Infinite discrete symmetries near singularities and modular forms

Axel Kleinschmidt (Albert Einstein Institute, Potsdam)

IHES, January 26, 2012

Based on work with:

Philipp Fleig, Michael Koehn, Hermann Nicolai and Jakob Palmkvist

[KKN = Phys. Rev. **D80** (2009) 061701(R), arXiv:0907.3048]

[KNP = arXiv:1010.2212]

[FK, to be published]

Context and Plan

Hidden symmetries and cosmological billiards in supergravity [Damour, Henneaux 2000; Damour, Henneaux, Nicolai 2002]

Minisuperspace models for quantum gravity and quantum cosmology [DeWitt 1967; Misner 1969]

U-dualities constraining string scattering amplitudes [Green, Gutperle 1997; Green, Miller, Russo, Vanhove 2010; Pioline 2010]

Context and Plan

Hidden symmetries and cosmological billiards in supergravity [Damour, Henneaux 2000; Damour, Henneaux, Nicolai 2002]

Minisuperspace models for quantum gravity and quantum cosmology [DeWitt 1967; Misner 1969]

U-dualities constraining string scattering amplitudes [Green, Gutperle 1997; Green, Miller, Russo, Vanhove 2010; Pioline 2010]

<u>Plan</u>

- Cosmological billiards and their symmetries
- Quantum cosmological billiards: arithmetic structure
- Modular forms for hyperbolic Weyl groups and infinite Chevalley groups
- Generalization and outlook

Cosmological billards: BKL

Supergravity dynamics near a space-like singularity simplify.

[Belinskii, Khalatnikov, Lifshitz 1970; Misner 1969; Chitre 1972]

Spatial points decouple $\stackrel{\text{(conj.)}}{\Rightarrow}$ dynamics becomes ultra-local. Reduction of degress of freedom to spatial scale factors β^a

$$ds^{2} = -N^{2}dt^{2} + \sum_{a=1}^{d} e^{-2\beta^{a}} dx_{a}^{2} \qquad (t \sim -\log T)$$

Cosmological billiards: Dynamics

Effective Lagrangian for $\beta^{a}(t)$ (a = 1, ..., d)

$$\mathcal{L} = \frac{1}{2} \sum_{a,b=1}^{d} n^{-1} G_{ab} \dot{\beta}^a \dot{\beta}^b - V_{\text{eff}}(\beta)$$

 $\begin{bmatrix} G_{ab} \\ C_{ab} \\$

Close to the singularity V_{eff} consists of infinite potentials walls, obstructing free null motion of β^a .

Cosmological billiards: Dynamics

Effective Lagrangian for $\beta^{a}(t)$ (a = 1, ..., d)

$$\mathcal{L} = \frac{1}{2} \sum_{a,b=1}^{d} n^{-1} G_{ab} \dot{\beta}^a \dot{\beta}^b - V_{\text{eff}}(\beta)$$

G_{ab}: DeWitt metric (Lorentzian signature)

Close to the singularity V_{eff} consists of infinite potentials walls, obstructing free null motion of β^a .

Resulting billiard geometry that of E_{10} Weyl chamber (D = 11, type (m)IIA and IIB).

[Damour, Henneaux 2000]

Cosmological billiards: Geometry

The sharp billiard walls come from

$$V_{\text{eff}}(\beta) = \sum_{A} c_A e^{-2w_A(\beta)}$$

with $w_A(\beta)$ a set of linear forms on β -space. For $G_{ab}\beta^a\beta^b \rightarrow -\infty$ (towards the singularity) the potential term becomes 0 or ∞ , defining two sides of a wall.

Cosmological billiards: Geometry

The sharp billiard walls come from

$$V_{\text{eff}}(\beta) = \sum_{A} c_A e^{-2w_A(\beta)}$$

with $w_A(\beta)$ a set of linear forms on β -space. For $G_{ab}\beta^a\beta^b \rightarrow -\infty$ (towards the singularity) the potential term becomes 0 or ∞ , defining two sides of a wall.

