Infinite discrete symmetries near singularities and modular forms

Axel Kleinschmidt (Albert Einstein Institute, Potsdam)
IHES, January 26, 2012
Based on work with:
Philipp Fleig, Michael Koehn, Hermann Nicolai and Jakob Palmkvist

```
[KKN = Phys. Rev. D 80 (2009) 061701(R), arXiv:0907.3048]
    [KNP = arXiv:1010.2212]
    [FK, to be published]
```


Context and Plan

Hidden symmetries and cosmological billiards in supergravity [Damour, Henneaux 2000; Damour, Henneaux, Nicolai 2002]

Minisuperspace models for quantum gravity and quantum cosmology [Dewitt 1967; Misner 1969]

U-dualities constraining string scattering amplitudes [Green,
Gutperle 1997; Green, Miller, Russo, Vanhove 2010; Pioline 2010]

Context and Plan

Hidden symmetries and cosmological billiards in super-
gravity [Damour, Henneaux 2000; Damour, Henneaux, Nicolai 2002]
Minisuperspace models for quantum gravity and quantum cosmology [Denitt 1967; Misner 1969]

U-dualities constraining string scattering amplitudes [Green,
Gutperle 1997; Green, Miller, Russo, Vanhove 2010; Pioline 2010]
Plan

- Cosmological billiards and their symmetries
- Quantum cosmological billiards: arithmetic structure
- Modular forms for hyperbolic Weyl groups and infinite Chevalley groups
- Generalization and outlook

Cosmological billards: BKL

Supergravity dynamics near a space-like singularity simplify.

Spatial points decouple $\stackrel{\text { (conj.) }}{\Rightarrow}$ dynamics becomes ultra-local.
Reduction of degress of freedom to spatial scale factors β^{a}

$$
d s^{2}=-N^{2} d t^{2}+\sum_{a=1}^{d} e^{-2 \beta^{a}} d x_{a}^{2} \quad(t \sim-\log T)
$$

Cosmological billiards: Dynamics

Effective Lagrangian for $\beta^{a}(t)(a=1, \ldots, d)$

$$
\mathcal{L}=\frac{1}{2} \sum_{a, b=1}^{d} n^{-1} G_{a b} \dot{\beta}^{a} \dot{\beta}^{b}-V_{\mathrm{eff}}(\beta) \quad\left[\begin{array}{c}
\left.G_{a b}: \begin{array}{l}
\text { DeWitt metric } \\
\text { (Lorentzian signature) }
\end{array}\right]
\end{array}\right]
$$

Close to the singularity $V_{\text {eff }}$ consists of infinite potentials walls, obstructing free null motion of β^{a}.

Cosmological billiards: Dynamics

Effective Lagrangian for $\beta^{a}(t)(a=1, \ldots, d)$

$$
\mathcal{L}=\frac{1}{2} \sum_{a, b=1}^{d} n^{-1} G_{a b} \dot{\beta}^{a} \dot{\beta}^{b}-V_{\mathrm{eff}}(\beta) \quad\left[\begin{array}{c}
G_{a b}: \text { DeWitt metric } \\
\text { (Lorentzian signature) }
\end{array}\right]
$$

Close to the singularity $V_{\text {eff }}$ consists of infinite potentials walls, obstructing free null motion of β^{a}.
Resulting billiard geometry that of E_{10} Weyl chamber ($D=11$, type (m) IIA and IIB).
[Damour, Henneaux 2000]

Cosmological billiards: Geometry

The sharp billiard walls come from

$$
V_{\mathrm{eff}}(\beta)=\sum_{A} c_{A} e^{-2 w_{A}(\beta)}
$$

with $w_{A}(\beta)$ a set of linear forms on β-space. For $G_{a b} \beta^{a} \beta^{b} \rightarrow-\infty$ (towards the singularity) the potential term becomes 0 or ∞, defining two sides of a wall.

Cosmological billiards: Geometry

The sharp billiard walls come from

$$
V_{\mathrm{eff}}(\beta)=\sum_{A} c_{A} e^{-2 w_{A}(\beta)}
$$

with $w_{A}(\beta)$ a set of linear forms on β-space. For $G_{a b} \beta^{a} \beta^{b} \rightarrow-\infty$ (towards the singularity) the potential term becomes 0 or ∞, defining two sides of a wall.
For the dominant terms $c_{A} \geq 0$ [Damour, Henneaux, Nicolai 2002]. Furthermore, the scalar product between the normals to those faces coincides with E_{10} Cartan matrix.
Associated E_{10} Weyl group $W\left(E_{10}\right)$ are the symmetries of the unique even self-dual lattice $\mathrm{II}_{9,1}=\Lambda_{E_{8}} \oplus \mathrm{II}_{1,1}$.

