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Context and Plan

Hidden symmetries and cosmological billiards in super-
gravity [Damour, Henneaux 2000; Damour, Henneaux, Nicolai 2002]

Minisuperspace models for guantum gravity and quantum
cosmology [pewitt 1967; Misner 1969]

U-dualities constraining string scattering amplitudes [Green,
Gutperle 1997; Green, Miller, Russo, Vanhove 2010; Pioline 2010]
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Context and Plan

Hidden symmetries and cosmological billiards in super-
gravity [Damour, Henneaux 2000; Damour, Henneaux, Nicolai 2002]

Minisuperspace models for guantum gravity and quantum
cosmology [pewitt 1967; Misner 1969]

U-dualities constraining string scattering amplitudes [Green,
Gutperle 1997; Green, Miller, Russo, Vanhove 2010; Pioline 2010]

Plan

# Cosmological billiards and their symmetries

# Quantum cosmological billiards: arithmetic structure
o

Modular forms for hyperbolic Weyl groups and infinite
Chevalley groups

® Generalization and outlook
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Cosmological billards: BKL

Supergravity dynamics near a space-like singularity simplify.
[Belinskii, Khalatnikov, Lifshitz 1970; Misner 1969; Chit re 1972]

Spatial points decouple (o)) dynamics becomes ultra-local.
Reduction of degress of freedom to spatial scale factors 3

d
ds® = —N?dt* + Z e~ 27" da? (t ~ —logT)

a=1
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Cosmological billiards: Dynamics

Effective Lagrangian for g%(t) (a = 1,...,d)

d
1 _ . G, DeWitt metri
L=5 ) 1 GaBB — Ver(h) " (Lorentzian i

(Lorentzian signature)
a,b=1

Close to the singularity Vg« con- 5.
sists of infinite potentials walls,
obstructing free null motion of 3.
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Cosmological billiards: Dynamics

Effective Lagrangian for g%(¢) (a = 1,...,d)

d
1 1 ca b Gy DeWitt metric
L = 5 Z n Ggb 8 — Veff(ﬁ) (Lorentzian signature)
a,b=1

Close to the singularity Vg« con-
sists of infinite potentials walls,
obstructing free null motion of 3.

Billiard table
=F'10 Weyl chamber

Resulting billiard geometry that
of o Weyl chamber (D = 11,
type (m)IIA and IIB).

[Damour, Henneaux 2000]
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Cosmological billiards: Geometry

The sharp billiard walls come from

Vert(B) = Z cae”2wald)

A

with w4 () a set of linear forms on j-space. For

G55 — —oo (towards the singularity) the potential term
becomes 0 or oo, defining two sides of a wall.
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Cosmological billiards: Geometry

The sharp billiard walls come from

Vert(B) = Z cae”2wald)

A

with w4 () a set of linear forms on j-space. For

G55 — —oo (towards the singularity) the potential term
becomes 0 or oo, defining two sides of a wall.

For the dominant terms cA > 0 [Damour, Henneaux, Nicolai 2002]
Furthermore, the scalar product between the normals to
those faces coincides with £y Cartan matrix.

Associated E1op Weyl group W (E7p) are the symmetries of
the unique even self-dual lattice 11y = Ap, & 11 ;.

Finite (hyperbollc) volume = Chaos! [Damour, Henneaux 2000]
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Quantum cosmological billiards

Setting » = 1 one has to quantize

d

1 a Hb
L=5 ) BGaf =3

a,b=1

1

d

> (6~

a=1

o

()

with null constraint 5°G,;,/5° = 0 on billiard domain.

Canonical momenta: 7, = G,;/3"

= M = 5mGm,.
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Quantum cosmological billiards

Setting » = 1 one has to quantize

d

1 ha b
L=5 ) B'Gab =3

a,b=1

1

d

> (6~

a=1

o

()

with null constraint 5°G,;,/5° = 0 on billiard domain.

