Monodromy transform approach to solution of integrable reductions of Einstein's's field equations in General Relativity and String gravity
G. Alekseev

Steklov Mathematical Institute RAS, Moscow


Institut des Hautes Etudes Scientifiques, September 2010

## Plan of the talk:

$\star \quad$ Integrability of Eistein's field equations (the hystory)
\& Dynamical equations and equivalent spectral problems
$\star$ Monodromy transform approach
$\& \quad$ Other methods in the context of the monodromy transform
$\star$ Some applications

## Integrability of Einstein's field equations

| Vacuum: | $R_{i k}=0$ |
| :--- | :--- |
| Symmetries: | $g_{i k} \\| x^{1}, x^{2}$ |

Integrabilility/begam to workc:

## First integrability conjectures:

-- R.Geroch -conjecture of integrability (1972)
-- W.Kinnersley\&D.Citre - infinitesimal symmetries (1977...)
-- D.Maison - Lax pair +conjecture (1978)

## V.Belinski and V.Zakharov (1978)

-- Inverse Scattering Method
-- Soliton solutions on arbitrary backgrounds
-- Riemann - Hilbert problem
-- linear singular integral equations

## Many "languages"' of integnabilitity:

-- Backlund and symm. transformations(K.Harrison 1978, G.Neugebauer 1979, HKX 1979)
-- Homogeneous Hilbert problem (I.Hauser \& F.J.Ernst, 1979 + N.Sibgatullin 1984)
-- Monodromy transform + linear singular integral equations (GA 1985)
-- Finite-gap solutions (D.Korotkin\&V.Matveev 1987, G.Neugebauer\&R.Meinel 1993)
-- Boundary value problem for stationary fields (G.Neugebauer \&R.Meinel 1996)
-- Charateristic init. value probl.(I.Hauser \&F.J.Ernst 1988; GA 2001; GA\&J.Griffiths 2001)

## Electrovacuum Einsteim - Maxwell fields

-- Infinite-dimensional algebra of symmetries (W.Kinnersley \& D.Chitre 1977, ...)
-- Homogeneous Hilbert problem and singular integral equations for axisymmetric stationary fields with regular axis (I.Hauser \& F.J.Ernst 1979 + N.Sibgatullin 1984)
-- Inverse scattering method and Einstein - Maxwell solitons (GA 1980)
-- Backlund transformations (K.Harrison 1983)
-- Monodromy Transform and linear singular integral equations (GA 1985)
-- Charateristic initial value problem (GA 2001; GA \& J.Griffiths 2001, 2003)

## Einsteim - Maxwell| + Weyll neutrino fields:

-- Inverse scattering method (GA 1983)
-- Generalization of the Hauser-Ernst approach (N.Sibgatullin 1984)
-- Monodromy transform approach and linear singular integral equations (GA 1985)

Gravity + stifff matter fluid
-- Inverse scattering method (V.Belinski 1979)
Gravity im higher dimensions, stringy gravity andl supergravity models
-- Vacuum equations in higher dimensions (V.Belinski \& R.Ruffini 1980, A.Pomeranski 2006)
-- $D=4$ gravity with axion and dilaton (Bakas 1996); D=4 EMDA (D.Gal'tsov, P.Letelier 1996)
-- Bosonic dynamics of heterotic string effective action in D dimensions (GA 2009)
-- D=5 minimal supergravity (Figueras, Jumsin, Rocha, Virmani 2010)

## Some applications

Solitons on arbitrary background:


```
    -- Colliding plane waves (Khan&Penrose 1972, Y.Nutku&Khalil)
    -- Inhomogeneous cosmologies (V.Belinski 1979)
    D=4
    -- Interacting black holes: 2 x Kerr (D.Kramer&G.Neugebauer 1980),
        2 x Kerr-Newman (GA 1986) 2 x Reisner-Nordstrom (GA&V.Belinski 2007)
    -- Black holes in external fields: in Melvin universe (F.Ernst 1975),
        in Bertotti-Robinson space-time (GA&A.Garcia 1996)
    -- ... ... ...?
    -- black holes with non-simple rotation (A.Pomeransky 2006)
    D=5
    -- black rings (R.Emparan & H.S.Reall, A.Pomeransky & R.Sen'kov)
    -- black Saturn (H. Elvang & P. Figueras 2007)
    -- ... ... ...?
Algebro-geometricall methods( }\textrm{D}=4)\mathrm{ ):
-- Finite-gap solutions for hyperelliptic curves (D.Korotkin \& V.Matveev 1987)
-- Solution for rigidly rotating thin disk of dust (G.Neugebauer \& R.Meinel)
Integrall equation methods, boundary and initiall value problems \((\mathrm{D}=4)\) :
```

-- Solutions with rational monodromy (GA 1988,1992; N.Sibgatullin 1993;GA \& J.Griffiths 2000)
-- Boundary value problems for stationary axisymm. fields (G.Neugebauer\&R.Meinel 1996)
-- Characteristic initial value problems (I.Hauser\&F.Ernst 1987; GA \& J.Griffiths 2001)

## Dynamical equations and equivallent spectral problems

## Dynamical equations and equivalent spectral problems

$$
\begin{aligned}
& \mathcal{S}_{E}=-\frac{1}{16 \pi} \int R \sqrt{-G} d^{4} x \\
& \mathcal{S}_{E M}=-\frac{1}{16 \pi} \int\left(R+F_{i k} F^{i k}\right) \sqrt{-g} d^{4} x \\
& \mathcal{S}_{E M W}=-\frac{1}{16 \pi} \int\left(R+F_{i k} F^{i k}+\Lambda\left(\psi_{A}\right)\right) \sqrt{-g} d^{4} x
\end{aligned}
$$

--- vacuum
--- Einstein - Maxwell fields
--- Einstein - Maxwell --- Weyl fields

Einstein - Maxwell + axion + dilaton fields:

$$
\mathcal{S}_{E M+a+d}=-\frac{1}{16 \pi} \int\left(R-2(\nabla \phi)^{2}-\frac{1}{2} e^{4 \phi}(\nabla a)^{2}+e^{-2 \phi} F_{i k} F^{i k}+a F_{i k} \stackrel{*}{F}^{i k}\right) \sqrt{-g} d^{4} x
$$

## Bosonic sector of heterotic string effective action:

$$
\begin{gathered}
\mathcal{S}_{\text {HString }}=c \int e^{-\widehat{\Phi}}\left\{\widehat{R}^{(D)}+\nabla_{M} \widehat{\Phi} \nabla^{M} \widehat{\Phi}-\frac{1}{12} H_{M N P} H^{M N P}-\frac{1}{2} \sum_{\mathfrak{p}=1}^{n} F_{M N}^{(\mathfrak{p})} F^{M N(\mathfrak{p})}\right\} \sqrt{-\widehat{G}} d^{D} x \\
H_{M N P}=3\left(\partial_{[M} B_{N P]}-\sum_{\mathfrak{p}=1}^{n} A_{[M}^{(\mathfrak{p})} F_{N P]}{ }^{(\mathfrak{p})}\right), \\
M, N, \ldots=1,2, \ldots, D, \\
F_{M N}{ }^{(\mathfrak{p})}=2 \partial_{[M} A_{N]}(\mathfrak{p}), \quad B_{M N}=-B_{N M} .
\end{gathered}
$$

Dymamicad degnees off feectomit $\quad G_{a b}, \mathcal{B}_{a b}, \mathcal{A}_{b}{ }^{(\mathfrak{p})}, \Phi \| x^{1}, x^{2}$

$$
\begin{aligned}
& G_{M N}=\left(\begin{array}{cc}
g_{\mu \nu} & 0 \\
0 & G_{a b}
\end{array}\right) \\
& B_{M N}=\left(\begin{array}{cc}
0 & 0 \\
0 & \mathcal{B}_{a b}
\end{array}\right) \\
& A_{M}^{(I)}=\binom{0}{\mathcal{A}_{a}^{(\mathfrak{p})}}
\end{aligned}
$$



$$
\mu, \nu, \ldots=1,2 ; \quad a, b, \ldots=3,4, \ldots D
$$

Conformal factor:

$$
g_{\mu \nu}=f \eta_{\mu \nu}
$$

$$
\begin{aligned}
\eta_{\mu \nu} & =\left(\begin{array}{cc}
\epsilon_{1} & 0 \\
0 & \epsilon_{2}
\end{array}\right) \\
\varepsilon^{\mu \nu} & =\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
\end{aligned}
$$

Geometnicallyy defined coordimates $(\alpha, \beta)$ amd $(\xi, \eta):$

$$
\begin{array}{cc|c|l}
\alpha: & \operatorname{det}\left\|G_{a b}\right\|=\epsilon \alpha^{2} & \beta: & \partial_{\mu} \beta=\epsilon \varepsilon_{\mu}{ }^{\nu} \partial_{\nu} \alpha \\
& \eta^{\mu \nu} \partial_{\mu} \partial_{\nu} \alpha=0 & & \epsilon_{\mu}= \pm 1 \\
\epsilon_{2}=\eta_{\mu \gamma} \varepsilon^{\gamma \nu} & \epsilon=-1 \\
\epsilon=-\epsilon_{1} \epsilon_{2}
\end{array}
$$

$$
\left\{\begin{array}{ll}
\xi=\beta+j \alpha, \\
\eta=\beta-j \alpha,
\end{array} \quad j=\left\{\begin{array}{ll}
1, & \epsilon=1
\end{array} \quad--\right. \text { hyperbolic case }\right.
$$

$$
\left\{\begin{array} { l } 
{ \xi = - x + t } \\
{ \eta = - x - t }
\end{array} \quad \left\{\begin{array}{l}
\xi=z+i \rho \\
\eta=z-i \rho
\end{array}\right.\right.
$$

## Ermst equatiom for vacuum

$$
\left\{\begin{array}{l}
(R e \mathcal{E}) \eta^{\mu \nu}\left(\partial_{\mu}+\frac{\alpha_{\mu}}{\alpha}\right) \partial_{\nu} \mathcal{E}-\eta^{\mu \nu} \partial_{\mu} \mathcal{E} \partial_{\nu} \mathcal{E}=0 \\
\eta^{\mu \nu} \partial_{\mu} \partial_{\nu} \alpha=0
\end{array} \quad \eta_{\mu \nu}=\left(\begin{array}{ll}
\epsilon_{1} & 0 \\
0 & \epsilon_{2}
\end{array}\right)\right.
$$

