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Abstract. We show how certain microlocal analysis methods, already well-

developed for the study of conventional Schrödinger eigenvalue problems, can

be extended to apply to the (mini-superspace) Wheeler-DeWitt equation for
the quantized Bianchi type IX (or ‘Mixmaster’) cosmological model. We

use the methods to construct smooth, globally defined expansions, for both
‘ground’ and ‘excited state’ wave functions, on the Mixmaster mini-superspace.

We then review an expansive, ongoing program to further broaden the scope

of such microlocal methods to encompass a class of interacting, bosonic quan-
tum field theories and conclude with a discussion of the feasibility of applying

this ‘Euclidean-signature semi-classical’ quantization program to the Einstein

equations themselves — in the general, non-symmetric case — by exploiting
certain established geometric results such as the positive action theorem.

1. Introduction

Einstein would almost surely never have approved of efforts to quantize his won-
drous, geometric field equations. But the universal character of the gravitational
interaction together with the undeniable necessity to quantize all other forms of
matter and energy leads almost inexorably to the conclusion that the gravitational
field itself should indeed be quantized. In addition to the natural demand for log-
ical coherence in the formulation of fundamental physical laws as motivation for
this pursuit there is the alluring potential benefit that quantum gravitational ef-
fects could ultimately furnish the agency needed to regularize not only the more
troublesome, singular features of classical general relativity but perhaps also those
of quantized matter systems as well. The fundamental nature of these challenging
issues, together with the inconclusiveness of existing attempts at their resolution,
encourages one to search for new points of view towards the quantization problem.

Our aim herein is to explore the applicability of what we shall call ‘Euclidean-
signature semi-classical’ analysis to the problem of solving, at least asymptoti-
cally, the Wheeler-DeWitt equation of canonical quantum gravity. Since this (func-
tional differential) equation has, at present however, only a formal significance we
shall begin by analyzing instead the mathematically well-defined model problem
of constructing asymptotic solutions to the idealized Wheeler-DeWitt equation for
spatially homogeneous, Bianchi type IX (or ‘Mixmaster’) universes. Though the
(partial differential) Wheeler-DeWitt equation for this model problem was first for-
mulated nearly a half century ago, techniques for solving it that bring to light
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the discrete, quantized character naturally to be expected for its solutions have,
only recently, been developed. We shall show, in particular, how certain microlo-
cal analytical methods, long since well-established for the study of conventional
Schrödinger eigenvalue problems, can be modified in such a way as to apply to the
(Mixmaster) Wheeler-DeWitt equation.

That some essential modification of the microlocal methods will be needed
is evident from the fact that the Wheeler-DeWitt equation does not define an
eigenvalue problem, in the conventional sense, at all. For closed universe models,
such as those of Mixmaster type, all of the would-be eigenvalues of the Wheeler-
DeWitt operator, whether for ‘ground’ or ‘excited’ quantum states, are required
to vanish identically. But a crucial feature of standard microlocal methods, when
applied to conventional Schrödinger eigenvalue problems, exploits the flexibility to
adjust the eigenvalues being generated, order-by-order in an expansion in Planck’s
constant, to ensure the smoothness of the eigenfunctions, being constructed in
parallel, at the corresponding order. But if, as in the Wheeler-DeWitt problem,
there are no eigenvalues to adjust, wherein lies the flexibility needed to ensure the
required smoothness of the hypothetical eigenfunctions? And, by the same token,
where are the ‘quantum numbers’ that one would normally expect to have at hand
to label the distinct quantum states? The core of this paper is devoted to showing
how the scope of microlocal methods can, in spite of this apparent impasse, be
broadened to provide creditable, aesthetically appealing answers to such questions.

But the Mixmaster Wheeler-DeWitt equation is a quantum mechanical one
whereas full Einstein gravity is a field theory. For reasons that we shall clarify
later the microlocal methods alluded to above have, heretofore, been limited in
applicability to Schrödinger operators defined on finite dimensional configuration
spaces. The author, however, together with A. Marini and R. Maitra, has recently
been engaged in further extending the scope of such methods to encompass cer-
tain (bosonic) relativistic field theories in a far-reaching program we refer to as
‘Euclidean-signature semi-classical’ analysis [1, 2, 3]. We shall review, in section 6
below, the current status of this expansive, ongoing program, discussing in partic-
ular its applicability to self-interacting scalar and Yang-Mills fields on Minkowski
spacetime.

With the backdrop of the aforementioned developments in mind it is natural
to ask the question — could such (Euclidean-signature semi-classical) methods
be applicable to the Wheeler-DeWitt equation of full canonical quantum gravity?
Since research in this direction has only just begun we do not, by any means,
have a conclusive answer to this overriding question. In the concluding section
however we shall draw attention to several remarkably attractive features of such
an approach and show, in particular, how it avoids some of the serious complications
that obstructed progress on the, somewhat similar-in-spirit, Euclidean path integral
approach to quantum gravity.

While Einstein most likely would not have approved of the ultimate aim of this
research program he nevertheless himself initiated an elegant extension of the old
Bohr quantization rules to classically integrable systems that has since, after sub-
sequent refinements, come to be known as the Einstein-Brillouin-Keller (or EBK)
approximation [4]. So perhaps he would have appreciated yet a different applica-
tion of semi-classical methods to quantum systems — especially one that does not
require classical integrability or even finite dimensionality for its implementation.
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2. Mixmaster Spacetimes

The Bianchi IX, or ‘Mixmaster’ cosmological models are spatially homogeneous
spacetimes defined on the manifold S3 × R. Their metrics can be conveniently
expressed in terms of a basis, {σi}, for the left-invariant one-forms of the Lie group
SU(2) which of course is diffeomorphic to the ‘spatial’ manifold under study. In a
standard, Euler angle coordinate system for S3 these basis one-forms can be written
as:

σ1 = cosψdθ + sinψ sin θdϕ,

σ2 = sinψdθ − cosψ sin θdϕ,

σ3 = dψ + cos θdϕ

(2.1)

and satisfy

(2.2) dσi =
1

2
εijk σ

j ∧ σk

where εijk is completely anti-symmetric with ε123 = 1.
In the absence of matter sources for the Einstein equations (i.e., in the so-called

‘vacuum’ case) it is well-known that the Mixmaster spacetime metric can always be
put, after a suitable frame ‘rotation’, into diagonal form. Thus, without essential
loss of generality, one can write the line element for vacuum, Bianchi IX models in
the form

ds2 = (4)gµνdx
µdxν

= −N2dt2 +
L2

6π
e2α(e2β)ijσ

iσj
(2.3)

where {xµ} = {t, θ, ϕ, ψ} with t ∈ R, e2β is a diagonal, positive definite matrix of
unit determinant and L is a positive constant with the dimensions of ‘length’.

In the notation introduced by Misner [5, 6] one writes

(2.4) (e2β) = diag
(
e2β++2

√
3β− , e2β+−2

√
3β− , e−4β+

)
and thereby expresses e2β in terms of his (arbitrary, real-valued) anisotropy param-
eters {β+, β−}. These measure the departure from ‘roundness’ of the homogenous,
Riemannian metric on S3 given by

(2.5) γijdx
i ⊗ dxj :=

L2

6π
e2α (e2β)ij σ

i ⊗ σj

whereas the remaining (arbitrary, real-valued) parameter α determines the sphere’s
overall ‘size’ (in units of L).

To ensure spatial homogeneity the metric functions {N,α, β+, β−} can only
depend upon the time coordinate t which, for convenience, we take to be dimen-
sionless. To ensure the uniform Lorentzian signature of the metric (4)g the ‘lapse’
function N must be non-vanishing (and, with our conventions, have the dimensions
of length). Taken together the parameters {α, β+, β−} coordinatize the associated
‘mini-superspace’ of spatially homogeneous, diagonal Riemannian metrics on S3.
This minisuperspace is the natural configuration manifold for the Mixmaster dy-
namics.
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In terms of Newton’s constant, G, and the speed of light, c, the Hilbert action
functional is given by

(2.6) IHilbert :=
c3

16πG

∫
Ω

√
−det (4)g (4)R((4)g)d4x

where (4)R((4)g) is the scalar curvature of the metric (4)g and
√
−det (4)g its canon-

ical 4-volume measure. When evaluated for metrics of the aforementioned, Bianchi
IX, type on domains of the form Ω ≡ S3 × I, with I := [to, t1] ⊂ R, the above
integral specializes to

IHilbert =
c3L3π

G(6π)3/2

∫
I

dt

{
6e3α

N
(−α̇2 + β̇2

+ + β̇2
−)− 6πNeα

2L2

[
e−8β+

−4e−2β+ cosh (2
√

3β−) + 2e4β+

(
cosh (4

√
3β−)− 1

)]
+
d

dt

(
6e3αα̇

N

)}
(2.7)

after the integration over the angular coordinates {xi} = {θ, ϕ, ψ} for S3 has been
carried out. Here α̇ = dα

dt , etc., and the full set of Einstein equations for these
models results from independent variation of the metric functions {N,α, β+, β−}
subject to the requirement that their variations, together with that of α̇, vanish
at the boundary points of the interval I (i.e., at t = t0 and t = t1). Under these

constraints the final term in the integrand, d
dt

(
6e3αα̇
N

)
, makes no contribution

to the resulting equations of motion. Accordingly one is led to define the ADM
(Arnowitt, Deser and Misner [7, 8]) action for Bianchi IX models by deleting it
and setting

IADM :=
c3L3π

G(6π)3/2

∫
I

dt

{
6e3α

N
(−α̇2 + β̇2

+ + β̇2
−)

− (6π)Neα

2L2

[
e−8β+ − 4e−2β+ cosh (2

√
3β−) + 2e4β+(cosh (4

√
3β−)− 1)

]}
:=

∫
I

LADMdt.

(2.8)

The corresponding Hamiltonian formulation is arrived at via the Legendre trans-
formation

pα :=
∂LADM

∂α̇
=
−c3L3π

G(6π)3/2

12e3αα̇

N

p+ :=
∂LADM

∂β̇+

=
c3L3π

G(6π)3/2

12e3αβ̇+

N

p− :=
∂LADM

∂β̇−
=

c3L3π

G(6π)3/2

12e3αβ̇−
N

.

(2.9)

In terms of the canonical variables {α, β+, β−, pα, p+, p−} the ADM action takes
the form

(2.10) IADM =

∫
I

dt {pαα̇+ p+β̇+ + p−β̇− −NH⊥}
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where

H⊥ :=
(6π)1/2G

4c3L3e3α

{
(−p2

α + p2
+ + p2

−) +

(
c3

G

)2

L4e4α

[
e−8β+

3

−4e−2β+

3
cosh (2

√
3β−) +

2

3
e4β+

(
cosh (4

√
3β−)− 1

)]}
.

(2.11)

Variation of the lapse function N, which only appears now in ‘Lagrange multiplier’
form, leads to that Einstein equation known as the ‘Hamiltonian constraint’,

(2.12) H⊥(α, β+, β−, pα, p+, p−) = 0,

whereas variation of the canonical variables leads to the Hamiltonian evolution
equations

α̇ =
∂HADM

∂pα
, β̇+ =

∂HADM

∂p+
, β̇− =

∂HADM

∂p−
(2.13)

ṗα = −∂HADM

∂α
, ṗ+ = −∂HADM

∂β+
, ṗ− = −∂HADM

∂β−
(2.14)

with so-called super-Hamiltonian given by

(2.15) HADM := NH⊥.

The choice of lapse function N is essentially arbitrary but determines the coordinate
‘gauge’ by assigning a geometrical meaning to the time function t. For example the
choice N = L corresponds to taking t = c

Lτ where τ is ‘proper time’ normal to
the hypersurfaces of spatial homogeniety. The Hamiltonian constraint, (2.12), is
conserved in time by the evolution equations, (2.13, 2.14), independently of the
choice of lapse.

