M. F. Paulos

Holographi c-functions

Holograph phase space

More on holographic phase space

Holographic phase space and black holes as renormalization group flows

M. F. Paulos

Laboratoire de Physique Théorique et Hautes Energies, Université Pierre et Marie Curie

> JHEP 1105 (2011) 043 [arXiv: 1101.5993]

IHES, 08/12/2011

Outline

Holographic phase space

M. F. Paulos

Holographic c-functions

Holograph phase space

More on holographic phase space

1 Holographic c-functions

2 Holographic phase space

Outline

Holographic phase space

M. F. Paulos

Holographic c-functions

Holograph phase space

More on holographi phase space

1 Holographic c-functions

2 Holographic phase space

c-Functions

Holographic phase space

M. F. Paulos

Holographic c-functions

Holograph phase space

More on holographic phase space C-functions measure degrees of freedom along RG flows Zamolodchikov '86, Cappelli, Friedan Latorre '90

$$\langle T_{\mu\nu}(x)T_{\rho\sigma}(0)\rangle = \frac{\pi}{3}\int_0^\infty \mathrm{d}\mu c(\mu)\int \frac{\mathrm{d}^2 p}{(2\pi)^2}e^{ipx}\frac{(g_{\mu\nu}p^2 - p_\mu p_\nu)(g_{\rho\sigma}p^2 - p_\rho p_\sigma)}{p^2 + \mu^2}$$

Positivity of spectral measure implies

$$c_{UV} \equiv \int_0^\infty \mathrm{d}\mu \, c(\mu) \qquad \ge \qquad c_{IR} \equiv \lim_{\epsilon \to 0} \int_0^\epsilon \mathrm{d}\mu \, c(\mu)$$

- At fixed points $c(\mu) = c\delta(\mu)$: the c-function matches the CFT central charge.
- Monotonicity \Rightarrow irreversibility.

Cardy's conjecture

Holographic phase space

M. F. Paulos

Holographic c-functions

Holographi phase space

More on holographic phase space ■ In higher *d*, more anomaly coefficients:

 $\langle T^a_a \rangle \simeq (-1)^{d/2} A \times (\text{Euler density}) + \sum B_i \times (\text{Weyl contractions}) + \nabla(\ldots)$

- Conjecture: c-function involves Euler anomaly *A* Cardy '88.
- Recently proven in four dimensions. Komargodski, Schwimmer '11.
- No proof for general *d*. Can holography help?

M. F. Paulos

Holographic c-functions

Holograph phase space

More on holographic phase space

- AdS/CFT: a geometrization of RG flow.
- Scale \rightarrow extra dimension r (non-trivial).
- Example: relevant flows in N = 4 SYM \Rightarrow domain wall backgrounds

$$ds^{2} = dr^{2} + e^{2A(r)}(-dt^{2} + dx^{2})$$

with

$$A(+\infty) = r/L_1, \qquad A(-\infty) = r/L_2, \qquad L_1 > L_2$$

Shrinking of AdS radius corresponds to loss of degrees of freedom. Can we make this precise?

Holographic c-functions

Holographic phase space

M. F. Paulos

Holographic c-functions

Holograph phase space

More on holographic phase space Einstein equations determine:

Girardello et al '98, Freedman et al '99.

$$(d-1)A''(r) = (T_t^t - T_r^r) = -(\rho + p_r)$$

■ Null energy condition $\Rightarrow A''(r) \leq 0$. Define the *c*-function

$$c(r) = \frac{c_0}{l_P^{d-2}(A')^{d-2}} \quad \Rightarrow \quad c_{AdS} \propto (L_{AdS}/l_P)^{d-2}$$

Radial dependence related to field theory cut-off. Simple argument suggests:

Polchinski, Heemskerk '10

$$\Lambda \simeq e^A A'(r)$$

Exact relation unknown.

M. F. Paulos

Holographic c-functions

Holographi phase space

More on holographic phase space

- To distinguish different anomalies need more general gravity theory higher derivatives!
- Generically introduces ghosts, complicated equations. Special choice: Lovelock theory.

 $\mathcal{L} \simeq R - 2\Lambda + E_{2k}$

with E^{2k} the (2k) dimensional Euler densities.

- Nice properties!
 - Non-ghosty vacua.
 - Linearized EOM are 2-derivative.
 - Exact black hole solutions exist.

Plan of attack 1.

Holographic phase space

M. F. Paulos

Holographic c-functions

Holograph phase space

More on holographi phase space

What is the plan?

- Construct a *c*-function for Lovelock theories of gravity.
- Extra parameters will allow us to determine what the c stands for (i.e. the Euler anomaly).
- Strategy is to consider equations of motion and reconstruct *c*-function from there.