## Ennstt equations for electrovacuumm

$$
\left\{\begin{array}{l}
(R e \mathcal{E}+\Phi \bar{\Phi}) \eta^{\mu \nu}\left(\partial_{\mu}+\frac{\alpha_{\mu}}{\alpha}\right) \partial_{\nu} \mathcal{E}-\eta^{\mu \nu}\left(\partial_{\mu} \mathcal{E}+2 \bar{\Phi} \partial_{\mu} \Phi\right) \partial_{\nu} \mathcal{E}=0 \\
(R e \mathcal{E}+\Phi \bar{\Phi}) \eta^{\mu \nu}\left(\partial_{\mu}+\frac{\alpha_{\mu}}{\alpha}\right) \partial_{\nu} \Phi-\eta^{\mu \nu}\left(\partial_{\mu} \mathcal{E}+2 \bar{\Phi} \partial_{\mu} \Phi\right) \partial_{\nu} \Phi=0 \\
\eta^{\mu \nu} \partial_{\mu} \partial_{\nu} \alpha=0
\end{array}\right.
$$

## Ennst equations for Einsteim- Maxnuell - VVVeyll fieldids

$$
\left\{\begin{array}{l}
(R e \mathcal{E}+\Phi \bar{\Phi}) \eta^{\mu \nu}\left(\partial_{\mu}+\frac{\partial_{\mu}(\alpha+i \delta)}{\alpha}\right) \partial_{\nu} \mathcal{E}-\eta^{\mu \nu}\left(\partial_{\mu} \mathcal{E}+2 \bar{\Phi} \partial_{\mu} \Phi\right) \partial_{\nu} \mathcal{E}=0 \\
(R e \mathcal{E}+\Phi \bar{\Phi}) \eta^{\mu \nu}\left(\partial_{\mu}+\frac{\partial_{\mu}(\alpha+i \delta)}{\alpha}\right) \partial_{\nu} \Phi-\eta^{\mu \nu}\left(\partial_{\mu} \mathcal{E}+2 \bar{\Phi} \partial_{\mu} \Phi\right) \partial_{\nu} \Phi=0 \\
\eta^{\mu \nu} \partial_{\mu} \partial_{\nu} \alpha=0, \quad \eta^{\mu \nu} \partial_{\mu} \partial_{\nu} \delta=0
\end{array}\right.
$$

Bosonic sector of the heterotic string effective action
Matrix Enmst-like dyymamicall vaniables:

$$
\left\{\begin{array}{l}
\mathcal{E}=\|\mathcal{E}\|_{d \times d} \\
\mathcal{A}=\|\mathcal{A}\|_{d \times n} \\
\alpha
\end{array}\right.
$$

$$
\begin{aligned}
& \mathcal{E}=\mathcal{G}+\mathcal{B}+\mathcal{A} \mathcal{A}^{T} \\
& \mathcal{G}_{a b}=e^{2 \Phi} G_{a b} \\
& \operatorname{det} G=\epsilon \alpha^{2}
\end{aligned}
$$

Matrix Ernst-like form of the dynamicall equations $\quad / \mathcal{G}=\frac{1}{2}\left(\mathcal{E}+\mathcal{E}^{T}\right)-\mathcal{A} \mathcal{A}^{T} /$
$\left\{\begin{array}{l}\eta^{\mu \nu} \partial_{\mu}\left(\alpha \partial_{\nu} \mathcal{E}\right)-\alpha \eta^{\mu \nu}\left(\partial_{\mu} \mathcal{E}-2 \partial_{\mu} \mathcal{A} \mathcal{A}^{T}\right) \mathcal{G}^{-1} \partial_{\nu} \mathcal{E}=0 \\ \eta^{\mu \nu} \partial_{\mu}\left(\alpha \partial_{\nu} \mathcal{A}\right)-\alpha \eta^{\mu \nu}\left(\partial_{\mu} \mathcal{E}-2 \partial_{\mu} \mathcal{A} \mathcal{A}^{T}\right) \mathcal{G}^{-1} \partial_{\nu} \mathcal{A}=0\end{array}\right.$
$\eta^{\mu \nu} \partial_{\mu} \partial_{\nu} \alpha=0$

$$
\eta_{\mu \nu}=\left(\begin{array}{cc}
\epsilon_{1} & 0 \\
0 & \epsilon_{2}
\end{array}\right)
$$

Examples for the choice off $\alpha\left(x^{1}, x^{2}\right), \beta\left(x^{1}, x^{2}\right)$

$$
\begin{array}{ll}
\alpha=\rho, \beta=z & \text {-- stationary axisymmetric fields } \\
\alpha=f(u)+g(v), \beta=-f(u)+g(v) & \text {-- colliding plane waves } \\
\alpha=t, \beta=x & \text {-- cosmological solutions }
\end{array}
$$

## Self-dual form of dynamical equations

## Vacuum

$$
h=g_{33}, \quad \Omega=\frac{g_{34}}{g_{33}}
$$

$$
\left\{\begin{array}{l|ll}
\partial_{\eta} \mathbf{U}+\partial_{\xi} \mathbf{V}+\frac{[\mathbf{U}, \mathbf{V}]}{i(\xi-\eta)}=0 \\
\partial_{\eta} \mathbf{U}-\partial_{\xi} \mathbf{V}=0 & \mathbf{U} \cdot \mathbf{U}=i \mathbf{U}, & \operatorname{tr} \mathbf{U}=i \\
\mathbf{V} \cdot \mathbf{V}=i \mathbf{V}, & \operatorname{tr} \mathbf{V}=i
\end{array}\right.
$$

$$
\begin{aligned}
& \mathbf{U}=\left(\begin{array}{cc}
1 & 0 \\
B_{+} & 1
\end{array}\right)\left(\begin{array}{cc}
i & -\mathcal{E}_{\xi} \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
-B_{+} & 1
\end{array}\right) \\
& B_{+}=\Omega-\frac{i j \alpha}{h} \\
& B_{-}=\Omega+\frac{i j \alpha}{h} \\
& \mathbf{V}=\left(\begin{array}{cc}
1 & 0 \\
B_{-} & 1
\end{array}\right)\left(\begin{array}{cc}
i & -\mathcal{E}_{\eta} \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
-B_{-} & 1
\end{array}\right) \\
& R e \mathcal{E}=h \\
& d(\operatorname{ImE})=-\alpha^{-1} h^{2 \star} d \Omega
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{U}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
B_{+} & 1 & 0 \\
C_{+} & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
i & -\mathcal{E}_{\xi} & \Phi_{\xi} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
-B_{+} & 1 & 0 \\
-C_{+} & 0 & 1
\end{array}\right) \quad \begin{array}{l}
h=g_{33}, \Omega=\frac{g_{34}}{g_{33}} \\
B_{+}=\Omega-\frac{i j \alpha}{h} \\
B_{-}=\Omega+\frac{i j \alpha}{h}
\end{array} \\
& \mathbf{V}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
B_{-} & 1 & 0 \\
C_{-} & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
i & -\mathcal{E}_{\eta} & \Phi_{\eta} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
-B_{-} & 1 & 0 \\
-C_{-} & 0 & 1
\end{array}\right) \\
& C_{+}=2\left(\bar{\Phi}-\bar{\Phi} B_{+}\right) \\
& C_{-}=2\left(\bar{\Phi}-\bar{\Phi} B_{-}\right) \\
& \begin{array}{lll}
R e \Phi=A_{3} & d(\operatorname{Im} \Phi)=-\alpha^{-1} h\left({ }^{\star} d A_{4}-\Omega^{\star} d A_{3}\right) & \partial_{\xi} \Phi=B_{+} \partial_{\xi} \Phi \\
R e \mathcal{E}=h-\Phi \bar{\Phi} & d(\operatorname{ImE})=-\alpha^{-1} h^{2 \star} d \Omega+i(\bar{\Phi} d \Phi-\Phi d \bar{\Phi}) & \partial_{\eta} \widetilde{\Phi}=B_{-} \partial_{\eta} \Phi
\end{array} \\
& \left\{\begin{array}{l|ll}
\partial_{\eta} \mathbf{U}+\partial_{\xi} \mathbf{V}+\frac{[\mathbf{U}, \mathbf{V}]}{i(\xi-\eta)}=0 \\
\partial_{\eta} \mathbf{U}-\partial_{\xi} \mathbf{V}=0 & \mathbf{U} \cdot \mathbf{U}=i \mathbf{U}, & \operatorname{tr} \mathbf{U}=i \\
\mathbf{V} \cdot \mathbf{V}=i \mathbf{V}, & \operatorname{tr} \mathbf{V}=i
\end{array}\right.
\end{aligned}
$$

