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Can there be non-compact extra 
dimensions ?

Requires that the observed particles and their interactions 
be confined to a  3-brane  world.

D-branes  allow us to achieve this within string theory, 
for all particles with  spin = 1  or  less.

But how about gravity ?

Rubakov, Shaposhnikov   ‘83 

Polchinski   ‘95 



Closely related to the following:

Can the graviton have mass ?

Could it be a resonance ?

Are sectors “hidden” from gravity possible ?

Other IR modifications of Einstein equations ?

The subject has a long history, to which I will not  do justice here  .....

The question has received much attention, starting with  
Randall & Sundrum  ‘99

The short answer is:  we still don’t know . 



In our work we adopted a conservative attitude:

 *  Restrict to  2-derivative (super)gravity

 *  Assume negative-curvature brane world
  (to avoid problems of horizon, vDVZ discontinuity etc) 

... but we demand supersymmetry and string-theory embedding.

(to guarantee  stability against quantum corrections)

not the “real” problem, but let’s push on ! Λ < 0
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  1.  KK reduction for spin 2    

Interested in warped-(A)dS background geometries,   

d̂s2 = e2A(y)ḡµν(x) dxµdxν + ĝab(y) dyadyb

M̄4 = AdS4, M4, dS4

k = −1, 0, 1



ds2 = e2A (ḡµν + hµν) dxµdxν + ĝab dyadyb ,

Consider (consistent reduction of)  metric perturbations:   

hµν(x, y) = h[tt]
µν (x)ψ(y)with   

where   (!̄(2)
x − λ) h[tt]

µν = 0 and ∇̄µh[tt]
µν = ḡµνh[tt]

µν = 0 .

Pauli-Fierz equations (λ = m2 + 2k)



RMN −
1
2
gMNR = TMNLinearizing the Einstein equations   

−e−2A

√
[ĝ]
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leads to a Schrödinger problem in the 6D transverse space:  
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√
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PS. This is  also equivalent to the scalar-Laplace equation in 10 dimensions :  



The linearized equation is universal, i.e. it depends only on the 
geometry - not on details of the “matter” fields. 

Csaki, Erlich, Hollowood, Shirman ‘00

Hence:  localization of spin-2 can only come from geometry 

CB, JE  ‘11

Brandhuber, Sfetsos ‘99

Important remark: 

NB: this is specific to 2-derivative gravity, and it is not true for
 the non-linear terms. 



The wavefunction norm is

Second remark: 

||ψ||2 =
∫

[dy]e2Aψ∗ψ

〈ψ,M2ψ〉 =
∫

[dy]e4A∂aψ∗∂aψThen from which we conclude:

M2 ≥ 0 and   

Hence,   

M2 = 0 −→ ψ0 = constant

For a 4D massless graviton we thus need
∫

[dy] e2A <∞

if the transverse space is non-compact
- either there is a continuum

- or the 4D graviton is massive



Can’t the warp factor help? 

Well, when it does  “infinity” is an apparent horizon 
(which can be reached in finite proper time).  

Wait a minute :

e2A = C
√

e2A − ẏ2

ẏ ! eA → 0
∫

dτ =
∫

dt C−1e2A !
∫

dy eA .

A ! −νlog y with 1 > ν > 1/2

A′′ ≤ 0

For a particle moving in the transverse dimension y , 

As y goes to infinity, we need      so eA → 0 ,

The total proper time should be infinite, for geodesic completeness.

If we request =  finite, for a normalizable zero mode, then

∫
dy e2A

This is ruled out by the weak energy conditions which imply (“holographic c-theorem”)

Girardello et al ‘98, Freedman et al ‘99

Let us see why in the case of flat-4D slicing, and one extra dimension:



Else, one needs to supplement the quantum theory with boundary conditions; 

One can  of course cutoff space before the horizon, with an “IR brane”;   
this is compactification . Randall, Sundrum I

there exists then a continuum (and open issues of stability). 

Randall, Sundrum II

For an AdS-brane world:     no horizon, no “holographic c-theorem”,
 the 4D graviton is massive.

