Testing gravity with INPOP planetary ephemerides

A. Fienga^{1,4}

INPOP team: *A. Verma*^{2,3} J. Laskar⁴ H. Manche⁴ M. Gastineau⁴

¹GéoAzur, Observatoire de la Côte d'Azur, France

²Institut UTINAM, France

³UCLA, Los Angeles, USA

⁴IMCCE, Observatoire de Paris, France

General introduction

- Planetary ephemerides: what for ?
- INPOP: what's new ?
- MESSENGER analysis
- Testing GR with INPOP

Planetary ephemerides

Theory of planetary (and usually Moon) motions

What for ?

- celestial mechanics and reference frames
- tests of fundamental physics
- planetology: physics of asteroids, Moon
- solar physics
- preparation of space missions
- paleoclimatology and geological time scales
- other topics: preparation of stellar occultations, public outreach

3 generations of planetary ephemerides

	Gaillot		DE200		INPOP10a		
	1	.913	1	1983		2011	
	angle	distance	angle	distance	angle	distance	
		Earth-		Earth-		Earth-	
	"	km	"	km	"	km	
Mercury	1	450	0.050	5	0.050	0.002	
Venus	0.5	100	0.050	2	0.001	0.004	
Mars	0.5	150	0.050	0.050	0.001	0.002	
Jupiter	0.5	1400	0.1	10	0.010	2	
Saturn	0.5	3000	0.1	600	0.010	0.015	
Uranus	1	12700	0.2	2540	0.100	1270	
Neptune	1	22000	0.2	4400	0.100	2200	
Pluto	1	24000	0.2	4800	0.100	2400	

	The planetary ephemerides today					
	3 Teams					
DE	JPL	DE405 (Standish et al. 1998) DE421 (Folkner et al. 2008) DE430 (Folkner et al. 2013)	NASA s/c dedicated			
EMP	IAA	EMP20 (Pitjeva 2009, 2013)	close to DE Limited distribution			
INPOP	IMC/OCA	INPOP06,08 (Fienga et al. 2008, 2009) INPOP10a (Fienga et al. 2011) INPOP10e (Fienga et al. 2013) INPOP13a (Verma et al. 2014)	Science, Innovative IAU TT-TDB, GM⊙ 1Myr solution (La04) ESA Gaia release Messenger			

The planetary ephemerides today

DE,EMP, INPOP: what they have in common ...

Numerical integration of the (Einstein-Imfeld-Hoffmann, c⁻⁴ PPN approximation) equations of motion.

$$\ddot{x}_{Planet} = \sum_{A \neq B} \mu_B \frac{r_{AB}}{\|r_{AB}\|^3} + \ddot{x}_{GR}(\beta, \gamma, c^{-4}) + \ddot{x}_{AST,300} + \ddot{x}_{J_2^{\odot}}$$

- Adams-Cowell in extended precision
- 8 planets + Pluto + Moon + asteroids (point-mass, ring), GR, J^o₂, Earth rotation (Euler angles)
- Moon: orbit and librations
- Simultaneous numerical integration TT-TDB, TCG-TCB
- Fit to observations in ICRF

Rely mainly on space navigation

Specific INPOP developments for testing gravity

Simulation of a Pioneer anomaly type of acceleration

$$\ddot{x}_{\textit{Planet}} = \ddot{x}_{\textit{Newton}} + \ddot{x}_{\textit{GR}}(\beta, \gamma, c^{-4}) + \ddot{x}_{\textit{AST},300} + \ddot{x}_{\textit{J}_2^{\odot}} + \ddot{x}_{\textit{constant}}$$

Supplementary advance of perihelia $\dot{\varpi}$ and nodes $\dot{\Omega}$

At each step of integration t_i ,

$$arpi(t_i) = arpi(t_0) + \dot{arpi}(t_i - t_0)$$
 $\Omega(t_i) = \Omega(t_0) + \dot{\Omega}(t_i - t_0)$
 $\ddot{x}_{Planet} = R(arpi(t_i), \Omega(t_i)) \ddot{x}_{Planet}$

Specific INPOP developments for testing gravity

Equivalence Principle @ astronomical scale

$$\mathbf{m}^{I}\ddot{\mathbf{x}}=F(\mathbf{m}^{G},\mathbf{x}_{i},\dot{\mathbf{x}}_{i},\mathbf{m}_{i}^{G}...)$$