Finite (hyperbolic) volume \Rightarrow Chaos! [Damour, Henneaux 2000]

Quantum cosmological billiards

Setting $n=1$ one has to quantize

$$
\mathcal{L}=\frac{1}{2} \sum_{a, b=1}^{d} \dot{\beta}^{a} G_{a b} \dot{\beta}^{b}=\frac{1}{2}\left[\sum_{a=1}^{d}\left(\dot{\beta}^{a}\right)^{2}-\left(\sum_{a=1}^{d} \dot{\beta}^{a}\right)^{2}\right]
$$

with null constraint $\dot{\beta}^{a} G_{a b} \dot{\beta}^{b}=0$ on billiard domain.
Canonical momenta: $\pi_{a}=G_{a b} \dot{\beta}^{b} \Rightarrow \mathcal{H}=\frac{1}{2} \pi_{a} G^{a b} \pi_{b}$.

Quantum cosmological billiards

Setting $n=1$ one has to quantize

$$
\mathcal{L}=\frac{1}{2} \sum_{a, b=1}^{d} \dot{\beta}^{a} G_{a b} \dot{\beta}^{b}=\frac{1}{2}\left[\sum_{a=1}^{d}\left(\dot{\beta}^{a}\right)^{2}-\left(\sum_{a=1}^{d} \dot{\beta}^{a}\right)^{2}\right]
$$

with null constraint $\dot{\beta}^{a} G_{a b} \dot{\beta}^{b}=0$ on billiard domain.
Canonical momenta: $\pi_{a}=G_{a b} \dot{\beta}^{b} \quad \Rightarrow \quad \mathcal{H}=\frac{1}{2} \pi_{a} G^{a b} \pi_{b}$.
Wheeler-DeWitt (WDW) equation in canonical quantization

$$
\mathcal{H} \Psi(\beta)=-\frac{1}{2} G^{a b} \partial_{a} \partial_{b} \Psi(\beta)=0
$$

Klein-Gordon 'inner product'.

Quantum cosmological billiards (II)

Introduce new coordinates ρ and $\omega^{a}(z)$ from 'radius' and coordinates z on unit hyperboloid

$$
\begin{gathered}
\beta^{a}=\rho \omega^{a}, \quad \omega^{a} G_{a b} \omega^{b}=-1 \\
\rho^{2}=-\beta^{a} G_{a b} \beta^{b}
\end{gathered}
$$

Quantum cosmological billiards (II)

Introduce new coordinates ρ and $\omega^{a}(z)$ from 'radius' and coordinates z on unit hyperboloid

$$
\begin{gathered}
\beta^{a}=\rho \omega^{a}, \quad \omega^{a} G_{a b} \omega^{b}=-1 \\
\rho^{2}=-\beta^{a} G_{a b} \beta^{b}
\end{gathered}
$$

Singularity: $\rho \rightarrow \infty$

Timeless WDW equation in these variables

$$
\left[-\rho^{1-d} \frac{\partial}{\partial \rho}\left(\rho^{d-1} \frac{\partial}{\partial \rho}\right)+\underset{\uparrow}{\rho^{-2} \Delta_{\mathrm{LB}}}\right] \Psi(\rho, z)=0
$$

Laplace-Beltrami operator on unit hyperboloid

Solving the WDW equation

$$
\left[-\rho^{1-d} \frac{\partial}{\partial \rho}\left(\rho^{d-1} \frac{\partial}{\partial \rho}\right)+\rho^{-2} \Delta_{\mathrm{LB}}\right] \Psi(\rho, z)=0
$$

Separation of variables: $\Psi(\rho, z)=R(\rho) F(z)$
For

$$
-\Delta_{\mathrm{LB}} F(z)=E F(z)
$$

get

$$
R_{ \pm}(\rho)=\rho^{-\frac{d-2}{2} \pm i \sqrt{E-\left(\frac{d-2}{2}\right)^{2}}}
$$

[Positive frequency coming out of singularity is $R_{-}(\rho)$.]
Left with spectral problem on hyperbolic space.