M. F. Paulos

Holographic c-functions

Holographi phase space

More on holographi phase space Construct a "c-function" for black hole backgrounds:

$$ds^{2} = -\left(\kappa + \frac{r^{2}}{L^{2}}f(r)\right)\frac{dt^{2}}{f_{\infty}} + \frac{L^{2}dr^{2}}{\kappa + \frac{r^{2}}{L^{2}}g(r)} + r^{2}(\mathrm{d}\Sigma_{\kappa}^{d-2})^{2},$$

- Domain wall solutions are special case.
- Motivation: black hole horizons appear to have "emergent" conformal symmetry, as in extremal black hole geometries containing an AdS₂ factor.
- Suggests such geometries describe intriguing RG flows between CFT's of different dimensionality.

Equations of motion

Holographic phase space

M. F. Paulos

Holographic c-functions

Holograph phase space

More on holographic phase space Action for Lovelock theories:

$$S = \frac{1}{l_P^{d-2}} \int d^d x \sqrt{-g} \left(R - 2\Lambda + \sum_{k=2}^K n_k c_k E^{2k} \right) + S_{\text{matter}}$$

tt equation:

$$\frac{\mathrm{d}}{\mathrm{d}r}\left(r^{d-1}\Upsilon[g]\right) = -\frac{L^2 \, l_P^{d-2}}{d-2} \, r^{d-2} T_t^t$$

with

$$\Upsilon[g] \equiv \sum c_k g^k = 1 - g + c_2 g^2 + \dots$$

In the absence of matter, f = g and exact black hole solutions can be found by solving a *polynomial* equation!

$$\Upsilon[g] = \frac{m_0}{r^{d-1}}$$

 $m_0 \simeq mass.$

Equations of motion 2.

Holographic phase space

M. F. Paulos

Holographic c-functions

Holographi phase space

More on holographic phase space

Integrating the equation we find

$$\Upsilon[g] = \frac{L^d \, l_P^{d-2}}{d-2} \frac{\int_{r_0}^r \mathrm{d}r' \, (r'/L)^{d-2} \rho(r')}{r^{d-1}} \equiv \frac{L^d}{(d-2)V_{d-2}} l_P^{d-2} \frac{M(r)}{r^{d-1}}.$$

- $\Upsilon[g] \simeq \psi$, the "Newtonian" potential.
- The *tt* equation can be rewritten

$$\left(-\Upsilon'[g]\right)\frac{\mathrm{d}g}{\mathrm{d}r} = \frac{2L^d}{d-2}\frac{\mathrm{d}\Psi}{\mathrm{d}r}.$$

The gravitational field tells us about the direction in which *g* is decreasing.

The *N*-function

Holographic phase space

M. F. Paulo

Holographic c-functions

Holograph phase space

More on holographic phase space Start from the flow equation:

$$\left(-\Upsilon'[g]\right)\frac{\mathrm{d}g}{\mathrm{d}r} = \frac{2L^d}{d-2}\frac{\mathrm{d}\Psi}{\mathrm{d}r}.$$

$$\mathcal{N}(r) = \frac{1}{g^{\frac{d-2}{2}}} \left(\sum_{k=1}^{K} \frac{(d-2)k}{d-2k} c_k (-g)^{k-1} \right).$$

The flow equation becomes

$$\frac{\mathrm{d}\mathcal{N}}{\mathrm{d}r} = \left(\frac{L}{\sqrt{g}}\right)^d \left(-\frac{\mathrm{d}\Psi}{\mathrm{d}r}\right)$$

Important result: it describes the flow of N, in terms of local gravitational field.

M. F. Paulos

Holographic c-functions

Holographi phase space

More on holographic phase space Conformal anomaly in even-dimensional CFT's:

 $\langle T^a_a \rangle \simeq (-1)^{d/2} A \times (\text{Euler density}) + \sum B_i \times (\text{Weyl contractions}) + \nabla(\ldots)$

- Computed holographically by Skenderis, Henningson '98.
- The A coefficient can be extracted from on-shell Lagrangian.

Imbimbo,Schwimmer,Theisen '99

How does A relate to the \mathcal{N} function?

M. F. Paulos

Holographic c-functions

Holograph phase space

More on holographic phase space Start with action:

$$S = \int d^{d}x \sqrt{-g} (\mathcal{L}_{g} + \mathcal{L}_{\text{matter}}),$$

$$\mathcal{L}_{g} = \sum_{k} L^{(k)}, \qquad (L^{(k)} \text{ has } k \text{ curvatures})$$

and the equation of motion

$$-2\nabla_a \nabla_b X_{acbd} + X^{aecf} R_{aef}^{\ \ d} + \frac{1}{2} g^{cd} \mathcal{L}_g + \frac{\partial \mathcal{L}}{\partial g_{cd}} = T^{cd}_{\text{matter}}$$

with

$$X_{abcd} = \frac{\delta S}{\delta R^{abcd}}$$

Interlude: Euler anomaly

Holographic phase space

Holographic c-functions

$$-2\nabla_a \nabla_b X_{acbd} + X^{aecf} R_{aef}^{\ \ d} + \frac{1}{2} g^{cd} \mathcal{L}_g + \frac{\partial \mathcal{L}}{\partial g_{cd}} = T^{cd}_{\text{matter}}$$