For each planet j,

$$\ddot{x}_j = \frac{m_j^G}{m_j^I} F(x_i, \dot{x}_i, m_i^G, ...) = (1 + \eta) F(x_i, \dot{x}_i, m_i^G, ...)$$

implemented but still preliminary

Specific INPOP developments for testing gravity With $\mu_{\odot} = GM_{\odot}$, $\mu_j = GM_j$ for planet j

$$\frac{\dot{M_{\odot}}}{M_{\odot}}$$
 and $\frac{\dot{G}}{G}$ with $\frac{\dot{\mu_{\odot}}}{\mu_{\odot}} = \frac{\dot{G}}{G} + \frac{\dot{M_{\odot}}}{M_{\odot}}$ and $\frac{\dot{\mu_j}}{\mu_j} = \frac{\dot{G}}{G}$

$$egin{array}{rcl} M_{\odot}(\mathbf{t}_i) &=& M_{\odot}(t_0) + (t_i - t_0) imes M_{\odot} \ \mathsf{G}(\mathbf{t}_i) &=& \mathcal{G}(t_0) + (t_i - t_0) imes \dot{\mathcal{G}} \end{array}$$

.

$$egin{array}{rcl} \mu_{\odot}(t_i) &=& G(t_i) imes M_{\odot}(t_i) \ \mu_j(t_i) &=& G(t_i) imes M_j \end{array}$$

- by fixing $\dot{M_{\odot}}$ or $\dot{G}
 ightarrow rac{\dot{\mu}}{\mu}$
- $\forall t_i, M_{\odot}(t_i) \text{ and } G(t_i) \rightarrow \ddot{x}_{Planet}, \ddot{x}_{Ast}, \ddot{x}_{Moon}$
- What values of $\frac{\dot{\mu}}{\mu}$ (and then $\frac{\dot{M_{\odot}}}{M_{\odot}}$ or $\frac{\dot{G}}{G}$) are acceptable / data accuracy ?

INPOP Evolution

INPOP08	4Dplanetary ephemerides: TT-TDB	TT-TDB 1st release
(Fienga et al. 2009)	New method for fit (a priori sigma)	www.imcce.fr/inpop
	Fitted to planetary data and LLR	30 GM _{ast} ,3 ρ
		AU, J_2^{\odot} , EMRAT
INPOP10a	289 asteroids, no mean density, ring	Long-term La2010
(Fienga et al. 2011)	Direct fit with constraints	145 GM _{ast} , GM _{ring}
	Improvement of outer planet orbits	GM_{\odot} , J_2^{\odot} ,EMRAT,
	Fixed AU, β , γ , $\dot{\varpi}$, $\dot{\Omega}$	Tests of GR
INPOP10e	Direct fit with constraints $+$ a priori sigma	GAIA last release
(Fienga et al. 2013)	Solar corona studies and corrections	152 GM _{ast} ,GM _{ring}
(Verma et al. 2013)	Improvement of Mars extrapolation	GM_{\odot} , J_2^{\odot} , EMRAT
	Use of raw MGS tracking data (GINS)	
INPOP13a	MESSENGER independant	Tests of GR
(Verma et al 2014)	orbit determination	62 GM _{ast} ,GM _{ring}
	$\beta, \gamma, (\dot{G}/G)$	GM_{\odot} , J_2^{\odot} , EMRAT

INPOP and the asteroids

- How to model all these perturbations ... with unknown masses?
- Observed impact: mainly Earth-Mars distances
- Projected accelerations of asteroids over the Earth-Mars distances

- How to distangle ?
- How to identify ?
- **LS** with constraints + A priori σ

A. Fienga

INPOP and gravity

INPOP13a

MESSENGER

- 1.5 yr of Doppler + range data (level 2) @ PDS
- Original orbit analysis with GINS/CNES software
- with hypothesis on Macro-model, manouvers

Results

- accurate orbit determination / (Smith et al. 2013)
- Full fit of all planets: INPOP13a
- New constraints over β , γ , J_2^{\odot}
- Verma et al. 2014
- $\blacksquare \frac{\dot{G}}{G}$

MESSENGER: NASA mission with 2 periods

	-				
Δ	н	10	n	a	3
~ .		10		ະ	u

MESSENGER mission: 2 periods

[2011/05:2012/03] + [2012/03:2012/09]

Α.	Fienga	
----	--------	--

MESSENGER orbit determination with GINS/CNES

Main characteristics:

- 1 GINS original multi-arc analysis
- 2 Rotation (Margot 2009) + gravity (Smith et al.,2012)
- 3 Macro-model: Box-and-wings model (Vaughan et al. 2006)
- Manouvers: optimization of the data arc length < period of manouvers
- 5 $3+4 \rightarrow 1$ -day data arc for the fit of each arc of orbit

A. Fienga

S/C orbit determination (OD)