$\Delta_{\text {LB }}$ and boundary conditions

The classical billiard ball is constrained to Weyl chamber with infinite potentials \Rightarrow Dirichlet boundary conditions

Use upper half plane model

$$
\begin{gathered}
z=(\vec{u}, v), \quad \vec{u} \in \mathbb{R}^{d-2}, v \in \mathbb{R}_{>0} \\
\Rightarrow \quad \Delta_{\mathrm{LB}}=v^{d-1} \partial_{v}\left(v^{3-d} \partial_{v}\right)+v^{2} \partial_{\vec{u}}^{2}
\end{gathered}
$$

$\Delta_{\text {LB }}$ and boundary conditions

The classical billiard ball is constrained to Weyl chamber with infinite potentials \Rightarrow Dirichlet boundary conditions

Use upper half plane model

$$
\begin{gathered}
z=(\vec{u}, v), \quad \vec{u} \in \mathbb{R}^{d-2}, v \in \mathbb{R}_{>0} \\
\Rightarrow \quad \Delta_{\mathrm{LB}}=v^{d-1} \partial_{v}\left(v^{3-d} \partial_{v}\right)+v^{2} \partial_{\vec{u}}^{2}
\end{gathered}
$$

With Dirichlet boundary conditions ($d=3$ in (Iwaniec))

$$
-\Delta_{\mathrm{LB}} F(z)=E F(z) \quad \Rightarrow \quad E \geq\left(\frac{d-2}{2}\right)^{2}
$$

Arithmetic structure (I)

Beyond general inequality details of spectrum depend on shape of domain. ('Shape of the drum' problem)

Focus on maximal supergravity ($d=10$). Domain is determined by E_{10} Weyl group.

Arithmetic structure (I)

Beyond general inequality details of spectrum depend on shape of domain. ('Shape of the drum' problem)

Focus on maximal supergravity ($d=10$). Domain is determined by E_{10} Weyl group.

9-dimensional upper half plane with octonions: $u \equiv \vec{u} \in \mathbb{O}$
On $z=u+\mathrm{i} v$ the ten fundamental Weyl reflections act by

$$
w_{-1}(z)=\frac{1}{\bar{z}}, w_{0}(z)=-\bar{z}+1, w_{j}(z)=-\varepsilon_{j} \bar{z} \varepsilon_{j}
$$

ε_{j} simple E_{8} rts. [Feingold, AK, Nicolai 2008]

Arithmetic structure (II)

Iterated action of

$$
w_{-1}(z)=\frac{1}{\bar{z}}, w_{0}(z)=-\bar{z}+1, w_{j}(z)=-\varepsilon_{j} \bar{z} \varepsilon_{j}
$$

generates whole Weyl group $W\left(E_{10}\right)$.
Even Weyl group $W^{+}\left(E_{10}\right)$ gives 'holomorphic' maps

$$
W^{+}\left(E_{10}\right)=P S L_{2}(0) .
$$

Modular group over the integer 'octavians' 0 .
[Example of family of isomorphisms between hyperbolic Weyl groups and modular groups over division algebras [Feingold, AK, Nicolai 2008].]

Modular wavefunctions (I)

Weyl reflections on wavefunction $\Psi(\rho, z)$

$$
\Psi\left(\rho, w_{I} \cdot z\right)= \begin{cases}+\Psi(\rho, z) & \text { Neumann b.c. } \\ -\Psi(\rho, z) & \text { Dirichlet b.c. }\end{cases}
$$

Use Weyl symmetry to define $\Psi(\rho, z)$ on the whole upper half plane, with Dirichlet boundary conditions $\Rightarrow \Psi(\rho, z)$ is

Modular wavefunctions (I)

Weyl reflections on wavefunction $\Psi(\rho, z)$

$$
\Psi\left(\rho, w_{I} \cdot z\right)= \begin{cases}+\Psi(\rho, z) & \text { Neumann b.c. } \\ -\Psi(\rho, z) & \text { Dirichlet b.c. }\end{cases}
$$

Use Weyl symmetry to define $\Psi(\rho, z)$ on the whole upper half plane, with Dirichlet boundary conditions $\Rightarrow \Psi(\rho, z)$ is

- Sum of eigenfunctions of Δ_{LB} on UHP
- Invariant under action of $W^{+}\left(E_{10}\right)=P S L_{2}(0)$. Anti-invariant under extension to $W\left(E_{10}\right)$.

Modular wavefunctions (I)

Weyl reflections on wavefunction $\Psi(\rho, z)$

$$
\Psi\left(\rho, w_{I} \cdot z\right)= \begin{cases}+\Psi(\rho, z) & \text { Neumann b.c. } \\ -\Psi(\rho, z) & \text { Dirichlet b.c. }\end{cases}
$$

Use Weyl symmetry to define $\Psi(\rho, z)$ on the whole upper half plane, with Dirichlet boundary conditions $\Rightarrow \Psi(\rho, z)$ is

- Sum of eigenfunctions of Δ_{LB} on UHP
- Invariant under action of $W^{+}\left(E_{10}\right)=P S L_{2}(0)$.

