
Holographic
phase
space

M. F. Paulos

Holographic
c-functions

Holographic
phase
space

More on
holographic
phase
space

Holographic phase space and black holes as
renormalization group flows

M. F. Paulos

Laboratoire de Physique Théorique et Hautes Energies,
Université Pierre et Marie Curie

JHEP 1105 (2011) 043
[arXiv: 1101.5993]

IHES, 08/12/2011



Holographic
phase
space

M. F. Paulos

Holographic
c-functions

Holographic
phase
space

More on
holographic
phase
space

Outline

1 Holographic c-functions

2 Holographic phase space

3 More on holographic phase space



Holographic
phase
space

M. F. Paulos

Holographic
c-functions

Holographic
phase
space

More on
holographic
phase
space

Outline

1 Holographic c-functions

2 Holographic phase space

3 More on holographic phase space



Holographic
phase
space

M. F. Paulos

Holographic
c-functions

Holographic
phase
space

More on
holographic
phase
space

c-Functions

c-functions measure degrees of freedom along RG flows Zamolodchikov ’86,

Cappelli, Friedan Latorre ’90

〈Tµν(x)Tρσ(0)〉 =
π

3

∫ ∞
0

dµc(µ)

∫
d2p

(2π)2
eipx

(gµνp
2 − pµpν)(gρσp

2 − pρpσ)

p2 + µ2

Positivity of spectral measure implies

cUV ≡
∫ ∞

0

dµ c(µ) ≥ cIR ≡ lim
ε→0

∫ ε

0

dµ c(µ)

At fixed points c(µ) = cδ(µ): the c-function matches the CFT central
charge.

Monotonicity⇒ irreversibility.
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Cardy’s conjecture

In higher d, more anomaly coefficients:

〈T aa〉 ' (−1)d/2A× (Euler density)+
∑

Bi×(Weyl contractions)+∇(. . .)

Conjecture: c-function involves Euler anomaly A Cardy ’88.

Recently proven in four dimensions. Komargodski, Schwimmer ’11.

No proof for general d. Can holography help?
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Holography and RG flow

AdS/CFT: a geometrization of RG flow.

Scale→ extra dimension r (non-trivial).

Example: relevant flows in N = 4 SYM⇒ domain wall backgrounds

ds2 = dr2 + e2A(r)(−dt2 + dx2)

with
A(+∞) = r/L1, A(−∞) = r/L2, L1 > L2

Shrinking of AdS radius corresponds to loss of degrees of freedom.

Can we make this precise?
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Holographic c-functions

Einstein equations determine: Girardello et al ’98, Freedman et al ’99.

(d− 1)A′′(r) = (T tt − T rr ) = −(ρ+ pr)

Null energy condition⇒ A′′(r) ≤ 0. Define the c-function

c(r) =
c0

ld−2
P (A′)d−2

⇒ cAdS ∝ (LAdS/lP )d−2 .

Radial dependence related to field theory cut-off. Simple argument
suggests:

Polchinski, Heemskerk ’10

Λ ' eAA′(r)

Exact relation unknown.
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Lovelock theories of gravity

To distinguish different anomalies need more general gravity theory -
higher derivatives!

Generically introduces ghosts, complicated equations. Special choice:
Lovelock theory.

L ' R− 2Λ + E2k

with E2k the (2k) dimensional Euler densities.

Nice properties!
Non-ghosty vacua.
Linearized EOM are 2-derivative.
Exact black hole solutions exist.



Holographic
phase
space

M. F. Paulos

Holographic
c-functions

Holographic
phase
space

More on
holographic
phase
space

Plan of attack 1.

What is the plan?

Construct a c-function for Lovelock theories of gravity.

Extra parameters will allow us to determine what the c stands for (i.e.
the Euler anomaly).

Strategy is to consider equations of motion and reconstruct c-function
from there.
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Plan of attack 2.

Construct a “c-function” for black hole backgrounds:

ds2 = −
(
κ+

r2

L2
f(r)

)
dt2

f∞
+

L2dr2

κ+ r2

L2 g(r)
+ r2(dΣd−2

κ )2,

Domain wall solutions are special case.

Motivation: black hole horizons appear to have “emergent” conformal
symmetry, as in extremal black hole geometries containing an AdS2

factor. Carlip

Suggests such geometries describe intriguing RG flows between CFT’s
of different dimensionality.
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Equations of motion

Action for Lovelock theories:

S =
1

ld−2
P

∫
ddx
√
−g

(
R− 2Λ +

K∑
k=2

nkckE
2k

)
+ Smatter

tt equation:
d

dr

(
rd−1Υ[g]

)
= −L

2 ld−2
P

d− 2
rd−2T tt

with
Υ[g] ≡

∑
ckg

k = 1− g + c2g
2 + . . .