A. Fienga

INPOP and gravity

MESSENGER OD validation I

Group Delay

- Offset in range measurement due to on-board transponder
- ∎ 410±20 m
- Srinivasan et al. 2007: 407-415 m

MESSENGER OD validation II

MESSENGER Range Bias for INPOP

A. Fienga

INPOP and gravity

MESSENGER Range Bias for INPOP

INPOP13a: Important improvement of the Mercury orbit

- same structure as INPOP10e (Fienga et al. 2013)
- Messenger range biais deduced from GINS OD \rightarrow 314 data points from 2011.4 to 2012.6

INPOP13a: Important improvement of the Mercury orbit

- same structure as INPOP10e (Fienga et al. 2013)
- Messenger range biais deduced from GINS OD \rightarrow 314 data points from 2011.4 to 2012.6
- Refit over full data sets (INPOP10e + MSG) → IC, GM_☉, 62 GM_{ast}, J_2^{\odot}

	${ m INPOP13a} \pm 1\sigma$	${ m INPOP10e} \pm 1 \sigma$	$\begin{array}{c} DE423 \\ \pm \ 1\sigma \end{array}$
$J_2^{\odot}\times10^{-7}$	(2.40 ± 0.20)	(1.80 ± 0.25)	$\begin{array}{l} 1.80 \\ (2.0 \pm 0.20) \ [\text{P13}] \\ (2.1 \pm 0.70) \ [\text{DE430}] \end{array}$
${\rm GM}_{\odot}$ - 132712440000 $[{\rm km}^3.~{\rm s}^{-2}]$	(48.063 ± 0.4)	(50.16 ± 1.3)	40.944
$GM(Ceres) [10^{12} \times M_{\odot}]$ GM(Pallas) GM(Bamberga) GM(Metis)	$\begin{array}{c} 468.430 \pm 1.18 \\ 103.843 \pm 0.98 \\ 5.087 \pm 0.19 \\ 3.637 \pm 0.40 \end{array}$	$\begin{array}{c} 467.267 \pm 1.85 \\ 102.65 \pm 1.60 \\ 4.769 \pm 0.43 \\ 4.202 \pm 0.67 \end{array}$	$\begin{array}{l} 473.485 \pm 1.33 \\ 103.374 \pm 6.92 \\ 5.422 \pm 1.00 \\ 4.524 \pm 0.67 \end{array}$

INPOP and gravity

INPOP13a improvement of the Mercury orbit

A. Fienga

INPOP and gravity

The Solar system and the tests of gravity

With such accuracy, the solar system is still the ideal lab for testing gravity

and the modified gravity comes ...!

For example,

Theories	Phenomenology	Object
Standard Model	violation of EP	Moon-LLR
MOND	$d\dotarpi_{supp},~d\dot\Omega_{supp}$	planets
Scalar field theories	Ġ/G	Moon-LLR, planets
	variation of eta , γ	planets
Dark Energy	Ġ/G	Moon-LLR, planets
AWE/chameleons	variation of eta , γ	planets
Dark Matter	linear drift of AU	planets
	a _{supp}	Moon-LLR,planets
	$d\dot{arpi}_{supp},~d\dot{\Omega}_{supp}$	planets
ISL	$d\dot{arpi}_{supp}$	planets,Moon-LLR
f(r)	a _{supp}	planets

Limits of solar system gravity tests with spacecraft tracking

- Accuracy ≈ 1 cm over 1 to 5 years
 deflection of light → γ
- navigation unknowns (AMDs, solar panel, accelerations)
- planet unkowns (potential, rotation...)
- solar plasma
- correlation with planet ephemerides ?
- .. or a dedicated mission

Figure: (Bertotti et al. 2003) $(\gamma - 1) \times 10^4 = (0.21 \pm 0.23)$

Gravity tests with the Moon

A. Fienga

Gravity tests with the Moon

- Accuracy ≈ 10 to 1 cm over 40 years
- EP, preferred-frame tests, frame dragging effects, ISL, *G*/*G*

• APOLLO \rightarrow 1 mm accuracy

(Merkowitz et al. 2009)

Science	Timescale	Current (cm)	1 mm	0.1 mm
Weak Equivalence Principle	Few years	∆a/a <1.3×10 ⁻¹³	10-14	10-15
Strong Equivalence Principle	Few years	η <4.4×10 ⁻⁴	3×10-5	3×10-6
Time variation of G	~10 years	9×10 ⁻¹³ yr ⁻¹	5×10-14	5×10-15
Inverse Square Law	~10 years	α <3×10 ⁻¹¹	10-12	10-13
PPN β	Few years	β-1 <1.1×10 ⁻⁴	10-5	10-6