For the dominant terms $c_A \ge 0$ [Damour, Henneaux, Nicolai 2002]. Furthermore, the scalar product between the normals to those faces coincides with E_{10} Cartan matrix.

Associated E_{10} Weyl group $W(E_{10})$ are the symmetries of the unique even self-dual lattice $II_{9,1} = \Lambda_{E_8} \oplus II_{1,1}$.

Finite (hyperbolic) volume \Rightarrow Chaos! [Damour, Henneaux 2000]

Quantum cosmological billiards

Setting n = 1 one has to quantize

$$\mathcal{L} = \frac{1}{2} \sum_{a,b=1}^{d} \dot{\beta}^{a} G_{ab} \dot{\beta}^{b} = \frac{1}{2} \left[\sum_{a=1}^{d} (\dot{\beta}^{a})^{2} - \left(\sum_{a=1}^{d} \dot{\beta}^{a} \right)^{2} \right]$$

with null constraint $\dot{\beta}^a G_{ab} \dot{\beta}^b = 0$ on billiard domain.

Canonical momenta: $\pi_a = G_{ab}\dot{\beta}^b \Rightarrow \mathcal{H} = \frac{1}{2}\pi_a G^{ab}\pi_b.$

Quantum cosmological billiards

Setting n = 1 one has to quantize

$$\mathcal{L} = \frac{1}{2} \sum_{a,b=1}^{d} \dot{\beta}^{a} G_{ab} \dot{\beta}^{b} = \frac{1}{2} \left[\sum_{a=1}^{d} (\dot{\beta}^{a})^{2} - \left(\sum_{a=1}^{d} \dot{\beta}^{a} \right)^{2} \right]$$

with null constraint $\dot{\beta}^a G_{ab} \dot{\beta}^b = 0$ on billiard domain.

Canonical momenta: $\pi_a = G_{ab}\dot{\beta}^b \Rightarrow \mathcal{H} = \frac{1}{2}\pi_a G^{ab}\pi_b.$

Wheeler–DeWitt (WDW) equation in canonical quantization

$$\mathcal{H}\Psi(\beta) = -\frac{1}{2}G^{ab}\partial_a\partial_b\Psi(\beta) = 0$$

Klein–Gordon 'inner product'.

Quantum cosmological billiards (II)

Introduce new coordinates ρ and $\omega^a(z)$ from 'radius' and coordinates *z* on unit hyperboloid

$$\beta^{a} = \rho \omega^{a}, \quad \omega^{a} G_{ab} \omega^{b} = -1$$
$$\rho^{2} = -\beta^{a} G_{ab} \beta^{b}$$

Quantum cosmological billiards (II)

Introduce new coordinates ρ and $\omega^a(z)$ from 'radius' and coordinates *z* on unit hyperboloid

$$\beta^{a} = \rho \omega^{a} , \quad \omega^{a} G_{ab} \omega^{b} = -1$$
$$\rho^{2} = -\beta^{a} G_{ab} \beta^{b}$$

Timeless WDW equation in these variables

$$\left[-\rho^{1-d}\frac{\partial}{\partial\rho}\left(\rho^{d-1}\frac{\partial}{\partial\rho}\right)+\rho^{-2}\Delta_{\mathsf{LB}}\right]\Psi(\rho,z)=0$$

Laplace–Beltrami operator on unit hyperboloid

Solving the WDW equation

$$\left[-\rho^{1-d}\frac{\partial}{\partial\rho}\left(\rho^{d-1}\frac{\partial}{\partial\rho}\right)+\rho^{-2}\Delta_{\mathsf{LB}}\right]\Psi(\rho,z)=0$$

Separation of variables: $\Psi(\rho, z) = R(\rho)F(z)$

For

$$-\Delta_{\rm LB}F(z) = EF(z)$$

get

$$R_{\pm}(\rho) = \rho^{-\frac{d-2}{2} \pm i\sqrt{E - \left(\frac{d-2}{2}\right)^2}}$$

[Positive frequency coming out of singularity is $R_{-}(\rho)$.]

