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Context and Plan

Hidden symmetries and cosmological billiards in super-
gravity [Damour, Henneaux 2000; Damour, Henneaux, Nicolai 2002]

Minisuperspace models for quantum gravity and quantum
cosmology [DeWitt 1967; Misner 1969]

U-dualities constraining string scattering amplitudes [Green,

Gutperle 1997; Green, Miller, Russo, Vanhove 2010; Pioline 2010]
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Context and Plan

Hidden symmetries and cosmological billiards in super-
gravity [Damour, Henneaux 2000; Damour, Henneaux, Nicolai 2002]

Minisuperspace models for quantum gravity and quantum
cosmology [DeWitt 1967; Misner 1969]

U-dualities constraining string scattering amplitudes [Green,

Gutperle 1997; Green, Miller, Russo, Vanhove 2010; Pioline 2010]

Plan

Cosmological billiards and their symmetries

Quantum cosmological billiards: arithmetic structure

Modular forms for hyperbolic Weyl groups and infinite
Chevalley groups

Generalization and outlook
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Cosmological billards: BKL

Supergravity dynamics near a space-like singularity simplify.
[Belinskii, Khalatnikov, Lifshitz 1970; Misner 1969; Chit re 1972]

T = T2 < T1

x1

x2

T = 0

T = T1

Spatial points decouple
(conj.)
⇒ dynamics becomes ultra-local.

Reduction of degress of freedom to spatial scale factors βa

ds2 = −N2dt2 +

d
∑

a=1

e−2βa

dx2a (t ∼ − log T )
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Cosmological billiards: Dynamics

Effective Lagrangian for βa(t) (a = 1, . . . , d)

L =
1

2

d
∑

a,b=1

n−1Gabβ̇
aβ̇b − Veff(β)

Gab: DeWitt metric
(Lorentzian signature)

[ ]

Close to the singularity Veff con-
sists of infinite potentials walls,
obstructing free null motion of βa.

β

M
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Cosmological billiards: Dynamics

Effective Lagrangian for βa(t) (a = 1, . . . , d)

L =
1

2

d
∑

a,b=1

n−1Gabβ̇
aβ̇b − Veff(β)

Gab: DeWitt metric
(Lorentzian signature)

[ ]

Close to the singularity Veff con-
sists of infinite potentials walls,
obstructing free null motion of βa.

Resulting billiard geometry that
of E10 Weyl chamber (D = 11,
type (m)IIA and IIB).
[Damour, Henneaux 2000]

β

Billiard table
=E10 Weyl chamber

M
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Cosmological billiards: Geometry

The sharp billiard walls come from

Veff(β) =
∑

A

cAe
−2wA(β)

with wA(β) a set of linear forms on β-space. For
Gabβ

aβb → −∞ (towards the singularity) the potential term
becomes 0 or ∞, defining two sides of a wall.
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Cosmological billiards: Geometry

The sharp billiard walls come from

Veff(β) =
∑

A

cAe
−2wA(β)

with wA(β) a set of linear forms on β-space. For
Gabβ

aβb → −∞ (towards the singularity) the potential term
becomes 0 or ∞, defining two sides of a wall.

For the dominant terms cA ≥ 0 [Damour, Henneaux, Nicolai 2002] .
Furthermore, the scalar product between the normals to
those faces coincides with E10 Cartan matrix.

Associated E10 Weyl group W (E10) are the symmetries of
the unique even self-dual lattice II9,1 = ΛE8

⊕ II1,1.

Finite (hyperbolic) volume ⇒ Chaos! [Damour, Henneaux 2000]
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Quantum cosmological billiards

Setting n = 1 one has to quantize

L =
1

2

d
∑

a,b=1

β̇aGabβ̇
b =

1

2





d
∑

a=1

(β̇a)2 −

(

d
∑

a=1

β̇a

)2




with null constraint β̇aGabβ̇
b = 0 on billiard domain.