## Dymamics off the bosonic sectorr off string effective actiom --- $(2 d+n) \times(2 d+n)$-matrices

$$
\begin{aligned}
& \left(\begin{array}{lll}
I_{d} & 0 & 0
\end{array}\right)\left(\begin{array}{llll}
I_{d} & -\mathcal{E}_{\xi} & -2 \mathcal{A}_{\xi}
\end{array}\right)\left(\begin{array}{lll}
I_{d} & 0 & 0
\end{array}\right) \quad \mathcal{E}=\mathcal{G}+\mathcal{B}+\mathcal{A} \mathcal{A}^{T} \\
& \mathrm{U}=\left(\begin{array}{ccc}
I_{d} & 0 & 0 \\
B_{+} & I_{d} & 0 \\
C_{+} & 0 & I_{n}
\end{array}\right)\left(\begin{array}{ccc}
I_{d} & -\mathcal{E}_{\xi} & -2 \mathcal{A}_{\xi} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
I_{d} & 0 & 0 \\
-B_{+} & I_{d} & 0 \\
-C_{+} & 0 & I_{n}
\end{array}\right) \\
& \alpha=(\xi-\eta) / 2 j \\
& B_{+}=\widetilde{B}-j \alpha \mathcal{G}^{-1} \\
& \mathrm{~V}=\left(\begin{array}{ccc}
I_{d} & 0 & 0 \\
B_{-} & I_{d} & 0 \\
C_{-} & 0 & I_{n}
\end{array}\right)\left(\begin{array}{ccc}
I_{d} & -\mathcal{E}_{\eta} & -2 \mathcal{A}_{\eta} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
I_{d} & 0 & 0 \\
-B_{-} & I_{d} & 0 \\
-C_{-} & 0 & I_{n}
\end{array}\right) \\
& B_{-}=\widetilde{B}+j \alpha \mathcal{G}^{-1} \\
& C_{+}=-2\left(\widetilde{\mathcal{A}}^{T}+\mathcal{A}^{T} B_{+}\right) \\
& C_{-}=-2\left(\widetilde{\mathcal{A}}^{T}+\mathcal{A}^{T} B_{-}\right) \\
& \partial_{\xi} \widetilde{\mathcal{B}}=-j \alpha \mathcal{G}^{-1}\left(\partial_{\xi} \mathcal{B}-2 \partial_{\xi} \mathcal{A} \mathcal{A}^{T}+2 \mathcal{A} \partial_{\xi} \mathcal{A}^{T}\right) \mathcal{G}^{-1}, \\
& \partial_{\xi} \widetilde{\mathcal{A}}=B_{+} \partial_{\xi} \mathcal{A} \\
& \partial_{\eta} \widetilde{\mathcal{B}}=j \alpha \mathcal{G}^{-1}\left(\partial_{\eta} \mathcal{B}-2 \partial_{\eta} \mathcal{A} \mathcal{A}^{T}+2 \mathcal{A} \partial_{\eta} \mathcal{A}^{T}\right) \mathcal{G}^{-1} \\
& \partial_{\eta} \widetilde{\mathcal{A}}=B_{-} \partial_{\eta} \mathcal{A}
\end{aligned}
$$

$$
\left\{\begin{array}{l|ll}
\partial_{\eta} \mathbf{U}+\partial_{\xi} \mathbf{V}+\frac{[\mathbf{U}, \mathbf{V}]}{\xi-\eta}=0 & \mathbf{U} \cdot \mathbf{U}=\mathbf{U}, & \operatorname{tr} \mathbf{U}=d \\
\partial_{\eta} \mathbf{U}-\partial_{\xi} \mathbf{V}=0 & \mathbf{V} \cdot \mathbf{V}=\mathbf{V}, & \operatorname{tr} \mathbf{V}=d
\end{array}\right.
$$

## Associated linear systems ${ }^{11}$

Vacuummandelelectrovacuum (2x2 and 3x3 matrices)

$$
\left\{\begin{array}{l|ll}
\partial_{\eta} \mathbf{U}+\partial_{\xi} \mathbf{V}+\frac{[\mathbf{U}, \mathbf{V}]}{i(\xi-\eta)}=0 & \mathbf{U} \cdot \mathbf{U}=i \mathbf{U}, & \operatorname{tr} \mathbf{U}=i \\
\partial_{\eta} \mathbf{U}-\partial_{\xi} \mathbf{V}=0 & \mathbf{V} \cdot \mathbf{V}=i \mathbf{V}, & \operatorname{tr} \mathbf{V}=i
\end{array}\right.
$$

$$
\Psi(\xi, \eta, w), \mathbf{U}(\xi, \eta), \mathbf{V}(\xi, \eta) \quad-\quad ? \quad(w \in \mathbb{C})
$$

$$
\left\{\begin{array}{l||ll}
2 i(w-\xi) \partial_{\xi} \Psi=\mathbf{U}(\xi, \eta) \Psi & \operatorname{rank} \mathbf{U}=1 & \operatorname{tr} \mathbf{U}=i \\
2 i(w-\eta) \partial_{\eta} \Psi=\mathbf{V}(\xi, \eta) \Psi & \text { rank } \mathbf{V}=1 & \operatorname{tr} \mathbf{V}=i
\end{array}\right.
$$

1) GA, JETP Lett.. (1980); Proc. Steklov Math. Inst. (1988); Physica D. (1999); Theor. Math. Phys. (2005)

## 

$$
\left\{\begin{array}{l|ll}
\partial_{\eta} \mathbf{U}+\partial_{\xi} \mathbf{V}+\frac{[\mathbf{U}, \mathbf{V}]}{(\xi-\eta)}=0 & \mathbf{U} \cdot \mathbf{U}=\mathbf{U}, & \operatorname{tr} \mathbf{U}=d \\
\partial_{\eta} \mathbf{U}-\partial_{\xi} \mathbf{V}=0 & \mathbf{V} \cdot \mathbf{V}=\mathbf{V}, & \operatorname{tr} \mathbf{V}=d
\end{array}\right.
$$

$$
\Psi(\xi, \eta, w), \mathbf{U}(\xi, \eta), \mathbf{V}(\xi, \eta) \quad-\quad ? \quad(w \in \mathbb{C})
$$

$$
\left\{\begin{array}{l|ll}
2(w-\xi) \partial_{\xi} \Psi=\mathbf{U}(\xi, \eta) \Psi & \mathbf{U} \cdot \mathbf{U}=\mathbf{U} & \operatorname{tr} \mathbf{U}=d \\
2(w-\eta) \partial_{\eta} \Psi=\mathbf{V}(\xi, \eta) \Psi & \mathbf{V} \cdot \mathbf{V}=\mathbf{V} & \operatorname{tr} \mathbf{V}=d
\end{array}\right.
$$

## Equivallent spectral problems"

Electrovacuum ( $3 \times 3$ matrices)

$$
\underline{\Psi(\xi, \eta, w), \mathbf{U}(\xi, \eta), \mathbf{V}(\xi, \eta), \mathbf{W}(\xi, \eta, w) \in G L(3, \mathbb{C})}
$$

$$
\left\{\begin{array}{l||ll}
2 i(w-\xi) \partial_{\xi} \Psi=\mathbf{U}(\xi, \eta) \Psi & \text { rank } \mathbf{U}=1 & \operatorname{tr} \mathbf{U}=i \\
2 i(w-\eta) \partial_{\eta} \mathbf{\Psi}=\mathbf{V}(\xi, \eta) \Psi & \operatorname{rank} \mathbf{V}=1 & \operatorname{tr} \mathbf{V}=i
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
\Psi^{\dagger} \mathbf{W} \Psi=\mathbf{K}(w) \\
\mathbf{K}^{\dagger}(w)=\mathbf{K}(w)
\end{array} \quad \frac{\partial \mathbf{W}}{\partial w}=4 i \Omega, \quad \Omega=\left(\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\right.
$$

$\Rightarrow \quad \mathbf{W}=4 i(w-(\xi+\eta) / 2) \Omega+\left(\begin{array}{cc}-4 \epsilon \alpha^{2} \mathbf{g}^{a b}+4 \Phi^{a} \bar{\Phi}^{b} & -2 \Phi^{a} \\ -2 \bar{\Phi}^{b} & 1\end{array}\right)$

## Bosonic diynamics in ineterotic string gravity model ( $\left(2 d^{\prime}+n\right) \times(2 d+n)$ matrices $)^{1)}$

$$
\begin{gathered}
\Psi(\xi, \eta, w), \mathbf{U}(\xi, \eta), \mathbf{V}(\xi, \eta), \mathbf{W}(\xi, \eta, w)-? \\
\left\{\begin{array}{l||ll}
2(w-\xi) \partial_{\xi} \Psi=\mathbf{U}(\xi, \eta) \Psi & \mathbf{U} \cdot \mathbf{U}=\mathbf{U} & \operatorname{tr} \mathbf{U}=d \\
2(w-\eta) \partial_{\eta} \Psi=\mathbf{V}(\xi, \eta) \Psi & \mathbf{V} \cdot \mathbf{V}=\mathbf{V} & \operatorname{tr} \mathbf{V}=d
\end{array}\right.
\end{gathered}
$$

$$
\left\{\begin{array}{l}
\Psi^{T} \mathbf{W} \Psi=\mathbf{K}(w) \\
\mathbf{K}^{T}(w)=\mathbf{K}(w)
\end{array}\right.
$$

$$
\| \quad \frac{\partial \mathbf{W}}{\partial w}=\Omega, \quad \Omega=\left(\begin{array}{ccc}
0 & \mathbf{I}_{d} & 0 \\
\mathbf{I}_{d} & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$



## Monodromy transform approach

## The space of local solutions:

$\mathrm{g}_{\mathrm{ik}}, \mathrm{F}_{\mathrm{ik}} \ldots \| \mathrm{x}^{1}, \mathrm{x}^{2}$
 Free space of functional parameters -- "coordinates" in the space of local solutions

(Constraint: field equations)
(No
constraints)
"Direct" problem:
(linear ordinary differential equations)
"Inverse" problem: 11-1 (W)

```
(linear integral equations)
```

Interpretation: $\left\{\mathbf{u}_{ \pm}(w), \mathbf{v}_{ \pm}(w) \ldots\right\} \leftrightarrow$ Monodromy data for $\Psi(\xi, \eta, w)$

$$
\boldsymbol{\Psi}(\xi, \eta, w), \mathbf{U}(\xi, \eta), \mathbf{V}(\xi, \eta)-\boldsymbol{?}
$$

$$
(2 d+n) \times(2 d+n)
$$

$$
\left\{\begin{array}{l}
2(w-\xi) \partial_{\xi} \Psi=\mathbf{U}(\xi, \eta) \Psi \\
2(w-\eta) \partial_{\eta} \Psi=\mathbf{V}(\xi, \eta) \Psi
\end{array}\right.
$$

$$
\begin{array}{ll}
\mathbf{U} \cdot \mathbf{U}=\mathbf{U} & \operatorname{tr} \mathbf{U}=d \\
\mathbf{V} \cdot \mathbf{V}=\mathbf{V} & \operatorname{tr} \mathbf{V}=d
\end{array}
$$

$$
\begin{aligned}
& (\xi, \eta) \in\left(\Omega_{\xi_{o}} \times \Omega_{\eta_{o}}\right), \quad w \in \overline{\mathbb{C}} \\
& \Psi\left(\xi_{o}, \eta_{o}, w\right) \equiv \mathbf{I}
\end{aligned}
$$