Left with spectral problem on hyperbolic space.

Δ_{LB} and boundary conditions

The classical billiard ball is constrained to Weyl chamber with infinite potentials \Rightarrow Dirichlet boundary conditions

Use upper half plane model

 $z = (\vec{u}, v), \quad \vec{u} \in \mathbb{R}^{d-2}, v \in \mathbb{R}_{>0}$

$$\Rightarrow \quad \Delta_{\mathsf{LB}} = v^{d-1} \partial_v (v^{3-d} \partial_v) + v^2 \partial_{\vec{u}}^2$$

Δ_{LB} and boundary conditions

The classical billiard ball is constrained to Weyl chamber with infinite potentials \Rightarrow Dirichlet boundary conditions

Use upper half plane model

 $z = (\vec{u}, v), \quad \vec{u} \in \mathbb{R}^{d-2}, v \in \mathbb{R}_{>0}$

$$\Rightarrow \quad \Delta_{\mathsf{LB}} = v^{d-1} \partial_v (v^{3-d} \partial_v) + v^2 \partial_{\vec{u}}^2$$

With Dirichlet boundary conditions (d = 3 in [Iwaniec])

$$-\Delta_{\mathsf{LB}}F(z) = EF(z) \quad \Rightarrow \quad E \ge \left(\frac{d-2}{2}\right)^2$$

Arithmetic structure (I)

Beyond general inequality details of spectrum depend on shape of domain. ('Shape of the drum' problem)

_1

Ω

2

З

Focus on maximal supergravity (d = 10). Domain is determined by E_{10} Weyl group.

8

5

Arithmetic structure (I)

Beyond general inequality details of spectrum depend on shape of domain. ('Shape of the drum' problem)

Focus on maximal supergravity (d = 10). Domain is determined by E_{10} Weyl group.

9-dimensional upper half plane with octonions: $u \equiv \vec{u} \in \mathbb{O}$

ñ

On z = u + iv the ten fundamental Weyl reflections act by

$$w_{-1}(z) = \frac{1}{\overline{z}}, \ w_0(z) = -\overline{z} + 1, \ w_j(z) = -\varepsilon_j \overline{z} \varepsilon_j$$

 ε_j simple E_8 rts. [Feingold, AK, Nicolai 2008]

5

З

Arithmetic structure (II)

Iterated action of

$$w_{-1}(z) = \frac{1}{\overline{z}}, \ w_0(z) = -\overline{z} + 1, \ w_j(z) = -\varepsilon_j \overline{z} \varepsilon_j$$

generates whole Weyl group $W(E_{10})$.

Even Weyl group $W^+(E_{10})$ gives 'holomorphic' maps

 $W^+(E_{10}) = PSL_2(\mathbf{0}).$

Modular group over the integer 'octavians' 0.

[Example of family of isomorphisms between hyperbolic Weyl groups and modular groups over division algebras [Feingold, AK, Nicolai 2008].]

Modular wavefunctions (I)

Weyl reflections on wavefunction $\Psi(\rho, z)$

$$\Psi(
ho, w_I \cdot z) = \left\{ egin{array}{cc} +\Psi(
ho, z) & {
m Neumann \ b.c.} \\ -\Psi(
ho, z) & {
m Dirichlet \ b.c.} \end{array}
ight.$$

Use Weyl symmetry to define $\Psi(\rho, z)$ on the whole upper half plane, with Dirichlet boundary conditions $\Rightarrow \Psi(\rho, z)$ is

Modular wavefunctions (I)

Weyl reflections on wavefunction $\Psi(\rho, z)$

$$\Psi(
ho, w_I \cdot z) = \left\{ egin{array}{cc} +\Psi(
ho, z) & {
m Neumann \ b.c.} \\ -\Psi(
ho, z) & {
m Dirichlet \ b.c.} \end{array}
ight.$$

Use Weyl symmetry to define $\Psi(\rho, z)$ on the whole upper half plane, with Dirichlet boundary conditions $\Rightarrow \Psi(\rho, z)$ is

- Sum of eigenfunctions of Δ_{LB} on UHP
- Invariant under action of $W^+(E_{10}) = PSL_2(0)$. Anti-invariant under extension to $W(E_{10})$.