Canonical momenta: πa = Gabβ̇
b ⇒ H = 1

2πaG
abπb.
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Quantum cosmological billiards

Setting n = 1 one has to quantize

L =
1

2

d
∑

a,b=1

β̇aGabβ̇
b =

1

2





d
∑

a=1

(β̇a)2 −

(

d
∑

a=1

β̇a

)2




with null constraint β̇aGabβ̇
b = 0 on billiard domain.

Canonical momenta: πa = Gabβ̇
b ⇒ H = 1

2πaG
abπb.

Wheeler–DeWitt (WDW) equation in canonical quantization

HΨ(β) = −
1

2
Gab∂a∂bΨ(β) = 0

Klein–Gordon ‘inner product’.
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Quantum cosmological billiards (II)

Introduce new coordinates ρ
and ωa(z) from ‘radius’ and co-
ordinates z on unit hyperboloid

βa = ρωa , ωaGabω
b = −1

ρ2 = −βaGabβ
b
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Quantum cosmological billiards (II)

Introduce new coordinates ρ
and ωa(z) from ‘radius’ and co-
ordinates z on unit hyperboloid

βa = ρωa , ωaGabω
b = −1

ρ2 = −βaGabβ
b

ρ

ωa(z)

Singularity: ρ → ∞

Timeless WDW equation in these variables
[

−ρ1−d ∂

∂ρ

(

ρd−1 ∂

∂ρ

)

+ ρ−2∆LB

]

Ψ(ρ, z) = 0

6

Laplace–Beltrami operator on unit hyperboloid
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Solving the WDW equation
[

−ρ1−d ∂

∂ρ

(

ρd−1 ∂

∂ρ

)

+ ρ−2∆LB

]

Ψ(ρ, z) = 0

Separation of variables: Ψ(ρ, z) = R(ρ)F (z)

For
−∆LBF (z) = EF (z)

get

R±(ρ) = ρ−
d−2

2
±i

√

E−( d−2

2 )
2

[Positive frequency coming out of singularity is R−(ρ).]

Left with spectral problem on hyperbolic space.
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∆LB and boundary conditions

The classical billiard ball is constrained to Weyl chamber
with infinite potentials ⇒ Dirichlet boundary conditions

Use upper half plane model

z = (~u, v) , ~u ∈ Rd−2, v ∈ R>0

⇒ ∆LB = vd−1∂v(v
3−d∂v) + v2∂2~u ~u

v
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∆LB and boundary conditions

The classical billiard ball is constrained to Weyl chamber
with infinite potentials ⇒ Dirichlet boundary conditions

Use upper half plane model

z = (~u, v) , ~u ∈ Rd−2, v ∈ R>0

⇒ ∆LB = vd−1∂v(v
3−d∂v) + v2∂2~u ~u

v

With Dirichlet boundary conditions (d = 3 in [Iwaniec] )

−∆LBF (z) = EF (z) ⇒ E ≥

(

d− 2

2

)2
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Arithmetic structure (I)

Beyond general inequality details of spectrum depend on
shape of domain. (‘Shape of the drum’ problem)

Focus on maximal supergravity (d = 10). Domain is
determined by E10 Weyl group.

-1 0 1 2 3 4 5 6 7

8

y y y y y y y y y

y
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Arithmetic structure (I)

Beyond general inequality details of spectrum depend on
shape of domain. (‘Shape of the drum’ problem)

Focus on maximal supergravity (d = 10). Domain is
determined by E10 Weyl group.

-1 0 1 2 3 4 5 6 7

8

y y y y y y y y y

y

9-dimensional upper half plane with octonions: u ≡ ~u ∈ O

On z = u+ iv the ten fundamental Weyl reflections act by

w−1(z) =
1

z̄
, w0(z) = −z̄ + 1 , wj(z) = −εj z̄εj

εj simple E8 rts. [Feingold, AK, Nicolai 2008]
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Arithmetic structure (II)

Iterated action of

w−1(z) =
1

z̄
, w0(z) = −z̄ + 1 , wj(z) = −εj z̄εj

generates whole Weyl group W (E10).

Even Weyl group W+(E10) gives ‘holomorphic’ maps

W+(E10) = PSL2(O).

Modular group over the integer ‘octavians’ O.

