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• Triviality of the vacuum 
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linear in velocities 

• Presence of second class constraints 

• Non-trivial physics of zero modes 

• Importance of boundary conditions at 
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Constraint 
algebra 

becomes  
a Lie algebra 

• Veneziano et al. (recent) – light-cone averaging in cosmology 

• Sachs(1962) – constraint free formulation 

• conformal metrics on 

• intrinsic geometry of 

• extrinsic curvature of    

• Reisenberger – symplectic structure on 

the constraint free data 

null foliation 
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Motivation 

Exact path integral 
(still to be defined) 

– was not analyzed yet 
• One needs the real first order formulation  
   on the light front  

• The issue of zero modes in gravity was not studied yet 

Can the light front formulation be useful in quantum gravity 
(black holes, spin foams…)?  

• Can one find constraint free data in the first order formulation? 
            (preferably without using double null foliation) 

• In the first order formalism the null condition can be controlled 

by fields in the tangent space 
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Technical motivation 

3+1 decomposition of the tetrad 

Perform canonical analysis for the real first order 

formulation of general relativity on a lightlike foliation 

determines the nature of the foliation 

spacelike spacelike lightlike timelike 

light front formulation 

Used in various approaches to 
quantum gravity 
(covariant LQG, spin foams…) 

What happens at              ? 

lapse 
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1.  Canonical formulation of field theories on the light front   

 

2.  A review of the canonical structure of first order gravity 

 

3.  Canonical analysis of first order gravity on the light front 

 

4.  The issue of zero modes 

Plan of the talk 
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Massless scalar field in 2d 

Solution:  

Primary constraint Hamiltonian 

Stability condition: 

is of second class   

zero mode   

first 
class 

Identification: 

• the phase space is one-dimensional 
• the lost dimension is encoded in the Lagrange multiplier  

Conclusions: 

Light front formulation 
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Massive theories 

One generates the same constraint but different Hamiltonian 

In massive theories the light front constraints 
do not have first class zero modes   

inhomogeneous 
equation 

Stability 
condition: 

The existence of the 
zero mode contradicts 
to the natural boundary 

conditions 

In higher 
dimensions: 

behave like massive 2d case 
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Dimensionality of the phase space 

On the light front  

dim. phase space      =     num. of deg. of freedom 

Second class constraint 

Symplectic structure is non-degenerate 

Dirac bracket 

Fourier decompositions 
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First order gravity (spacelike case)  

Fix – normal to the foliation 

Canonical variables: 

Linear simplicity constraints 

Hamiltonian is a linear combination of constraints 

3 
6 

secondary constraints 

dim. of phase space  =  2×18 – 2(3+3+1)-(3+9+6)=4 

1st class  

2d class  
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Cartan equations 

Cartan equations 

do not contain time 

derivatives and 
Lagrange multipliers  

12 constraints 

for fixed  
do not contain 

time derivatives 

We expect that the Hamiltonian 
constraint becomes second class 

fix 3 components  
        of 

(             – 2d class) 

    fix 2 components  
of        and the lapse 
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Hamiltonian analysis on the light front 

Light front condition 

Canonical variables: 

Linear simplicity constraints 

2 
7 

Hamiltonian is a linear combination of constraints 

where 

secondary constraints 

    equation fixing the lapse 
+ 
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Tertiary constraints 
The crucial observation: 

has 2 null eigenvectors 

induced metric 

on the foliation 

and 

Stabilization procedure stops due to 

There are two 

tertiary constraints 

Projector on the 

null eigenvectors 
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List of constraints: 
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preserving 
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  Gauss  

rotating 

spatial 

diffeos 
Hamiltonian 

primary 

simplicity 
secondary 
simplicity 

tertiary 

First class Second class 

3 2 1 2 

dim. of phase space  =  2×18 – 2(4+3)-(2+1+9+6+2)=2 
 

as it should be on the light front 

Lie algebra 
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Conjecture 

A zero mode can exist only if  
the corresponding Lagrange multiplier satisfies   

a homogeneous equation 

One may expect only two zero modes 

In our case there are two homogenous equations 
                           for         and  

Gravity behaves like  

2d massless theory 

exist 

Initial data on one 
null hypersurface fix 

the solution 

do not 
exist 



Open problems 

• Do the zero modes in gravity really exist? 
  If yes, what is the geometric meaning of the zero modes? 
 
• What are the appropriate boundary conditions along       ? 
 
• How do singularities appear in this formalism? 
 

• Can one solve (at least formally) all constraints? 
 

• What is the right symplectic structure (Dirac bracket)?  
 

• Can this formulation be applied to quantum gravity problems? 


