio between the total mat-
ter power spectrum including massive neutrinos with M⌫ =
0.3eV and the matter power spectrum with massless neu-
trinos, but unchanged ⌦0. The suppression for our fourier-
based method is systematically somewhat larger than for the
particle method. For z = 3 this is due to shot noise, while
for z = 0 this is due to non-linearities in the neutrino com-
ponent [SPB: I’m 99% sure this is true, but we need
to do some work to demonstrate it].

5.3 Flux Power Spectra

Figures 6 and 7 show the e↵ect on the flux power spectrum
of neutrinos using our two methods. Here the di↵erence is
quite significant, due to the sensitivity of the Lyman-↵ forest
to the absorber Jeans scale at around 0.1Mpch�1. The flux
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• Total power spectrum is not very sensitive to  exact 
clustering of neutrinos on small scales. In practice, 
δν(k>>kfs) << δCDM is what really counts. May as well 
use a simple method!

• It is accurate to better than 0.2% for the matter power 
spectrum at z = 0 for ∑mν ≲ 0.3 eV and nearly exact at 
z > 1. 

• Our method is about 20% faster than particle-based 
method. Patch for GADGET publicly available (S. Bird 
webpage)

• Future work: accurately modeling the clustering of 
neutrinos themselves / use hybrid methods.

Conclusions