Modular wavefunctions (I)

Weyl reflections on wavefunction $\Psi(\rho, z)$

$$\Psi(
ho, w_I \cdot z) = \left\{ egin{array}{cc} +\Psi(
ho, z) & {
m Neumann \ b.c.} \\ -\Psi(
ho, z) & {
m Dirichlet \ b.c.} \end{array}
ight.$$

Use Weyl symmetry to define $\Psi(\rho, z)$ on the whole upper half plane, with Dirichlet boundary conditions $\Rightarrow \Psi(\rho, z)$ is

- Sum of eigenfunctions of Δ_{LB} on UHP
- Invariant under action of $W^+(E_{10}) = PSL_2(0)$.
 Anti-invariant under extension to $W(E_{10})$.
 - \Rightarrow Wavefunction is an odd Maass wave form of $PSL_2(0)$

[cf. [Forte 2008] for related ideas for Neumann conditions]

Modular wavefunctions (II)

The spectrum of odd Maass wave forms is (presumably) discrete but not known. For $PSL_2(0)$ the theory is not even developed (but see [Krieg]).

For lower dimensional cases like pure (3 + 1)-dimensional Einstein gravity with $PSL_2(\mathbb{Z})$ there are many numerical investigations. [Graham, Szépfalusy 1990; Steil 1994; Then 2003]

The result relevant here later is the inequality $E \ge \left(\frac{d-2}{2}\right)^2$.

Modular wavefunctions (II)

The spectrum of odd Maass wave forms is (presumably) discrete but not known. For $PSL_2(0)$ the theory is not even developed (but see [Krieg]).

For lower dimensional cases like pure (3 + 1)-dimensional Einstein gravity with $PSL_2(\mathbb{Z})$ there are many numerical investigations. [Graham, Szépfalusy 1990; Steil 1994; Then 2003]

The result relevant here later is the inequality $E \ge \left(\frac{d-2}{2}\right)^2$.

Summary of analysis so far:

Quantum billiard wavefunction $\Psi(\rho, z)$ is an odd Maass wave form (Dirichlet b.c.) for $PSL_2(0)$.

Interpretation (I)

Interpretation (I)

'Wavefunction of the universe' in this set-up formally

 $|\Psi_{\rm full}\rangle = \prod_{\bf x} |\Psi_{\bf x}\rangle$

Product of quantum cosmological billiard wavefunctions, one for each spatial point (ultra-locality). [Also [Kirillov 1995]]

Interpretation (I)

'Wavefunction of the universe' in this set-up formally

$$|\Psi_{\rm full}\rangle = \prod_{\bf x} |\Psi_{\bf x}\rangle$$

Product of quantum cosmological billiard wavefunctions, one for each spatial point (ultra-locality). [Also [Kirillov 1995]]

Each factor contains a Maass wave form of the type $\Psi_{\mathbf{x}}(\rho, z) = \sum R_{\pm}(\rho)F(z)$ with

$$-\Delta_{\mathsf{LB}}F(z) = EF(z), \quad R_{\pm}(\rho) = \rho^{-\frac{d-2}{2}\pm i\sqrt{E-(\frac{d-2}{2})^2}}$$

Since $E \ge \left(\frac{d-2}{2}\right)^2$: $\Psi_{\mathbf{x}}(\rho, z) \to 0$ but cx. for $\rho \to \infty$

Interpretation (II)

- Absence of potential: ∃ a well-defined Hilbert space with positive definite metric.
- The wavefunction vanishes at the singularity. But it remains oscillating and complex. No bounce.
 > Vanishing wavefunctions on singular geometries are one possible boundary condition. [DeWitt 1967]
- Complexity and notion of positive frequency → Arrow of time? [Isham 1991; Barbour 1993]
- Semi-classical' states are expected to spread (quantum ergodicity). Numerical investigations, e.g. [Koehn 2011]

Generalization (I)

Generalization (I)

Classical cosmological billiards led to the E_{10} conjecture.