Though the general solution to the Mixmaster equations of motion is not known,
much is known about the dynamical behavior and asymptotics of the resulting
spacetimes. One can show for example that each such cosmological model expands
from a ‘big bang’ singularity of vanishing spatial volume, α→ −∞, a finite proper
time in the past, achieves a momentary maximal volume at some finite proper time
from the big bang and then ‘recollapses’ to another vanishing-volume, ‘big crunch’
singularity a finite proper time in the future [9, 10, 11, 12]. For the generic solution
spacetime curvature can be proven to blow up at these singular boundaries [13]
but some exceptional cases, so-called Taub universes [14, 15], develop (compact,
null hypersurface) Cauchy horizons ≈ S3 instead of curvature singular boundaries
and are analytically extendable through these horizons to certain acausal NUT
(Newman, Unti, Tamburino) spacetimes that admit closed timelike curves [16, 17].
The inextendability of the generic, vacuum Mixmaster spacetime is consistent with
Penrose’s (strong) cosmic censorship conjecture according to which the maximal
Cauchy developments of generic, globally hyperbolic solutions to the (vacuum)
Einstein field equations should not allow such acausal extensions.

The dynamical behavior of the generic solution to equations (2.12–2.14), be-
tween its big bang and big crunch singular boundaries, entails an infinite se-
quence of intricate ‘bounces’ of the evolving system point in mini-superspace,
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(α(t), β+(t), β−(t)), off of the ‘walls’ provided by the potential energy function

U(α, β+, β−) :=
c3(6π)1/2Leα

4G

[
e−8β+

3
− 4

3
e−2β+ cosh (2

√
3β−)

+
2

3
e4β+

(
cosh (4

√
3β−)− 1

)](2.16)

appearing in the gravitational super-Hamiltonian HADM = NH⊥. This sequence
of bounces has been extensively analyzed with various analytical and numerical
approximation methods beginning with the fundamental investigations of Belinskǐı,
Khalanikov and Lifshitz (BKL) [18, 19] and Misner [20]. The insights gained
therefrom led Belinskǐı, et al to the bold conjecture that the Mixmaster dynamics
provides a paradigm for the behavior of a generic, non-symmetric cosmological
model at a spacelike singular boundary [21, 22]. The study of such BKL oscillations
within models of increasing generality and complexity is a continuing, significant
research area within mathematical cosmology [23, 24, 25]. Though Newtonian
definitions of ‘chaos’ do not strictly apply to the Mixmaster dynamical system
certain natural extensions of this concept have led to the conclusion that Mixmaster
dynamics is indeed ‘chaotic’ in a measurably meaningful sense [26, 27].

At the same time it has long been suspected that quantum effects should dra-
matically modify the nature of the Mixmaster evolutions especially when the evolv-
ing universe models reach a size comparable to the so-called Planck length, i.e.,
when Leα becomes comparable to LPlanck ' 1.616× 10−33 cm. This suspicion led
Misner to initiate the study of Mixmaster quantum cosmology [6], the subject to
which we now turn.

3. The Wheeler-DeWitt Equation for Mixmaster Universes

One can formally quantize the Mixmaster dynamical system described above
by working in the Schrödinger representation wherein quantum states are expressed
as ‘wave’ functions of the canonical coordinates, Ψ(α, β+, β−), and the conjugate
momenta to these variables are replaced by differential operators:

pα −→ p̂α :=
~
i

∂

∂α
,

p+ −→ p̂+ :=
~
i

∂

∂β+
,

p− −→ p̂− :=
~
i

∂

∂β−
.

(3.1)

Here ~ = h
2π where h is Planck’s constant given by h ' 6.62606957×10−27 erg · sec.

In this picture one converts, after making a suitable choice of operator ordering,
the classical Hamiltonian constraint function H⊥ into a quantum operator Ĥ⊥ and
imposes it, à la Dirac, as a fundamental constraint on the allowed quantum states
by setting

(3.2) Ĥ⊥Ψ = 0.

Since this equation is an idealized, finite dimensional model for the formal equa-
tion proposed by Wheeler and DeWitt for full, non-symmetric, canonical quantum
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gravity (formulated on the infinite dimensional ‘superspace’ of Riemannian geome-
tries [28, 29]) we shall refer to it as the Wheeler-DeWitt (WDW) equation for
Mixmaster spacetimes.

For simplicity we shall limit our attention here to a particular one-parameter
family of operator orderings for Ĥ⊥, first introduced by Hartle and Hawking [30],
and characterized by the specific substitutions

−e−3α p2
α −→

~2

e(3−B)α

∂

∂α

(
e−Bα

∂

∂α

)
,(3.3)

e−3α p2
+ −→

−~2

e3α

∂2

∂β2
+

,(3.4)

e−3α p2
− −→

−~2

e3α

∂2

∂β2
−
,(3.5)

for the ‘kinetic energy’ terms appearing in Ĥ⊥. Here B is an arbitrary real parame-
ter whose specification determines a particular ordering of the family. For any such
ordering the WDW equation can be written as

(
LPlanck

L

)3 {
e−(3−B)α ∂

∂α

(
e−Bα

∂Ψ

∂α

)
− e−3α

(
∂2Ψ

∂β2
+

+
∂2Ψ

∂β2
−

)}
+

(
L

LPlanck

)
eα
[
e−8β+

3
− 4

3
e−2β+ cosh (2

√
3β−) +

2

3
e4β+

(
cosh (4

√
3β−)− 1

)]
Ψ

= 0

(3.6)

where LPlanck is the Planck length defined by

(3.7) LPlanck =

(
G~
c3

)1/2

' 1.616199× 10−33 cm.

Notice that the arbitrary ‘length’ constant L always occurs in the combination Leα

so that a change of its value merely corresponds to a shift of α by an additive
constant.

Notice in addition that when the WDW equation, Ĥ⊥Ψ = 0, is imposed to
constrain the allowed, so-called ‘physical’, quantum states, then the conventional
Schrödinger equation, which would be expected to have the form

(3.8) i~
∂Ψ

∂t
= ĤADMΨ = NĤ⊥Ψ,

reduces to the seemingly mysterious implication that physical states do not evolve
in ‘time’, i.e., to the conclusion that ∂Ψ

∂t = 0.
This result is a reflection of the conceptual ‘problem of time’ in canonical quan-

tum cosmology for the case of (spatially) closed universes. It leads one inexorably
to the conclusion that actual temporal evolution must be measured not with re-
spect to some external, ‘absolute’ time, as in Newtonian or even special relativistic
physics, but rather with respect to some internal ‘clock’ contained within the system
itself. The most obvious such clock variable for the Mixmaster models is the log-
arithmic scale parameter α whose value, classically, determines the instantaneous
spatial ‘size’ of the model universe and which, again classically, evolves in an almost
monotonic fashion. More precisely α increases monotonically during the epoch of
cosmological expansion, stops for an instant at the moment of maximal volume and
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then decreases monotonically during the followup epoch of cosmological collapse
until the final ‘big crunch’.

But, as Misner was the first to realize, the Wheeler-DeWitt equation for Mix-
master models does not have Schrödinger form and so many of the usual construc-
tions, familiar from ordinary quantum mechanics, such as the eigenfunctions and
eigenvalues of a self-adjoint Hamiltonian operator acting on a naturally associated
Hilbert space of quantum states and the conservation, in ‘time’, of the Hilbert space
norm of such evolving states, no longer seem to apply. The Wheeler-DeWitt equa-
tion is indeed a wave equation (though not one of Schrödinger type), but where
is the discreteness, expected of a normal quantum system, to be found among its
solutions?

In the sections to follow we shall bring certain microlocal analysis techniques,
already well-developed for the study of conventional Schrödinger eigenvalue prob-
lems [31, 32, 33, 1], to bear on such questions and show how these techniques can
indeed be extended to apply to the Mixmaster Wheeler-DeWitt equation.

At first sight though it is not apparent that such microlocal methods can be
applied at all. In particular, for a conventional Schrödinger eigenvalue problem,
they make crucial use of the freedom to adjust the eigenvalues under construction,
order-by-order in an expansion in Planck’s constant, to ensure the global smooth-
ness of the eigenfunctions being generated at the corresponding order. But for the
Wheeler-DeWitt problem all eigenvalues of Ĥ⊥, whether for ‘ground’ or ‘excited’
states (whatever those terms might ultimately be taken to mean) are required to
vanish to all orders with no flexibility whatsoever. And if no meaningful eigenvalues
can be defined wherein are the ‘quanta’ naturally demanded of a quantized system?

As we shall see however the special structure of the Wheeler-DeWitt operator,
Ĥ⊥, and the fact that it is not of Schrödinger type, comes to the rescue and al-
lows one to generate smooth, globally defined expansions (to all orders in Planck’s
constant) for both ground and excited states. These states are labeled by a pair
of non-negative integers that can be naturally interpreted as graviton excitation
numbers for the ultra-long-wavelength gravitational waves modes represented by
the quantum dynamics of the anisotropy degrees of freedom, β+ and β−.

4. Microlocal Techniques for the Mixmaster Wheeler-DeWitt Equation

In view of the resemblance of Ĥ⊥ to a conventional Schrödinger operator one
is motivated to propose a ‘ground state’ wave function of real, nodeless type and
thus to introduce an ansatz of the form

(4.1)
(0)

Ψ~ = e−S~/~,

where S~ = S~(α, β+, β−) is a real-valued function on the Mixmaster mini-superspace
having the dimensions of ‘action’. It will be convenient to define a dimensionless
stand-in for S~ by setting

(4.2) S~ :=
G

c3L2
S~

and to assume that S~ admits a formal expansion in powers of the dimensionless
ratio

(4.3) X :=
L2

Planck

L2
=

G~
c3L2
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given by

(4.4) S~ = S(0) +XS(1) +
X2

2!
S(2) + · · ·+ Xk

k!
S(k) + · · ·

so that
(0)

Ψ~ now becomes

(4.5)
(0)

Ψ~ = e−
1
X S(0)−S(1)−

X
2!S(2)−···.

Substituting this ansatz into the Wheeler-DeWitt equation, Ĥ⊥
(0)

Ψ~ = 0, and
requiring satisfaction, order-by-order in powers of X leads immediately to the se-
quence of equations:

(
∂S(0)

∂α

)2

−
(
∂S(0)

∂β+

)2

−
(
∂S(0)

∂β−

)2

+ e4α

[
e−8β+

3
− 4

3
e−2β+ cosh (2

√
3β−) +

2

3
e4β+

(
cosh (4

√
3β−)− 1

)]
= 0,

(4.6)

2

[
∂S(0)

∂α

∂S(1)

∂α
−
∂S(0)

∂β+

∂S(1)

∂β+
−
∂S(0)

∂β−

∂S(1)

∂β−

]
+B

∂S(0)

∂α
−
∂2S(0)

∂α2
+
∂2S(0)

∂β2
+

+
∂2S(0)

∂β2
−

= 0,

(4.7)

and, for k ≥ 2,

2

[
∂S(0)

∂α

∂S(k)

∂α
−
∂S(0)

∂β+

∂S(k)

∂β+
−
∂S(0)

∂β−

∂S(k)

∂β−

]
+ k

[
B
∂S(k−1)

∂α
−
∂2S(k−1)

∂α2
+
∂2S(k−1)

∂β2
+

+
∂2S(k−1)

∂β2
−

]
k−1∑
`=1

k!

`!(k − `)!

(
∂S(`)

∂α

∂S(k−`)

∂α
−
∂S(`)

∂β+

∂S(k−`)

∂β+
−
∂S(`)

∂β−

∂S(k−`)

∂β−

)
= 0.