Anti-invariant under extension to $W\left(E_{10}\right)$.
\Rightarrow Wavefunction is an odd Maass wave form of $P S L_{2}(0)$
[cf. [Forte 2008] for related ideas for Neumann conditions]

Modular wavefunctions (II)

The spectrum of odd Maass wave forms is (presumably) discrete but not known. For $P S L_{2}(0)$ the theory is not even developed (but see $\left.{ }_{[K r i e g]}\right)$.

For lower dimensional cases like pure (3+1)-dimensional Einstein gravity with $P S L_{2}(\mathbb{Z})$ there are many numerical investigations. [Graham, Szépfalusy 1990; Steil 1994; Then 2003]

The result relevant here later is the inequality $E \geq\left(\frac{d-2}{2}\right)^{2}$.

Modular wavefunctions (II)

The spectrum of odd Maass wave forms is (presumably) discrete but not known. For $P S L_{2}(0)$ the theory is not even developed (but see $\left.{ }_{[K r i e g]}\right)$.

For lower dimensional cases like pure (3+1)-dimensional Einstein gravity with $P S L_{2}(\mathbb{Z})$ there are many numerical investigations. [Graham, Szépfalusy 1990; Steil 1994; then 2003]

The result relevant here later is the inequality $E \geq\left(\frac{d-2}{2}\right)^{2}$.
Summary of analysis so far:
Quantum billiard wavefunction $\Psi(\rho, z)$ is an odd Maass wave form (Dirichlet b.c.) for $P S L_{2}(\mathrm{O})$.

Interpretation (I)

Interpretation (I)

'Wavefunction of the universe' in this set-up formally

$$
\left|\Psi_{\text {full }}\right\rangle=\prod_{\mathbf{x}}\left|\Psi_{\mathbf{x}}\right\rangle
$$

Product of quantum cosmological billiard wavefunctions, one for each spatial point (ultra-locality). [Also [Kiriliov 1995]]

Interpretation (I)

'Wavefunction of the universe' in this set-up formally

$$
\left|\Psi_{\text {full }}\right\rangle=\prod_{\mathbf{x}}\left|\Psi_{\mathbf{x}}\right\rangle
$$

Product of quantum cosmological billiard wavefunctions, one for each spatial point (ultra-locality). [Also [Kiriliov 1995]]

Each factor contains a Maass wave form of the type $\Psi_{\mathbf{x}}(\rho, z)=\sum R_{ \pm}(\rho) F(z)$ with

$$
-\Delta_{\mathrm{LB}} F(z)=E F(z), \quad R_{ \pm}(\rho)=\rho^{-\frac{d-2}{2} \pm i \sqrt{E-\left(\frac{d-2}{2}\right)^{2}}}
$$

Since $E \geq\left(\frac{d-2}{2}\right)^{2}$:
$\Psi_{\mathbf{x}}(\rho, z) \rightarrow 0$ but $\mathbf{c x}$. for $\rho \rightarrow \infty$

Interpretation (II)

- Absence of potential: \exists a well-defined Hilbert space with positive definite metric.
- The wavefunction vanishes at the singularity. But it remains oscillating and complex. No bounce.
\Rightarrow Vanishing wavefunctions on singular geometries are one possible boundary condition. [Dewitt 1967]
- Complexity and notion of positive frequency \Rightarrow Arrow of time? [Isham 1991; Barbour 1993]
- 'Semi-classical' states are expected to spread (quantum ergodicity). Numerical investigations, e.g. [Koehn 2011]

Generalization (I)

Generalization (I)

Classical cosmological billiards led to the E_{10} conjecture. $D=11$ supergravity can be mapped to a constrained null geodesic motion on infinite-dimensional $E_{10} / K\left(E_{10}\right)$ coset Space. [Damour, Henneaux, Nicolai 2002]

Correspondence

Generalization (I)

Classical cosmological billiards led to the E_{10} conjecture. $D=11$ supergravity can be mapped to a constrained null geodesic motion on infinite-dimensional $E_{10} / K\left(E_{10}\right)$ coset SPaCe. [Damour, Henneaux, Nicolai 2002]

Correspondence
Symmetric space $E_{10} / K\left(E_{10}\right)$ has $10+\infty$ many directions.
Cartan subalgebra
pos. step operators

Generalization (II)