Limits of gravity tests with LLR

INPOP and gravity tests

In Planetary and Lunar ephemerides (like INPOP), GR plays a role in

$$\begin{aligned} \Delta t_{SHAP} &= (1+\gamma) GM_{\odot}(t) ln \frac{l_0 + l_1 + t}{l_0 + l_1 - t} \\ \Delta \dot{\varpi}_{PLA} &= \frac{2\pi (2\gamma - \beta + 2) GM_{\odot}(t)}{a(1-e^2)c^2} + \frac{3\pi J_2 R_{\odot}^2}{a^2(1-e^2)c^2} + \Delta \dot{\varpi}_{AST} \\ \Delta \dot{\varpi}_{Moon} &= \frac{2\pi (2\gamma - \beta + 2) GM_{\odot}(t)}{a(1-e^2)c^2} + \Delta \dot{\varpi}_{GEO} + \Delta \dot{\varpi}_{SEL} + \Delta \dot{\varpi}_{S,PLA} \end{aligned}$$

INPOP and gravity tests

In Planetary and Lunar ephemerides (like INPOP), GR plays a role in

$$\begin{aligned} \Delta t_{SHAP} &= (1+\gamma) GM_{\odot}(t) ln \frac{l_0 + l_1 + t}{l_0 + l_1 - t} \\ \Delta \dot{\varpi}_{PLA} &= \frac{2\pi (2\gamma - \beta + 2) GM_{\odot}(t)}{a(1-e^2)c^2} + \frac{3\pi J_2 R_{\odot}^2}{a^2(1-e^2)c^2} + \Delta \dot{\varpi}_{AST} \\ \Delta \dot{\varpi}_{Moon} &= \frac{2\pi (2\gamma - \beta + 2) GM_{\odot}(t)}{a(1-e^2)c^2} + \Delta \dot{\varpi}_{GEO} + \Delta \dot{\varpi}_{SEL} + \Delta \dot{\varpi}_{S,PLA} \end{aligned}$$

GR tests are then limited by

- Contributions by J_2^{\odot} , Asteroids, $2\gamma \beta + 2$
- Lunar and Earth physics

INPOP and gravity tests

In Planetary and Lunar ephemerides (like INPOP), GR plays a role in

$$\begin{aligned} \Delta t_{SHAP} &= (1+\gamma) GM_{\odot}(t) ln \frac{l_0 + l_1 + t}{l_0 + l_1 - t} \\ \Delta \dot{\varpi}_{PLA} &= \frac{2\pi (2\gamma - \beta + 2) GM_{\odot}(t)}{a(1-e^2)c^2} + \frac{3\pi J_2 R_{\odot}^2}{a^2(1-e^2)c^2} + \Delta \dot{\varpi}_{AST} \\ \Delta \dot{\varpi}_{Moon} &= \frac{2\pi (2\gamma - \beta + 2) GM_{\odot}(t)}{a(1-e^2)c^2} + \Delta \dot{\varpi}_{GEO} + \Delta \dot{\varpi}_{SEL} + \Delta \dot{\varpi}_{S,PLA} \end{aligned}$$

GR tests are then limited by

- Contributions by J_2^{\odot} , Asteroids, $2\gamma \beta + 2$
- Lunar and Earth physics

BUT

- Decorrelation with all the planets
- Benefit of PE global fit versus single space mission

$$2\gamma - \beta + 2$$
 and the solar J_2

the biggest constraints are given by

- INPOP08: Mars data
- INPOP10a: Mercury flybys (2 NP in 1972-1973 + 3 NP in 2008-2009)
- INPOP13a: Mercury full tracking

	INPOP	accuracy	GR effect in	S/N	over period
Planets	angle	distance	longitude, Φ		
Mercure	0.050"	1km	0.43 "/yr	300	35 years
Venus	0.001"	4m	0.086 "/yr	172	2 years
				344	4 years
Mars	0.001"	2m	0.013 "/yr	390	30 years

$$2\gamma - \beta + 2$$
 and the solar J_2

the biggest constraints are given by

- INPOP08: Mars data
- INPOP10a: Mercury flybys (2 NP in 1972-1973 + 3 NP in 2008-2009)
- INPOP13a: Mercury full tracking

	INPOP	accuracy	GR effect in	S/N	over period
Planets	angle	distance	longitude, Φ		
Mercure	0.050"	1km	0.43 "/yr	300	35 years
	0.5 mas	10 m		860	1 yr
Venus	0.001"	4m	0.086 "/yr	172	2 years
				344	4 years
Mars	0.001"	2m	0.013 "/yr	390	30 years

INPOP and tests of GR: the method

"Real" uncertainty/LS estimations + "my theory proposes this violation of GR. Is it compatible with INPOP ?"