(4.8)

One recognizes Eq. (4.6) as the Euclidean signature analogue of the Hamilton-
Jacobi equation for Mixmaster spacetimes that results from making the canonical
substitutions

pα −→
∂S

∂α
=
c3L2

G

∂S
∂α

,

p+ −→
∂S

∂β+
=
c3L2

G

∂S
∂β+

,

p− −→
∂S

∂β−
=
c3L2

G

∂S
∂β−

(4.9)
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for the momenta in the Euclidean signature Hamiltonian constant, H⊥ Eucl = 0,
where

H⊥ Eucl :=
(6π)1/2G

4c3L3e3α

{
(p2
α − p2

+ − p2
−)

+

(
c3

G

)2

L4e4α

[
e−8β+

3
− 4

3
e−2β+ cosh (2

√
3β−)

+
2

3
e4β+

(
cosh (4

√
3β−)− 1

)]}
.

(4.10)

This expression results from repeating the derivation of IADM given in Sect. 2, but
now for a Euclidean signature Bianchi IX metric,

(4.11) (4)gµν |Eucl dx
µ ⊗ dxν = N |2Eucl dt⊗ dt+

L2

6π
e2α(e2β)ijσ

i ⊗ σj ,

and differs from Eq. (2.11) only in the sign of the kinetic energy term.
The remaining equations (4.7, 4.8) are linear ‘transport’ equations to be inte-

grated along the flow generated by a solution for S(0) to sequentially determine the

quantum corrections
{
S(k), k = 1, 2, . . .

}
in the formal expansion (4.4) for S~.

There are two known, globally defined, smooth solutions to Eq. (4.6) that
share the rotational symmetry of the Wheeler-DeWitt operator under rotations
by ± 2π

3 in the β-plane. By virtue of the geometrical characters of the Euclidean
signature ‘spacetimes’ they respectively generate they are sometimes referred to as
the ‘wormhole’ solution,

(4.12) Swh
(0) :=

1

6
e2α

(
e−4β+ + 2e2β+ cosh (2

√
3β−)

)
,

and the ‘no boundary’ solution
(4.13)

Snb
(0) :=

1

6
e2α

[(
e−4β+ + 2e2β+ cosh (2

√
3β−)

)
− 2

(
e2β+ + 2e−β+ cosh (

√
3β−)

)]
.

The first of these was discovered in the present context by Ryan and the author
in [34] and independently, in a somewhat related, but supersymmetric setting by
Graham in [35] who then, together with Bene, proceeded to construct the sec-
ond solution [36, 37]. An additional, non-symmetric solution, together with its
(geometrically equivalent) images under ± 2π

3 rotations in the β-plane, was later
uncovered by Barbero and Ryan in a systematic, further search [38].

On the other hand the Euclidean signature Mixmaster ‘spacetimes’ generated
by these various solutions, together with a characterization of their global geometric
properties, were actually known much earlier, having been discovered through ex-
tensive searches for self-dual-curvature solutions to the field equations by Gibbons
and Pope in [39] and by Belinskǐı et al. in [40]. With respect to a certain time
function η, which corresponds to our choice

(4.14) N |Eucl =
Le3α

(6π)1/2
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for the Euclidean signature lapse, these authors found that the metric functions

ω1 := e2α−β+−
√

3β−

ω2 := e2α−β++
√

3β−

ω3 := e2α+2β+

(4.15)

satisfied the evolution equations

dω1

dη
= ω2ω3,

dω2

dη
= ω1ω3,

dω3

dη
= ω1ω2

(4.16)

for the ‘wormhole’ family and

dω1

dη
= ω2ω3 − ω1(ω2 + ω3),

dω2

dη
= ω1ω3 − ω2(ω1 + ω3),

dω3

dη
= ω1ω2 − ω3(ω1 + ω2)

(4.17)

for the ‘no boundary’ family. One can easily recover these flow equations from
our Hamilton-Jacobi formalism by making the substitutions (4.9) and (4.14) for
{pα, p+, p−} and N |Eucl in the Euclidean signature Hamilton equations

α̇ =
(6π)1/2G

2c3L3e3α
N |Eucl pα(4.18)

β̇+ =
−(6π)1/2G

2c3L3e3α
N |Eucl p+(4.19)

β̇− =
−(6π)1/2G

2c3L3e3α
N |Eucl p−(4.20)

and choosing S = Swh
(0) or S = Snb

(0) accordingly.

Because of its remarkable correspondence to the Euler equations for an asym-
metric top [41] the ‘Euler’ system (4.16) was integrated long ago by Abel and
Jacobi in terms of elliptic functions [39, 42, 43]. But system (4.17) also long pre-
dated general relativity having been discovered by Darboux in connection with a
pure geometry problem [44]. This ‘Darboux’ system was subsequently integrated
by Halphen [45] and later Bureau [46] in terms of Hermite modular elliptic func-
tions. Both systems also occur as reductions of the self-dual Yang-Mills equations
[42, 43].

Since the asymptotically Euclidean behavior of the wormhole ‘spacetimes’, as
elucidated by Belinskǐı, et al. in [40] and by Gibbons and Pope in [39], fits most
naturally with our current perspective on appropriate boundary conditions for a

ground state wave function
(0)

Ψ~ we shall focus exclusively on the ‘wormhole’ solution,
Swh

(0) , and its associated ‘flow’, in the analysis to follow. It is worth remarking

however that the same (microlocal) methods could also be brought to bear on the
‘no boundary’ solution, Snb

(0), and its ‘flow’.
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Though the classical solution to the Euler system (4.16) entails elliptic functions
[39, 40], J. Bae was recently able, using a choice for the Euclidean signature lapse
proposed by the author, to reintegrate this system purely in terms of elementary
functions and thus to simplify some of the subsequent analysis [47]. With the lapse
function taken to be

(4.21) N |Eucl =
−Leα−2β+

(2π)1/2

the wormhole flow equations become

dβ−
dt

= sinh (2
√

3β−),(4.22)

dβ+

dt
= − 1√

3

(
e−6β+ − cosh (2

√
3β−)

)
(4.23)

dα

dt
= − 1

2
√

3

(
e−6β+ + 2 cosh (2

√
3β−)

)
(4.24)

and can be readily integrated in the order given.1

In terms of initial values {α0, β+0, β−0} prescribed at t = 0 Bae’s solution is
expressible as

e12α(t) = e12α0−6β+0H+(h+h−)2,(4.25)

e6β+(t) =
H+

h+h−
,(4.26)

e2
√

3β−(t) =
h+

h−
(4.27)

where

H+ = e6β+0 − cosh (2
√

3β−0) +
1

2
(h2

+ + h2
−)(4.28)

= e6β+0 + (h±)2 − (h±0)2,

h+ = e−
√

3t cosh (
√

3β−0) + e
√

3t sinh (
√

3β−0),(4.29)

h− = e−
√

3t cosh (
√

3β−0)− e
√

3t sinh (
√

3β−0).(4.30)

Several useful identities that follow from these formulas are given by

cosh (2
√

3β−(t)) =
h2

+ + h2
−

2h+h−
,(4.31)

e2α(t)+2β+(t) = e2α0−β+0
√
H+,(4.32)

e4α(t)−2β+(t) = e4α0−2β+0h+h−.(4.33)

It is not difficult to verify that every solution is globally, smoothly defined on
a maximal interval of the form (−∞, t∗) where t∗ > 0 so that, in particular, every
solution curve is well-defined on the sub-interval (−∞, 0]. Furthermore β+(t) and
β−(t) each decay exponentially rapidly to zero as t→ −∞ with

(4.34) β±(t) ∼ const±e
2
√

3t

1Since the chosen lapse (4.21) does not share the triangular symmetry of Swh
(0)

in the β-plane,

geometrically equivalent solutions to the flow equations (4.22–4.24) will often be parametrized

differently.
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while α diverges, asymptotically linearly,

(4.35) α(t) ∼ −
√

3

2
t+ const

in this limit. This behavior of the solution curves will play a crucial role in the
integration of the transport equations (4.7, 4.8).

It is worth noting that one can linearize the β-plane flow equations (4.22–4.23)
through an explicit transformation to ‘Sternberg coordinates’ {y+, y−} in terms of
which these equations reduce to

(4.36)
dy+

dt
= 2
√

3y+,
dy−
dt

= 2
√

3y−.

These Sternberg coordinates are defined by

y+ =
1

6

(
e6β+ − cosh (2

√
3β−)

cosh2 (
√

3β−)

)
,(4.37)

y− =
1√
3

sinh (
√

3β−)

cosh (
√

3β−)
(4.38)

which has the explicit inverse

e6β+ = 3y+ + (3y+ + 1)

(
1 + 3y2

−
1− 3y2

−

)
,(4.39)

e2
√

3β− =
1 +
√

3y−

1−
√

3y−
(4.40)

and maps the β-plane diffeomorphically onto the ‘strip’ given by

− 1√
3
< y− <

1√
3
,(4.41)

y+ > −1

6
(1 + y2

−).(4.42)

Taking S(0) = Swh
(0) Bae found a particular solution to the first transport equa-

tion (4.7) given by

(4.43) S(1) = −1

2
(B + 6)α.

Though one would be free to add an arbitrary solution to the corresponding homo-
geneous equation we shall reserve such flexibility for the subsequent construction
of excited states, retaining Bae’s particular solution as the natural choice to make
for a ground state.

The ensuing transport equations (4.8) can now be solved inductively by making
the ansatz

(4.44) Swh
(k) = 6e−2(k−1)αΣwh

(k)(β+, β−)

for k = 2, 3, . . . and, for convenience, defining

(4.45) Σwh
(0) = e−4β+ + 2e2β+ cosh (2

√
3β−)

so that

(4.46) Swh
(0) =

e2α

6
Σwh

(0)(β+, β−).
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The resulting transport equations for the
∑wh

(k)’s now take the form

∂Σwh
(0)

∂β+

∂Σwh
(2)

∂β+
+
∂Σwh

(0)

∂β−

∂Σwh
(2)

∂β−
+ 4Σwh

(0)Σ
wh
(2) =

(
9− B2

4

)
,(4.47)

∂Σwh
(0)

∂β+

∂Σwh
(3)

∂β+
+
∂Σwh

(0)

∂β−

∂Σwh
(3)

∂β−
+ 8Σwh

(0)Σ
wh
(3) = 9

[
∂2Σwh

(2)

∂β2
+

+
∂2Σwh

(2)

∂β2
−

+ 8Σwh
(2)

]
,(4.48)

and, for all k ≥ 4:

∂Σwh
(0)

∂β+

∂Σwh
(k)

∂β+
+
∂Σwh

(0)

∂β−

∂Σwh
(k)

∂β−
+ 4(k − 1)Σwh

(0)Σ
wh
(k)

= 3k

[
∂2Σwh

(k−1)

∂β2
+

+
∂2Σwh

(k−1)

∂β2
−

− (k − 2) (4(k − 2)− 12) Σwh
(k−1)

]

+

k−2∑
`=2

18k!

`!(k − `)!

[
4(`− 1)(k − `− 1)Σwh

(`)Σwh
(k−`)

−

(
∂Σwh

(`)

∂β+

∂Σwh
(k−`)

∂β+
+
∂Σwh

(`)

∂β−

∂Σwh
(k−`)

∂β−

)]
.

(4.49)

Noting that

(4.50)
∂Σwh

(0)

∂β+
= −4e−4β+ + 4e2β+ cosh (2

√
3β−)

and

(4.51)
∂Σwh

(0)

∂β−
= 4
√

3e2β+ sinh (2
√

3β−)

both vanish at the origin whereas

(4.52) Σwh
(0)(0, 0) = 3

it follows from equations (4.47–4.49) that any set of smooth solutions would have
to satisfy

Σwh
(2)(0, 0) =

1

12

(
9− B2

4

)
,(4.53)

Σwh
(3)(0, 0) =

3

8

[
∂2Σwh

(2)

∂β2
+

+
∂2Σwh

(2)

∂β2
−

+ 8Σwh
(2)

]
(0, 0),(4.54)

and

Σwh
(k)(0, 0) =

{
k

4(k − 1)

[
∂2Σwh

(k−1)

∂β2
+

+
∂2Σwh

(k−1)

∂β2
−

− (k − 2) (4(k − 2)− 12) Σwh
(k−1)

]

+
3

2(k − 1)

k−2∑
`=2

k!