Normalization: $\quad \Psi\left(\xi, \eta, w^{i}\right) \rightarrow \Psi\left(\xi, \eta, w^{i}\right) \cdot \Psi^{-1}\left(\xi_{0}, \eta_{0} \cdot w^{\prime}\right)$


$$
w=\eta_{0} \quad w=\eta \quad w=\xi \quad w=\xi_{0}
$$

1) GA, Sov. Phys (1985) ;

Analytical structure of $\Psi(\xi, \eta, w)$ on the spectral plane $w$

| $\frac{\Omega_{\ldots}}{\hdashline \eta_{-}-L_{0}^{-}}, \stackrel{\Omega_{ \pm}}{\xi_{0 \ldots}},$ | $\begin{aligned} & -\binom{\mathrm{k}_{+}(w)}{l_{+}(w)} \\ & -\left(\begin{array}{l} \binom{\mathrm{k}_{-}(w)}{l_{-}(w)} \end{array}\right. \end{aligned}$ |  | $\begin{aligned} & \lambda_{+}=\sqrt{\frac{w-\xi}{w-\xi_{0}}} \\ & \lambda_{-}=\sqrt{\frac{w-\eta}{w-\eta_{0}}} \\ & \lambda_{ \pm}(w=\infty)=1 \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| Hyperbolic case ( $\epsilon=1$ ) |  | Elliptic case ( $\epsilon=-1$ ) |  |


| $\begin{aligned} & \Psi=\lambda_{+}^{-1} \psi_{+}(\xi, \eta, w) \otimes \mathbf{k}_{+}(w)+\mathbf{M}_{+}(\xi, \eta, w) \\ & \Psi^{-1}=\lambda_{+} \mathbf{1}_{+}(w) \otimes \varphi_{+}(\xi, \eta, w)+\mathbf{N}_{+}(\xi, \eta, w) \end{aligned}$ | $\begin{aligned} & \mathrm{M}_{+} \cdot \mathrm{l}_{+}=0 \\ & \mathrm{k}_{+} \cdot \mathrm{N}_{+}=0 \\ & \hline \varphi_{+} \cdot \mathrm{M}_{+}=0 \\ & \mathrm{~N}_{+} \cdot \psi_{+}=0 \end{aligned}$ |
| :---: | :---: |
| $\begin{aligned} & \Psi=\lambda_{-}^{-1} \psi_{-}(\xi, \eta, w) \otimes \mathbf{k}_{-}(w)+\mathbf{M}_{-}(\xi, \eta, w) \\ & \Psi^{-1}=\lambda_{-} \mathbf{l}_{-}(w) \otimes \varphi_{-}(\xi, \eta, w)+\mathbf{N}_{-}(\xi, \eta, w) \end{aligned}$ | $\left.\begin{array}{\|l} \hline \mathrm{M}_{-} \cdot \mathrm{l}_{-}=0 \\ \mathrm{k} \cdot \mathrm{~N}_{-}=0 \end{array} \right\rvert\, \begin{aligned} & \varphi_{-} \cdot \mathrm{M}_{-}=0 \\ & \mathrm{~N}_{-} \cdot \psi_{-} \pm 0 \end{aligned}$ |

## Monodromy data of a given solution

$$
\begin{aligned}
& L_{-} \circlearrowleft_{t_{-}}^{L_{+}} \circlearrowleft_{t_{+}} \quad \Psi \xrightarrow{t_{ \pm}} \mathbf{\Psi} \cdot \mathbf{T}_{ \pm}(w), \quad \mathbf{T}_{ \pm}^{2}(w)=\mathbf{I} \\
& \mathbf{T}_{+}(w)=\mathbf{I}-2 \mathbf{l}_{+}(w) \otimes\left(\mathbf{k}_{+}(w) \cdot \mathbf{l}_{+}(w)\right)^{-1} \otimes \mathbf{k}_{+}(w), \\
& \mathbf{T}_{-}(w)=\mathbf{I}-2 \mathbf{l}_{-}(w) \otimes\left(\mathbf{k}_{-}(w) \cdot \mathbf{l}_{-}(w)\right)^{-1} \otimes \mathbf{k}_{-}(w) .
\end{aligned}
$$

"Extended" monodromy data:

$$
\begin{array}{l|ll}
\mathbf{k}_{ \pm}(w)=\left\{\mathbf{I}_{d}, \mathbf{u}_{ \pm}(w), \mathbf{v}_{ \pm}(w)\right\}, & \mathbf{u}_{ \pm}(w), \mathbf{p}_{ \pm}^{T}(w) \in M_{d \times d} \\
\mathbf{l}_{ \pm}(w)=\left\{\mathbf{I}_{d}, \mathbf{p}_{ \pm}(w), \mathbf{q}_{ \pm}(w)\right\}^{T}, & \mathbf{v}_{ \pm}(w), \mathbf{q}_{ \pm}^{T}(w) \in M_{d \times n}
\end{array}
$$

Monodromy data constraint:

$$
\mathbf{l}_{ \pm}(w)(w)=\mathcal{W}_{0}(w) \cdot \mathbf{k}_{ \pm}^{\dagger}(w)
$$

Monodromy data for solutions of reduced

$$
\left\{\mathbf{u}_{ \pm}^{d \times d}(w), \mathbf{v}_{ \pm}^{d \times n}(w)\right\}
$$

## Simple example for solution of the direct problem of the monodromy transform

Let us take a symmetric vacuum Kazner solution:

$$
d s^{2}=\frac{1}{\sqrt{t}}\left(d t^{2}-d x^{2}\right)-t\left(d y^{2}+d z^{2}\right)
$$

For this solution the matrix $\boldsymbol{\Psi}(\xi, \eta, w)$ derived as a solution of the spectral problem linear equations takes the form

$$
\begin{aligned}
& \Psi=\frac{1}{2}\left(\frac{w-\xi_{0}}{w-\xi}\right)^{1 / 2}\binom{1}{i t_{0}} \otimes\left(1,-\frac{i}{t_{0}}\right)+\frac{1}{2}\left(\frac{w-\eta_{0}}{w-\eta}\right)^{1 / 2}\binom{1}{-i t_{0}} \otimes\left(1, \frac{i}{t_{0}}\right) \\
& \Psi^{-1}=\frac{1}{2}\left(\frac{w-\xi}{w-\xi_{0}}\right)^{1 / 2}\binom{1}{i t_{0}} \otimes\left(1,-\frac{i}{t_{0}}\right)+\frac{1}{2}\left(\frac{w-\eta}{w-\eta_{0}}\right)^{1 / 2}\binom{1}{-i t_{0}} \otimes\left(1, \frac{i}{t_{0}}\right)
\end{aligned}
$$

This allows to calculate immediately the monodromy data functions

$$
\mathbf{u}_{+}(w)=-\frac{i}{t_{0}}, \quad \mathbf{u}_{-}(w)=\frac{i}{t_{0}}
$$

## Inverse problem of the monodromy transform ${ }^{1)}$

## Free space of the monodromy data $\left\{\mathbf{u}_{ \pm}(w), \mathbf{v}_{ \pm}(w) \ldots\right\}$

## Space of solutions

$\mathrm{g}_{\mathrm{ik}}, \mathrm{F}_{\mathrm{ik}} \ldots \| \mathrm{x}^{1}, \mathrm{x}^{2}$

Theorem 1. For any local solution ( $\mathcal{E}, \Phi$ ) holomorphic near $\left(\xi_{0}, \eta_{0}\right)$
$\nLeftarrow \Psi(\xi, \eta, w)$ Is holomorphic on $\overline{\mathbb{C}} \backslash L \quad\left(L=L_{+} \cup L_{-}\right)$,
$\leftrightarrow \quad \Psi\left(\xi_{0}, \eta_{0}, w\right)=\mathbf{I} \quad$ and $\quad \Psi(\xi, \eta, w=\infty)=\mathbf{I}$
$\nrightarrow$ the "jumps" of $\Psi(\xi, \eta, w)$ on the cuts $L_{ \pm}$satisfy the H ठlder condition and are integrable near the endpoints.
$\nleftarrow \quad \Psi^{-1}(\xi, \eta, w)$ posess the same properties

$$
\Psi=\mathrm{I}+\frac{1}{i \pi} \int_{L} \frac{[\Psi]_{\zeta}}{\zeta-w} d \zeta, \quad \Psi^{-1}=\mathbf{I}+\frac{1}{i \pi} \int_{L} \frac{\left[\Psi^{-1}\right]_{\zeta}}{\zeta-w} d \zeta
$$

Theorem 2. ${ }^{*}$ ) For any local solution $(\mathcal{E}, \Phi)$ holomorphic near $\left(\xi_{0}, \eta_{0}\right)$ $\Psi(\xi, \eta, w)$ and $\Psi^{-1}(\xi, \eta, w)$ possess the local structures

$$
\begin{gathered}
\Psi= \begin{cases}\lambda_{+}^{-1} \boldsymbol{\psi}_{+}(\xi, \eta, w) \otimes \mathbf{k}_{+}(w)+\mathbf{M}_{+}(\xi, \eta, w), & w \in \Omega_{+} \\
\lambda_{-}^{-1} \boldsymbol{\psi}_{-}(\xi, \eta, w) \otimes \mathbf{k}_{-}(w)+\mathbf{M}_{-}(\xi, \eta, w), & w \in \Omega_{-}\end{cases} \\
\boldsymbol{\Psi}^{-1}= \begin{cases}\lambda_{+} \mathbf{l}_{+}(w) \otimes \boldsymbol{\varphi}_{+}(\xi, \eta, w)+\mathbf{N}_{+}(\xi, \eta, w), & w \in \Omega_{+} \\
\lambda_{-} \mathbf{1}_{-}(w) \otimes \boldsymbol{\varphi}_{-}(\xi, \eta, w)+\mathbf{N}_{-}(\xi, \eta, w), & w \in \Omega_{-}\end{cases}
\end{gathered}
$$

where $\mathrm{k}_{ \pm}, \mathrm{l}_{ \pm}, \varphi_{ \pm}, \psi_{ \pm}, \mathrm{M}_{ \pm}, \mathrm{N}_{ \pm}$are holomorphic on $\Omega_{ \pm}$respectively.
$\nRightarrow$ Fragments of these structures satisfy in $\Omega_{ \pm}$the algebraic constraints

$$
\begin{array}{lll|l|l}
\mathrm{M}_{+} \cdot \mathrm{l}_{+}=0 & \varphi & \varphi_{+} \cdot \mathrm{M}_{+}=0 & \mathrm{M}_{-} \cdot \mathrm{l}_{-}=0 & \varphi_{-} \cdot \mathrm{M}_{-}=0 \\
\mathrm{k}_{+} \cdot \mathrm{N}_{+}=0 & \mathrm{~N}_{+} \cdot \boldsymbol{\psi}_{+}=0 & \mathrm{k}_{-} \cdot \mathrm{N}_{-}=0 & \mathrm{~N}_{-} \cdot \boldsymbol{\psi}_{-}=0
\end{array}
$$

$$
\begin{array}{ll}
\{\Psi\}_{L_{ \pm}}=\mathrm{M}_{ \pm}, & {[\Psi]_{L_{ \pm}}=\left[\lambda_{ \pm}^{-1}\right] \boldsymbol{\psi}_{ \pm} \otimes \mathbf{k}_{ \pm},} \\
\left\{\Psi^{-1}\right\}_{L_{ \pm}}=\mathrm{N}_{ \pm}, & {[\Psi]_{L_{ \pm}}^{-1}=\left[\lambda_{ \pm}\right] \mathbf{l}_{ \pm} \otimes \boldsymbol{\varphi}_{ \pm}}
\end{array}
$$

and the relations in boxes give rise to the linear singular integral equati@ns.