D = 11 supergravity can be mapped to a constrained null geodesic motion on infinite-dimensional $E_{10}/K(E_{10})$ coset Space. [Damour, Henneaux, Nicolai 2002]

Generalization (I)

Classical cosmological billiards led to the E_{10} conjecture.

D = 11 supergravity can be mapped to a constrained null geodesic motion on infinite-dimensional $E_{10}/K(E_{10})$ coset Space. [Damour, Henneaux, Nicolai 2002]

Symmetric space $E_{10}/K(E_{10})$ has $10 + \infty$ many directions. Cartan subalgebra pos. step operators

Generalization (II)

Features of the conjectured E_{10} correspondence

- Billiard corresponds to 10 Cartan subalgebra generators
- many step operators correspond to remaining fields and spatial dependence. [Verified only at low 'levels' but for many different models]
- Space dependence introduced via *dual fields* (cf. Geroch group) — everything in terms of kinetic terms
- Space (de-)emergent via an algebraic mechanism
- Extension to E_{10} overcomes ultra-locality
- Appears that only supergravity captured; no higher spin fields [Henneaux, AK, Nicolai 2011]

Generalization (III)

$$\mathcal{H}_{\mathsf{Bill}} \to \mathcal{H} \equiv \mathcal{H}_{\mathsf{Bill}} + \sum_{\alpha \in \Delta_+(E_{10})} e^{-2\alpha(\beta)} \sum_{s=1}^{\mathsf{mult}(\alpha)} \Pi_{\alpha,s}^2$$

is the unique quadratic E_{10} Casimir. Formally like free Klein–Gordon; positive norm could remain consistent?

Generalization (III)

$$\mathcal{H}_{\mathsf{Bill}} \to \mathcal{H} \equiv \mathcal{H}_{\mathsf{Bill}} + \sum_{\alpha \in \Delta_+(E_{10})} e^{-2\alpha(\beta)} \sum_{s=1}^{\mathsf{mult}(\alpha)} \Pi_{\alpha,s}^2$$

is the unique quadratic E_{10} Casimir. Formally like free Klein–Gordon; positive norm could remain consistent?

Full theory has more constraints than the Hamiltonian $(\mathcal{H}\Psi = 0)$ constraint: diff, Gauss, etc.

- Global E_{10} symmetry provides ∞ conserved charges \mathcal{J}
- Evidence that constraints can be written as bilinears $\mathfrak{L} \sim \mathcal{JJ}$. [Damour, AK, Nicolai 2007; 2009]
- Analogy with affine Sugawara construction. Particularly useful for implementation as quantum constraints?

<u>Aim</u>: Quantize geodesic model!

Poincaré series for $PSL_2(\mathbf{0})$ (I)

Poincaré series for $W^+(E_{10}) = PSL_2(0)$ defined by

$$\mathcal{P}_s(z) = \sum_{\gamma \in W^+(E_9) \setminus W^+(E_{10})} I_s(\gamma(z))$$

with z = u + iv and $I_s(z) = v^s$. $W^+(E_9)$ stabilises cusp at infinity. Converges for Re(s) > 4. \mathcal{P}_s is eigenfunction of Δ_{LB} .

Cosets can be given an explicit octonionic description [KNP]. Result is

$$\mathcal{P}_s(z) = \frac{1}{240} \sum_{c,d \in \mathbf{O} \text{ left coprime}} \frac{v^s}{|cz+d|^{2s}}$$

'Left-coprimality' is defined via Euclidean algortihm [KNP].