Karch, Randall ’00 , ‘01



   2.  Model of AdS brane world    

IKR = − 1
2κ 2

5

∫
d4x dy

√
g

(
R +

12
L2

)
+ λ

∫
d4x

√
[g]4 ,

Starting point is 5D Einstein action plus a thin 3-brane 

ds2 = L2cosh2

(
y0 − |y|

L

)
ḡµνdxµdxν + dy2 y0 = L arctanh

(
κ 2

5 λL

6

)

The solution is:

,     where

It describes two (large) pieces of  AdS5  glued along a AdS4  brane of radius

!2 = e2A(0) = L2 cosh2
(y0

L

)
.

One can tune                         so that              λ→ 3π

κ 2
5 L

!! L

AdS4



So, cut away green slices and glue.

∂AdS5
∂AdS5

y = 0 y = 0 y = y0y = −y0y = −∞ y =∞

The AdS5 metric in AdS4 foliation is L2cosh2(
ỹ

L
)ḡµνdxµdxν + dỹ2

For                   the brane is near the boundary of either AdS5 part.!! L
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 as                is gradually tuned up     !/L

e2A ≡ f 2
4 = L2cosh2

(
y0 − |y|

L

)
Warp factor 

eA

e2A



Spectrum :
- a nearly-constant, nearly massless mode

- two towers of AdS5 modes

m2
0 !

3L2

2!2

m2 ! (2n + 1)(2n + 4) n = 0, 1, · · ·!2

!2

for an observer 
on the brane

 solutions of the AdS5 eigenvalue problem

 =  Legendre equation & gluing conditions 

The AdS5 states live at the bottom of the warp-factor wells .  

  exponentially suppressed at the brane position.Their wavefunctions are

vanishes near 
bottom of warp 

factor wells



e2A

y

support of zero mode

support of AdS5 modes

Schematically:



8πGN ! κ2
5/L

VNewton + ∆V ! −GNm1m2

r
(1 + γ

L2

r2
+ · · · )4D parameters:

as in usual KK

unlike standard KK!

L
∼ 1031 − 1062so

effective

Also    
∫

ψ0ψ
†ψ != universal

So the nearly-massless graviton has non-universal couplings to other fields. 

because               constant.    ψ0 !=



  3. Holographic defect CFTs    

Karch, Randall ‘01
DeWolfe, Freedman, Ooguri  ‘01
CB, de Boer, Dijkgraaf, Ooguri  ‘01

Gravity in AdSD+1   is dual  to  CFTD    

an AdSD  brane   is dual  to a  conformal domain wall    

S3

S2

Boundary in global 
coordinates    

 (almost) massless 4D graviton is dual to (almost) conserved 3D         Tµν



The most symmetric case:      

1/2 superconformal domain walls  of   N=4  4D  super Yang-Mills

NS5
D5

D3
[012 3]

[012 456]

[012 789]

all intersections at same point

Brane engineering (weak coupling): 

for classical scale invariance



 NS5-brane 

Probe 5-branes have worldvolumes   AdS4 x S2    with radius  L

D5-brane 

Strongly-coupled SYM  better described as gravity in  AdS5 x S5

S5

... but to localize gravity, need back-reacting branes.



  4. The UCLA solutions    

The exact solutions of  IIB  supergravity have been discovered 

in  D’Hoker, Estes and Gutperle ‘07  

The N=4 SYM has symmetry  SU(2, 2|4) ⊃ S0(2, 4)× SO(6)

The wall breaks this to  OSp(2, 2|4) ⊃ S0(2, 3)× SO(4)

The solutions are  thus AdS4 × S2 × S2 fibrations over a surface                
∑

There are  also form-fields                                   consistent with these isometries, F5, H3, F3

and sourced by the corresponding branes.  



ds2 = f2
4 ds2

AdS4
+ f2

1 ds2
S2
1
+ f2

2 ds2
S2
2
+ 4ρ2dzdz̄ ,

f8
4 = 16

N1N2

W 2
f8
1 = 16h8

1
N2W 2

N3
1

f8
2 = 16h8

2
N1W 2

N3
2

, ,

e4φ =
N2

N1

W = ∂h1∂̄h2 + ∂̄h1∂h2 = ∂∂̄(h1h2) ,

N1 = 2h1h2|∂h1|2 − h2
1W , N2 = 2h1h2|∂h2|2 − h2

2W .