[Example of family of isomorphisms between hyperbolic
Weyl groups and modular groups over division algebras
[Feingold, AK, Nicolai 2008] .]
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Modular wavefunctions (I)

Weyl reflections on wavefunction Ψ(ρ, z)

Ψ(ρ, wI · z) =

{

+Ψ(ρ, z) Neumann b.c.
−Ψ(ρ, z) Dirichlet b.c.

Use Weyl symmetry to define Ψ(ρ, z) on the whole upper
half plane, with Dirichlet boundary conditions ⇒ Ψ(ρ, z) is
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Modular wavefunctions (I)

Weyl reflections on wavefunction Ψ(ρ, z)

Ψ(ρ, wI · z) =

{

+Ψ(ρ, z) Neumann b.c.
−Ψ(ρ, z) Dirichlet b.c.

Use Weyl symmetry to define Ψ(ρ, z) on the whole upper
half plane, with Dirichlet boundary conditions ⇒ Ψ(ρ, z) is

Sum of eigenfunctions of ∆LB on UHP

Invariant under action of W+(E10) = PSL2(O).
Anti-invariant under extension to W (E10).
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Modular wavefunctions (I)

Weyl reflections on wavefunction Ψ(ρ, z)

Ψ(ρ, wI · z) =

{

+Ψ(ρ, z) Neumann b.c.
−Ψ(ρ, z) Dirichlet b.c.

Use Weyl symmetry to define Ψ(ρ, z) on the whole upper
half plane, with Dirichlet boundary conditions ⇒ Ψ(ρ, z) is

Sum of eigenfunctions of ∆LB on UHP

Invariant under action of W+(E10) = PSL2(O).
Anti-invariant under extension to W (E10).

⇒ Wavefunction is an odd Maass wave form of PSL2(O)

[cf. [Forte 2008] for related ideas for Neumann conditions]
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Modular wavefunctions (II)

The spectrum of odd Maass wave forms is (presumably)
discrete but not known. For PSL2(O) the theory is not even
developed (but see [Krieg] ).

For lower dimensional cases like pure (3 + 1)-dimensional
Einstein gravity with PSL2(Z) there are many numerical
investigations. [Graham, Sz épfalusy 1990; Steil 1994; Then 2003]

The result relevant here later is the inequality E ≥
(

d−2
2

)2
.
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Modular wavefunctions (II)

The spectrum of odd Maass wave forms is (presumably)
discrete but not known. For PSL2(O) the theory is not even
developed (but see [Krieg] ).

For lower dimensional cases like pure (3 + 1)-dimensional
Einstein gravity with PSL2(Z) there are many numerical
investigations. [Graham, Sz épfalusy 1990; Steil 1994; Then 2003]

The result relevant here later is the inequality E ≥
(

d−2
2

)2
.

Summary of analysis so far:

Quantum billiard wavefunction Ψ(ρ, z) is an odd
Maass wave form (Dirichlet b.c.) for PSL2(O).
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Interpretation (I)
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Interpretation (I)

‘Wavefunction of the universe’ in this set-up formally

|Ψfull〉 =
∏

x

|Ψx〉

Product of quantum cosmological billiard wavefunctions,
one for each spatial point (ultra-locality). [Also [Kirillov 1995] ]
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Interpretation (I)

‘Wavefunction of the universe’ in this set-up formally

|Ψfull〉 =
∏

x

|Ψx〉

Product of quantum cosmological billiard wavefunctions,
one for each spatial point (ultra-locality). [Also [Kirillov 1995] ]

Each factor contains a Maass wave form of the type
Ψx(ρ, z) =

∑

R±(ρ)F (z) with

−∆LBF (z) = EF (z) , R±(ρ) = ρ−
d−2

2
±i

√

E−( d−2

2 )
2

Since E ≥
(

d−2
2

)2
: Ψx(ρ, z) → 0 but cx. for ρ → ∞
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Interpretation (II)

Absence of potential: ∃ a well-defined Hilbert space
with positive definite metric.