Poincaré series for $PSL_2(0)$ (II)

In terms of unrestricted sum

$$\sum_{(c,d)\in\mathbf{O}^2\setminus\{(0,0)\}} \frac{v^s}{|cz+d|^{2s}} = \zeta_0(s) \frac{1}{240} \sum_{c,d\in\mathbf{O} \text{ left coprime}} \frac{v^s}{|cz+d|^{2s}}$$

Dedekind Zeta, related to E_8 Theta

Fourier expansion

$$\mathcal{P}_{s}(z) = v^{s} + a(s)v^{8-s} + v^{4} \sum_{\mu \in \mathbf{0}^{*} \setminus \{0\}} a_{\mu}K_{s-4}(2\pi|\mu|v)e^{2\pi i\mu(u)}$$

- Only abelian Fourier modes, only two constant terms
- Functional relation (?): $\xi_0(s)\mathcal{P}_s(z) = \xi_0(8-s)\mathcal{P}_{8-s}(z)$
- Neumann boundary conditions

Eisenstein series for $E_9(\mathbb{Z})$ and $E_{10}(\mathbb{Z})$ (I)

Eisenstein series for $E_9(\mathbb{Z})$ and $E_{10}(\mathbb{Z})$ (I)

[work in progress... [FK]]

String theory seems to require $E_{10}(\mathbb{Z}) \supset W(E_{10})$ [Hull,

Townsend 1995; Ganor 1999].

For smaller rank [Green, Gutperle 1997; Obers, Pioline 1998;

Green, Miller, Russo, Vanhove 2010].

Eisenstein series for $E_9(\mathbb{Z})$ and $E_{10}(\mathbb{Z})$ (I)

[work in progress... [FK]]

String theory seems to require $E_{10}(\mathbb{Z}) \supset W(E_{10})$ [Hull, Townsend 1995; Ganor 1999]. For smaller rank [Green, Gutperle 1997; Obers, Pioline 1998; Green, Miller, Russo, Vanhove 2010].

Eisenstein series for the Chevalley groups $E_n(\mathbb{Z})$, n > 8?

Very little literature on the subject... But [Garland 2001]. Affine case $G = E_9$:

$$E_{\lambda}^{G}(g,r) = \sum_{\gamma \in B(\mathbb{Z}) \setminus G(\mathbb{Z})} e^{\langle \lambda + \rho, H(\gamma g e^{rD}) \rangle}$$

g does not include derivation D.

Eisenstein series for $E_9(\mathbb{Z})$ and $E_{10}(\mathbb{Z})$ (II)

Constant term (in minimal parabolic) [Langlands; Garland]

Eisenstein series for $E_9(\mathbb{Z})$ and $E_{10}(\mathbb{Z})$ (II)

Constant term (in minimal parabolic) [Langlands; Garland]

Affine Weyl group is infinite but for special values of λ , the infinite sum collapses since $M(w, \lambda) = 0$. For $\lambda = 2s\Lambda_i - \rho$ this can only happen for $2s \in \mathbb{Z}$.

Eisenstein series for $E_9(\mathbb{Z})$ and $E_{10}(\mathbb{Z})$ (II)

Constant term (in minimal parabolic) [Langlands; Garland]

Affine Weyl group is infinite but for special values of λ , the infinite sum collapses since $M(w, \lambda) = 0$. For $\lambda = 2s\Lambda_i - \rho$ this can only happen for $2s \in \mathbb{Z}$.

Assume same formal expression for $E_{10}(\mathbb{Z})$...

Constant terms for $E_9(\mathbb{Z})$ and $E_{10}(\mathbb{Z})$

Example: $\Lambda_i = \Lambda_*$

	s = 1/2	s = 1	s = 3/2	s = 2	s = 5/2	s = 3
E_7	2	126	8	14	35	56
E_8	2	2160	9	16	44	72
E_9	2	∞	10	18	54	90
E_{10}	2	∞	11	20	65	110

Constant terms in maximal parabolic can also be evaluated.

Full Fourier decomposition (constant + abelian + non-abelian)?