Features of the conjectured E_{10} correspondence

- Billiard corresponds to 10 Cartan subalgebra generators
- ∞ many step operators correspond to remaining fields and spatial dependence. [Verified only at low 'levels' but for many different models]
- Space dependence introduced via dual fields (cf. Geroch group) - everything in terms of kinetic terms
- Space (de-)emergent via an algebraic mechanism
- Extension to E_{10} overcomes ultra-locality
- Appears that only supergravity captured; no higher spin fields [Henneaux, AK, Nicolai 2011]

Generalization (III)

$$
\mathcal{H}_{\text {Bill }} \rightarrow \mathcal{H} \equiv \mathcal{H}_{\text {Bill }}+\sum_{\alpha \in \Delta_{+}\left(E_{10}\right)} e^{-2 \alpha(\beta)} \sum_{s=1}^{\text {mult }(\alpha)} \Pi_{\alpha, s}^{2}
$$

is the unique quadratic E_{10} Casimir. Formally like free Klein-Gordon; positive norm could remain consistent?

Generalization (III)

$$
\mathcal{H}_{\text {Bill }} \rightarrow \mathcal{H} \equiv \mathcal{H}_{\text {Bill }}+\sum_{\alpha \in \Delta_{+}\left(E_{10}\right)} e^{-2 \alpha(\beta)} \sum_{s=1}^{\text {mult }(\alpha)} \Pi_{\alpha, s}^{2}
$$

is the unique quadratic E_{10} Casimir. Formally like free Klein-Gordon; positive norm could remain consistent?

Full theory has more constraints than the Hamiltonian ($\mathcal{H} \Psi=0$) constraint: diff, Gauss, etc.

- Global E_{10} symmetry provides ∞ conserved charges \mathcal{J}
- Evidence that constraints can be written as bilinears $\mathfrak{L} \sim \mathcal{J} \mathcal{J}$. [Damour, AK, Nicolai 2007; 2009]
- Analogy with affine Sugawara construction. Particularly useful for implementation as quantum constraints?
Aim: Quantize geodesic mode!!

Poincaré series for $P S L_{2}(\mathbf{0})(\mathbf{I})$

Poincaré series for $W^{+}\left(E_{10}\right)=P S L_{2}(0)$ defined by

$$
\mathcal{P}_{s}(z)=\sum_{\gamma \in W^{+}\left(E_{9}\right) \backslash W^{+}\left(E_{10}\right)} I_{s}(\gamma(z))
$$

with $z=u+\mathrm{i} v$ and $I_{s}(z)=v^{s} . W^{+}\left(E_{9}\right)$ stabilises cusp at infinity. Converges for $\operatorname{Re}(s)>4 . \mathcal{P}_{s}$ is eigenfunction of Δ_{LB}.
Cosets can be given an explicit octonionic description [KNp]. Result is

$$
\mathcal{P}_{s}(z)=\frac{1}{240} \sum_{c, d \in 0} \text { left coprime } \frac{v^{s}}{|c z+d|^{2 s}}
$$

'Left-coprimality' is defined via Euclidean algortihm ${ }_{[\text {KNv }] .}$

Poincaré series for $P S L_{2}$ (0) (II)

In terms of unrestricted sum

$$
\sum_{(c, d) \in 0^{2} \backslash\{(0,0)\}} \frac{v^{s}}{|c z+d|^{2 s}}=\zeta_{0}(s) \frac{1}{240} \sum_{c, d \in 0} \frac{v^{s}}{} \frac{\text { left coprime }^{|c z+d|^{2 s}}}{}
$$

Dedekind Zeta, related to E_{8} Theta
Fourier expansion

$$
\mathcal{P}_{s}(z)=v^{s}+a(s) v^{8-s}+v^{4} \sum_{\mu \in 0^{*} \backslash\{0\}} a_{\mu} K_{s-4}(2 \pi|\mu| v) e^{2 \pi i \mu(u)}
$$

- Only abelian Fourier modes, only two constant terms
- Functional relation (?): $\xi_{0}(s) \mathcal{P}_{s}(z)=\xi_{0}(8-s) \mathcal{P}_{8-s}(z)$
- Neumann boundary conditions

Eisenstein series for $E_{9}(\mathbb{Z})$ and $E_{10}(\mathbb{Z})(\mathbf{I})$

Eisenstein series for $E_{9}(\mathbb{Z})$ and $E_{10}(\mathbb{Z})(\mathbf{I})$

[work in progress... [FR]]
String theory seems to require $E_{10}(\mathbb{Z}) \supset W\left(E_{10}\right)$ [Hu11, Townsend 1995; Ganor 1999].
For smaller rank [Green, Gutperle 1997; Obers, Pioline 1998; Green, Miller, Russo, Vanhove 2010].