`!(k − `)!

[
4(`− 1)(k − `− 1)Σwh

(`)Σwh
(k−`)

−

(
∂Σwh

(`)

∂β+

∂Σwh
(k−`)

∂β+
+
∂Σwh

(`)

∂β−

∂Σwh
(k−`)

∂β−

)]}
(0, 0)

(4.55)
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∀ k ≥ 4.
From equations (4.22–4.23,4.50–4.51) one easily verifies that

(4.56)
1

4
√

3
e−2β+

(
∂Σwh

(0)

∂β+

∂Σwh
(k)

∂β+
+
∂Σwh

(0)

∂β−

∂Σwh
(k)

∂β−

)
=
dΣwh

(k)

dt

along the flow generated by Swh
(0) . Thus multiplying each of equations (4.47, 4.48,

4.49) by 1
4
√

3
e−2β+ and exploiting equation (4.24) to reexpress a term on the left

hand side converts it to the first order, linear ‘transport’ form

dΣwh
(k)

dt
+ 4(k − 1)Σwh

(k)

1

4
√

3

(
e−6β+ + 2 cosh (2

√
3β−)

)
=

d

dt
Σwh

(k) − 2(k − 1)
dα

dt
Σwh

(k)

= Λ(k)

(4.57)

where Λ(k) denotes the right hand side of the original equation multiplied by
1

4
√

3
e−2β+ . This ‘source’ term for Σwh

(k) will be smooth provided that
{

Σwh
(2), . . . ,Σ

wh
(k−1)

}
are each globally smooth.

An integrating factor for equation (4.57) is now easily seen to be

(4.58)
µ(k)(t)

µ(k)(0)
=
e−2(k−1)α(t)

e−2(k−1)α(0)

and has the important property of vanishing exponentially rapidly in t as t↘ −∞
along an arbitrary solution curve of the flow equations (4.22–4.24).

The strategy for computing Σwh
(k) at an arbitrary point (β+0, β−0) in the β-plane

is now as follows: integrate equation (4.57) along the solution curve ‘beginning’ at
(β+0, β−0) at t = 0 and adjust the ‘initial value’, Σwh

(k)(β+0, β−0), of this function in

such a way as to ensure that its asymptotically attained limit has the pre-determined
value given for it in equations (4.53–4.55) above, i.e., that

(4.59) Σwh
(k)(0, 0) = lim

t↘−∞
Σwh

(k) (β+(t), β−(t)) .

Finally, verify the smoothness of the function so constructed and proceed, induc-
tively, to the subsequent order.

Applying the technique first to Σwh
(2) one finds that

(4.60)

Σwh
(2) (β+(t), β−(t)) =

{
Σwh

(2)(β+0, β−0)−
(

9−B2

4

)
4
√

3

∫ 0

t

ds e−2(α(s)−α(0))−2β+(s)

}
e−2(α(t)−α(0))

∀ t ≤ 0. In view of the asymptotic vanishing of the denominator as t↘ −∞ there
is only one choice for Σwh

(2)(β+0, β−0) that can yield a finite value for Σwh
(2)(0, 0) in

this limit, namely:

(4.61) Σwh
(2)(β+0, β−0) =

(
9− B2

4

)
4
√

3

∫ 0

−∞
ds e−2(α(s)−α(0))−2β+(s).

This integral converges for any (β+0, β−0) by virtue of the exponential decay of the
integrating factor along the corresponding solution curve. With the choice (4.61)
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for ‘initial condition’ the formula for Σwh
(2)(β+(t), β−(t)) simplifies to

(4.62) Σwh
(2)(β+(t), β−(t)) =


(

9−B2

4

)
4
√

3

∫ t

−∞
ds e−2(α(s)−α(0))−2β+(s)

e−2(α(t)−α(0))


and a straightforward application of L’Hôpital’s rule shows that this solution has
the desired limit (4.53) as t↘ −∞.

Substituting the explicit expressions (4.25–4.30) for the solution curves into
(4.61) one arrives at the forumula

Σwh
(2)(β+0, β−0) =

(
9− B2

4

)
4
√

3
×
∫ 0

−∞
ds eβ+0e

√
3s[

e2
√

3s
(
e6β+0 − cosh (2

√
3β−0)

)
+ cosh2 (

√
3β−0) + e4

√
3s sinh2 (

√
3β−0)

]1/2


(4.63)

from which it is easily seen that one can differentiate arbitrarily many times with
respect to β+0 and β−0 without disturbing the convergence of the resulting integral.
Thus Σwh

(2) is globally smooth on the β-plane and one can proceed to the calculation

of Σwh
(3).

Assuming that
{

Σwh
(2), . . . ,Σ

wh
(k−1)

}
, for k ≥ 2, have all been shown to be globally

smooth one integrates equation (4.57) to find that

(4.64) Σwh
(k)(β+(t), β−(t)) =

{
Σwh

(k)(β+0, β−0)−
∫ 0

t

ds e−2(k−1)(α(s)−α(0))Λ(k)(s)

}
e−2(k−1)(α(t)−α(0))

.

∀ t ≤ 0. Again there is only one choice possible for Σwh
(k)(β+0, β−0) that can yield a

finite value for Σwh
(k)(0, 0) in the limit as t↘ −∞, namely

(4.65) Σwh
(k)(β+0, β−0) =

∫ 0

−∞
ds e−2(k−1)(α(s)−α(0))Λ(k)(s).

The integral converges for any smooth function Λ(k)(β+, β−) and for any choice of
(β+0, β−0) by virtue of the exponential decay of the integrating factor along the
solution curve that interpolates between (β+0, β−0) and the origin. Making this
choice for Σwh

(k)(β+0, β−0) one can simplify equation (4.64) to

(4.66) Σwh
(k)(β+(t), β−(t)) =

∫ t

−∞
ds e−2(k−1)(α(s)−α(0))Λ(k)(s)

e−2(k−1)(α(t)−α(0))

and verify, again via L’Hôpital’s rule, that the function so constructed has the
desired limit (4.55) as t↘ −∞.

By differentiating the explicit formulas (4.25–4.30) for {α(t)−α(0), β+(t), β−(t)}
with respect to the ‘initial’ data (β+0, β−0) it is now straightforward to verify
that, for any smooth function Λ(k)(β+, β−), the defining expression (4.65) for

Σwh
(k)(β+0, β−0) is globally smooth on the (β+0, β−0)-plane. A key element in this
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argument is the resulting exponential decay, as t −→ −∞, of the derivatives of
(β+(t), β−(t)) with respect to (β+0, β−0) to arbitrarily high order. This completes
the proof by induction that the quantum corrections {Swh

(k)(α, β+, β−)} to the log-

arithm of the ground state wave function are globally defined smooth functions on
the Mixmaster mini-superspace for all k ≥ 1.

One can now begin to resolve the ‘paradox’ alluded to at the end of Sec-
tion 3 concerning how microlocal methods could possibly be used to generate
smooth quantum corrections to candidate ‘eigenfunctions’ when there are no cor-
responding ‘eigenvalues’ available to adjust. In a conventional Schrödinger eigen-
value problem [1] the values, {S(k)(0, . . . , 0)}, of the functions under construction

{S(k)(x
1, . . . , xn)} are, at the minimum of the potential energy (taken here to be

the origin), arbitrary constants of integration that can be lumped into an overall
normalization constant for the ground state wave function. Thus these adjustable
constants play no role in guaranteeing the smoothness of the {S(k)}. On the other

hand the freedom to adjust the coefficients {
(0)

E (k)} in an expansion for the ground

state energy eigenvalue,
(0)

E~, precisely allows one to ensure the needed smoothness

while, at the same time, uniquely determining the {
(0)

E (k)} to all orders. Here how-
ever the functions being computed by the analogous ‘transport’ analysis are the
{Σwh

(k)(β+, β−)}. But, because they multiply correspondingly different powers of

eα in the ansatz (4.44) for Swh
(k), their values at the classical equilibrium (i.e., at

the origin in (β+, β−)-space) are not arbitrary (c.f., Eqs. (4.53)–(4.55)) but instead
provide precisely the flexibility needed, in the absence of eigenvalue coefficients, to
ensure the smoothness of the functions {Σwh

(k)(β+, β−)} and hence also that of the

{Swh
(k)(α, β+, β−)}. In the section below we shall encounter an analogous phenome-

non occurring in the construction of excited states.

5. Conserved Quantities and Excited States

To generate ‘excited state’ solutions to the Wheeler-DeWitt equation we begin
by making the ansatz

(5.1)
(∗)
Ψ~ =

(∗)
φ~e

−S~/~

where S~ = c3L2

G S~ = c3L2

G

(
S(0) +XS(1) + X2

2! S(2) + · · ·
)

is the same formal ex-

pansion derived in the preceding section for the ground state solution and where

the new factor
(∗)
φ~ is assumed to admit an expansion of similar type,

(5.2)
(∗)
φ~ =

(∗)
φ(0) +X

(∗)
φ(1) +

X2

2!

(∗)
φ(2) + · · ·+ Xk

k!

(∗)
φ(k) + · · · ,

with X =
L2

Planck

L2 = G~
c3L2 as before. Substituting this ansatz into the Mixmaster

Wheeler-DeWitt equation and demanding satisfaction, order-by-order in X, one
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arrives at the sequence of equations

−
∂

(∗)
φ(0)

∂α

∂S(0)

∂α
+
∂

(∗)
φ(0)

∂β+

∂S(0)

∂β+
+
∂

(∗)
φ(0)

∂β−

∂S(0)

∂β−
= 0,(5.3)

−
∂

(∗)
φ(1)

∂α

∂S(0)

∂α
+
∂

(∗)
φ(1)

∂β+

∂S(0)

∂β+
+
∂

(∗)
φ(1)

∂β−

∂S(0)

∂β−

+

−∂
(∗)
φ(0)

∂α

∂S(1)

∂α
+
∂

(∗)
φ(0)

∂β+

∂S(1)

∂β+
+
∂

(∗)
φ(0)

∂β−

∂S(1)

∂β−


+

1

2

−B∂
(∗)
φ(0)

∂α
+
∂2

(∗)
φ(0)

∂α2
−
∂2

(∗)
φ(0)

∂β2
+

−
∂2

(∗)
φ(0)

∂β2
−

 = 0,

(5.4)

and, for k ≥ 2

−
∂

(∗)
φ(k)

∂α

∂S(0)

∂α
+
∂

(∗)
φ(k)

∂β+

S(0)

∂β+
+
∂

(∗)
φ(k)

∂β−

∂S(0)

∂β−

+ k

−∂
(∗)
φ(k−1)

∂α

∂S(1)

∂α
+

(∗)
φ(k−1)

∂β+

∂S(1)

∂β+
+
∂

(∗)
φ(k−1)

∂β−

∂S(1)

∂β−


+
k

2

−B∂
(∗)
φ(k−1)

∂α
+
∂2

(∗)
φ(k−1)

∂α2
−
∂2

(∗)
φ(k−1)

∂β2
+

−
∂2

(∗)
φ(k−1)

∂β2
−


k∑
`=2

k!

`!(k − `)!

−∂
(∗)
φ(k−`)

∂α

∂S(`)

∂α
+
∂

(∗)
φ(k−`)

∂β+

∂S(`)

∂β+
+
∂

(∗)
φ(k−`)

∂β−

∂S(`)

∂β−

 = 0.