metric :

dilaton :

where 

ρ8 =
N1N2W 2

h4
1h

4
2

DEG show that the general local solution depends on 
   two  harmonic functions    on            :

∑
h1, h2



h1 = −i(A1 − Ā1) → hD
1 = A1 + Ā1

h2 = A2 + Ā2 → hD
2 = i(A2 − Ā2)

For the p-form backgrounds we need also the dual harmonic functions: 

and the volume forms of the unit-radius symmetric spaces: 

ω 0123

ω 45

ω 67

AdS4

S2
1

S2
2



3-forms :

5-form :

b1 = 2ih1
h1h2(∂h1∂̄h2 − ∂̄h1∂h2)

N1
+ 2hD

2

b2 = 2ih2
h1h2(∂h1∂̄h2 − ∂̄h1∂h2)

N2
− 2hD

1

H(3) + iF(3) = ω 45 ∧ db1 + i ω 67 ∧ db2

where:

F(5) = −4 f4
4 ω 0123 ∧ F + 4 f2

1 f2
2 ω 45 ∧ ω 67 ∧ (∗2F) ,

where

f 4
4 F = dj1 with j1 = 3C + 3C̄ − 3D + i

h1h2

W
(∂h1∂̄h2 − ∂̄h1∂h2)

∂C = A1∂A2 −A2∂A1 D = Ā1A2 +A1Ā2



The above expressions provide the general form of the local solution. 

The absence of singularities greatly constrains, however, the choice

of harmonic functions.  Taking          =  infinite strip, requires 
∑

 Neumann (Dirichlet) conditions on the upper (lower) boundary for h1

and the other way around for        ,h2 so that the strip boundaries are

S2
1

S2
2 shrinks to point here

shrinks to point here

are interior points of the 10D geometry.



h1 =
[
−iα1 sinh(z − β1)− γ1ln

(
tanh(

iπ

4
− z − δ1

2
)
)]

+ c.c. ,

h2 =
[
α2 cosh(z − β2)− γ2ln

(
tanh(

z − δ2

2
)
)]

+ c.c. .

NS5

D5

A solution with all necessary ingredients is: 

Singularities on the boundary correspond to asymptotic regions.

AdS5 × S5AdS5 × S5



Non-contractible cycles supporting brane charges:

I

I ′

C3 = I × S2
2 ∼ S3

C5 = I × S2
1 × S2

2 ∼ S3 × S2

C ′
5 = I ′ × S2

1 × S2
2 ∼ S5

D5-brane

D3-brane

D3-brane in D5-brane



h1 =

[
−iα sinh(z − β)−

q∑

a=1

γa ln
(

tanh
(

iπ

4
− z − δa

2

))]
+ c.c.

h2 =

[
α̂ cosh(z − β̂)−

q̂∑

b=1

γ̂b ln

(
tanh

(
z − δ̂b

2

))]
+ c.c.

NS51

D51

AdS5 × S5AdS5 × S5

NS52

D52

....

....

More generally, there can be many different stacks of 5-branes:  



  5. Parameters & Page charges  

Parameter count :  

α,β, α̂, β̂

γa, δa

φ(±∞), Q(±∞)
D3

...  minus one
real-axis origin D3-charge conservation

γ̂b , δ̂b

Q(a)
D5 , Q(a)

D3

Q(b)
NS5 , Q̂(b)

D3



In matching the parameters,  one faces a subtlety:  

dF5 = H3 ∧ F3

implies there is  no local, gauge-invariant  definition of D3-charge
...  Marolf ‘00The quantized Page charge is either non-local or gauge-variant.

Qinv(a)
D3 =

∫
Ca

F5 −B2 ∧ F3 +
∫
Ca

F3 ∧B2

∣∣∣
z=∞

= 28π3

(
α̂ γa sinh(δa − β̂)− 2 γa

q̂∑

b=1

γ̂b arctan(eδ̂b−δa)

)

Q̂inv(b)
D3 =

∫
Ĉb

F5 + C2 ∧H3 −
∫
Ĉb

H3 ∧ C2

∣∣∣
z=−∞

= 28π3

(
α γ̂b sinh(δ̂b − β) + 2 γ̂b

q∑

a=1

γa arctan(eδ̂b−δa)

)
.