Theorem 3. For any local solution of the "null curvature" equations with the above Jordan conditions the fragments of the local structures of $\Psi(\xi, \eta, w)$ and $\Psi^{-1}(\xi, \eta, w)$ on the cuts $L_{ \pm}$should satisfy

$$
\begin{aligned}
& \frac{1}{\pi i} \int_{L} \frac{\mathcal{K}(\xi, \eta, \tau, \zeta)}{\zeta-\tau} \cdot \boldsymbol{\varphi}(\xi, \eta, \zeta) d \zeta=\mathrm{k}(\tau) \\
& \frac{1}{\pi i} \oint_{L} \boldsymbol{\psi}(\xi, \eta, \zeta) \cdot \frac{\tilde{\mathcal{K}}(\xi, \eta, \tau, \zeta)}{\zeta-\tau} d \zeta=\mathrm{l}(\tau)
\end{aligned}
$$

where the dot means the matrix product and the kernals are

$$
\begin{array}{l||l}
\mathcal{K}(\xi, \eta, \tau, \zeta)=-[\lambda]_{\zeta} \mathcal{H}(\tau, \zeta) \\
\widetilde{\mathcal{K}}(\xi, \eta, \tau, \zeta)=-\left[\lambda^{-1}\right]_{\zeta} \mathcal{H}(\zeta, \tau) & \mathcal{H}(x, y) \equiv(\mathbf{k}(x) \cdot \mathbf{l}(y))
\end{array}
$$

where the parameters $\zeta$ and $\tau$ run over the contour $L=L_{+} \cup L_{-}$

$$
\mathrm{k}(\tau)=\left\{\begin{array}{ll}
\mathrm{k}_{+}(\tau), & \tau \in L_{+} \\
\mathrm{k}_{-}(\tau), & \tau \in L_{-}
\end{array} \quad \boldsymbol{\varphi}(\xi, \eta, \tau)= \begin{cases}\boldsymbol{\varphi}_{+}(\xi, \eta, \tau), & \tau \in L_{+} \\
\boldsymbol{\varphi}_{-}(\xi, \eta, \tau), & \tau=\in L_{-}\end{cases}\right.
$$

Theorem 4. For arbitrarily chosen extended monodromy data - two pairs of vectors ( $\mathrm{N}=2,3$ ) or two pairs of $\mathrm{dx}(2 \mathrm{~d}+\mathrm{n})$ and $(2 \mathrm{~d}+\mathrm{n}) \mathrm{xd}$ matrix $(\mathrm{N}=2 \mathrm{~d}+\mathrm{n})$ functions $\mathrm{k}_{+}(w), \mathrm{l}_{+}(w)$ and $\mathbf{k}_{-}(w), \mathrm{l}_{-}(w)$ holomorphic respectively in some neighborhoods $\Omega_{+}$and $\Omega_{-}$of the points $w=\xi_{0}$ and $w=\eta_{0}$ on the spectral plane, there exists some neighborhood $\Omega^{2}=\Omega_{\xi_{0}} \times \Omega_{\eta_{0}}$ of the initial point $P_{0}\left(\xi_{0}, \eta_{0}\right)$ such that the solutions $\varphi_{ \pm}(\xi, \eta, w)$ and $\psi_{ \pm}(\xi, \eta, w)$ of the integral equations given in Theorem 3 exist and are unique in $\Omega^{2} \times \Omega_{+}$and $\Omega^{2} \times \Omega_{-}$respectively.
The matrix functions $\Psi(\xi, \eta, w)$ and $\widetilde{\Psi}(\xi, \eta, w)$ are defined as

$$
\Psi=\mathbf{I}+\frac{1}{i \pi} \int_{L} \frac{\left[\lambda^{-1}\right]_{\zeta}}{\zeta-w} \psi(\xi, \eta, \zeta) \otimes \mathbf{k}(\zeta) d \zeta,
$$

$$
\widetilde{\Psi}=\mathbf{I}+\frac{1}{i \pi} \int_{L} \frac{\left[\lambda e^{i \sigma}\right]_{\zeta}}{\zeta-w} \mathbf{l}(\zeta) \otimes \boldsymbol{\varphi}(\xi, \eta, \zeta) d \zeta
$$

$\Psi(\xi, \eta, w)$ is a normalized fundamental solution of the associated linear system with the Jordan conditions.

## Inverse problem of the monodromy transform ${ }^{11}$

$$
\begin{aligned}
& \frac{1}{i \pi} \int_{L_{+}} \frac{\left[\lambda_{+}\right]_{+}}{\zeta_{+}-\tau_{+}} \mathcal{H}\left(\tau_{+}, \zeta_{+}\right) \varphi_{+}\left(\zeta_{+}\right) d \zeta_{+}+\frac{1}{i \pi} \int_{L_{-}} \frac{\left[\lambda \lambda_{-}\right]_{-}}{\zeta_{-}-\tau_{+}} \mathcal{H}\left(\tau_{+}, \zeta_{-}\right) \varphi_{-}\left(\zeta_{-}\right) d \zeta_{-}+\mathrm{k}_{+}\left(\tau_{+}\right)=0 \\
& \frac{1}{i \pi} \int_{L_{+}} \frac{\left[\lambda_{+}\right]_{+}}{\zeta_{+}-\tau_{-}} \mathcal{H}\left(\tau_{-}, \zeta_{+}\right) \varphi_{+}\left(\zeta_{+}\right) d \zeta_{+}+\frac{1}{i \pi} \int_{L_{-}} \frac{\left[\lambda_{-}\right]_{-}}{\zeta_{-}-\tau_{-}} \mathcal{H}\left(\tau_{-}, \zeta_{-}\right) \varphi_{-}\left(\zeta_{-}\right) d \zeta_{-}+\mathrm{k}_{-}\left(\tau_{-}\right)=0
\end{aligned}
$$



$$
\begin{aligned}
& \lambda_{+}=\sqrt{\frac{w-\xi}{w-\xi_{0}}} \\
& \lambda_{-}=\sqrt{\frac{w-\eta}{w-\eta_{0}}} \\
& \lambda_{ \pm}(w=\infty)=1
\end{aligned}
$$

Hyperbolic case $(\epsilon=1)$
Elliptic case $(\epsilon=-1)$

1) GA, Sov.Phys.Dokl. 1985;Proc. Steklov Inst. Math. 1988; Theor.Math.Phys. 2005

Inverse probllem of the momodromy transform (compact form)

$$
\begin{aligned}
\mathbf{k}_{ \pm}(w) & =\left\{I_{d},\left\|\mathbf{u}_{ \pm}\right\|_{d \times d}(w),\left\|\mathbf{v}_{ \pm}\right\|_{d \times n}(w)\right\} \\
\mathbf{l}_{ \pm}(w) & =\left(w-\xi_{o}\right)\left(w-\eta_{o}\right) \mathbf{W}_{o}^{-1} \cdot \mathbf{k}_{ \pm}^{T}(w)
\end{aligned}
$$



$$
\begin{array}{l|ll}
\mathbf{U}=\stackrel{\circ}{\mathbf{U}}+2 \partial_{\xi} \mathbf{R}, & \mathbf{R}=\frac{1}{i \pi} \int_{\stackrel{\circ}{L}}[\lambda]_{\zeta} \mathbf{l}(w) \cdot \boldsymbol{\varphi}(\xi, \eta, w) d \zeta \\
\mathbf{V}=\stackrel{\circ}{\mathbf{V}}+2 \partial_{\eta} \mathbf{R} & \mathbf{W}=\stackrel{\stackrel{\circ}{\mathbf{W}}-\boldsymbol{\Omega} \cdot \mathbf{R}-\mathbf{R}^{T} \cdot \boldsymbol{\Omega}}{ }
\end{array}
$$

$$
\mathrm{W}=\left(w-\frac{\xi+\eta}{2}\right) \boldsymbol{\Omega}+\left(\begin{array}{ccc}
\epsilon \alpha^{2} \mathcal{G}^{-1}-\tilde{\mathcal{B}} \mathcal{B} \tilde{\mathcal{B}}+\tilde{\mathcal{A}} \tilde{\mathcal{A}}^{T} & \tilde{\mathcal{B}} \mathcal{G}+\tilde{\mathcal{A}} \mathcal{A}^{T} & \tilde{\mathcal{A}} \\
-\mathcal{G} \tilde{\mathcal{B}}+\mathcal{A} \tilde{\mathcal{A}}^{T} & \mathcal{G}+\mathcal{A} \mathcal{A}^{T} & \mathcal{A} \\
\tilde{\mathcal{A}}^{T} & \mathcal{A}^{T} & I_{n}
\end{array}\right)
$$