(5.5)

The first of these is easily seen to be the requirement that
(∗)
φ(0) be constant

along the flow in mini-superspace generated by S(0), the chosen solution to the
Euclidean-signature Hamilton-Jacobi equation (4.6). For the case of most interest
here, S(0) −→ Swh

(0) , Bae discovered two such conserved quantities through direct

inspection of his solution (4.25–4.30) of the corresponding flow equations, namely

(5.6) C(0) :=
1

6
e4α−2β+

(
e6β+ − cosh (2

√
3β−)

)
and

(5.7) S(0) :=
1

2
√

3
e4α−2β+ sinh (2

√
3β−)
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[47]. By reexpressing these in terms of the functions {ω1, ω2, ω3} defined previously,
one arrives at the alternative forms

C(0) =
1

12
(2ω2

3 − ω2
1 − ω2

2)(5.8)

S(0) =
1

4
√

3
(ω2

2 − ω2
1)(5.9)

and can recognize them in terms of the well-known, conserved kinetic energy and
squared angular momentum of the asymmetric top [41, 43].

Of course any differentiable function of C(0) and S(0) would be equally conserved
but the Taylor expansions of these in particular,

C(0) ' e4α
(
β+ + β2

+ − β2
− +O(β3)

)
,(5.10)

S(0) ' e4α
(
β− − 2β+β− +O(β3)

)
,(5.11)

reveal their preferred features of behaving linearly in β+ and β− (respectively) near
the origin in β-space. It therefore seems natural to seek to construct a ‘basis’ of
excited states by taking

(∗)
φ(0) −→

(m)

φ (0) := Cm1

(0) S
m2

(0)

' e4(m1+m2)α(βm1
+ βm2

− + · · · )
(5.12)

as seeds for the computation of higher order quantum corrections. Here m =
(m1,m2) is a pair of non-negative integers that can be plausibly interpreted as
graviton excitation numbers for the ultralong wavelength gravitational wave modes
embodied in the β+ and β− degrees of freedom.

To see this more concretely note that, to leading order in X and near the origin
in β-space, one then gets

(5.13)
(m)

Ψ ~ ' e4(m1+m2)αβm1
+ βm2

− e−
e2α

X ( 1
2 +2(β2

++β2
−)+··· )

which, for any fixed α, has the form of the top order term in the product of Hermite
polynomials multiplied by a gaussian that one would expect to see for an actual,
harmonic oscillator wave function.

One wishes, however, to construct wave functions that share the invariance of
the Wheeler-DeWitt operator under rotations by ± 2π

3 in the β-plane since these
correspond to residual gauge transformations. The functions {S(k)} constructed in
the preceding section have this property automatically by virtue of the rotational
invariance of the flow generated by the chosen S(0) = Swh

(0) and the correspond-

ing invariance of the technique employed for generating initial conditions for the

{S(k), k = 1, 2, · · · }. On the other hand the functions
(m)

φ (0) := Cm1

(0) S
m2

(0) are not, in

general, invariant but can be modified to become so by the straightforward tech-
nique of averaging over the group of rotations in question: {I,± 2π

3 }. Some elegant
graphical depictions of the lowest few such invariant states (to leading order in X )
have been given by Bae in [47]. The linearity of equations (5.3, 5.4, 5.5) in the

{
(m)

φ (k)} and the rotational invariance of the operators therein acting upon these
functions will allow one to construct rotationally invariant quantum corrections to
all orders, either by starting with an invariant ‘seed’ of the type described above
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or, alternatively, carrying out the group averaging at the end of the sequence of
calculations. We shall follow the latter approach here.

We begin by setting

(5.14)
(m)

φ (0) −→ Cm1

(0) S
m2

(0) := e4|m|α(m)
χ (0)(β+, β−)

where |m| := m1 +m2 and proceed by making the ansatz

(5.15)
(m)

φ (k) = e(4|m|−2k)α(m)
χ (k)(β+, β−)

∀ k ≥ 1. Recalling the definitions of the functions {Σwh
(k)(β+, β−)} given by (4.44–

4.46) we now find that equations (5.4–5.5) can be reexpressed as flow equations in

the β-plane for the unknowns {
(m)
χ (k)(β+, β−); k = 1, 2 · · · }:

∂
(m)
χ (1)

∂β+

∂Σwh
(0)

∂β+
+
∂

(m)
χ (1)

∂β−

∂Σwh
(0)

∂β−
− 2

(m)
χ (1) (4|m| − 2) Σwh

(0)

+ 3

(16|m|2 + 24|m|)
(m)
χ (0) −

∂2
(m)
χ (0)

∂β2
+

−
∂2

(m)
χ (0)

∂β2
−

 = 0,

(5.16)

and, for k ≥ 2,

∂
(m)
χ (k)

∂β+

∂Σwh
(0)

∂β+
+
∂

(m)
χ (k)

∂β−

∂Σwh
(0)

∂β−
− 2

(m)
χ (k)(4|m| − 2k)Σwh

(0)

+ 3k

[(4|m| − 2(k − 1))
2

+ 6 (4|m| − 2(k − 1))
]

(m)
χ (k−1) −

∂2
(m)
χ (k−1)

∂β2
+

−
∂2

(m)
χ (k−1)

∂β2
−


+ 36

k∑
`=2

k!

`!(k − `)!

2(`− 1) (4|m| − 2(k − `))
(m)
χ (k−`)Σ

wh
(`)

+
∂

(m)
χ (k−`)

∂β+

∂Σwh
(`)

∂β+
+
∂

(m)
χ (k−`)

∂β−

∂Σwh
(`)

∂β−

 = 0.

(5.17)

As for the ground state problem our aim is to solve these transport equations
sequentially and thereby to establish, for any given m = (m1,m2), the existence

of smooth, globally defined functions {
(m)
χ (k)(β+, β−); k = 1, 2, . . . } on the β-plane.

When k > 2|m| the relevant transport operator is of the same type dealt with in
the previous section and the corresponding equation can be solved, for an arbitrary
smooth ‘source’ inhomogeneity, by the same methods exploited therein. When
k ≤ 2|m| however the associated integrating factor,

(5.18)
µ(k)(t)

µ(k)(0)
=
e(4|m|−2k)α(t)

e(4|m|−2k)α(0)
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is either constant or blows up at t↘ −∞ and a different approach is needed. For-
tunately there is a well-developed microlocal technique for handling such problems
that can be sketched as follows [1, 31, 32, 33]:

(i) Assuming, inductively, that smooth solutions up to order
k − 1, for k ≥ 1, have already been constructed, derive a formal

power series for the subsequent unknown
(m)
χ (k)(β+, β−),

(ii) apply a standard method to generate a globally smooth func-

tion,
(m)
ν (k)(β+, β−), that has the same Taylor expansion about

the origin in the β-plane as that determined in step (i) [48],
(iii) solve an associated transport equation for the ‘correction’,

(m)
η (k) =

(m)
χ (k) −

(m)
ν (k),

and show that
(m)
η (k) is smooth, globally defined and vanishes to

infinite order at the origin (i.e., has identically vanishing Taylor
expansion).

Setting
(m)
χ (k) =

(m)
η (k) +

(m)
ν (k) provides a (not necessarily unique, as we shall see)

solution to the relevant transport equation and allows one to proceed to the con-

struction of
(m)
χ (k+1).

In the last step one exploits the fact that the integrating factor, (5.18), for the
(m)
η (k) transport equation, though it remains constant or blows up as t↘ −∞, is now

being integrated against a ‘source’ that vanishes to infinite order [1, 31, 32, 33].
Since steps (ii) and (iii) are routine (c.f., [48] and [1, 31, 32, 33] respectively) we
shall focus here on step (i) which entails a certain subtlety for the present problem.

The technique for carrying out step (i) developed in [31, 32, 33] involves first
splitting the transport operator

(5.19)
(m)

L (k) :=
∂Σwh

(0)

∂β+

∂

∂β+
+
∂Σwh

(0)

∂β−

∂

∂β−
− 2(4|m| − 2k)Σwh

(0)

into linear and higher order terms

(5.20)
(m)

L (k) =
(m)

L (k)0 +
(m)

L (k)R

with

(5.21)
(m)

L (k)0 := 24

(
β+

∂

∂β+
+ β−

∂

∂β−

)
− 6(4|m| − 2k).

One would like to apply the arguments given in the foregoing references to generate

the formal Taylor expansion for
(m)
χ (k) needed for step (i) and, when 1 ≤ k ≤ 2|m|

and k is odd, this is straightforward to carry out. The basic reason for this is

that, when k is odd,
(m)

L (k)0 is a bijection on the space, P`hom, of polynomials in

β+ and β− which are homogeneous of degree ` ∈ N and the monomials β`1+ β
`2
− ,

with |`| = `1 + `2, constitute a basis of eigenvectors of the restriction of
(m)

L (k)0

to P`hom with eigenvalues 24
(
|`| − |m|+ k

2

)
6= 0. Though the choice of

(m)
ν (k) for

step (ii) is not unique it is nevertheless straightforward to show, in these odd
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k cases, that the resulting solution for
(m)
χ (k) is unique. The reason is that the

difference of any two such solutions would necessarily be a ‘flat’ function (i.e., one
with identically vanishing Taylor expansion) that satisfies the homogeneous form

of the original transport equation for
(m)
χ (k). But using the integrating factor (5.18)

for this equation it is easy to show that any flat, globally smooth solution must in
fact vanish identically.

When k is even, on the other hand,
(m)

L (k)0 has a nontrivial kernel, P |m|−
k
2

hom ,

spanned by the monomials β`1+ β
`2
− with |`| = `1 + `2 = |m| − k

2 .
(m)

L (k)0 is still

a bijection on P`hom for all ` 6= |m| − k
2 but since P |m|−

k
2

hom does not lie in this

operator’s range we must arrange to cancel any elements of P |m|−
k
2

hom that occur in the
‘source’ inhomogeneity for this operator. For k = 2 the flexibility to accomplish this

cancellation arises through the freedom to replace the ‘seed’
(m)
χ (0) by an arbitrary

linear combination

(5.22)
(m)
χ (0) →

∑
m1,m2

cm1,m2

(m)
χ (0)

and adjust the choice of the |m|+ 1 independent coefficients {cm1,m2} until the |m|
coefficients of the monomials β`1+ β

`2
− , with |`| := `1 + `2 = |m| − 1, all vanish.

For higher, even values of k it is straightforward to verify that the functions

(5.23)
(m)
χ

homog

(k) :=
∑
`1,`2

c
(k)
`1,`2

(`)
χ(0),

with (`) := (`1, `2) and |`| := `1 + `2 = |m| − k
2 , satisfy the exact, homogeneous

transport equation

(5.24)
(m)

L (k)

(m)
χ

homog

(k) = 0

for arbitrarily chosen values of the |`| + 1 coefficients {c(k)
`1,`2
}. These coefficients

are thus available to ensure the integrability of the transport equation for
(m)
χ (k+2).

Some additional work would be needed to precisely enumerate the independent
solutions obtainable by this analysis — in particular those remaining after the
averaging over the ±2π/3 rotations in the β-plane has been carried out.

6. Euclidean-Signature Semi-Classical Methods for Bosonic Field
Theories

One would like to think that the foregoing results could serve as a prototype
for the application of microlocal methods to the quantization of Einstein’s equa-
tions more generally. But general relativity is a field theory and, so far as the
author knows, such microlocal methods have heretofore been confined to quantum
mechanical applications. There is a good reason for this.