Grid of sensitivity for GRP determinations

(Fienga et al. 2009, 2011), (Verma et al. 2014)

- **GRP:** PPN β , γ , $\dot{\varpi}$, $\dot{\Omega}$, a_{supp} , \dot{G}/G
- Construction of different INPOP for different values of GRP
- For each value of GRP , all parameters (IC planets, GM_{Ast} , GM_{\odot}) of INPOP are fitted.
- Iteration = all correlations are taken into account
- Tests of consistency with s/c orbits (Verma 2013)
- \blacksquare Postfit residuals /INPOP \rightarrow GRP intervals with Δ residuals <5%

What values of GRP are acceptable at the level of data accuracy ?

INPOP13a and tests of GR: PPN β and γ

Decorrelation + improvement of a factor 10

A. Fienga

PPN β and γ detectable intervals for ${\rm J_2^{\odot}}=2.40\pm0.20$

	$(\beta-1) imes (\gamma-1)$	Limit [%]	$(\beta-1) imes (\gamma-1)$
	$\times 10^{5}$		$\times 10^{5}$
INPOP10a	$egin{aligned} (eta{-1}) &= (-6.2 \pm 8.1) \ (\gamma{-1}) &= (4.5 \pm 7.5) \end{aligned}$		
K11	$egin{array}{l} (eta{-}1) = (4 \pm 24) \ (\gamma{-}1) = (18 \pm 26) \end{array}$	25*	$egin{array}{l} (eta{-}1) = (0.2 \pm 2.5) \ (\gamma{-}1) = (-0.3 \pm 2.5) \end{array}$
M08-LLR-SEP W09-LLR-SEP	$egin{array}{lll} (eta{-1}) = (15 \pm 18) \ (eta{-1}) = (12 \pm 11) \end{array}$	10	$egin{aligned} (eta{-1}) &= (-0.15 \pm 0.70) \ (\gamma{-1}) &= (0.0 \pm 1.1) \end{aligned}$
B03-CASS	$(\gamma$ -1) = (2.1 ± 2.3)	5	$(\beta-1) = (0.02 \pm 0.12)$ $(\gamma-1) = (0.0 \pm 0.18)$
L11-VLB	(γ -1) = (-8 \pm 12)		
P13	$egin{array}{lll} (eta{-1}) = (-2\pm \ 3) \ (\gamma{-1}) = (4\pm \ 6) \end{array}$	Least squares $3-\sigma$	$egin{array}{l} (eta{-1}) = (1.34 \pm 0.13) \ (\gamma{-1}) = (4.53 \pm 1.62) \end{array}$

(Verma et al. 2014)

A. Fienga

$$\dot{\mu}/\mu$$
 with μ = GM $_{\odot}$

Method

• Implementation with
$$\frac{\dot{\mu}}{\mu} = \frac{\dot{G}}{G} + \frac{\dot{M_{\odot}}}{M_{\odot}}$$
 and

$$egin{array}{rcl} M_{\odot}(\mathrm{t})&=&M_{\odot}(t_0)+(t-t_0) imes\dot{M}_{\odot}\ \mathrm{G}(\mathrm{t})&=&G(t_0)+(t-t_0) imes\dot{G}\ \mu(t)&=&G(t) imes M_{\odot}(t) \end{array}$$

• by fixing
$$\dot{M_{\odot}}$$
 or $\dot{G} \rightarrow \frac{\dot{\mu}}{\mu}$

- At each step, t_i, of the numerical integration of the Eq.of motions of planets, asteroids → M_☉(t_i) and G(t_i) are injected.
- Same method as PPN $\beta, \gamma \rightarrow \text{grid of } \frac{\mu}{\mu} + \text{construction of full PE}$
- What values of $\frac{\mu}{\mu}$ are acceptable / data accuracy ?

 $\dot{\mu}/\mu$ with $\mu={\it GM}_{\odot}$

with PPN $\beta, \gamma = 1$,
$l_2^{\odot} = 2.40 \pm 0.20$	
Method	Ġ/G
	$\times 10^{13} \text{ yr}^{-1}$
LLR-M05	(6 ± 8)
Binary pulsar	(40 ± 50)
Helioseismology	(0 ± 16)
Big Bang nucleo.	(0 ± 4)
Planck +WP+BAO	(-1.42± 2.48)
EMP (P12)	$(0.166 \pm 0.724)^*$
DE (K11)	$(1.0 \pm 1.6)^{**}$
5%	$(0.62 \pm 0.86)^*$
	$(0.85 \pm 0.55)^{**}$
100/	
10%	$(0.595 \pm 1.035)^{\circ}$
	$(0.825 \pm 0.725)^{-1}$
25 %	$(0.72 \pm 1.71)^*$
23 /0	$(0.95 \pm 1.40)^{**}$
* 11 /11 (0.67)	0.21)
$M_{\odot}/M_{\odot} = (-0.073)$	$= 0.31) \times 10^{-1}$ yr
$M_{\odot}/M_{\odot} = -0.9 \times$	10 ¹³ yr ⁻¹
DE (K11) with J_2^{\odot} fixed	
EMP (P12) with $I^{\odot}_{-} \beta$	and γ fixed
2 (. 12) with 5 ₂ , p	and / med