The wavefunction vanishes at the singularity. But it
remains oscillating and complex. No bounce.
⇒ Vanishing wavefunctions on singular geometries are
one possible boundary condition. [DeWitt 1967]

Complexity and notion of positive frequency
⇒ Arrow of time? [Isham 1991; Barbour 1993]

‘Semi-classical’ states are expected to spread (quantum
ergodicity). Numerical investigations, e.g. [Koehn 2011]
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Generalization (I)
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Generalization (I)

Classical cosmological billiards led to the E10 conjecture.

D = 11 supergravity can be mapped to a constrained null
geodesic motion on infinite-dimensional E10/K(E10) coset
space. [Damour, Henneaux, Nicolai 2002]

E10/K(E10)

V(t)

� -

Correspondence
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Generalization (I)

Classical cosmological billiards led to the E10 conjecture.

D = 11 supergravity can be mapped to a constrained null
geodesic motion on infinite-dimensional E10/K(E10) coset
space. [Damour, Henneaux, Nicolai 2002]

E10/K(E10)

V(t)

� -

Correspondence

Symmetric space E10/K(E10) has 10 +∞ many directions.
��* HHY

Cartan subalgebra pos. step operators
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Generalization (II)

Features of the conjectured E10 correspondence

Billiard corresponds to 10 Cartan subalgebra generators

∞ many step operators correspond to remaining fields
and spatial dependence. [Verified only at low ‘levels’ but
for many different models]

Space dependence introduced via dual fields (cf.
Geroch group) — everything in terms of kinetic terms

Space (de-)emergent via an algebraic mechanism

Extension to E10 overcomes ultra-locality

Appears that only supergravity captured; no higher spin
fields [Henneaux, AK, Nicolai 2011]
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Generalization (III)

HBill → H ≡ HBill +
∑

α∈∆+(E10)

e−2α(β)

mult(α)
∑

s=1

Π2
α,s

is the unique quadratic E10 Casimir. Formally like free
Klein–Gordon; positive norm could remain consistent?
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Generalization (III)

HBill → H ≡ HBill +
∑

α∈∆+(E10)

e−2α(β)

mult(α)
∑

s=1

Π2
α,s

is the unique quadratic E10 Casimir. Formally like free
Klein–Gordon; positive norm could remain consistent?

Full theory has more constraints than the Hamiltonian
(HΨ = 0) constraint: diff, Gauss, etc.

Global E10 symmetry provides ∞ conserved charges J

Evidence that constraints can be written as bilinears
L ∼ JJ . [Damour, AK, Nicolai 2007; 2009]

Analogy with affine Sugawara construction. Particularly
useful for implementation as quantum constraints?

Aim: Quantize geodesic model!
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Poincaré series forPSL2(O) (I)

Poincaré series for W+(E10) = PSL2(O) defined by

Ps(z) =
∑

γ∈W+(E9)\W+(E10)

Is(γ(z))

with z = u+ iv and Is(z) = vs. W+(E9) stabilises cusp at
infinity. Converges for Re(s) > 4. Ps is eigenfunction of ∆LB.

Cosets can be given an explicit octonionic description [KNP] .
Result is

Ps(z) =
1

240

∑

c,d∈O left coprime

vs

|cz + d|2s

‘Left-coprimality’ is defined via Euclidean algortihm [KNP] .
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Poincaré series forPSL2(O) (II)

In terms of unrestricted sum

∑

(c,d)∈O2\{(0,0)}

vs

|cz + d|2s
= ζO(s)

1

240

∑

c,d∈O left coprime

vs

|cz + d|2s
6

Dedekind Zeta, related to E8 Theta

Fourier expansion

Ps(z) = vs + a(s)v8−s + v4
∑

µ∈O∗\{0}

aµKs−4(2π|µ|v)e
2πiµ(u)

Only abelian Fourier modes, only two constant terms

Functional relation (?): ξO(s)Ps(z) = ξO(8− s)P8−s(z)

Neumann boundary conditions
Symmetries and modular forms – p.20



Eisenstein series forE9(Z) andE10(Z) (I)
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Eisenstein series forE9(Z) andE10(Z) (I)

[work in progress... [FK] ]

String theory seems to require E10(Z) ⊃ W (E10) [Hull,

Townsend 1995; Ganor 1999] .
For smaller rank [Green, Gutperle 1997; Obers, Pioline 1998;

Green, Miller, Russo, Vanhove 2010] .
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Eisenstein series forE9(Z) andE10(Z) (I)

[work in progress... [FK] ]

String theory seems to require E10(Z) ⊃ W (E10) [Hull,

Townsend 1995; Ganor 1999] .
For smaller rank [Green, Gutperle 1997; Obers, Pioline 1998;

Green, Miller, Russo, Vanhove 2010] .