Canonical momenta: 7, = G,;/3"

= H=3mG%m,

Wheeler—DeWitt (WDW) equation in canonical quantization

HI(B) = —%Gabaaabxp(g) =0

Klein—Gordon ‘inner product’.
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Quantum cosmological billiards (I1)

Introduce new coordinates p
and w“(z) from ‘radius’ and co-
ordinates = on unit hyperboloid

B = pw®, WG’ = —1
p* = =BG’
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Quantum cosmological billiards (I1)

Introduce new coordinates p Singularity: p = oc
and w“(z) from ‘radius’ and co-
ordinates = on unit hyperboloid

B = pw, WG’ =—1
p* = =BG’

Timeless WDW equation in these variables

O %,
1—d d—1 —2
[ S (p ; )+p TLB] (p; 2)

Laplace—Beltrami operator on unit hyperboloid
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Solving the WDW equation

0 0
_1-d d—1 —2 Y, _
[ "5, (p _ap> +p ALB] (p,2) =0

Separation of variables: V(p, z) = R(p)F(z)

For

get

[Positive frequency coming out of singularity is 2 (p).]

Left with spectral problem on hyperbolic space.
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A g and boundary conditions

The classical billiard ball is constrained to Weyl chamber
with infinite potentials = Dirichlet boundary conditions

(V)

Use upper half plane model

z=(,v), #eR¥™? veRyg

— ALB = vd_lav(vg_d(?v) + UQaE—[

S
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A g and boundary conditions

The classical billiard ball is constrained to Weyl chamber
with infinite potentials = Dirichlet boundary conditions

(V)

Use upper half plane model

z = (u,v), 7eRY2 v e Ry

— ALB = vd_lav(vg_d(?v) + UQaE—[

With Dirichlet boundary conditions (d = 3 In [waniec] )

~AF(2) =EF(2) = E> <%>2

S
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Arithmetic structure (1)

Beyond general inequality details of spectrum depend on
shape of domain. (‘Shape of the drum’ problem)

Focus on maximal supergravity (¢ = 10). Domain Is .
determined by £y Weyl group. i
5

@ L 4
-1 0

8
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Arithmetic structure (1)

Beyond general inequality details of spectrum depend on
shape of domain. (‘Shape of the drum’ problem)

Focus on maximal supergravity (¢ = 10). Domain Is .
determined by £y Weyl group. i
5

@ L 4
-1 0

8

1

9-dimensional upper half plane with octonions: v =4 € O

On z = u + iv the ten fundamental Weyl reflections act by
1 _ _
w-_1(z) = ~ wo(z) = —2+1, wi(z) =—¢jze;

£; simple Ejg rts. [Feingold, AK, Nicolai 2008]
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Arithmetic structure (Il)

lterated action of
1 B _
w-1(z) = ~ wo(2) = -2+ 1, wj(z) = —¢jz¢;

generates whole Weyl group W (Eg).
Even Weyl group W (E1() gives ‘holomorphic’ maps
W+(E10) — PSLQ(O).

Modular group over the integer ‘octavians’ 0.

[Example of family of isomorphisms between hyperbolic
Weyl groups and modular groups over division algebras
[Feingold, AK, Nicolai 2008] ]
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Modular wavefunctions (1)

Weyl reflections on wavefunction V(p, z)

+W(p,z) Neumann b.c.

\Ij . —
(pywr - 2) {‘If(ﬂ,Z) Dirichlet b.c.

Use Weyl symmetry to define W (p, z) on the whole upper
half plane, with Dirichlet boundary conditions = V(p, z) IS
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Modular wavefunctions (1)

Weyl reflections on wavefunction V(p, z)

+W(p,z) Neumann b.c.

\Ij . —
(pywr - 2) {‘I’(p,Z) Dirichlet b.c.

Use Weyl symmetry to define W (p, z) on the whole upper
half plane, with Dirichlet boundary conditions = V(p, z) IS

# Sum of eigenfunctions of A, g on UHP

# Invariant under action of W™ (Ey) = PSLs(0).
Anti-invariant under extension to I ( Eqy).
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Modular wavefunctions (1)

Weyl reflections on wavefunction V(p, z)

+W(p,z) Neumann b.c.

\Ij . —
(pywr - 2) {‘I’(p,Z) Dirichlet b.c.

Use Weyl symmetry to define W (p, z) on the whole upper
half plane, with Dirichlet boundary conditions = V(p, z) IS

# Sum of eigenfunctions of A, g on UHP

# Invariant under action of W™ (Ey) = PSLs(0).
Anti-invariant under extension to I ( Eqy).

= Wavefunction is an odd Maass wave form of PSL5(0)

[cf. [Forte 2008)  fOr related ideas for Neumann conditions]
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Modular wavefunctions (lIl)

The spectrum of odd Maass wave forms is (presumably)
discrete but not known. For PS5 (0) the theory is not even
developed (but see [krieq) ).