Eisenstein series for $E_{9}(\mathbb{Z})$ and $E_{10}(\mathbb{Z})(\mathbf{I})$

[work in progress... [ER]]
String theory seems to require $E_{10}(\mathbb{Z}) \supset W\left(E_{10}\right)$ [Hu11,
Townsend 1995; Ganor 1999].
For smaller rank [Green, Gutperle 1997; Obers, Pioline 1998; Green, Miller, Russo, Vanhove 2010].

Eisenstein series for the Chevalley groups $E_{n}(\mathbb{Z}), n>8$?
Very little literature on the subject... But [Garland 2001]. Affine case $G=E_{9}$:

$$
E_{\lambda}^{G}(g, r)=\sum_{\gamma \in B(\mathbb{Z}) \backslash G(\mathbb{Z})} e^{\left\{\lambda+\rho, H\left(\gamma g e^{r D}\right)\right\rangle}
$$

g does not include derivation D.

Eisenstein series for $E_{9}(\mathbb{Z})$ and $E_{10}(\mathbb{Z})(\mathrm{II})$

Constant term (in minimal parabolic) [Langlands; Garland]

$$
\begin{aligned}
& \sum_{w \in W\left(E_{9}\right)} e^{\left\langle w \lambda+\rho, H\left(g e^{r D}\right)\right\rangle} M(w, \lambda) \\
&= \prod_{\alpha>0: w \alpha<0} \frac{\xi(\langle\lambda, \alpha\rangle)}{\xi(\langle\lambda, \alpha\rangle+1)}
\end{aligned}
$$

Eisenstein series for $E_{9}(\mathbb{Z})$ and $E_{10}(\mathbb{Z})(\mathrm{II})$

Constant term (in minimal parabolic) [Langlands; Garland]

$$
\begin{aligned}
& \sum_{w \in W\left(E_{9}\right)} e^{\left\langle w \lambda+\rho, H\left(g e^{r D}\right)\right\rangle} M(w, \lambda) \\
&=\prod_{\alpha>0: w \alpha<0} \frac{\xi(\langle\lambda, \alpha\rangle)}{\xi(\langle\lambda, \alpha\rangle+1)}
\end{aligned}
$$

Affine Weyl group is infinite but for special values of λ, the infinite sum collapses since $M(w, \lambda)=0$. For $\lambda=2 s \Lambda_{i}-\rho$ this can only happen for $2 s \in \mathbb{Z}$.

Eisenstein series for $E_{9}(\mathbb{Z})$ and $E_{10}(\mathbb{Z})(\mathbf{I I})$

Constant term (in minimal parabolic) [Langlands; Garland]

$$
\begin{aligned}
& \sum_{w \in W\left(E_{9}\right)} e^{\left\langle w \lambda+\rho, H\left(g e^{r D}\right)\right\rangle} M(w, \lambda) \\
&=\prod_{\alpha>0: w \alpha<0} \frac{\xi(\langle\lambda, \alpha\rangle)}{\xi(\langle\lambda, \alpha\rangle+1)}
\end{aligned}
$$

Affine Weyl group is infinite but for special values of λ, the infinite sum collapses since $M(w, \lambda)=0$. For $\lambda=2 s \Lambda_{i}-\rho$ this can only happen for $2 s \in \mathbb{Z}$.
Assume same formal expression for $E_{10}(\mathbb{Z})$...

Constant terms for $E_{9}(\mathbb{Z})$ and $E_{10}(\mathbb{Z})$

Example: $\Lambda_{i}=\Lambda_{*}$

	$s=1 / 2$	$s=1$	$s=3 / 2$	$s=2$	$s=5 / 2$	$s=3$
E_{7}	2	126	8	14	35	56
E_{8}	2	2160	9	16	44	72
E_{9}	2	∞	10	18	54	90
E_{10}	2	∞	11	20	65	110

Constant terms in maximal parabolic can also be evaluated.
Full Fourier decomposition (constant + abelian + non-abelian)?