Eisenstein series for the Chevalley groups En(Z), n > 8?

Very little literature on the subject... But [Garland 2001] .
Affine case G = E9:

EG
λ (g, r) =

∑

γ∈B(Z)\G(Z)

e〈λ+ρ,H(γgerD)〉

g does not include derivation D.
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Eisenstein series forE9(Z) andE10(Z) (II)

Constant term (in minimal parabolic) [Langlands; Garland]

∑

w∈W (E9)

e〈wλ+ρ,H(gerD)〉M(w, λ)

6

=
∏

α>0:wα<0
ξ(〈λ,α〉)

ξ(〈λ,α〉+1)
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Eisenstein series forE9(Z) andE10(Z) (II)

Constant term (in minimal parabolic) [Langlands; Garland]

∑

w∈W (E9)

e〈wλ+ρ,H(gerD)〉M(w, λ)

6

=
∏

α>0:wα<0
ξ(〈λ,α〉)

ξ(〈λ,α〉+1)

Affine Weyl group is infinite but for special values of λ, the
infinite sum collapses since M(w, λ) = 0. For λ = 2sΛi − ρ
this can only happen for 2s ∈ Z.
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Eisenstein series forE9(Z) andE10(Z) (II)

Constant term (in minimal parabolic) [Langlands; Garland]

∑

w∈W (E9)

e〈wλ+ρ,H(gerD)〉M(w, λ)

6

=
∏

α>0:wα<0
ξ(〈λ,α〉)

ξ(〈λ,α〉+1)

Affine Weyl group is infinite but for special values of λ, the
infinite sum collapses since M(w, λ) = 0. For λ = 2sΛi − ρ
this can only happen for 2s ∈ Z.

Assume same formal expression for E10(Z)...
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Constant terms forE9(Z) andE10(Z)

Example: Λi = Λ∗

*
y y y y y y y y

y

y

s = 1/2 s = 1 s = 3/2 s = 2 s = 5/2 s = 3

E7 2 126 8 14 35 56
E8 2 2160 9 16 44 72
E9 2 ∞ 10 18 54 90
E10 2 ∞ 11 20 65 110

Constant terms in maximal parabolic can also be evaluated.

Full Fourier decomposition (constant + abelian +
non-abelian)?

Symmetries and modular forms – p.23



Summary and outlook

Done:

Quantum cosmological billiards wavefunctions involve
automorphic forms of PSL2(O)

Extendable to supersymmetric case

Studied parts of modular forms for W+(E10) and E10(Z)
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Summary and outlook

Done:

Quantum cosmological billiards wavefunctions involve
automorphic forms of PSL2(O)

Extendable to supersymmetric case

Studied parts of modular forms for W+(E10) and E10(Z)

To do:

Construct wavefunctions (with Dirichlet boundary
conditions)?

Include more variables ⇒ E10 coset model?
Constraints? Observables?

Understand E9(Z) and E10(Z) modular forms better and
relation to string scattering
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Summary and outlook

Done:

Quantum cosmological billiards wavefunctions involve
automorphic forms of PSL2(O)

Extendable to supersymmetric case

Studied parts of modular forms for W+(E10) and E10(Z)

To do:

Construct wavefunctions (with Dirichlet boundary
conditions)?

Include more variables ⇒ E10 coset model?
Constraints? Observables?