For lower dimensional cases like pure (3 + 1)-dimensional
Einstein gravity with PS Ly (Z) there are many numerical
Investigations. [Graham, Sz épfalusy 1990; Steil 1994; Then 2003]

The result relevant here later is the inequality £ > (%)2.
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Modular wavefunctions (lIl)

The spectrum of odd Maass wave forms is (presumably)
discrete but not known. For PS5 (0) the theory is not even
developed (but see [krieq) ).

For lower dimensional cases like pure (3 + 1)-dimensional
Einstein gravity with PS Ly (Z) there are many numerical
Investigations. [Graham, Sz épfalusy 1990; Steil 1994; Then 2003]

The result relevant here later is the inequality £ > (%)2.

Summary of analysis so far:

Quantum billiard wavefunction ¥(p, z) Is an odd
Maass wave form (Dirichlet b.c.) for PSL5(0).
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Interpretation (1)

‘Wavefunction of the universe’ in this set-up formally

W) = | [ 1)

Product of guantum cosmological billiard wavefunctions,
one for each spatial point (ultra-locality). [AlSO [kirilov 1995] ]
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Interpretation (1)

‘Wavefunction of the universe’ in this set-up formally

W) = | [ 1)

Product of guantum cosmological billiard wavefunctions,
one for each spatial point (ultra-locality). [AlSO [kirilov 1995] ]

Each factor contains a Maass wave form of the type
Us(p, z) = 32 R (p)F(2) with

CAWF() = EF(2). Ra(p) = p~ TFVE-(42)

Since E > (%)2: Uy(p,z) — 0 but cx. for p — oo
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Interpretation (1)

Absence of potential: 4 a well-defined Hilbert space
with positive definite metric.

The wavefunction vanishes at the singularity. But it
remains oscillating and complex. No bounce.

= Vanishing wavefunctions on singular geometries are
one possible boundary condition. [pewitt 1967]

Complexity and notion of positive frequency
= Arrow of time? [isham 1991: Barbour 1993]

‘Semi-classical’ states are expected to spread (quantum
ergodicity). Numerical investigations, e.g. [Koehn 2011]
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Generalization (I)

Classical cosmological billiards led to the £ conjecture.

D = 11 supergravity can be mapped to a constrained null
geodesic motion on infinite-dimensional £y /K (F1y) coset
SPACeE. [Damour, Henneaux, Nicolai 2002]

et Eio/K(Fhy)
Correspondence
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Generalization (I)

Classical cosmological billiards led to the £ conjecture.

D = 11 supergravity can be mapped to a constrained null
geodesic motion on infinite-dimensional £y /K (F1y) coset
SPACeE. [Damour, Henneaux, Nicolai 2002]

et Eio/K(Fhy)
Correspondence

Symmetric space Fi/K(Fo) ha/srlo + co many directions.

Y~
Cartan subalgebra POS. step operators

Symmetries and modular forms — p.16



Generalization (I1)

Features of the conjectured £, correspondence

9

9

o o

Billiard corresponds to 10 Cartan subalgebra generators

oo many step operators correspond to remaining fields
and spatial dependence. [Verified only at low ‘levels’ but
for many different models]

Space dependence introduced via dual fields (cf.
Geroch group) — everything in terms of kinetic terms

Space (de-)emergent via an algebraic mechanism
Extension to £y overcomes ultra-locality

Appears that only supergravity captured; no higher spin
fields [Henneaux, AK, Nicolai 2011]
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Generalization (l1I)

mult(a
Heil — H = Hain + Z e 205 Z 17,
acAL(Eio)

IS the unique quadratic £y Casimir. Formally Ilke free
Klein—Gordon; positive norm could remain consistent?
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Generalization (l1I)

mult(a

Hpil — H = Hain + Z e 205 Z 17,
O{EA+(E10)

IS the unique quadratic £y Casimir. Formally Ilke free
Klein—Gordon; positive norm could remain consistent?

Full theory has more constraints than the Hamiltonian
(HWU = 0) constraint: diff, Gauss, etc.