In the absence of matter, f = g and exact black hole solutions can be
found by solving a polynomial equation!

Υ[g] =
m0

rd−1

m0 ' mass.
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Equations of motion 2.

Integrating the equation we find

Υ[g] =
Ld ld−2

P

d− 2

∫ r
r0

dr′ (r′/L)d−2ρ(r′)

rd−1
≡ Ld

(d− 2)Vd−2
ld−2
P

M(r)

rd−1
.

Υ[g] ' ψ, the “Newtonian” potential.

The tt equation can be rewritten

(
−Υ′[g]

) dg

dr
=

2Ld

d− 2

dΨ

dr
.

The gravitational field tells us about the direction in which g is
decreasing.
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The N -function

Start from the flow equation:

(
−Υ′[g]

) dg

dr
=

2Ld

d− 2

dΨ

dr
.

Define the N function:

N (r) =
1

g
d−2
2

(
K∑
k=1

(d− 2)k

d− 2k
ck(−g)k−1

)
.

The flow equation becomes

dN
dr

=

(
L
√
g

)d(
−dΨ

dr

)
Important result: it describes the flow of N , in terms of local
gravitational field.
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Interlude: Euler anomaly

Conformal anomaly in even-dimensional CFT’s:

〈T aa〉 ' (−1)d/2A× (Euler density)+
∑

Bi×(Weyl contractions)+∇(. . .)

Computed holographically by Skenderis, Henningson ’98.

The A coefficient can be extracted from on-shell Lagrangian.
Imbimbo,Schwimmer,Theisen ’99

How does A relate to the N function?
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Interlude: Euler anomaly

Start with action:

S =

∫
ddx
√
−g(Lg + Lmatter),

Lg =
∑
k

L(k), (L(k) has k curvatures)

and the equation of motion

−2∇a∇bXacbd +XaecfR d
aef +

1

2
gcdLg +

∂L
∂gcd

= T cdmatter

with
Xabcd =

δS

δRabcd



Holographic
phase
space

M. F. Paulos

Holographic
c-functions

Holographic
phase
space

More on
holographic
phase
space

Interlude: Euler anomaly

−2∇a∇bXacbd +XaecfR d
aef +

1

2
gcdLg +

∂L
∂gcd

= T cdmatter

Assume we have an AdS background. In these circumstances we must
have T cd = − 1

2
gcdLm, and all covariant derivatives vanish. Taking the

trace of the equation of motion above we find∑
k

(
kLk +

d

2
Lk − 2kLk)

)
+
d

2
Lm = 0

⇒ XabcdRabcd =
∑

kLk =
d

2
(Lg + Lm)
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Interlude: Euler anomaly

In AdS

Xabcd = (gacgbd − gbcgad)Xrt
rt,

and therefore we conclude

Lg + Lm =
4

d
R

δS

δRrtrt

The Euler anomaly is given by:

A =
1

2

∂Lg
∂Rabcd

εabεcd

∣∣∣∣
boundary

.

where εrt =
√
−grrgtt with all other components zero is a spacelike

surface binormal.

This is very similar to Wald’s black hole entropy formula:

SBH = −2π

∮
horizon

√
h

∂Lg
∂Rabcd

εabεcd
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Euler anomaly for Lovelock theories

For Lovelock theories of gravity, we get

A =

(
L

lP

)d−2
1

f
d−2
2
∞

(
K∑
k=1

(d− 2)k

d− 2k
ck(−f∞)k−1

)

This should be compared to the N function

N (r) =
1

g
d−2
2

(
K∑
k=1

(d− 2)k

d− 2k
ck(−g)k−1

)
.

Clearly then we have

N (∞) =

(
L

lP

)d−2

A
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N as a c-function

More generally, N correctly captures the Euler anomaly in AdS
background. The flow equation sets its monotonicity:

dN
dr

=

(
L
√
g

)d(
−dΨ

dr

)
We impose the null energy condition, ρ+ p ≥ 0. However in RG flow
backgrounds we have

pr = −M(r)/Vd−2

rd−1
.

This implies

ρ+ p ≥ 0 ⇒ M(r) ≤ 0 ⇒ −dΨ

dr
≥ 0

Therefore N (r) monotonously decreases from UV to IR in RG flow
backgrounds, and equals the Euler anomaly at AdS fixed points: it is a
holographic c-function.
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Black holes as RG flows

The N function was defined for black hole backgrounds.

If no matter present:

Ψ = −ld−2
P

(r0
r

)d−1

Υ[g(r0)], g(r0) = −κL2/r20

N (r) is monotonously increasing from UV to IR!

Explanation: gravitational field is now pointing in the “right” direction,
since the matter has positive energy density.

In general, N has no well-defined monotonicity.