Summary and outlook

Done:

- Quantum cosmological billiards wavefunctions involve automorphic forms of PSL₂(0)
- Extendable to supersymmetric case
- Studied parts of modular forms for $W^+(E_{10})$ and $E_{10}(\mathbb{Z})$

Summary and outlook

Done:

- Quantum cosmological billiards wavefunctions involve automorphic forms of $PSL_2(0)$
- Extendable to supersymmetric case
- Studied parts of modular forms for $W^+(E_{10})$ and $E_{10}(\mathbb{Z})$ To do:
 - Construct wavefunctions (with Dirichlet boundary conditions)?
 - Include more variables $\Rightarrow E_{10}$ coset model? Constraints? Observables?
 - Understand $E_9(\mathbb{Z})$ and $E_{10}(\mathbb{Z})$ modular forms better and relation to string scattering

Summary and outlook

Done:

- Quantum cosmological billiards wavefunctions involve automorphic forms of PSL₂(0)
- Extendable to supersymmetric case
- Studied parts of modular forms for $W^+(E_{10})$ and $E_{10}(\mathbb{Z})$ To do:
 - Construct wavefunctions (with Dirichlet boundary conditions)?
 - Include more variables $\Rightarrow E_{10}$ coset model? Constraints? Observables?
 - Understand E₉(Z) and E₁₀(Z) modular forms better and relation to string scattering
 Thank you for your attention!

More on hyperbolic Weyl groups (I)

Consider only over-extended hyperbolic algebras \mathfrak{g}^{++} (rank(\mathfrak{g}) $\equiv \ell = 1, 2, 4, 8$). Their root lattices can be realized in $R^{1,1+\ell} \cong H_2(\mathbb{K})$ for a normed division algebra \mathbb{K}

 $(\mathbf{X}_1|\mathbf{X}_2) = -\det(\mathbf{X}_1 + \mathbf{X}_2) + \det(\mathbf{X}_1) + \det(\mathbf{X}_2), \quad \mathbf{X}_i \in H_2(\mathbb{K})$

More on hyperbolic Weyl groups (I)

Consider only over-extended hyperbolic algebras \mathfrak{g}^{++} (rank(\mathfrak{g}) $\equiv \ell = 1, 2, 4, 8$). Their root lattices can be realized in $R^{1,1+\ell} \cong H_2(\mathbb{K})$ for a normed division algebra \mathbb{K}

 $(\mathbf{X}_1|\mathbf{X}_2) = -\det(\mathbf{X}_1 + \mathbf{X}_2) + \det(\mathbf{X}_1) + \det(\mathbf{X}_2), \quad \mathbf{X}_i \in H_2(\mathbb{K})$

Choose a_i ($i = 1, \ldots, \ell$) such that

 $a_i \bar{a}_j + a_j \bar{a}_i = Cartan matrix of g$

Prop 1. \mathfrak{g}^{++} Cartan matrix from simple roots

$$\alpha_{-1} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad \alpha_0 = \begin{pmatrix} -1 & -\theta \\ -\bar{\theta} & 0 \end{pmatrix}, \quad \alpha_i = \begin{pmatrix} 0 & a_i \\ \bar{a}_i & 0 \end{pmatrix}$$

More on hyperbolic Weyl groups (II)

<u>Thm 1</u>. Fundamental Weyl reflections of $W \equiv W(g^{++})$ are

 $w_I(\mathbf{X}) = M_I \bar{\mathbf{X}} M_I^{\dagger} \quad , \ I = -1, 0, 1, \dots, \ell$

with unit versions of \mathfrak{g} simple roots $\varepsilon_i = a_i / \sqrt{N(a_i)}$ and

$$M_{-1} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad M_0 = \begin{pmatrix} -\theta & 1 \\ 0 & \overline{\theta} \end{pmatrix}, \quad M_i = \begin{pmatrix} \varepsilon_i & 0 \\ 0 & -\overline{\varepsilon_i} \end{pmatrix}$$

More on hyperbolic Weyl groups (II)

<u>Thm 1</u>. Fundamental Weyl reflections of $W \equiv W(g^{++})$ are

 $w_I(\mathbf{X}) = M_I \bar{\mathbf{X}} M_I^{\dagger} \quad , \ I = -1, 0, 1, \dots, \ell$

with unit versions of \mathfrak{g} simple roots $\varepsilon_i = a_i / \sqrt{N(a_i)}$ and

$$M_{-1} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad M_0 = \begin{pmatrix} -\theta & 1 \\ 0 & \overline{\theta} \end{pmatrix}, \quad M_i = \begin{pmatrix} \varepsilon_i & 0 \\ 0 & -\overline{\varepsilon_i} \end{pmatrix}$$