A. Fienga

Preliminary results about $\dot{\mu}/\mu$ with $\mu = GM_{\odot}$

INPOP variations of postfit residuals

with PPN $\beta, \gamma \neq 1$

Shift of the minimum of residual variation with $\dot{\mu}/\mu \text{ AND } \beta,\gamma$

INPOP and gravity

Preliminary results about $\dot{\mu}/\mu$ with $\mu = GM_{\odot}$

INPOP variations of postfit residuals

A. Fienga

Direct Monte Carlo of $\dot{\mu}/\mu$, J $_2^{\odot}$, β , γ

- 4000 INPOP runs with random selection of (µ/µ, J[☉]₂, β, γ)
- 1 run = 4 iterations (1hr/iteration
 0 16 itanium processors)
- Selection of INPOP(µ/µ, J₂[☉], β, γ) inducing differences to INPOP13a residuals < 50 %</p>

Direct Monte Carlo of $\dot{\mu}/\mu$, J^o₂, β , γ

- Only 15 % INPOP($\dot{\mu}/\mu$, $J_2^{\odot}, \beta, \gamma$ < 50 %
- 1.4% for INPOP() < 25 %
- No clear gaussian distribution especially for β and γ

 \rightarrow Optimisation of the MC by a genetic algorithm

$< J_2^{\odot} >$	$(2.21 \pm 0.29) \times 10^{-7}$ W-test = 0.984
<eta-1></eta-1>	$(-0.8 \pm 8.2) \times 10^{-5}$? 0.969
$<\gamma-1>$	$(0.2 \pm 8.2) \times 10^{-5}$? 0.968
$<\dot{G}/G>$ \times 10 ¹³ yr ⁻¹	$(0.04 \pm 2.46)^*$ $(0.27 \pm 1.66)^{**}$ 0.987

INPOP and gravity

Simple Genetic Algorithm with mutation (SGAM)

- 1 individual = INPOP ($\dot{\mu}/\mu$, J^O₂, β , γ)
- 1 chromosome = a set of $(\dot{\mu}/\mu, \ \mathsf{J}^{\odot}_2, \ \beta, \ \gamma)$
- \blacksquare fitness of each individual = differences to INPOP13a residuals < 50 % or 25 %
- 2 crossovers + 1/10 mutation (= new random value each over 10)

set i
set j
$$\begin{bmatrix} (\dot{\mu}/\mu)_i, (J_2^{\odot})_i, \beta_i, \gamma_i \end{bmatrix} \\ \begin{bmatrix} (\dot{\mu}/\mu)_j, (J_2^{\odot})_j, \beta_j, \gamma_j \end{bmatrix} \\ 1 \text{ crossover} \qquad \begin{bmatrix} (\dot{\mu}/\mu)_i, (J_2^{\odot})_i, \beta_j, \gamma_j \end{bmatrix} \\ \begin{bmatrix} (\dot{\mu}/\mu)_j, (J_2^{\odot})_j, \beta_i, \gamma_i \end{bmatrix} \\ 2 \text{ crossovers} \qquad \begin{bmatrix} (\dot{\mu}/\mu)_i, (J_2^{\odot})_j, \beta_i, \gamma_j \end{bmatrix} \\ \begin{bmatrix} (\dot{\mu}/\mu)_j, (J_2^{\odot})_j, \beta_i, \gamma_j \end{bmatrix}$$

26 200 runs with SGAM

- @ PSL mesocentre : NEC 1472 kernels on 92 nodes
- 2 nodes allocated for INPOP
- 12 runs (= 12 × 4 iterations) @ 1hr / node
- 4000 MC simulation = population 0 @ SGAM

After 26 200 runs, 45% runs with INPOP < 50% and 11% INPOP < 25 %

Improvement in gaussianity after 26 200 runs:

 \rightarrow Proper definition of mean and 3-sigma

A. Fienga

INPOP and gravity

Reduction of the 3-sigma intervals for $\dot{\mu}/\mu$, J_2^{\odot} , β , γ with the increase of <50% or <25% populations