At the horizon, N is related to black hole entropy:

S =

(
L

lP

)d−2

Vd−2(−κ)
d−2
2 N (r0)
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Black holes as RG flows

κ = −1
N (r) monotonously increases from the boundary to the horizon where

SBH = 4πVd−2

(
L

lP

)d−2

N (r0)

N function nicely interpolates between the A anomaly in the UV and
the black hole entropy in the IR.
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Black holes as RG flows

κ = 0
N (r) monotonously increases from the boundary to the horizon where

it diverges. Regulating by setting κ =
(
lP
L

)2

⇒ g(r0) =
l2P
r20

, then

SBH = 4πVd−2N (r0)

Dramatic increase from O(1) to order O(L/lP )d−2 in the number of
effective field theory degrees of freedom as one approaches the black
hole horizon.
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Black holes as RG flows

κ = 1
N diverges at g = 0, which is outside black hole horizon. Expressions
become imaginary or negative there, depending on d. We now have

SBH = 4πVd−2

(
L

lP

)d−2

|N (r0)|.

N is perfectly finite at the horizon.

Why is there a divergence ?!
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Entropy and N

N is connected to entropy and Euler anomaly - both given by a Wald
formula.

Consider a radial foliation defined by

nr =
√
grr, mt =

√
−gtt,

hab = gab − nanb +mamb,

Computing the Wald formula on a radial surface leads to

S = −2πVd−2

√
h

∂L
∂Rabcd

εabεcd = 4π Vd−2

(
L

lP

)d−2 K∑
k=1

(d− 2)k

d− 2k
ck(−g)k−1,



Holographic
phase
space

M. F. Paulos

Holographic
c-functions

Holographic
phase
space

More on
holographic
phase
space

Entropy and N

We can therefore write:

N =
S

4πΩeff
,

If N is a number of degrees of freedom and S is an entropy, then Ωeff is
an effective phase space, whose expression is:

Ωeff =

(
L

lP

)d−2( r

L2
g(r)

)d−2

Vd−2.

An analogy would be with black holes where

S = cS ×N2 × Vd−2 × T d−2

Clearly in this case S is the product of a phase space volume by a
number of degrees of freedom, cS .
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Information content and phase space

In our formula, S is not an entropy but rather an information content: it
counts the possible states of some closed region of spacetime to which
we have no access.

Ωeff is an effective single particle phase space volume. In RG flow
backgrounds it takes the form

Ωeff =

(
L

lP

)d−2

× Vd−2 ×
(
eAA′

)d−2

We can identity as the momentum space cut-off:

Λeff = eAA′.

This agrees with a proposal of Polchinski and Heemskerk.
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Holographic phase space

For the general case, if we compute Kab = ∇anb we get

Kij = −hij
L

√
L2

r2
κ+ g(r).

Then it follows that

Ωeff =

(
L

lP

)d−2 ∮
dd−2x

√
h

√
det
(
Kk
i K

j
k − κ δji

L2

r2

)
Notice that the above has the structure ' Λ2 −m2, precisely as
expected if we are to interpret Ωeff as counting states.

Suggests momentum cut-off is connected to canonical radial
momentum of metric:

Λd−2 =
√
h det

(
Kj
i

)
.

One can also rewrite Ωeff in terms of curvature using

Kk
i K

j
k − κ δji

L2

r2
= R jk

ik ,
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Relation to Verlinde’s work

The flow equation for N can now be rewritten as:

dS

Ωeff
=

(
L
√
g

)d
dΨ +N d log(Ωeff)

This is reminiscent of an equation found by Verlinde relating the
depletion of entropy per bit to the variation of the Newtonian potential.

If we make a virtual variation of the mass keeping the phase space
fixed, one can show that the above becomes (not-trivial!)

dS

Ωeff
=

(
L
√
g

)d
dΨ.

This puts Verlinde’s relation on a firm footing. However, our
interpretation is different: what he calls a number of bits, we claim to be
a phase space volume.
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N in three dimensions

For new massive gravity we have the action

S =
1

lP

∫
d3x
√
−g
(
R+ 2 + 4λ

(
R2
ab −

4

3
R2

))
Such theories support a holographic c-function. Also, exact black hole
solutions can be found with metric

ds2 = −r
2g(r)

L2f∞
dt2 +

L2dr2

r2g(r)
+
r2

L2
dx2,

N -function defined as

N =
S

4πΩeff
=

1 + 2λf∞√
g

= c× lP
L

√
f∞
g
.

Flow of N is trivial (unlike Lovelock theories): N provides connection
between UV (central charge) and IR (black hole entropy).

Analogous results hold for other 3d gravity theories Paulos ’10.
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Holographic phase space

Susskind: number of degrees of freedom holographically associated to
a region is area of region divided by Planck length.

Our interpretation: the above gives not degrees of freedom, but phase
space volume.