# Global £y symmetry provides oo conserved charges .7

® Evidence that constraints can be written as bilinears
£~ JJ. [Damour, AK, Nicolai 2007; 2009]

# Analogy with affine Sugawara construction. Particularly
useful for implementation as quantum constraints?

Aim: Quantize geodesic model!
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Poincaré series forP.S L,(0) (I)

Poincaré series for W (Fy) = PSLy(0) defined by

Ps(z) = > Is(7(2))

YEW(E9)\WT(E0)

with z = u +iv and I,(z) = v°. W (FEy) stabilises cusp at
infinity. Converges for Re(s) > 4. P, is eigenfunction of A ;.

Cosets can be given an explicit octonionic description [knej .
Result is

S

1 v
240 Z cz + d|?*

c,d€0 left coprime

Ps(z)

‘Left-coprimality’ is defined via Euclidean algortihm [knej .
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Poincaré series forPS L, (0) (lI)

In terms of unrestricted sum

S

v° 1 v
Z 2 + d|?s _CU(S)% Z 2 + d|?8

(¢,d)e0%\{(0,0)} T c,d€0 left coprime

Dedekind Zeta, related to £ Theta
Fourier expansion

Ps(2) = v° + a(s)v®* + vt Z a, K5 4(2m|p|v)e? W)
ne0*\{0}

# Only abelian Fourier modes, only two constant terms
» Functional relation (?): &o(s)Ps(2) = &o(8 — s)Ps_s(2)
# Neumann boundary conditions
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Eisenstein series forEy(Z) and Ey(Z) (1)

[work in progress... [Fx] |

String theory seems to require E1o(Z) D W (FE1g) [Hul,
Townsend 1995; Ganor 1999]

For smaller rank [Green, Gutperle 1997; Obers, Pioline 1998;
Green, Miller, Russo, Vanhove 2010]
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Eisenstein series forEy(Z) and Ey(Z) (1)

[work in progress... [Fx] |

String theory seems to require E1o(Z) D W (FE1g) [Hul,
Townsend 1995; Ganor 1999]

For smaller rank [Green, Gutperle 1997; Obers, Pioline 1998;
Green, Miller, Russo, Vanhove 2010]

Eisenstein series for the Chevalley groups £, (Z), n > 8?

Very little literature on the subject... But [Garland 2001]
Affine case G = Ejy:

ES(g,r) = Z oMo, H (yge™))
1€B(Z)\G(Z)

¢ does not include derivation D.
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Eisenstein series forFy(7Z) and E(Z) (Il)

Constant term (in minimal parabolic) [Langlands; Garland]
Z e WATPH (™)) A r (4 \)
weW (Ey) T

_ £({(Aa))
- Ha>0:wa<0 .5(()\,04>—?—1)




Eisenstein series forFy(7Z) and E(Z) (Il)

Constant term (in minimal parabolic) [Langlands; Garland]
Z e WATPH (™)) A r (4 \)
weW (Ey) T

_ E((A@))
— Ha>0:wa<0 E((\a)+1)

Affine Weyl group is infinite but for special values of ), the
infinite sum collapses since M (w, \) = 0. For A = 2sA\; — p
this can only happen for 2s € 7Z.
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Eisenstein series forFy(7Z) and E(Z) (Il)

Constant term (in minimal parabolic) [Langlands; Garland]
Z e WATPH (™)) A r (4 \)
weW (Ey) T

_ E({A)
— Ha>0:woz<0 E((\a)+1)

Affine Weyl group is infinite but for special values of ), the
infinite sum collapses since M (w, \) = 0. For A = 2sA\; — p
this can only happen for 2s € 7Z.

Assume same formal expression for Ey(Z)...
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Constant terms for Ey(Z) and Ey(Z)

Example: A; = A,

o o o o o
s=1/2|s=1|s=3/2|s=2|s=5/2|s=3

E~ 2 126 8 14 35 56

Eg 2 2160 9 16 44 72

Ey 2 00 10 18 54 90

Eng 2 00 11 20 65 110

Constant terms in maximal parabolic can also be evaluated.

Full Fourier decomposition (constant + abelian +
non-abelian)?
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Summary and outlook

Done:

# Quantum cosmological billiards wavefunctions involve
automorphic forms of PS7L»(0)

# Extendable to supersymmetric case
# Studied parts of modular forms for W (FEq) and E1¢(Z)
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Summary and outlook

Done:

# Quantum cosmological billiards wavefunctions involve
automorphic forms of PS15(0)

# Extendable to supersymmetric case
# Studied parts of modular forms for W (FEq) and E1¢(Z)
To do:

# Construct wavefunctions (with Dirichlet boundary
conditions)?

#® Include more variables = F;y coset model?
Constraints? Observables?