Summary and outlook

Done:

- Quantum cosmological billiards wavefunctions involve automorphic forms of $P S L_{2}(\mathrm{o})$
- Extendable to supersymmetric case
- Studied parts of modular forms for $W^{+}\left(E_{10}\right)$ and $E_{10}(\mathbb{Z})$

Summary and outlook

Done:

- Quantum cosmological billiards wavefunctions involve automorphic forms of $P S L_{2}(\mathrm{o})$
- Extendable to supersymmetric case
- Studied parts of modular forms for $W^{+}\left(E_{10}\right)$ and $E_{10}(\mathbb{Z})$

To do:

- Construct wavefunctions (with Dirichlet boundary conditions)?
- Include more variables $\Rightarrow E_{10}$ coset model? Constraints? Observables?
- Understand $E_{9}(\mathbb{Z})$ and $E_{10}(\mathbb{Z})$ modular forms better and relation to string scattering

Summary and outlook

Done:

- Quantum cosmological billiards wavefunctions involve automorphic forms of $P S L_{2}(\mathrm{o})$
- Extendable to supersymmetric case
- Studied parts of modular forms for $W^{+}\left(E_{10}\right)$ and $E_{10}(\mathbb{Z})$

To do:

- Construct wavefunctions (with Dirichlet boundary conditions)?
- Include more variables $\Rightarrow E_{10}$ coset model? Constraints? Observables?
- Understand $E_{9}(\mathbb{Z})$ and $E_{10}(\mathbb{Z})$ modular forms better and relation to string scattering

More on hyperbolic Weyl groups (I)

Consider only over-extended hyperbolic algebras \mathfrak{g}^{++} $(\operatorname{rank}(\mathfrak{g}) \equiv \ell=1,2,4,8)$. Their root lattices can be realized in $R^{1,1+\ell} \cong H_{2}(\mathbb{K})$ for a normed division algebra \mathbb{K}

$$
\left(\mathrm{X}_{1} \mid \mathrm{X}_{2}\right)=-\operatorname{det}\left(\mathrm{X}_{1}+\mathrm{X}_{2}\right)+\operatorname{det}\left(\mathrm{X}_{1}\right)+\operatorname{det}\left(\mathrm{X}_{2}\right), \quad \mathrm{X}_{i} \in H_{2}(\mathbb{K})
$$

More on hyperbolic Weyl groups (I)

Consider only over-extended hyperbolic algebras \mathfrak{g}^{++} (rank $(\mathfrak{g}) \equiv \ell=1,2,4,8)$. Their root lattices can be realized in $R^{1,1+\ell} \cong H_{2}(\mathbb{K})$ for a normed division algebra \mathbb{K}

$$
\left(\mathrm{X}_{1} \mid \mathrm{X}_{2}\right)=-\operatorname{det}\left(\mathrm{X}_{1}+\mathrm{X}_{2}\right)+\operatorname{det}\left(\mathrm{X}_{1}\right)+\operatorname{det}\left(\mathrm{X}_{2}\right), \quad \mathrm{X}_{i} \in H_{2}(\mathbb{K})
$$

Choose $a_{i}(i=1, \ldots, \ell)$ such that

$$
a_{i} \bar{a}_{j}+a_{j} \bar{a}_{i}=\text { Cartan matrix of } \mathfrak{g}
$$

Prop 1. \mathfrak{g}^{++}Cartan matrix from simple roots

$$
\alpha_{-1}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad \alpha_{0}=\left(\begin{array}{cc}
-1 & -\theta \\
-\bar{\theta} & 0
\end{array}\right), \quad \alpha_{i}=\left(\begin{array}{cc}
0 & a_{i} \\
\bar{a}_{i} & 0
\end{array}\right)
$$

More on hyperbolic Weyl groups (II)

Thm 1. Fundamental Weyl reflections of $W \equiv W\left(\mathfrak{g}^{++}\right)$are

$$
w_{I}(\mathrm{x})=M_{I} \overline{\mathrm{X}} M_{I}^{\dagger} \quad, I=-1,0,1, \ldots, \ell
$$

with unit versions of \mathfrak{g} simple roots $\varepsilon_{i}=a_{i} / \sqrt{N\left(a_{i}\right)}$ and

$$
M_{-1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad M_{0}=\left(\begin{array}{cc}
-\theta & 1 \\
0 & \bar{\theta}
\end{array}\right), \quad M_{i}=\left(\begin{array}{cc}
\varepsilon_{i} & 0 \\
0 & -\bar{\varepsilon}_{i}
\end{array}\right)
$$

More on hyperbolic Weyl groups (II)

Thm 1. Fundamental Weyl reflections of $W \equiv W\left(\mathfrak{g}^{++}\right)$are

$$
w_{I}(\mathrm{x})=M_{I} \overline{\mathrm{X}} M_{I}^{\dagger} \quad, I=-1,0,1, \ldots, \ell
$$

with unit versions of \mathfrak{g} simple roots $\varepsilon_{i}=a_{i} / \sqrt{N\left(a_{i}\right)}$ and

$$
M_{-1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad M_{0}=\left(\begin{array}{cc}
-\theta & 1 \\
0 & \bar{\theta}
\end{array}\right), \quad M_{i}=\left(\begin{array}{cc}
\varepsilon_{i} & 0 \\
0 & -\bar{\varepsilon}_{i}
\end{array}\right)
$$