When ansätze of the form (4.1) and (5.1) are applied to a conventional Schrödinger
eigenvalue problem they lead, at lowest order, to the necessity to solve the Hamilton-
Jacobi equation for an inverted-potential-energy mechanics problem. This is the
analogue of the ‘Euclidean-signature’ Hamilton-Jacobi equation (4.6) that arose for
the Mixmaster system considered above. For the Schrödinger problem microlocal
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analysts solve this HJ equation, locally near an equilibrium, by assembling several
dynamical systems results such as the stable manifold theorem for hyperbolic fixed
points and the existence, uniqueness and smoothness properties for the associated
Hamiltonian flow [1, 31, 32, 33].

But even when such theorems can be generalized to apply to suitable classes
of infinite dimensional dynamical systems they are nevertheless totally inadequate
for solving the Hamilton-Jacobi equation that arises when one is attempting to
quantize a relativistic field theory. The reason for this is that the Hamilton-Jacobi
equation for such problems is that for the Euclidean signature analogue of the
original, Lorentzian-signature field equations that one is intending to quantize.
But such Euclidean-signature field equations are not a dynamical system at all.
They correspond instead to an elliptic problem that admits no well-posed, Cauchy
evolutionary formulation.

For this reason the author, together with A. Marini and R. Maitra, has recently
been developing an alternative program for solving these fundamental Hamilton-
Jacobi problems by exploiting the direct method of the calculus of variations [1,
2, 3]. This strategy has the decisive advantage of being naturally applicable to
the elliptic problems that arise for relativistic field theories with this approach
and, even for finite-dimensional quantum mechanical problems, succeeds to unify
and globalize the essential microlocal results, for a large and interesting class of
potential energy functions, in an aesthetically appealing way.

To see these methods in action, first in the technically simpler setting of ordi-
nary quantum mechanics, consider Schrödinger operators of the (‘nonlinear oscilla-
tory’) type

(6.1) Ĥ =
−~2

2m
∆ +

1

2
m

n∑
i=1

ω2
i (xi)2 +A(x)

where x = (x1, . . . , xn),∆ =
∑n
i=1

∂2

∂xi2 is the ordinary Laplacian on Rn and A :
Rn −→ R is a smooth function whose Taylor expansion about the origin begins at
third order so that

(6.2) A(0, . . . , 0) =
∂A(0, . . . , 0)

∂xi
=
∂2A(0, . . . , 0)

∂xi∂xj
= 0.

If the A term is dropped then Ĥ reduces to the Schrödinger operator for an ordinary
harmonic oscillator in n dimensions having mass m > 0 and oscillation frequencies
{ωi}, each assumed > 0, along the corresponding Cartesian coordinate axes. When
A is reinstated the oscillator becomes nonlinear or ‘anharmonic’. Such oscillators
are rudimentary models for the field theoretic systems that we shall turn to later.

To simplify the analysis assume the total potential energy function V : Rn −→
R, given by

(6.3) V (x) =
1

2
m

n∑
i=1

ω2
i (xi)2 +A(x),

to be convex and to have its (unique, isolated) global minimum at the origin so
that

(6.4) V (x1, . . . , xn) > V (0, . . . , 0) = 0 ∀(x1, . . . , xn) ∈ Rn\(0, . . . , 0).

In the event that A has indefinite sign we shall also impose a certain coercivity
condition to bound its behavior from below [49]. Finally we shall require that
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the frequencies {ωi}, characterizing the (non-dengenerate) quadratic term in the
potential energy satisfy a convenient (but not strictly essential [50]) ‘non-resonance’
condition that is designed to simplify the analysis of quantum excited states.

We begin by attempting to construct a ground state wave function of the form

(6.5)
(0)

ψ~(x) = N~e
−S~(x)/~

wherein S~ is real-valued and assumed to admit a formal series expansion in ~ that
we write as

(6.6) S~(x) ' S(0)(x) + ~S(1)(x) +
~2

2!
S(2)(x) + · · ·+ ~n

n!
S(n)(x) + · · ·

and where N~ is a normalization constant. We expand the corresponding ground

state energy eigenvalue
(0)

E~ in the analogous way, writing

(6.7)
(0)

E~ := ~
(0)

E ~ ' ~

(
(0)

E (0) + ~
(0)

E (1) +
~2

2!

(0)

E (2) + · · ·+ ~n

n!

(0)

E (n) + · · ·

)

and substitute these ansätze into the time-independent Schrödinger equation,

(6.8) Ĥ
(0)

ψ~ =
(0)

E~
(0)

ψ~,

requiring the latter to hold, order by order, in powers of Planck’s constant.
At leading order this procedure immediately generates the ‘inverted potential-

vanishing-energy’ Hamilton-Jacobi equation,

(6.9)
1

2m
∇S(0) · ∇S(0) − V = 0,

that is intended to determine the function S(0). Under the convexity and coercivity
hypotheses alluded to above we proved the existence and smoothness of a globally
defined ‘fundamental solution’ to Eq. (6.9) using methods drawn from the calculus
of variations [1]. The higher order ‘quantum corrections’ to S(0) (i.e., the functions
S(k) for k = 1, 2, . . .) can then be computed through the systematic integration of
a sequence of (first order, linear) ‘transport equations’, derived from Schrödinger’s
equations, along the integral curves of the gradient (semi-) flow generated by S(0)

[1]. The natural demand for global smoothness of these quantum connections forces

the (heretofore, undetermined) energy coefficients {
(0)

E (0),
(0)

E (1),
(0)

E (2), . . .} all to take
on specific, computable values.

Excited states were then studied by substituting the ansatz

(6.10)
(∗)
ψ~(x) =

(∗)
φ~(x)e−S~(x)/~

into the Schrödinger equation

(6.11) Ĥ
(∗)
ψ~ =

(∗)
E~

(∗)
ψ~
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and formally expanding the unknown wave functions,
(∗)
φ~, and energy eigenvalues

(∗)
E~, in powers of ~ as before,

(∗)
φ~ '

(∗)
φ(0) + ~

(∗)
φ(1) +

~2

2!

(∗)
φ(2) + . . .(6.12)

(∗)
E~ := ~

(∗)
E ~ ' ~

(
(∗)
E (0) + ~

(∗)
E (1) +

~2

2!

(∗)
E (2) + . . .

)
,(6.13)

while retaining the ‘universal’ factor, e−S~(x)/~, determined by the ground state
calculations.

From the leading order analysis one finds that these excited state expansions
naturally allow themselves to be labelled by an n-tuple m = (m1,m2, . . . ,mn) of
non-negative integer ‘quantum numbers’, mi, so that the foregoing notation can be
refined to

(6.14)
(m)

ψ ~(x) =
(m)

φ ~(x)e−S~(x)/~

and

(6.15)
(m)

E ~ = ~
(m)

E ~

with
(m)

φ ~ and
(m)

E ~ expanded as before. Since all the coefficients {
(m)

φ (k),
(m)

E (k); for

k = 0, 1, 2, . . .} are, however, computable through the solution of linear, first order
transport equations, integrated along the semi-flow generated by S(0), using meth-
ods that are already well-known from the microlocal literature [1, 31, 32, 33] we
shall focus here on the fundamental way in which our approach differs from the
microlocal one — namely in the solution of the basic Hamilton-Jacobi equation
(6.9) by means of the direct method of the calculus of variations.

A natural approach for generating solutions to the inverted potential (ip) dy-
namics problem formulated above is to establish the existence of minimizers for the
ip action functional

Iip[γ] =

∫ 0

−∞
Lip

(
x1(t), . . . , xn(t), ẋ1(t), . . . , ẋn(t)

)
dt

:=

∫ 0

−∞

{
1

2
m

n∑
i=1

[(
ẋi(t)

)2
+ ω2

i

(
xi(t)

)2]
+A

(
x1(t), . . . , xn(t)

)}
dt

(6.16)

within the affine space of curves

Dx :=
{
γ ∈ H1(I,Rn)|I = (−∞, 0],

γ(t) =
(
x1(t), . . . xn(t)

)
, lim
t↗0

γ(t) = x

= (x1, . . . , xn) ∈ Rn
}
.

(6.17)

Here H1(I,Rn) is the Sobolov space of (distributional) curves on Rn equipped with
the norm

(6.18) ||γ(·)||H1(I,Rn) :=

{∫ 0

−∞

n∑
i=1

[(
ẋi(t)

)2
+ ω2

i

(
xi(t)

)2]
dt

}1/2
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and x = (x1, . . . , xn) is an arbitrary, but fixed, right endpoint lying in Rn. From
the Sobolov embedding theorem for Hs-maps [51, 52] one has that H1(I,Rn) is
continuously embedded in

C0
b (I,Rn) :=

{
γ ∈ C0(I,Rn)

∣∣∣∣(6.19)

||γ(·)||L∞(I,Rn) := sup
t∈I

√√√√ n∑
i=1

(xi(t))
2
<∞

 ,(6.20)

where C0(I,Rn) is the space of continuous curves in I, and furthermore that these
curves automatically (as a consequence of having finite H1-norm) ‘vanish at infinity’
in the sense that

(6.21) lim
t↘−∞

|γ(t)| = lim
t↘−∞

√√√√ n∑
i=1

(xi(t))
2

= 0.

Thus the curves in Dx have their (asymptotically attained) left endpoints at the
origin in Rn which, in our formulation, coincides with the unique, global maximum
of the inverted potential energy function

(6.22) Vip(x
1, . . . , xn) := −V (x1, . . . , xn).

Strictly speaking, though the ‘curves’ inH1(I,Rn) are distributional, the Sobolev
embedding theorem referenced above allows one to represent each such distribu-
tion by a continuous curve which (by a slight abuse of notation) we also write as
γ : I −→ Rn. For this reason one can meaningfully speak of the values of γ (as
points in Rn) for any t ∈ I = (−∞, 0] and thus, in particular, impose the right
endpoint boundary condition,

(6.23) lim
t↗0

γ(t) = x = (x1, . . . , xn) ∈ Rn

that was included in the definition of Dx.
When the convexity and coercivity hypotheses for V alluded to above are taken

into account one can show that the functional Iip[γ] is globally defined on Dx for any
x ∈ Rn. For each such x one can proceed to prove that Iip[γ] has a unique minimizer
γx ∈ Dx, that this minimizer is actually smooth (i.e., that γx ∈ C∞(I,Rn)), satisfies
the ip Euler-Lagrange equations,

(6.24) m
d2xi(t)

dt2
= −∂Vip (x(t))

∂xi
=
∂V (x(t))

∂xi
, i = 1, . . . , n

for all t ∈ I and has vanishing ip energy,

Eip (x(t), ẋ(t)) :=
m

2

n∑
i=1

(
ẋi(t)

)2
+ Vip (x(t))

=
m

2

n∑
i=1

(ẋ(t))
2 − V (x(t))

= 0

(6.25)

on this interval [53].
Setting, for each such minimizer,

(6.26) S(0)(x) = Iip[γx]
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one can further prove, using the Banach space version of the implicit function
theorem, that the function S(0) : Rn −→ R, so defined, is globally smooth, satisfies
the ‘inverted-potential-vanishing-energy’ Hamilton-Jacobi equation,

(6.27)
1

2m
∇S(0) · ∇S(0) − V = 0

on Rn and regenerates the minimizers as the integral solution curves of its gradient
semi-flow [54] defined via

(6.28)
dγi(t)

dt
=

1

m

∂S(0) (γ(t))

∂xi
, i = 1, . . . , n.

These are the essential features required of S(0) in order to be able to compute, via
linear transport analysis, its quantum corrections and corresponding excited states
to all orders in Planck’s constant [1].