Definition:
Ω =

∮
∂M

dA

ld−2
P

,

This is not equal to Ωeff we defined previously! Try to connect later on.

In Poincaré patch of AdS:

Ω =

(
L

lP

)d−2

Vd−2

( r

L2

)d−2

.

Equals product of gauge configurations, coordinate volume and
momentum space volume.
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Holographic phase space

Susskind: number of degrees of freedom holographically associated to
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Degrees of freedom

Can define a number of degrees of freedom:

Ndof ≡
S

4πΩ
= 2

∂L
∂R rt

rt

.

This matches a proposal for the surface density of degrees of freedom
of Padmanabhan.

In black hole backgrounds get

Ndof =
∑
k

(d− 2)k

d− 2k
ckg

k.

This is not equal to N , and hence does not satisfy a nice flow equation.

In the following, it is useful to work with the proper radial distance:

β =

∫
dr
√
grr

For large r, β ' log r. If r is energy scale, β counts number of coarse
grainings along RG flow - it is natural quantity parametrizing flow even
in other geometries.
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Phase space for AdS-Schwarzschild

AdS-Schwarzschild black hole solution:

ds2 =
L2 dr2

r2g(r)
+
r2

L2

(
−g(r)dt2 + dx2)

with g(r) = 1− (r0/r)
4.

In terms of the proper distance β:

r = r0
√

cosh(2β/L).

The phase space volume corresponding to a given direction, say x:

Ωx =
L

lP
×R× πT ×

√
cosh(2β)

Matches the partition function of an anyon harmonic oscillator
BoschiFilho:1994an.

Suggestive of an equivalence between a classical microcanonical
partition function or phase space volume at a given cut-off, and a
canonical partition function at an inverse temperature β related to this
cut-off.
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Thermodynamics and curvature

Pushing the thermodynamic analogy further, compute mean energy
and energy squared:

〈E〉 = −d log Ω

dβ
= −√grr

d log(
√
h)

dr
= habKab

〈E2〉 =
1

Ω

d2Ω

dβ2
= −Rabcdnanchbd.

“Thermodynamic” quantities turn out to have a simple relation to natural
geometric quantities in this formalism.

We can write 〈E〉 as the sum of three separate contributions

〈E〉 = −
d−2∑
i=1

d log Ωi
dβ

≡ −
d−2∑
i=1

Ei

Ei are the average energies along each direction
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More on Ei

Ei tells us how much the logarithm of the phase space volume is
changes when the RG parameter β changes.

In empty AdS, β and Ei are proportional: RG flow is parameterized by
scale

In general, Ei is non-trivially related to β: natural RG parameter is not
scale.

For black holes

Ei =

√
g

L
.

Close to horizon β parameter is going to zero, but the phase space
volume Ω is becoming a constant.

Quantum correlations also vanish for scales larger than 1/T . This
suggests that β might generically be related to correlations and not
scale.
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Relating Ω and Ωeff

Two different notions of holographic phase space:

Ωeff

Ω
=

(
Λeff

Λ

)d−2

For planar black holes we can write

Λeff = Λ×√g = Λ(LE).

and therefore
N =

Ndof

(LE)d−2
,

Holographic phase space is naturally defined by Ω; number of degrees
of freedom in terms of N . More work is necessary to establish precise
connection!
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What about the divergence?

Puzzle in this work: the divergence of N .

Ωeff =

(
L

lP

)d−2 ∮
dd−2x

√
h

√
det
(
Kk
i K

j
k − κ δji

L2

r2

)
Divergence occurs when Ωeff vanishes. This occurs when we reach the
gap scale.

At same point spatial curvature becomes positive. Geometry looks
more like flat space black hole then.

Divergence might signal transition in the nature of holographic degrees
of freedom - entanglement entropy calculations suggest flat space dual
is non-local theory.

N2 increase in degrees of freedom could signal appearance of such a
non-local theory.
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Conclusions and open questions

We have found a function N which captures holographic degrees of
freedom.

Monotonicity controlled by local gravitational field.

Provides holographic c-function in RG flow backgrounds.

Interpolates between central charge and entropy in black hole
backgrounds.
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Conclusions and open questions

Through N , arrived at a notion of effective holographic phase space.

Momentum cut-off agrees with previous proposal in the literature.

Connection of this proposal with a more standard one (area in Planck
units) is not completely established.

Interpretation as phase space leads to a thermodynamic analogy for
geometric quantities in AdS solutions
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Conclusions and open questions

Is S related to entanglement entropy in momentum space?

Can the interpretation of β as a temperature be made precise, and is
this connected to entanglement?

Does a local version of the flow equation exist? What plays the role of
radial coordinate in general?

Study of RG flows in non-trivial states pretty much undeveloped.

Connection with entanglement renormalization methods? Vidal ’05
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