<u>Remarks</u>

- Formula well-defined for all \mathbb{K} , including octonions
- Involves complex conjugation of X
- $\varepsilon_i \neq a_i$ only if g not simply laced

More on hyperbolic Weyl groups (III)

For generalizations of modular group $PSL_2(\mathbb{Z})$ need <u>Thm 2</u>. Even Weyl group $W^+ \equiv W^+(\mathfrak{g}^{++})$ generated by

$$(w_{-1}w_i)(\mathbf{X}) = S_i \mathbf{X} S_i^{\dagger} , \ i = 0, 1, \dots, \ell$$

with

$$S_0 = \begin{pmatrix} 0 & \theta \\ -\bar{\theta} & 1 \end{pmatrix}, \quad S_i = \begin{pmatrix} 0 & -\varepsilon_i \\ \bar{\varepsilon}_i & 0 \end{pmatrix}$$

More on hyperbolic Weyl groups (III)

For generalizations of modular group $PSL_2(\mathbb{Z})$ need <u>Thm 2</u>. Even Weyl group $W^+ \equiv W^+(\mathfrak{g}^{++})$ generated by

$$(w_{-1}w_i)(\mathbf{X}) = S_i \mathbf{X} S_i^{\dagger} , \ i = 0, 1, \dots, \ell$$

with

$$S_0 = \begin{pmatrix} 0 & \theta \\ -\bar{\theta} & 1 \end{pmatrix}, \quad S_i = \begin{pmatrix} 0 & -\varepsilon_i \\ \bar{\varepsilon}_i & 0 \end{pmatrix}$$

Remarks

- Formula well-defined for all K, including octonions
- If det. were defined: det S = 1, cf. $W^+ \subset SO(1, \ell + 1; \mathbb{R})$
- Does not involve complex conjugation of X \implies matrix subgroups of $PSL_2(\mathbb{K})$ in associative cases!

List of hyperbolic Weyl groups

\mathbb{K}	g	'Ring'	$W(\mathfrak{g})$	$W^+(\mathfrak{g}^{++})$
\mathbb{R}	A_1	\mathbb{Z}	$2 \equiv \mathbb{Z}_2$	$PSL_2(\mathbb{Z})$
\mathbb{C}	A_2	Eisenstein E	$\mathbb{Z}_3 \rtimes 2$	$PSL_2(E)$
\mathbb{C}	$B_2 \equiv C_2$	Gaussian G	$\mathbb{Z}_4 \rtimes 2$	$PSL_2(\mathbf{G}) \rtimes 2$
\mathbb{C}	G_2	Eisenstein E	$\mathbb{Z}_6 \rtimes 2$	$PSL_2(\mathbf{E}) \rtimes 2$
\mathbb{H}	A_4	Icosians I	\mathfrak{S}_5	$PSL_2^{(0)}(I)$
\mathbb{H}	B_4	Octahedral R	$2^4 \rtimes \mathfrak{S}_4$	$PSL_2^{(0)}(\mathbf{H}) \rtimes 2$
\mathbb{H}	C_4	Octahedral R	$2^4 \rtimes \mathfrak{S}_4$	$\widetilde{PSL}_2^{(0)}(\mathbf{H}) \rtimes 2$
\mathbb{H}	D_4	Hurwitz H	$2^3 \rtimes \mathfrak{S}_4$	$PSL_2^{(0)}(\mathbf{H})$
\mathbb{H}	F_4	Octahedral R	$2^5 \rtimes (\mathfrak{S}_3 \times \mathfrak{S}_3)$	$PSL_2(\mathbf{H}) \rtimes 2$
\bigcirc	E_8	Octavians 0	$2.O_8^+(2).2$	$PSL_2(0)$