Understand E9(Z) and E10(Z) modular forms better and
relation to string scattering

Thank you for your attention!
Symmetries and modular forms – p.24



More on hyperbolic Weyl groups (I)

Consider only over-extended hyperbolic algebras g++

(rank(g) ≡ ℓ = 1, 2, 4, 8). Their root lattices can be realized in
R1,1+ℓ ∼= H2(K) for a normed division algebra K

(X1|X2) = − det(X1 + X2) + det(X1) + det(X2) , Xi ∈ H2(K)
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More on hyperbolic Weyl groups (I)

Consider only over-extended hyperbolic algebras g++

(rank(g) ≡ ℓ = 1, 2, 4, 8). Their root lattices can be realized in
R1,1+ℓ ∼= H2(K) for a normed division algebra K

(X1|X2) = − det(X1 + X2) + det(X1) + det(X2) , Xi ∈ H2(K)

Choose ai (i = 1, . . . , ℓ) such that

aiāj + aj āi = Cartan matrix of g

Prop 1. g++ Cartan matrix from simple roots

α−1 =

(

1 0

0 −1

)

, α0 =

(

−1 −θ

−θ̄ 0

)

, αi =

(

0 ai

āi 0

)
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More on hyperbolic Weyl groups (II)

Thm 1. Fundamental Weyl reflections of W ≡ W (g++) are

wI(X) = MI X̄M
†
I , I = −1, 0, 1, . . . , ℓ

with unit versions of g simple roots εi = ai/
√

N(ai) and

M−1 =

(

0 1

1 0

)

, M0 =

(

−θ 1

0 θ̄

)

, Mi =

(

εi 0

0 −ε̄i

)

Symmetries and modular forms – p.26



More on hyperbolic Weyl groups (II)

Thm 1. Fundamental Weyl reflections of W ≡ W (g++) are

wI(X) = MI X̄M
†
I , I = −1, 0, 1, . . . , ℓ

with unit versions of g simple roots εi = ai/
√

N(ai) and

M−1 =

(

0 1

1 0

)

, M0 =

(

−θ 1

0 θ̄

)

, Mi =

(

εi 0

0 −ε̄i

)

Remarks

Formula well-defined for all K, including octonions

Involves complex conjugation of X

εi 6= ai only if g not simply laced
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More on hyperbolic Weyl groups (III)

For generalizations of modular group PSL2(Z) need

Thm 2. Even Weyl group W+ ≡ W+(g++) generated by

(w−1wi)(X) = SiXS
†
i , i = 0, 1, . . . , ℓ

with

S0 =

(

0 θ

−θ̄ 1

)

, Si =

(

0 −εi

ε̄i 0

)
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More on hyperbolic Weyl groups (III)

For generalizations of modular group PSL2(Z) need

Thm 2. Even Weyl group W+ ≡ W+(g++) generated by

(w−1wi)(X) = SiXS
†
i , i = 0, 1, . . . , ℓ

with

S0 =

(

0 θ

−θ̄ 1

)

, Si =

(

0 −εi

ε̄i 0

)

Remarks

Formula well-defined for all K, including octonions

If det. were defined: detS = 1, cf. W+ ⊂ SO(1, ℓ+ 1;R)

Does not involve complex conjugation of X
=⇒ matrix subgroups of PSL2(K) in associative cases!
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List of hyperbolic Weyl groups

K g ‘Ring’ W (g) W+(g++)

R A1 Z 2 ≡ Z2 PSL2(Z)

C A2 Eisenstein E Z3 ⋊ 2 PSL2(E)

C B2 ≡ C2 Gaussian G Z4 ⋊ 2 PSL2(G)⋊ 2

C G2 Eisenstein E Z6 ⋊ 2 PSL2(E)⋊ 2

H A4 Icosians I S5 PSL
(0)
2 (I)

H B4 Octahedral R 24 ⋊S4 PSL
(0)
2 (H)⋊ 2

H C4 Octahedral R 24 ⋊S4 P̃SL
(0)

2 (H)⋊ 2

H D4 Hurwitz H 23 ⋊S4 PSL
(0)
2 (H)

H F4 Octahedral R 25 ⋊ (S3 ×S3) PSL2(H)⋊ 2

O E8 Octavians O 2 .O+
8 (2) . 2 PSL2(O)
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