Remarks

- Formula well-defined for all \mathbb{K}, including octonions
- Involves complex conjugation of X
- $\varepsilon_{i} \neq a_{i}$ only if \mathfrak{g} not simply laced

More on hyperbolic Weyl groups (III)

For generalizations of modular group $P S L_{2}(\mathbb{Z})$ need
Thm 2. Even Weyl group $W^{+} \equiv W^{+}\left(\mathfrak{g}^{++}\right)$generated by

$$
\left(w_{-1} w_{i}\right)(\mathrm{X})=S_{i} \mathrm{X} S_{i}^{\dagger} \quad, i=0,1, \ldots, \ell
$$

with

$$
S_{0}=\left(\begin{array}{cc}
0 & \theta \\
-\bar{\theta} & 1
\end{array}\right), \quad S_{i}=\left(\begin{array}{cc}
0 & -\varepsilon_{i} \\
\bar{\varepsilon}_{i} & 0
\end{array}\right)
$$

More on hyperbolic Weyl groups (III)

For generalizations of modular group $P S L_{2}(\mathbb{Z})$ need
Thm 2. Even Weyl group $W^{+} \equiv W^{+}\left(\mathfrak{g}^{++}\right)$generated by

$$
\left(w_{-1} w_{i}\right)(\mathrm{X})=S_{i} \mathrm{X} S_{i}^{\dagger} \quad, i=0,1, \ldots, \ell
$$

with

$$
S_{0}=\left(\begin{array}{cc}
0 & \theta \\
-\bar{\theta} & 1
\end{array}\right), \quad S_{i}=\left(\begin{array}{cc}
0 & -\varepsilon_{i} \\
\bar{\varepsilon}_{i} & 0
\end{array}\right)
$$

Remarks

- Formula well-defined for all \mathbb{K}, including octonions
- If det. were defined: $\operatorname{det} S=1$, cf. $W^{+} \subset S O(1, \ell+1 ; \mathbb{R})$
- Does not involve complex conjugation of X \Longrightarrow matrix subgroups of $P S L_{2}(\mathbb{K})$ in associative cases!

List of hyperbolic Weyl groups

\mathbb{K}	\mathfrak{g}	'Ring'	$W(\mathfrak{g})$	$W^{+}\left(\mathfrak{g}^{++}\right)$
\mathbb{R}	A_{1}	\mathbb{Z}	$2 \equiv \mathbb{Z}_{2}$	$P S L_{2}(\mathbb{Z})$
\mathbb{C}	A_{2}	Eisenstein E	$\mathbb{Z}_{3} \rtimes 2$	$P S L_{2}(\mathrm{E})$
\mathbb{C}	$B_{2} \equiv C_{2}$	Gaussian G	$\mathbb{Z}_{4} \rtimes 2$	$P S L_{2}(\mathrm{G}) \rtimes 2$
\mathbb{C}	G_{2}	Eisenstein E	$\mathbb{Z}_{6} \rtimes 2$	$P S L_{2}(\mathrm{E}) \rtimes 2$
\mathbb{H}	A_{4}	Icosians I	\mathfrak{S}_{5}	$P S L_{2}^{(0)}(\mathrm{I})$
\mathbb{H}	B_{4}	Octahedral R	$2^{4} \rtimes \mathfrak{S}_{4}$	$P S L_{2}^{(0)}(\mathrm{H}) \rtimes 2$
\mathbb{H}	C_{4}	Octahedral R	$2^{4} \rtimes \mathfrak{S}_{4}$	$\widetilde{P S L_{2}^{(0)}(\mathrm{H}) \rtimes 2}$
\mathbb{H}	D_{4}	Hurwitz H	$2^{3} \rtimes \mathfrak{S}_{4}$	$P S L_{2}^{(0)}(\mathrm{H})$
\mathbb{H}	F_{4}	Octahedral R	$2^{5} \rtimes\left(\mathfrak{S}_{3} \times \mathfrak{S}_{3}\right)$	$P S L_{2}(\mathrm{H}) \rtimes 2$
\mathbb{O}	E_{8}	Octavians 0	$2 . O_{8}^{+}(2) .2$	$P S L_{2}(\mathrm{O})$