PPN β , γ , $\dot{\mu}/\mu$, J_2^{\odot}

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Method	PPN $\beta - 1$	PPN $\gamma - 1$	Ġ/G	J ₀
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$ imes$ 10 $^{-5}$	imes 10 ⁻⁵	$ imes$ $10^{13}~{ m yr}^{-1}$	$ imes$ 10^7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2-D Grid	0.2 ± 2.5	-0.3 ± 2.5	0.0	2.4 ± 0.20
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	MC	$\textbf{-0.8}\pm\textbf{8.2}$	0.2 ± 8.2	0.04 ± 2.46	2.21 ± 0.29
B03-Cass 0.0 2.1 ± 2.3 0.0 L11-VLB 0.0 -8 ± 12 0.0 W09-LLR 12 ± 11 fixed 0.1 M05-LLR 15 ± 18 fixed 6 ± 8 K11-DE 4 ± 24 18 ± 26 1.0 ± 1.6 F13-DE 0.0 0.0 0.0 P13-EMP -2 ± 3 4 ± 6 0.166 ± 0.72	MC + SGAM	$\textbf{-0.9} \pm \textbf{4.8}$	-0.6 ± 3.6	0.19 ± 1.38	2.28 ± 0.09
L11-VLB 0.0 -8 ± 12 0.0 W09-LLR 12 ± 11 fixed 0.0 M05-LLR 15 ± 18 fixed 6 ± 8 K11-DE 4 ± 24 18 ± 26 1.0 ± 1.6 F13-DE 0.0 0.0 0.0 Planck $WP + PAQ$ 0.0 0.0 L11-DE 4 ± 24 18 ± 26 1.0 ± 1.6 F13-DE 0.0 0.0 0.0 Planck $WP + PAQ$ 0.0 0.0	B03-Cass	0.0	2.1 ± 2.3	0.0	NC
W09-LLR 12 ± 11 fixed 0.0 M05-LLR 15 ± 18 fixed 6 ± 8 K11-DE 4 ± 24 18 ± 26 1.0 ± 1.6 F13-DE 0.0 0.0 0.0 P13-EMP -2 ± 3 4 ± 6 0.166 ± 0.72 Rback WP + RAO 0.0 0.0 1.42 ± 2.48	L11-VLB	0.0	-8 ± 12	0.0	fixed
M05-LLR 15 \pm 18 fixed 6 \pm 8 K11-DE 4 \pm 24 18 \pm 26 1.0 \pm 1.6 F13-DE 0.0 0.0 0.0 P13-EMP -2 \pm 3 4 \pm 6 0.166 \pm 0.72 Planck WP + PAQ 0.0 0.0 1.42 \pm 2.48	W09-LLR	12 ± 11	fixed	0.0	fixed
K11-DE 4 ± 24 18 ± 26 1.0 ± 1.6 F13-DE 0.0 0.0 0.0 P13-EMP -2 ± 3 4 ± 6 0.166 ± 0.72 Planck VVP + PAQ 0.0 0.0 1.42 ± 2.48	M05-LLR	15 ± 18	fixed	6 ± 8	fixed
F13-DE 0.0 0.0 0.0 P13-EMP -2 ± 3 4 ± 6 0.166 ± 0.72 Planck UVP PAO 0.0 1.42 \pm 2.48	K11-DE	4 ± 24	18 ± 26	1.0 ± 1.6	fixed to 1.8
P13-EMP -2 ± 3 4 ± 6 0.166 ± 0.72 Planck $\downarrow WP \downarrow PAQ$ 0.0 1.42 ± 2.48	F13-DE	0.0	0.0	0.0	2.1 ± 0.70
0.166 ± 0.72	P13-EMP	-2 ± 3	4 ± 6		2.0 ± 0.2
$Planck + M/P + PAO = 0.0 = 0.0 = 1.42 \pm 2.48$				0.166 ± 0.724	
FIGURE $\pm WF \pm BAO = 0.0 = 0.0 = -1.42 \pm 2.40$	Planck + WP + BAO	0.0	0.0	$-1.42\pm$ 2.48	

 $\dot{G}/G pprox 10^{-13} ext{ yr}^{-1}$ $eta - 1 pprox 5 imes 10^{-5}$ $\gamma - 1 pprox 4 imes 10^{-5}$ EP $\eta = 2 imes 10^{-4}$

Context

- unexplained acceleration of about 8 $\times 10^{-10}$ m.s⁻²
- detected on Pioneer 10 and 11 after the Saturn (?), Uranus orbits
- First detected in 1988 and investigated since 2004

Investigations

- Thermal models
- Alternative physics on s/c dynamics
- Alternative physics on planet dynamics ?