## Properties of the monodromy data

## Map of some known solutions

$$
\begin{aligned}
& \begin{array}{l}
\left\{\begin{array}{l||l||l}
\mathbf{u}(w)=0 \\
\mathbf{v}(w)=0
\end{array}\right. \\
\left\{\begin{array}{l}
\text { Minkowski } \\
\text { space-time }
\end{array}\right. \\
\left\{\begin{array}{l|l}
\mathbf{u}(w)=u_{0} \\
\mathbf{v}(w) &
\end{array}\right. \\
\text { Rindler metric }
\end{array} \quad\left\{\left.\begin{array}{l}
\mathbf{u}_{+}(w)=i k_{0} \\
\mathbf{u}_{-}(w)=-i k_{0} \\
\mathbf{v}_{ \pm}(w)=0
\end{array} \right\rvert\, \begin{array}{l}
\text { Symmetric } \\
\text { Kasner } \\
\text { space-time }
\end{array}\right. \\
& \left\{\begin{array}{l}
\mathbf{u}(w)=0 \\
\mathbf{v}(w)=v_{0}
\end{array}\right. \\
& \text { Bertotti - Robinson solution for electromagnetic universe, } \\
& \text { Bell - Szekeres solution for colliding plane } \\
& \text { electromagnetic waves } \\
& \begin{array}{l}
\left\{\begin{array}{l}
\mathbf{u}(w)=u_{0}+u_{1} w \\
\mathbf{v}(w)
\end{array}=v_{0}\right.
\end{array} \| \begin{array}{l}
\text { Melvin magnetic } \\
\text { universe }
\end{array} \quad\{\begin{array}{l}
\mathbf{u}_{+}(w)=i k_{0} \frac{w-a_{+}}{w-b_{+}} \\
\left\{\begin{array}{l}
\mathbf{u}(w)=\frac{u_{0}}{w-h} \\
\mathbf{v}(w)=\frac{v_{0}}{w-h}
\end{array} \begin{array}{l}
\text { Kerr - Newman } \\
\text { black hole }
\end{array}\right. \\
\mathbf{u}_{-}(w)=-i k_{0} \frac{w-a_{-}}{w-b_{-}} \\
\mathbf{v}_{ \pm}(w)=0
\end{array} \underbrace{}_{\vee} . \\
& \left\{\begin{array}{l|l}
\mathbf{u}(w)=u_{0}+\frac{u_{0}}{w-h} & \begin{array}{l}
\text { Kerr }- \text { Newman black } \\
\text { hole in the external } \\
\text { electromagnetic } \\
\text { field }
\end{array} \\
\mathbf{v}(w)=v_{0}+\frac{v_{0}}{w-h} &
\end{array}\right. \\
& \text { Khan-Penrose and } \\
& \text { Nutku - Halil solutions } \\
& \text { for colliding plane } \\
& \text { gravitational waves }
\end{aligned}
$$

## Monodromy data map of some classes of solutions

$\nLeftarrow$ Solutions with diagonal metrics: static fields, waves with linear polarization:
$\mathbf{u}_{ \pm}^{\dagger}(w)=-\mathbf{u}_{ \pm}(w), \quad \mathbf{v}_{ \pm}^{\dagger}(w)=-\mathbf{v}_{ \pm}(w)$
$\nleftarrow \quad$ Stationary axisymmetric fields with the regular axis of symmetry are described by analytically matched monodromy data::

$$
\mathbf{u}_{+}(w)=\mathbf{u}_{-}(w)=\mathbf{u}(w), \quad \mathbf{v}_{+}(w)=\mathbf{v}_{-}(w) \equiv \mathbf{v}(w)
$$

$\nLeftarrow \quad$ For asymptotically flat stationary axisymmetric fields

$$
\mathbf{u}(w)=\frac{u_{0}}{w}+\frac{u_{1}}{w^{2}}+\ldots, \mathbf{v}(w)=\frac{v_{0}}{w}+\frac{v_{1}}{w^{2}}+\ldots \text { for } w \rightarrow \infty
$$

with the coefficients expressed in terms of the multipole moments.
$\& \quad$ For stationary axisymmetric fields with a regular axis of symmetry the values of the Ernst potentials on the axis near the point of normalization are

$$
\mathcal{E}(z)=\mathcal{E}\left(z_{0}\right)-2 i\left(z-z_{0}\right) \mathbf{u}(z), \quad \Phi(z)=2 i\left(z-z_{0}\right) \mathbf{v}(z)
$$

$\forall$ For arbitrary rational and analytically matched monodromy data the solution can be found explicitly.

## Solutions for analitically matched, rational monodromy data

Generic data:
$\mathbf{u}(w)= \begin{cases}\mathbf{u}_{+}(\zeta), & \zeta \in L_{+} \\ \mathbf{u}_{-}(\zeta), & \zeta \in L_{-}\end{cases}$
$\mathbf{v}(w)= \begin{cases}\mathbf{v}_{+}(\zeta), & \zeta \in L_{+} \\ \mathbf{v}_{-}(\zeta), & \zeta \in L_{-}\end{cases}$

Analytically matched data:

$$
\begin{aligned}
& \mathbf{u}(w)=\mathbf{u}_{+}(w)=\mathbf{u}_{-}(w) \\
& \mathbf{v}(w)=\mathbf{v}_{+}(w)=\mathbf{v}_{-}(w)
\end{aligned}
$$

## Unknowns:

$$
\boldsymbol{\varphi}(w)=\boldsymbol{\varphi}_{+}(w)=\boldsymbol{\varphi}_{-}(w)
$$

Rational, analytically matched data:

$$
\begin{aligned}
& \mathbf{u}(w)=\frac{U(w)}{Q(w)} \\
& \mathbf{v}(w)=\frac{V(w)}{Q(w)} \| \begin{array}{l}
U(w)=u_{0}+u_{1} w+\ldots+u_{N_{u}} w^{N_{u}} \\
U(w)=u_{0}+u_{1} w+\ldots+u_{N_{u}} w^{N_{u}} \\
Q(w)=1+q_{1} w+\ldots+q_{N_{q}} w^{N_{q}}
\end{array} \quad N_{o}=\max \left\{N_{u}, N_{v}, N_{q}\right\}
\end{aligned}
$$

## Modified integrall equation

$$
-\frac{1}{\pi i} \oint_{L} \frac{[\lambda]_{\zeta}}{\zeta-\tau} \mathcal{H}(\tau, \zeta) \varphi(\xi, \eta, \zeta) d \zeta=\mathrm{k}(\tau)
$$

$$
\begin{aligned}
& \mathrm{k}(\tau)=(Q(\tau), U(\tau), V(\tau)) \\
& \mathcal{H}(\tau, \zeta)=\frac{\mathrm{P}(\tau, \zeta)}{Q(\tau) Q^{\dagger}(\zeta)}
\end{aligned}
$$

Auxiliary polynomials

$$
\begin{aligned}
P(\tau, \zeta)= & Q(\tau) Q^{\dagger}(\zeta)+i \epsilon_{0}\left(\zeta-\beta_{0}\right)\left[Q(\tau) U^{\dagger}(\zeta)-Q^{\dagger}(\zeta) U(\tau)\right]+\epsilon \alpha_{0}^{2} U(\tau) U^{\dagger}(\zeta) \\
& +4 \epsilon_{0}\left[\left(\zeta-\beta_{0}\right)^{2}-\epsilon \alpha_{0}^{2}\right] V(\tau) V^{\dagger}(\zeta) \\
R(\tau, \zeta)= & \left(Q^{\dagger}(\zeta)+i \epsilon_{0} \zeta U^{\dagger}(\zeta)\right)\left(\frac{Q(\tau)-Q(\zeta)}{\zeta-\tau}\right)-i \epsilon_{0} \zeta Q^{\dagger}(\zeta)\left(\frac{U(\tau)-U(\zeta)}{\zeta-\tau}\right) \\
& +4 \epsilon_{0} \zeta^{2} V^{\dagger}(\zeta)\left(\frac{V(\tau)-V(\zeta)}{\zeta-\tau}\right)=\sum_{k=0}^{N_{0}-1} R_{k}(\zeta) \tau^{k},
\end{aligned}
$$

Auxiliary functions

$$
\begin{aligned}
& \Delta_{k l}=\delta_{k l}+\frac{1}{i \pi} \int_{L} \frac{[\lambda]_{\chi}}{P(\chi, \chi)} R_{k}(\chi) L_{l}(\chi) d \chi \quad L_{k}(\tau) \equiv \frac{1}{i \pi} \int_{L} \frac{\left[\lambda^{-1}\right]_{\chi} \chi^{k}}{\chi-\tau} d \chi \\
& \binom{\mathbf{J}_{k}}{\tilde{\mathbf{J}}_{k}}=\frac{1}{i \pi} \int_{\mathcal{L}} \frac{[\lambda]_{\chi}}{P(\chi, \chi)} 1^{\prime}(\chi) L_{k}(\chi) d \chi=\frac{1}{i \pi} \int_{L} \frac{[\lambda]_{\chi}}{P(\chi, \chi)}\binom{Q^{\dagger}(\chi)+i \epsilon_{0} \chi U^{\dagger}(\chi)}{-i \epsilon_{0} \chi Q^{\dagger}(\chi)} L_{k}(\chi) d \chi \\
& 34
\end{aligned}
$$

## Solution of the integrall equatiom

$$
\boldsymbol{\varphi}(\xi, \eta, \tau)=-\frac{Q^{\dagger}(\tau)}{P(\tau, \tau)} \sum_{k, l=0}^{N_{0}} L_{k}(\tau) \Delta_{k l}^{-1}\left(\begin{array}{l}
q_{l} \\
u_{l} \\
v_{l}
\end{array}\right)
$$