In our case:



The 5-brane charges are unambiguous:

Q(a)
D5 = 16π2 γa , Q(b)

NS5 = 16π2 γ̂b .

The remaining parameters control the asymptotic  AdS5 x S5  regions:

φ(±∞), Q(±∞)
D3

We don’t need their explicit expression here, but note that  

Q(±∞)
D3 ∝ L4

(±∞)

vanish as   α, α̂→ 0 .



To “mimic” the Karch-Randall model, we must fine-tune parameters

so as to  flatten the brane  relative to the “bulk”  AdS5 .

This required both NS5 and D5 charges, to stabilize the dilaton, and

attractor mechanism

γa, γ̂b ! α, α̂ =⇒ Q(a)
D5, Q

(b)
NS5 ! Q±∞D3

“more in domain wall than in bulk”

But:   in this limit the brane world-volume decompactifies.



!10 !5 0 5 10
X

2

4

6

8

10
f4

!15 !10 !5 0 5 10 15
X

1
2
3
4
5
6
f1 !2"

warp factor                     

sphere radii                     



The 10d geometry looks like this:

AdS5 × S5narrow throat

of radius  

radius  

L
!

graviton mass  ∼ L

!
" 1

AdS4 ! K

(numerical, to appear)

6

The limit geometry                        is smooth; the throats cap offα, α̂→ 0

and                                      ‘compactifies’

ABEG ;  Aharony, Berdichevsky, Berkooz, Shamir ‘11

S2
1 × S2

2 ! Σ ∼ K6



  6. New  AdS4 - SCFT3 dualities  

The “decompactification problem” may (or may not)  be solved 

with fewer supersymmetries [and R-symmetries]. 

 But these geometries are interesting in their own right:

*  learn about (strongly-coupled) 3D CFTs

*  understand gravitational throats from gauge theory

The candidate dual SCFTs have been discussed in a series of papers

by Gaiotto, Witten  ’08 . They are conjectured strongly-coupled fixed

points of 3D quiver gauge theories.



One way to introduce these theories, is starting with N  D3-branes
suspended between NS5-branes on left, and D5-branes on right:

NS5
D5

D3

for example:

N = 6 ; ρ = (2, 2, 1, 1) ; ρ̂ = (3, 2, 1)

This is described by two partitions of  N ,                     ,ρ , ρ̂



The supersymmetric configurations are in 1-to-1 correspondence with solutions 

dXa

dt
= iεabc[Xb, Xc]

on the interval, with boundary conditions that are simple poles,

Xa ∼ Ja

t
N-dimensional generators

 of SU(2)

of Nahm’s equations:

The choice of           at each end  determines the two partitions of  N,   Ja

e.g.       :   12 = 5 + 3 + 3 + 1 ρ

conveniently described by Young tableaux, 



 Kronheimer ;  Nakajima

Non-trivial solutions to Nahm’s problem exist  iff

ρT > ρ̂

Gaiotto, Witten conjecture that non-trivial SCFTs , T ρ̂
ρ (SU(N))

exist in  each of these cases. 

Computing these partitions from the brane charges, we show that

these inequalities are identically obeyed by the supergravity solutions !

Our backgrounds have furthermore gauge symmetries, realized on  

the 5-branes. These are dual to global symmetries of the SCFTs,

some of which are explicitly realized in the microscopic theories.  



N1 N2

M1 M2 M3

N3

The underlying gauge theories are described by linear quivers

U(N1)× U(N2)× U(N3)× · · ·

bifundamental

fundamental

gauge symmetry

manifest global symmetry U(M1)× U(M2) · · ·

& from “mirror”



one (or more) link, by taking  Ni → 0

This corresponds to factorizing the 5-brane singularities on the strip.

Another  interesting limit   (                 )    correspond to severingρ̂ ! ρT

The ensuing theories are 2-graviton theories with weak mixing.



this is a string-theory “wormhole”



  7. Conclusions & outlook  

We have embedded the Karch-Randall model in string theory

The graviton obtains a mass, but the brane is decompactified

“Narrow bridges” (or throats) are weak links of quiver gauge theories

New  AdS4/CFT3 dualities