Context

- unexplained acceleration of about 8 $\times 10^{-10}$ m.s⁻²
- detected on Pioneer 10 and 11 after the Saturn (?), Uranus orbits
- First detected in 1988 and investigated since 2004

Investigations

- Thermal models
- Alternative physics on s/c dynamics
- Alternative physics on planet dynamics ? No

Test of a constant sun-oriented acceleration of about 8 $\times 10^{-10}$ m.s⁻² on EIH equations with Cassini range tracking but also Neptune and Uranus optical observations

A. Fienga

INPOP and gravity

Test of a constant sun-oriented acceleration of about 8 $\times 10^{-10}$ m.s⁻² on EIH equations with Cassini range tracking but also Neptune and Uranus optical observations

A. Fienga

INPOP and gravity

Other tests: Anomalous precession in nodes and perihelia?

Same procedure as for PPN β and γ

- For each value of $\dot{\varpi}_k$, $\dot{\Omega}_k$, all parameters (IC planets, GM_{Ast} , GM_{\odot} of INPOP are fitted.
- postfit residuals /INPOP $\rightarrow \dot{\varpi}_k$ or $\dot{\Omega}_k$ intervals with Δ residuals < 5%
- INPOP08: Only planet IC refitted
- INPOP10a: ALL the parameters are refitted: IC, GM_{\odot} , GM_{ast}
- New Observations in INPOP10a: Cassini VLB, Jupiter flybys, Mercury flybys

A. Fienga

Anomalous precession in perihelia ?

$\dot{\varpi}_{ m sup}$	INPOP08	INPOP10a	P09	P10
$mas.cy^{-1}$				
Mercury	$\textbf{-10}\pm\textbf{30}$	1.2 ± 1.6	-3.6 ± 5	$-4~\pm~5$
Venus	-4 ± 6	0.2 ± 1.5	$\textbf{-0.4}\pm0.5$	
EMB	0.0 ± 0.2	$\textbf{-0.2}\pm0.9$	$\textbf{-0.2}\pm0.4$	
Mars	0.4 ± 0.6	-0.04 \pm 0.15	0.1 ± 0.5	
Jupiter	142 ± 156	-41 ± 42		
Saturn	-10 \pm 8	$0.15{\pm}~0.65$	-6 ± 2	$\textbf{-10} \pm \textbf{15}$

Anomalous precession in nodes ?

$\dot{\Omega}_{ m sup}$	INPOP08	INPOP10a	
$mas.cy^{-1}$			Improvements
Mercury		1.4 ± 1.8	INPOP10a / INPOP08
Venus	200 ± 100	0.2 ± 1.5	due to:
EMB	0.0 ± 10.0	0.0 ± 0.9	new observations
Mars	0.0 ± 2	-0.05 \pm 0.13	
Jupiter	-200 ± 100	-40 ± 42	Fit
Saturn	-200 ± 100	$\textbf{-0.1}\pm0.4$	

No supplementary advances in perihelia and nodes

Constraints on MOND (Blanchet et Novak 2011)

Discussions

Tests		Accuracy	
EP η	LLR	$4 imes 10^{-4}$	
	planet	$2 imes10^{-4}$	Metric theories
PPN γ	Spacecraft	$2 imes 10^{-5}$	
	planet	$4 imes 10^{-5}$	
	LLR	10^{-3}	Metric theories
PPN β	LLR	10^{-4}	Metric theories
	planet	$5 imes 10^{-5}$	
\dot{G}/G [yr ⁻¹]	planet	10^{-13}	
$\dot{arpi}_{ m sup}, \dot{\Omega}_{ m sup}$	LLR	10	
[mas.cy ⁻¹]	planet	$40 \rightarrow 0.1$	MOND
a _{supp}	LLR	10^{-16}	Dark Matter density
	planet	10^{-14}	Pioneer anomaly

Tests	
EP η	LLR
PPN γ	Spacecraft
	planet
	LLR
PPN β	LLR
	planet
$\dot{arpi}_{ m sup}, \dot{\Omega}_{ m sup}$	LLR
${\sf mas.cy}^{-1}$	planet 4

LLR

- 1 cm limitation in the dynamics
- 1 mm accuracy for observations
- Efforts to compare and improve the Moon dynamics

Discussions

LLR

- 1 cm limitation in the dynamics
- 1 mm accuracy for observations
- Efforts to compare and improve the Moon dynamics

Planetary Ephemerides

- Jupiter to be improved
- Equivalence Principal for all the planets and the Moon
- MC + SGAM for EP
- β , γ decorrelation linked to spacecraft orbits
- Efforts to estimate/limit correlations with spacecraft orbits
- New tests to implement

The end