Calculation of the solution components

$$
\begin{aligned}
& \mathbf{R} \equiv \frac{1}{i \pi} \int_{L}[\lambda]_{\chi} \mathrm{l}(\chi) \otimes \boldsymbol{\varphi}(\chi) d \chi=-\sum_{k, l=0}^{N_{0}} \Delta_{k l}^{-1} \mathbf{J}_{k} \otimes\left\{q_{l}, u_{l}, v_{l}\right\} \\
& g_{33}=\epsilon_{0}-i\left(R_{3}{ }^{4}-\bar{R}_{3}^{4}\right)+\Phi_{3} \bar{\Phi}_{3} \\
& g_{34}=-i\left(\beta-\beta_{0}\right)+i\left(R_{3}^{3}+\bar{R}_{4}{ }^{4}\right)+\Phi_{3} \bar{\Phi}_{4} \quad\binom{\Phi_{3}}{\Phi_{4}}=2 i\binom{R_{3}^{5}}{R_{4}^{5}} \\
& g_{44}=\epsilon_{0} \epsilon \alpha_{0}^{2}+i\left(R_{4}{ }^{3}-\bar{R}_{4}^{3}\right)+\Phi_{4} \bar{\Phi}_{4}
\end{aligned}
$$

Determinant form of solution

$$
\begin{aligned}
& G_{i k}=\Delta_{i k}+2 i \epsilon_{0} u_{i}\left(\mathbf{J}_{k} \cdot \mathbf{e}_{1}\right) \\
& F_{i k}=\Delta_{i k}-2 i v_{i}\left(\mathbf{J}_{k} \cdot \mathbf{e}_{1}\right)
\end{aligned} \quad \mathcal{E}=\epsilon_{0} \frac{\operatorname{det}\left\|G_{i k}\right\|}{\operatorname{det}\left\|\Delta_{i k}\right\|}, \Phi=\frac{\operatorname{det}\left\|F_{i k}\right\|}{\operatorname{det}\left\|\Delta_{i k}\right\|}
$$

$$
m, n=0,1, \ldots, N_{0} \quad N_{0}=\max \left\{N_{u}, N_{v}, N_{q}\right\}
$$

Principle algorithm for solution of boundary, initial and characteristic initial value problems

## Characteristic initial value problem for the hyperbolic Ennst equations ${ }^{1)}$

## Analytical data:

$$
\begin{aligned}
& \ell_{+}:\left\{\begin{array}{l}
\mathcal{E}=\mathcal{E}_{+}(\xi) \\
\Phi=\Phi_{+}(\xi)
\end{array} \quad \ell_{-}:\left\{\begin{array}{l}
\mathcal{E}=\mathcal{E}_{-}(\eta) \\
\Phi=\Phi_{-}(\eta)
\end{array}\right.\right. \\
& \mathcal{O}: \quad \mathcal{E}\left(\xi_{0}, \eta_{0}\right)=-1, \quad \Phi\left(\xi_{0}, \eta_{0}\right)=0
\end{aligned}
$$

$\ell_{+}:\left\{\begin{array}{l}\frac{d}{d \xi} \boldsymbol{\Psi}_{+}=\frac{\mathbf{U}\left(\xi, \eta_{0}\right)}{2 i(w-\xi)} \Psi_{+} \\ \Psi_{+}\left(\xi_{0}, w\right)=\mathbf{I}\end{array}\right.$

$$
\left\{\begin{array}{l}
\frac{d}{d \eta} \boldsymbol{\Psi}_{-}=\frac{\mathbf{V}\left(\xi_{0}, \eta\right)}{2 i(w-\eta)} \boldsymbol{\Psi}_{-} \\
\boldsymbol{\Psi}_{-}\left(\eta_{0}, w\right)=\mathbf{I}
\end{array}\right.
$$

$$
\Psi_{+}(\xi, w) \Rightarrow \mathbf{u}_{+}(w)
$$

$$
\Rightarrow \frac{1}{\pi i} \int_{L} \frac{\mathcal{K}(\xi, \eta, \tau, \zeta)}{\zeta-\tau} \cdot \varphi d \zeta=\mathrm{k}(\tau) \Rightarrow
$$

$$
\begin{aligned}
& \mathbf{R}=\frac{1}{i \pi} \int_{L}[\lambda]_{\zeta} \mathbf{l}(\zeta) \otimes \boldsymbol{\varphi}(\xi, \eta, \zeta) d \zeta \\
& \mathbf{U}=\partial_{\xi} \mathbf{R}, \mathbf{V}=\partial_{\eta} \mathbf{R}
\end{aligned}
$$

Solution generating transformations and integral equation methods in the context of the monodromy transform

## Soliton generating transformations in terms of the monodromy data

$\stackrel{o}{\mathbf{u}}_{ \pm}(w), \stackrel{O}{\mathbf{v}}_{ \pm}(w)$-- the monodromy data of arbitrary seed solution.
$\mathbf{u}_{ \pm}(w), \mathbf{v}_{ \pm}(w) \quad-$ the monodromy data of N -soliton solution.
$\nrightarrow$ Belinskii-Zakharov vacuum N -soliton solution:

$$
\mathbf{u}_{ \pm}(w)=\frac{\mathcal{U}_{0}(w)+\mathcal{U}_{1}(w){\stackrel{o}{\mathbf{u}_{ \pm}}(w)}_{\mathcal{Q}_{0}(w)+\mathcal{Q}_{1}(w) \mathbf{u}_{ \pm}(w)}^{o}}{\text { on }}
$$

$\nLeftarrow$ Electrovacuum N -soliton solution:

$$
\begin{aligned}
& \mathbf{u}_{ \pm}(w)=\frac{\mathcal{U}_{0}(w)+\mathcal{U}_{1}(w){\stackrel{o}{\mathbf{u}_{ \pm}}(w)+\mathcal{U}_{2}(w) \stackrel{o}{\mathbf{v}}_{ \pm}(w)}_{\mathcal{Q}_{0}(w)+\mathcal{Q}_{1}(w) \stackrel{o}{\mathbf{u}}_{ \pm}(w)+\mathcal{Q}_{2}(w){ }_{\mathbf{v}_{ \pm}}(w)},}{\text { on }}
\end{aligned}
$$

$\mathcal{U}_{1}(w), \mathcal{U}_{2}(w), \mathcal{U}_{3}(w), \mathcal{V}_{1}(w), \mathcal{V}_{2}(w), \mathcal{V}_{3}(w), \mathcal{Q}_{1}(w), \mathcal{Q}_{2}(w), \mathcal{Q}_{3}(w)$
-- polynomials in $w$ of the orders $\leq N$ (the number of solitons) 39

## Sibgatullin's integral equations in the monodromy transform context

The Sibgatullin's reduction of the Hauser \& Ernst matrix integral equations (vacuum case, for simplicity):

$$
\int_{-1}^{1} \frac{\mu(\sigma)(e(\zeta)+\tilde{e}(\zeta))}{(\sigma-\tau) \sqrt{1-\sigma^{2}}} d \sigma=0, \quad \frac{1}{\pi} \int_{-1}^{1} \frac{\mu(\sigma) d \sigma}{\sqrt{1-\sigma^{2}}}=1, \quad \zeta=z+i \sigma \rho
$$

To derive the Sibgatullin's equations from the monodromy transform,
(1) restrict the monodromy data by the regularity axis condition:

$$
\mathbf{u}_{+}(w)=\mathbf{u}_{-}(w) \equiv \mathbf{u}(w)
$$

(2) chose the first component of the monodromy transform equations for $\psi(\xi, \eta, w)$ In this case, the contour can be transformed as shown below:


Then we obtain just the above equation on the reduced contour and the pole at $w=\beta_{0}$ gives rise to the above normalization condition.

## Aspects of black hole dynamics in the external gravitational and electromagnetic fields

Schwarzschild black hole in a homogeneous magnetic field GA\&A.Garcia, PRD (1996)
Schwarzschild black hole hovering in the field of a charged naked singularity
GA\&V. Belinski, Nuov.Cim. (2007)
Equilibrium configurations of two charged massive sources of the Reissner - Nordstrom type
GA\&V. Belinski, PRD (2007)
"Geodesic" motion of a Schwarzschild black hole in the external gravitational field (Bertotti - Robinson universe)
$\psi$
Charged black hole accelerated by homogeneous electric field

## Space-time with a homogeneous magnetic / electric fieldl <br> ( <br> Bertottii - Robinsom universe)



## Schwarzschilld black hole in a homogeneous magnetice fieldd

In Weyl coordinates:


## Bipolar coordinates:

Weyl coordinates:

## Metric components and electromagnetic potential

$$
\begin{aligned}
& \mathrm{g}_{\mathrm{tt}}=\frac{\left(\mathrm{x}_{1}^{2}+1\right)\left(\mathrm{x}_{2}+\mathrm{y}_{1}\right)^{2}}{\mathrm{x}_{2}^{2}-1}, \quad \Phi=\mathrm{x}_{1}+\frac{\mathrm{m}}{\mathrm{~b}} \mathrm{y}_{2} \\
& \mathrm{~g}_{\rho \rho}=\mathrm{g}_{\mathrm{zz}}=\frac{\mathrm{f}_{0}\left(\mathrm{x}_{2}+\mathrm{y}_{1}\right)^{2}}{\left(\mathrm{x}_{1}^{2}+\mathrm{y}_{1}^{2}\right)\left(\mathrm{x}_{2}^{2}-\mathrm{y}_{2}^{2}\right)}\left[\frac{\mathrm{m}\left(\mathrm{x}_{2}-\mathrm{y}_{2}\right)+\mathrm{bx}_{1}-(\ell+\mathrm{m}) \mathrm{y}_{1}}{\mathrm{~m}\left(\mathrm{x}_{2}+\mathrm{y}_{2}\right)+\mathrm{bx}_{1}-(\ell-\mathrm{m}) \mathrm{y}_{1}}\right]^{2}
\end{aligned}
$$

"Geodessic" motion of a Sch wwanzschiilld black holle in the extermall gravititationall field (Bertottiti- Robinsomluniverse)
"Geodesic" motion of a black hole


## Schwarzschild black hole hoverimg in the field of a naked singularity ${ }^{1 /}$

Equilibrium comfigurations of two charged massive sources of the Reissmer - Nordstrom type ${ }^{1)}$