# Understand Fy(Z) and E1¢(Z) modular forms better and
relation to string scattering

Symmetries and modular forms — p.24



Summary and outlook

Done:

# Quantum cosmological billiards wavefunctions involve
automorphic forms of PS15(0)

# Extendable to supersymmetric case
# Studied parts of modular forms for W (FEq) and E1¢(Z)

To do:

# Construct wavefunctions (with Dirichlet boundary
conditions)?

#® Include more variables = F;y coset model?
Constraints? Observables?

# Understand Fy(Z) and E1¢(Z) modular forms better and
relation to string scattering

Thank you for your attention!
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More on hyperbolic Weyl groups (1)

Consider only over-extended hyperbolic algebras g
(rank(g) = ¢ = 1,2,4,8). Their root lattices can be realized in

RN~ 5 (K) for a normed division algebra K

(X1|X2) = —det(Xy + X2) + det(Xy) + det(X2), X; € Ho(K)
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More on hyperbolic Weyl groups (1)

Consider only over-extended hyperbolic algebras g
(rank(g) = ¢ = 1,2,4,8). Their root lattices can be realized in

RN~ 5 (K) for a normed division algebra K

(X1|X2) = —det(Xy + X2) + det(Xy) + det(X2), X; € Ho(K)

Choose a; (1 = 1,...,/) such that
a;a; + a;a; = Cartan matrix of g

Prop 1. g™+ Cartan matrix from simple roots

I 0 -1 -6 0 a;
-1 = , Q@ = ~ , Q= B
0 —1 —0 0 a; 0
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More on hyperbolic Weyl groups (lII)

Thm 1. Fundamental Weyl reflections of W = W (g™ ") are

wr(X) = MAM! | I=-1,0,1,....¢

with unit versions of g simple roots ¢, = a;/+/N(a;) and

1 9 1 Z-
M—l — V 9 MO — ’ - 9 MZ — ) O_
1 0 0 0 0 —&4




More on hyperbolic Weyl groups (lII)

Thm 1. Fundamental Weyl reflections of W = W (g™ ") are

wr(X) = MAM! | I=-1,0,1,....¢

with unit versions of g simple roots ¢, = a;/+/N(a;) and

1 9 1 Z-
M—l — V 9 MO — ’ - 9 M’L — ) O_
1 0 0 0 0 —&4

Remarks

# Formula well-defined for all K, including octonions
# Involves complex conjugation of X
® =, # a; only If g not simply laced
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More on hyperbolic Weyl groups (Il

For generalizations of modular group PS7L2(Z) need
Thm 2. Even Weyl group W = W' (g™ ) generated by

(w_yw;)(X) = SXST | i=0,1,....¢

50<09>, i<06i>
—60 1 Eq 0

with




More on hyperbolic Weyl groups (Il

For generalizations of modular group PS7L2(Z) need
Thm 2. Even Weyl group W = W' (g™ ) generated by

(w_1w;)(X) = $iXS | i=0,1,....¢

50<09>, i<06i>
—60 1 Eq 0

# Formula well-defined for all K, including octonions
» If det. were defined: det S = 1, cf. W™ C SO(1,/+ 1;R)

# Does not involve complex conjugation of X
— maitrix subgroups of PSL,(K) in associative cases!

with

Remarks
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List of hyperbolic Weyl groups

K| g ‘Ring’ W(g) Wt(g™)
R Ay Z. 2 = 7o PSLy(Z)

C Ao Eisenstein E 23 X 2 PSLy(E)

C | Bo =Cy | Gaussian G 2oy X 2 PSLs(G) x 2
C Gy Eisenstein E Zig X 2 PSL5(E) X 2
H Ay lcosians I Ss PSLéO)(I

H By Octahedral R 24 %\ B4 PSLéO) (H) x 2
H Cy Octahedral R 2% % By }/%féo) (H) x 2
H Dy Hurwitz H 23 x1 Gy PSL;O)(H

H £y Octahedral R | 2° x (&3 x G3) | PSLy(H) x 2
o) Eyg Octavians 0 | 2.05(2).2 PSLy(0
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