For a first glimpse at how these techniques can be applied to relativistic quan-
tum field theories consider the formal Schrödinger operator for the massive, quarti-
cally self-interacting scalar field on (3 + 1 dimensional) Minkowski spacetime given
by

(6.29) Ĥ =

∫
R3

{
−~2

2

δ2

δφ2(x)
+

1

2
∇φ · ∇φ(x) +

m2

2
φ2(x) + λφ4(x)

}
d3x

where m and λ are constants > 0. Though the functional Laplacian term requires
regularization to be well-defined, the influence of this regularization will only be
felt at the level of quantum corrections and not for the (so-called ‘tree level’) deter-
mination of a fundamental solution, S(0) [φ(·)], to the ‘vanishing-energy-Euclidean-
signature’ functional Hamilton-Jacobi equation given by

(6.30)

∫
R3

{
1

2

δS(0)

δφ(x)

δS(0)

δφ(x)
− 1

2
∇φ · ∇φ(x)− m2

2
φ2(x)− λφ4(x)

}
d3x = 0.

As in the quantum mechanical examples discussed above this equation arises, at
leading order, from substituting the (Euclidean-signature) ground state wave func-
tional ansatz

(6.31)
(0)

ψ~ [φ(·)] = N~e
−S~[φ(·)]/~

into the time-independent Schrödinger equation,

(6.32) Ĥ
(0)

ψ~ =
(0)

E~
(0)

ψ~,

and demanding satisfaction, order-by-order in powers of ~, relative to the formal
expansions

(6.33) S~ [φ(·)] ' S(0) [φ(·)] + ~S(1) [φ(·)] +
~2

2!
S(2) [φ(·)] + . . .

and

(6.34)
(0)

E~ ' ~

{
(0)

E (0) + ~
(0)

E (1) +
~2

2!

(0)

E (2) + . . .

}
.

In the foregoing formulas φ(·) symbolizes a real-valued distribution on R3 be-
longing to a certain Sobolov ‘trace’ space that we shall characterize more precisely
below. In accordance with our strategy for solving the functional Hamilton-Jacobi
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equation (6.30) each such φ(·) will be taken to represent boundary data, induced
on the t = 0 hypersurface of (Euclidean)

(6.35) R4 =
{

(t,x)|t ∈ R,x ∈ R3
}
,

for a real (distributional) scalar field Φ defined on the half-space

(6.36) R4− := (−∞, 0]× R3.

Here Φ plays the role of the curve γ : (−∞, 0] −→ Rn in the quantum mechanics
problem and φ(·) the role of its right endpoint (x1, . . . , xn).

By generalizing the technique sketched above for the quantum mechanics prob-
lem the author, together with Marini and Maitra, has proven the existence of a
‘fundamental solution’, S(0) [φ(·)], to Eq. (6.30) by first establishing the existence
of unique minimizers, Φφ, for the Euclidean-signature action functional

(6.37) Ies[Φ] :=

∫
R3

∫ 0

−∞

{
1

2
Φ̇2 +

1

2
∇Φ · ∇Φ +

1

2
m2Φ2 + λΦ4

}
dt d3x

for ‘arbitrary’ boundary data φ(·), prescribed at t = 0 and then setting

(6.38) S(0) [φ(·)] = Ies[Φφ].

This was accomplished by defining the action functional Ies[Φ] on the Sobolov
space H1(R4−,R), with boundary data naturally induced on the corresponding
trace space, and proving that this functional is coercive, weakly (sequentially) lower
semi-continuous and convex. Through an application of the (Banach space) im-
plicit function theorem one then proved that the functional S(0) [φ(·)] so-defined is
Fréchet smooth throughout its (Sobolev trace space) domain of definition and that
it indeed satisfies the (Euclidean-signature-vanishing-energy) functional Hamilton-
Jacobi equation,

(6.39)
1

2

∫
R3

∣∣∣∣δS(0) [φ(·)]
δφ(x)

∣∣∣∣2 d3x =

∫
R3

{
1

2
∇φ · ∇φ(x) +

1

2
m2φ2(x) + λφ4(x)

}
d3x,

and thus provides the fundamental solution that one needs for the computation of
all higher order quantum connections [2]. These analytical methods were shown to
work equally well in lower spatial dimensions for certain higher-order nonlinearities,
allowing, for example, Φ6 in (Euclidean) R3− and Φp for any even p > 2 in R2−,
and also for more general convex polynomial interaction potentials P(Φ), allowing
terms of intermediate degrees, replacing the 1

2m
2Φ2 + λΦ4 of the example above.

These correspond precisely to the usual ‘renormalizable’ cases when treated by more
conventional quantization methods.

To proceed with the calculation of higher-order quantum corrections one will
need to regularize the formal functional Laplacians that arise in the associated
linear transport equations and allow the various ‘constants’ that appear in the
Hamiltonian (e.g., m and λ in the above example) to ‘run’ with the cutoff intro-
duced thereby, as part of the procedure of renormalization. The details of this
renormalization program, well-known within the standard perturbation formalism,
are currently under development within the framework of the present setup. A main
motivation for pursuing it though is the expectation that the Euclidean-signature
semi-classical approach will ultimately lead to much more accurate approximations
for wave functionals and their associated, non-gaussian integration measures than
those generated by conventional (Rayleigh/Schrödinger) perturbation theory.
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In continuing research the authors of Refs. [1] and [2] are currently applying
these (Euclidean-signature, semi-classical) ideas to the quantization of Yang-Mills
fields [3]. While the methods in question apply equally well to both 3 and 4 dimen-
sional gauge theories, we shall focus here on the physically most interesting case of
Yang-Mills fields in 4 spacetime dimensions. The formal Schrödinger operator for
this problem is expressible as

(6.40) ĤYM :=

∫
R3

∑
I

−~2

2

3∑
i=1

δ

δAIi (x)

δ

δAIi (x)
+

1

4

3∑
j,k=1

F IjkF
I
jk

 d3x

where the index I labels a basis for the Lie algebra of the gauge structure group,
AIk is the spatial connection field with curvature

(6.41) F Ijk = ∂jA
I
k − ∂kAIj + g[Aj , Ak]I

and g is the gauge coupling constant.
As in the case of scalar field theory the functional Laplacian requires regular-

ization to be well-defined even when acting on smooth functionals but, since the
influence of this regularization will not be felt until higher order quantum ‘loop’
connections are computed, we can temporarily ignore this refinement here and at-
tempt first to construct a (gauge invariant) fundamental solution, S(0)[A(·)], to the
Euclidean-signature-vanishing-energy Hamilton-Jacobi equation

(6.42)

∫
R3

∑
I

1

2

3∑
i=1

δS(0)

δAIi (x)

δS(0)

δAIi (x)
− 1

4

3∑
j,k=1

F IjkF
I
jk

 d3x = 0

by seeking minimizers of the corresponding Euclidean-signature action functional
in the form of connections defined in R4− = (−∞, 0] × R3 with boundary data
prescribed at t = 0.

Using the techniques developed in [55, 56, 57, 58, 59] and [60] one can indeed
establish the existence of such minimizers for ‘arbitrary’ boundary data lying in
an appropriate trace Sobolev space but, since a full verification of the properties
expected for the functional S(0)[A(·)] has not yet been completed we shall postpone
giving a more precise characterization of our (anticipated) analytical results until
a later time.

The self-interactions of ‘gluons’ (the quanta of the Yang-Mills field) are closely
connected to the non-abelian character of the associated gauge group. Thus a con-
ventional perturbative approach to quantization, which disregards these interac-
tions at lowest order, necessarily ‘approximates’ the gauge group as well, replacing
it with the abelian structure group of the associated free field theory (i.e., several
copies of the Maxwell field labelled by the index I ), and then attempts to reinstate
both the interactions and the non-commutative character of the actual gauge group
gradually, through the development of series expansions in the Yang-Mills coupling
constant. By contrast the Euclidean-signature-semi-classical program that we are
advocating for the Yang-Mills problem has the advantage of maintaining full, non-
abelian gauge invariance at every order of the calculation and of generating globally
defined (approximate) wave functionals on the naturally associated Yang-Mills con-
figuration manifold.
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Though much remains to be done to complete the program sketched above the
initial results are sufficiently promising that one is highly motivated to look ahead
and ask — could the same ideas be applied to Einstein gravity?

7. Euclidean-Signature Asymptotic Methods and the Wheeler-DeWitt
Equation

Globally hyperbolic spacetimes, {(4)V, (4)g}, are definable over manifolds with
the product structure, (4)V ≈ M × R. We shall focus here on the ‘cosmological’
case for which the spatial factor M is a compact, connected, orientable 3-manifold
without boundary. The Lorentzian metric, (4)g, of such a spacetime is expressible,
relative to a time function x0 = t, in the 3+1-dimensional form

(4)g = (4)gµν dx
µ ⊗ dxν

= −N2dt⊗ dt+ γij(dx
i + Y idt)⊗ (dxj + Y jdt)

(7.1)

wherein, for each fixed t, the Riemannian metric

(7.2) γ = γijdx
i ⊗ dxj

is the first fundamental form induced by (4)g on the corresponding t = constant,
spacelike hypersurface. The unit, future pointing, timelike normal field to the
chosen slicing (defined by the level surfaces of t) is expressible in terms of the
(strictly positive) ‘lapse’ function N and ‘shift vector’ field Y i ∂

∂xi as

(7.3) (4)n = (4)nα
∂

∂xα
=

1

N

∂

∂t
− Y i

N

∂

∂xi

or, in covariant form, as

(7.4) (4)n = (4)nαdx
α = −N dt.

The canonical spacetime volume element of (4)g, µ(4)g :=
√
−det (4)g, takes the

3+1-dimensional form

(7.5) µ(4)g = Nµγ

where µγ :=
√

det γ is the volume element of γ.
In view of the compactness of M the Hilbert and ADM action functionals,

evaluated on domains of the product form, Ω = M × I, with I = [t0, t1] ⊂ R,
simplify somewhat to

IHilbert :=
c3

16πG

∫
Ω

√
− det (4)g (4)R((4)g) d4x

=
c3

16πG

∫
Ω

{
Nµγ

(
KijKij − (trγK)2

)
+Nµγ

(3)R(γ)
}
d4x

+
c3

16πG

∫
M

(−2µγtrγK) d3x
∣∣∣t1
t0

:= IADM +
c3

16πG

∫
M

(−2µγtrγK) d3x
∣∣∣t1
t0

(7.6)

wherein (4)R((4)g) and (3)R(γ) are the scalar curvatures of (4)g and γ and where

(7.7) Kij :=
1

2N

(
−γij,t + Yi|j + Yj|i

)
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and

(7.8) trγK := γijKij

designate the second fundamental form and mean curvature induced by (4)g on the
constant t slices. In these formulas spatial coordinate indices, i, j, k, . . . , are raised
and lowered with γ and the vertical bar, ‘|’, signifies covariant differentiation with
respect to this metric so that, for example, Yi|j = ∇j(γ)γi`Y

`. When the variations

of (4)g are appropriately restricted, the boundary term distinguishing IHilbert from
IADM makes no contribution to the field equations and so can be discarded.

Writing

(7.9) IADM :=

∫
Ω

LADMd
4x,

with Lagrangian density

(7.10) LADM :=
c3

16πG

{
Nµγ

(
KijKij − (trγK)2

)
+Nµγ

(3)R(γ)
}
,

one defines the momentum conjugate to γ via the Legendre transformation

(7.11) pij :=
∂LADM

∂γij,t
=

c3

16πG
µγ
(
−Kij + γijtrγK

)
so that p = pij ∂

∂xi ⊗
∂
∂xj is a symmetric tensor density induced on each t = constant

slice.
In terms of the variables {γij , pij , N, Y i} the ADM action takes the Hamiltonian

form

(7.12) IADM =

∫
Ω

{
pijγij,t −NH⊥(γ, p)− Y iJi(γ, p)

}
d4x

where

(7.13) H⊥(γ, p) :=

(
16πG

c3

) (
pijpij − 1

2 (pmm)2
)

µγ
−
(

c3

16πG

)
µγ

(3)R(γ)

and

(7.14) Ji(γ, p) := −2 p ji |j .