5-parametric solution fort the superposed field of fitwo arbiltrary Reissner-Norstrom sources ${ }^{1 \text { 1 }}$ (solution with two simple poles in the monodromy data))

$$
\begin{aligned}
& H=\frac{\mathcal{D}^{2}-\mathcal{G}^{2}+\mathcal{F}^{2}}{(\mathcal{D}+\mathcal{G})^{2}}, \\
& \Phi=\frac{\mathcal{F}}{\mathcal{D}+\mathcal{G}}, \\
& f=\frac{(\mathcal{D}+\mathcal{G})^{2}}{16 S_{0}^{2}\left(x_{1}^{2}-\sigma_{1}^{2} y_{1}^{2}\right)\left(x_{2}^{2}-\sigma_{2}^{2} y_{2}^{2}\right)} \\
& \mathcal{D}=A_{0}\left(x_{1}^{2}+x_{2}^{2}-\sigma_{1}^{2} y_{1}^{2}-\sigma_{2}^{2} y_{2}^{2}\right) \\
& +2 B_{0} x_{1} x_{2}+2 C_{0} y_{1} y_{2} \\
& \mathcal{G}=g_{1} x_{1}+g_{2} x_{2}+\widetilde{g}_{1} y_{1}+\widetilde{g}_{2} y_{2} \\
& \mathcal{F}=f_{1} x_{1}+f_{2} x_{2}+\widetilde{f}_{1} y_{1}+\widetilde{f}_{2} y_{2} \\
& A_{0}=S_{0}-\left(\ell+m_{+}\right)^{2}\left(\ell^{2}-m_{+}^{2}+e_{+}^{2}\right) \\
& B_{0}=S_{0}+\left(\ell+m_{+}\right)^{2}\left(\ell^{2}-m_{+}^{2}+e_{+}^{2}\right) \\
& C_{0}=\frac{1}{2}\left(\ell^{2}-\sigma_{1}^{2}-\sigma_{2}^{2}\right) B_{0}-\left(\ell^{2}-m_{+}^{2}+e_{+}^{2}\right) S_{0} \\
& S_{0}=\left(\ell+m_{+}\right)^{2}\left(\ell^{2}-m_{-}^{2}\right)+\left(\ell_{-}+m_{-} e_{+}\right)^{2} \\
& H_{1}=\left(m_{-} e_{+}-m_{+} e_{-}\right)\left[\left(e_{+}+e_{-}\right) \ell+\left(m_{+}+m_{-}\right) e_{+}\right] \\
& H_{2}=\left(m_{-} e_{+}-m_{+} e_{-}\right)\left[\left(e_{+}-e_{-}\right) \ell+\left(m_{+}-m_{-}\right) e_{+}\right] \\
& S_{1}=-\left(\ell e_{-}+m_{-} e_{+}\right)^{2}+\left(\ell+m_{+}\right)\left(\ell e_{+}^{2}+m_{+} e_{-}^{2}\right) \\
& -\left(m_{-} e_{+}-m_{+} e_{-}\right)^{2}+\ell e_{+}\left(m_{+}+m_{-}\right)\left(e_{+}-e_{-}\right) \\
& S_{2}=\left(\ell e_{-}+m_{-} e_{+}\right)^{2}-\left(\ell+m_{+}\right)\left(\ell e_{+}^{2}+m_{+} e_{-}^{2}\right) \\
& +\left(m_{-} e_{+}-m_{+} e_{-}\right)^{2}-\ell e_{+}\left(m_{+}-m_{-}\right)\left(e_{+}+e_{-}\right) \\
& m_{+}=M_{1}+M_{2} \\
& m_{-}=M_{1}-M_{2} \\
& e_{+}=Q_{1}+Q_{2} \\
& e_{-}=Q_{1}-Q_{2} \\
& \sigma_{1}^{2}=M_{1}^{2}-Q_{1}^{2}-\frac{2 Q_{1}\left(M_{1} Q_{2}-M_{2} Q_{1}\right)}{\ell+M_{1}+M_{2}} \\
& \sigma_{2}^{2}=M_{2}^{2}-Q_{2}^{2}+\frac{2 Q_{2}\left(M_{1} Q_{2}-M_{2} Q_{1}\right)}{\ell+M_{1}+M_{2}} \\
& \begin{array}{l}
g_{1}=2 m_{+} S_{0}-2 m_{-}\left(\ell+m_{+}\right)^{2}\left(\ell^{2}-m_{+}^{2}+e_{+}^{2}\right) \\
g_{2}=2 m_{+} S_{0}+2 m_{-}\left(\ell+m_{+}\right)^{2}\left(\ell^{2}-m_{+}^{2}+e_{+}^{2}\right)
\end{array} \\
& \tilde{g}_{1}=\left(\ell^{2}+\sigma_{1}^{2}-\sigma_{2}^{2}\right) H_{1}-4 \sigma_{1}^{2} \ell\left(\ell+m_{+}\right)^{2}\left(m_{+}-m_{-}\right) \\
& \widetilde{g}_{2}=\left(\ell^{2}-\sigma_{1}^{2}+\sigma_{2}^{2}\right) H_{2}+4 \sigma_{2}^{2} \ell\left(\ell+m_{+}\right)^{2}\left(m_{+}+m_{-}\right) \\
& f_{1}=2 e_{+} S_{0}-2\left(\ell+m_{+}\right)\left(\ell^{2}-m_{+}^{2}+e_{+}^{2}\right)\left(\ell e_{-}+m_{-} e_{+}\right) \\
& f_{2}=2 e_{+} S_{0}+2\left(\ell+m_{+}\right)\left(\ell^{2}-m_{+}^{2}+e_{+}^{2}\right)\left(\ell e_{-}+m_{-} e_{+}\right) \\
& \tilde{f}_{1}=-\left(m_{+}+m_{-}\right)\left[\left(\ell+m_{+}\right)^{2}-e_{+}^{2}\right]\left[m_{+}\left(\ell e_{+}+m_{-} e_{-}\right)\right. \\
& \left.-m_{-}\left(\ell e_{-}+m_{-} e_{+}\right)\right]+\ell\left(e_{+}+e_{-}\right) S_{1} \\
& \tilde{f}_{2}=\left(m_{+}-m_{-}\right)\left[\left(\ell+m_{+}\right)^{2}-e_{+}^{2}\right]\left[m_{+}\left(\ell_{+}+m_{-} e_{-}\right)\right. \\
& \left.-m_{-}\left(\ell e_{-}+m_{-} e_{+}\right)\right]+\ell\left(e_{+}-e_{-}\right) S_{2}
\end{aligned}
$$

Equilibrum configurations of iwo Reissner - Nordstrom sources

$$
\begin{aligned}
& g_{t t}=\frac{\left[\left(r_{1}-m_{1}\right)^{2}-\sigma_{1}^{2}+\gamma^{2} \sin ^{2} \theta_{2}\right]\left[\left(r_{2}-m_{2}\right)^{2}-\sigma_{2}^{2}+\gamma^{2} \sin ^{2} \theta_{1}\right]}{\left[r_{1} r_{2}-\left(q_{1}-\gamma \cos \theta_{2}\right)\left(q_{2}-\gamma \cos \theta_{1}\right)\right]^{2}}, \\
& A_{t}=\frac{q_{1}\left(r_{2}-m_{2}\right)+q_{2}\left(r_{1}-m_{1}\right)+\gamma\left(m_{1} \cos \theta_{1}+m_{2} \cos \theta_{2}\right)}{r_{1} r_{2}-\left(q_{1}-\gamma \cos \theta_{2}\right)\left(q_{2}-\gamma \cos \theta_{1}\right)}, \\
& f=\frac{\left[r_{1} r_{2}-\left(q_{1}-\gamma \cos \theta_{2}\right)\left(q_{2}-\gamma \cos \theta_{1}\right)\right]^{2}}{\left.\left(r_{1}-m_{1}\right)^{2}-\sigma_{1}^{2} \cos ^{2} \theta_{1}\right]\left[\left(r_{2}-m_{2}\right)^{2}-\sigma_{2}^{2} \cos ^{2} \theta_{2}\right]}
\end{aligned}
$$

## In equilibrium

$$
m_{1} m_{2}=q_{1} q_{2}
$$


$q_{2}=e_{2}+\gamma$
$\left\{m_{1}, m_{2}, q_{1}, q_{2}, \gamma\right\}$


## Changed black holle accellerated by homogeneous electric field



## Reissner - Nordstrom black hole in a homogeneous electric field

Formal solution for metric and electromagnetic potential:

$$
\begin{aligned}
H & =\frac{\left(x_{1}^{2}+b^{2}\right)\left(x_{2}^{2}-\sigma^{2}\right) \mathbf{A}\left(x_{1}, x_{2}\right)}{\left(b^{2} x_{2}^{2}+\sigma^{2} x_{1}^{2}\right)^{2} \mathbf{p}^{2}\left(x_{1}, x_{2}\right) \mathbf{q}^{2}\left(x_{1}, x_{2}\right)} \\
\Phi & =\frac{\mathbf{B}\left(x_{1}, x_{2}\right)}{\left(b^{2} x_{2}^{2}+\sigma^{2} x_{1}^{2}\right) \mathbf{p}\left(x_{1}, x_{2}\right) \mathbf{q}\left(x_{1}, x_{2}\right)}
\end{aligned}
$$

Auxiliary polynomials:

$$
\begin{aligned}
\mathbf{p}\left(x_{1}, x_{2}\right) & =e^{2}\left(x_{1}^{2}+b^{2}\right)-\left[(\ell+m)^{2}+b^{2}\right]\left(x_{2}^{2}-\sigma^{2}\right) \\
\mathbf{q}\left(x_{1}, x_{2}\right) & =\left[\ell^{2}-\left(x_{1}-x_{2}\right)^{2}\left[m \sqrt{(\ell+m)^{2}+b^{2}}+e(\ell+m)\right]^{2}+\right. \\
& +\left[x_{1}^{2} \sigma^{2}-b^{2} x_{2}^{2}+\left(\ell^{2}+b^{2}-\sigma^{2}\right) x_{1} x_{2}\right] \times \\
& \times\left[\sqrt{(\ell+m)^{2}+b^{2}}+e\right]^{2}-x_{1} x_{2}\left[\left(\ell^{2}+b^{2}-\sigma^{2}\right)^{2}+4 b^{2} \sigma^{2}\right],
\end{aligned}
$$

$$
\sigma^{2}=m^{2}-e^{2}
$$

## Black hole in external electromagnetic field

Balance of forces
In Newtonian mechanics

Regularity of space-time geometry in General Relativity

## Charged black hole accelerated by the external homogeneous electric field