Variation of IADM with respect to N and Y i leads to the Einstein (‘Hamiltonian’
and ‘momentum’) constraint equations

(7.15) H⊥(γ, p) = 0, Ji(γ, p) = 0,

whereas variation with respect to the canonical variables, {γij , pij}, gives rise to
the complementary Einstein evolution equations in Hamiltonian form,

(7.16) γij,t =
δHADM

δpij
, pij,t = −δHADM

δγij

where HADM is the ‘super’ Hamiltonian defined by

(7.17) HADM :=

∫
M

(
NH⊥(γ, p) + Y iJi(γ, p)

)
d3x.

The first of equations (7.16) regenerates (7.7) when the latter is reexpressed in
terms of p via (7.11). Note that, as a linear form in the constraints, the super
Hamiltonian vanishes when evaluated on any solution to the field equations. There
are neither constraints nor evolution equations for the lapse and shift fields which
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are only determined upon making, either explicitly or implicitly, a choice of space-
time coordinate gauge. Bianchi identities function to ensure that the constraints are
preserved by the evolution equations and thus need only be imposed ‘initially’ on
an arbitrary Cauchy hypersurface. Well-posedness theorems for the corresponding
Cauchy problem exist for a variety of spacetime gauge conditions [61, 62].

A formal ‘canonical’ quantization of this system begins with the substitutions

(7.18) pij −→ ~
i

δ

δγij
,

together with a choice of operator ordering, to define quantum analogues Ĥ⊥(γ, ~i
δ
δγ )

and Ĵi(γ, ~i
δ
δγ ) of the Hamiltonian and momentum constraints. These are then to

be imposed, à la Dirac, as restrictions upon the allowed quantum states, regarded
as functionals, Ψ[γ], of the spatial metric, by setting

(7.19) Ĥ⊥
(
γ,

~
i

δ

δγ

)
Ψ[γ] = 0,

and

(7.20) Ĵi
(
γ,

~
i

δ

δγ

)
Ψ[γ] = 0.

The choice of ordering in the definition of the quantum constraints {Ĥ⊥, Ĵi} is
highly restricted by the demand that the commutators of these operators should
‘close’ in a natural way without generating ‘anomalous’ new constraints upon the
quantum states.

While a complete solution to this ordering problem does not currently seem
to be known it has long been realized that the operator, Ĵi(γ, ~i

δ
δγ ), can be con-

sistently defined so that the quantum constraint equation (7.20), has the natural
geometric interpretation of demanding that the wave functional, Ψ[γ], be invariant
with respect to the action (by pullback of metrics on M ) of Diff 0(M), the con-
nected component of the identity of the group, Diff +(M), of orientation preserving
diffeomorphisms of M, on the space,M(M), of Riemannian metrics on M. In other
words the quantized momentum constraint (7.20) implies, precisely, that

(7.21) Ψ[ϕ∗γ] = Ψ[γ]

∀ ϕ ∈ Diff 0(M) and ∀ γ ∈ M(M). In terminology due to Wheeler wave func-
tionals can thus be regarded as passing naturally to the quotient ‘superspace’ of
Riemannian 3-geometries [28, 29, 63] on M,

(7.22) S(M) :=
M(M)

Diff 0(M)
.

Insofar as a consistent factor ordering for the Hamiltonian constraint operator,
Ĥ⊥(γ, ~i

δ
δγ ), also exists, one will be motivated to propose the (Euclidean-signature,

semi-classical) ansatz

(7.23)
(0)

Ψ~[γ] = e−S~[γ]/~

for a ‘ground state’ wave functional
(0)

Ψ~[γ]. In parallel with our earlier examples,
the functional S~[γ] is assumed to admit a formal expansion in powers of ~ so that
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one has

(7.24) S~[γ] = S(0)[γ] + ~S1[γ] +
~2

2!
S(2)[γ] + · · ·+ ~k

k!
S(k)[γ] + · · · .

Imposing the momentum constraint (7.20) to all orders in ~ leads to the conclusion
that each of the functionals, {S(k)[γ]; k = 0, 1, 2, . . .}, should be invariant with

respect to the aforementioned action of Diff 0(M) on M(M), ie, that

(7.25) S(k)[ϕ
∗γ] = S(k)[γ], k = 0, 1, 2, . . .

∀ ϕ ∈ Diff 0(M) and ∀ γ ∈M(M).

Independently of the precise form finally chosen for Ĥ⊥(γ, ~i
δ
δγ ), the leading

order approximation to the Wheeler-DeWitt equation,

(7.26) Ĥ⊥
(
γ,

~
i

δ

δγ

)
e−S(0)[γ]/~−S(1)[γ]−··· = 0,

for the ground state wave functional will, inevitably reduce to the Euclidean-
signature Hamilton-Jacobi equation

(7.27)

(
16πG

c3

)2 (γikγj` − 1
2γijγk`

)
µγ

δS(0)

δγij

δS(0)

δγk`
+ µγ

(3)R(γ) = 0.

This equation coincides with that obtained from making the canonical substitution,

(7.28) pij −→
δS(0)[γ]

δγij
,

in the Euclidean-signature version of the Hamiltonian constraint,

(7.29) H⊥Eucl := −
(

16πG

c3

) (
pijpij − 1

2 (pmm)2
)

µγ
−
(

c3

16πG

)
µγ

(3)R(γ) = 0,

that, in turn, results from repeating the derivation sketched above for IADM but
now for the Riemannian metric form
(7.30)

(4)g
∣∣∣
Eucl

= (4)gµν

∣∣∣
Eucl

dxµ ⊗ dxν = N
∣∣∣2
Eucl

dt⊗ dt+ γij(dx
i + Y idt)⊗ (dxj + Y jdt)

in place of (7.1). The resulting functional IADM Eucl differs from IADM only in the

replacements H⊥(γ, p) −→ H⊥Eucl(γ, p) and N −→ N
∣∣∣
Eucl

.

The essential question that now comes to light is thus the following:

Is there a well-defined mathematical method for establishing the
existence of a Diff 0(M)-invariant, fundamental solution to the
Euclidean-signature functional differential Hamilton-Jacobi equa-
tion (7.27)?

In view of the field theoretic examples discussed in Section 6 one’s first thought
might be to seek to minimize an appropriate Euclidean-signature action functional
subject to suitable boundary and asymptotic conditions. But, as is well-known
from the Euclidean-signature path integral program [64], the natural functional to
use for this purpose is unbounded from below within any given conformal class —
one can make the functional arbitrarily large and negative by deforming any metric
(4)g

∣∣∣
Eucl

with a suitable conformal factor [39, 64].
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But the real point of the constructions of Section 6 was not to minimize action
functionals but rather to generate certain ‘fundamental sets’ of solutions to the
associated Euler-Lagrange equations upon which the relevant action functionals
could then be evaluated. But the Einstein equations, in vacuum or even allowing
for the coupling to conformally invariant matter sources, encompass, as a special

case, the vanishing of the 4-dimensional scalar curvature, (4)R((4)g
∣∣∣
Eucl

). Thus

there is no essential loss in generality, and indeed a partial simplification of the task
at hand to be gained, by first restricting the relevant, Euclidean-signature action
functional to the ‘manifold’ of Riemannian metrics satisfying (in the vacuum case)
(4)R((4)g

∣∣∣
Eucl

) = 0 and then seeking to carry out a constrained minimization of this

functional.

Setting (4)R((4)g
∣∣∣
Eucl

) = 0 freezes out the conformal degree of freedom that

caused such consternation for the Euclidean path integral program [39, 64], wherein
one felt obligated to integrate over all possible Riemannian metrics having the
prescribed boundary behavior, but is perfectly natural in the present context and
opens the door to appealing to the positive action theorem which asserts that the
relevant functional is indeed positive when evaluated on arbitrary, asymptotically

Euclidean metrics that satisfy (4)R((4)g
∣∣∣
Eucl

) ≥ 0 [65, 66, 67, 68].

Another complication of the Euclidean path integral program was the appar-
ent necessity to invert, by some still obscure means, something in the nature of a
‘Wick rotation’ that had presumably been exploited to justify integrating over Rie-
mannian, as opposed to Lorentzian-signature, metrics. Without this last step the
formal ‘propagator’ being constructed would presumably be that for the Euclidean-
signature variant of the Wheeler-DeWitt equation and not the actual Lorentzian-
signature version that one wishes to solve. In ordinary quantum mechanics the
corresponding, well-understood step is needed to convert the Feynman-Kac prop-
agator, derivable by rigorous path-integral methods, back to one for the actual
Schrödinger equation.

But in the present setting no such hypothetical ‘Wick rotation’ would ever have
been performed in the first place so there is none to invert. Our focus throughout
is on constructing asymptotic solutions to the original, Lorentz-signature Wheeler-
DeWitt equation and not to its Euclidean-signature counterpart. That a Euclidean-
signature Einstein-Hamilton-Jacobi equation emerges in this approach has the very
distinct advantage of leading one to specific problems in Riemannian geometry
that may well be resolvable by established mathematical methods. By contrast,
path integral methods, even for the significantly more accessible gauge theories
discussed in Section 6, would seem to require innovative new advances in measure
theory for their rigorous implementation. Even the simpler scalar field theories,
when formulated in the most interesting case of four spacetime dimensions, seem
still to defy realization by path integral means. It is conceivable, as was suggested in
the concluding section of [1], that focusing predominantly on path integral methods
to provide a ‘royal road’ to quantization may, inadvertently, render some problems
more difficult to solve rather than actually facilitating their resolution.

The well-known ‘instanton’ solutions to the Euclidean-signature Yang-Mills
equations present a certain complication for the semi-classical program that we are
advocating in that they allow one to establish the existence of non-unique minimiz-
ers for the Yang-Mills action functional for certain special choices of boundary data
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[3]. This in turn can obstruct the global smoothness of the corresponding solution
to the Euclidean-signature Hamilton-Jacobi equation. While it is conceivable that
the resulting, apparent need to repair the associated ‘scars’ in the semi-classical
wave functionals may have non-perturbative implications for the Yang-Mills energy
spectrum — of potential relevance to the ‘mass-gap’ problem — no such correc-
tions to the spectrum are expected or desired for the gravitational case. Thus
it is reassuring to note that analogous ‘gravitational instanton’ solutions to the
Euclidean-signature Einstein equations have been proven not to exist [39].

We conclude by noting that other interesting, generally covariant systems of
field equations exist to which our (‘Euclidean-signature semi-classical’) quantization
methods could also be applied. Classical relativistic ‘membranes’, for example, can
be viewed as the evolutions of certain embedded submanifolds in an ambient space-
time — their field equations determined by variation of the volume functional of
the timelike ‘worldsheets’ being thereby swept out. The corresponding Hamiltonian
configuration space for such a system is comprised of the set of spacelike embed-
dings of a fixed n− 1 dimensional manifold M into the ambient n+ k dimensional
spacetime, each embedding representing a possible spacelike slice through some n-
dimensional membrane worldsheet. Upon canonical quantization wave functionals
are constrained (by the associated, quantized momentum constraint equation) to
be invariant with respect to the induced action of Diff 0(M) on this configuration
space of embeddings. The corresponding quantized Hamiltonian constraint, im-
posed à la Dirac, provides the natural analogue of the Wheeler-DeWitt equation
for this problem.

A solution to the operator ordering problem for these quantized constraints,
when the ambient spacetime is Minkowskian, was proposed by the author in [69].
For the compact, codimension one case (i.e., when M is compact and k = 1)
it is not difficult to show that the relevant Euclidean-signature Hamilton-Jacobi
equation has a fundamental solution given by the volume functional of the maximal,
spacelike hypersurface that uniquely spans, à la Plateau, the arbitrarily chosen
embedding [70]. It would be especially interesting to see whether higher-order
quantum corrections and excited state wave functionals can be computed for this
system in a way that realizes a quantum analogue of general covariance.
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