Assume we have an AdS background. In these circumstances we must have $T^{cd} = -\frac{1}{2}g^{cd}\mathcal{L}_m$, and all covariant derivatives vanish. Taking the trace of the equation of motion above we find

$$\sum_{k} \left(kL_{k} + \frac{d}{2}L_{k} - 2kL_{k} \right) + \frac{d}{2}\mathcal{L}_{m} = 0$$

$$\Rightarrow \qquad X^{abcd}R_{abcd} = \sum_{k} kL_{k} = \frac{d}{2} \left(\mathcal{L}_{a} + \mathcal{L}_{m} \right)$$

$$\Rightarrow \qquad X^{abcd} R_{abcd} = \sum k L_k = \frac{a}{2} \left(\mathcal{L}_g + \mathcal{L}_m \right)$$

Interlude: Euler anomaly

Holographic phase space

M. F. Paulo

Holographic c-functions

Holographi phase space

More on holographic phase space \blacksquare In AdS

$$X^{abcd} = (g^{ac}g^{bd} - g^{bc}g^{ad})X^{rt}_{rt},$$

and therefore we conclude

$$\mathcal{L}_g + \mathcal{L}_m = rac{4}{d} R rac{\delta S}{\delta R^{rt}_{rt}}$$

The Euler anomaly is given by:

$$A = \frac{1}{2} \frac{\partial \mathcal{L}_g}{\partial R_{abcd}} \epsilon_{ab} \epsilon_{cd} \bigg|_{\text{boundary}}$$

where $\epsilon_{rt} = \sqrt{-g_{rr}g_{tt}}$ with all other components zero is a spacelike surface binormal.

This is very similar to Wald's black hole entropy formula:

$$S_{\rm BH} = -2\pi \oint_{\rm horizon} \sqrt{h} \frac{\partial \mathcal{L}_g}{\partial R_{abcd}} \, \epsilon_{ab} \epsilon_{cd}$$

M. F. Paulos

Holographic c-functions

Holograph phase space

More on holographic phase space For Lovelock theories of gravity, we get

$$A = \left(\frac{L}{l_P}\right)^{d-2} \frac{1}{f_{\infty}^{\frac{d-2}{2}}} \left(\sum_{k=1}^{K} \frac{(d-2)k}{d-2k} c_k (-f_{\infty})^{k-1}\right)$$

 \blacksquare This should be compared to the ${\mathcal N}$ function

$$\mathcal{N}(r) = \frac{1}{g^{\frac{d-2}{2}}} \left(\sum_{k=1}^{K} \frac{(d-2)k}{d-2k} c_k (-g)^{k-1} \right).$$

Clearly then we have

$$\mathcal{N}(\infty) = \left(\frac{L}{l_P}\right)^{d-2} A$$

${\cal N}$ as a ${\it c}\mbox{-function}$

Holographic phase space

M. F. Paulos

Holographic c-functions

Holograph phase space

More on holographic phase space More generally, N correctly captures the Euler anomaly in AdS background. The flow equation sets its monotonicity:

$$\frac{\mathrm{d}\mathcal{N}}{\mathrm{d}r} = \left(\frac{L}{\sqrt{g}}\right)^d \left(-\frac{\mathrm{d}\Psi}{\mathrm{d}r}\right)$$

• We impose the null energy condition, $\rho + p \ge 0$. However in RG flow backgrounds we have

$$p_r = -\frac{M(r)/V_{d-2}}{r^{d-1}}$$

This implies

 $\rho + p \geq 0 \qquad \Rightarrow \qquad M(r) \leq 0 \qquad \Rightarrow \qquad -\frac{\mathrm{d}\Psi}{\mathrm{d}r} \geq 0$

Therefore $\mathcal{N}(r)$ monotonously decreases from UV to IR in RG flow backgrounds, and equals the Euler anomaly at AdS fixed points: it is a holographic *c*-function.

Holographic phase space

M. F. Paulos

Holographic c-functions

Holograph phase space

- The ${\cal N}$ function was defined for black hole backgrounds.
- If no matter present:

$$\Psi = -l_P^{d-2} \left(\frac{r_0}{r}\right)^{d-1} \Upsilon[g(r_0)], \qquad g(r_0) = -\kappa L^2/r_0^2$$

- $\mathcal{N}(r)$ is monotonously *increasing* from UV to IR!
- **Explanation**: gravitational field is now pointing in the "right" direction, since the matter has positive energy density.
- In general, \mathcal{N} has no well-defined monotonicity.
- At the horizon, \mathcal{N} is related to black hole entropy:

$$S = \left(\frac{L}{l_P}\right)^{d-2} V_{d-2}(-\kappa)^{\frac{d-2}{2}} \mathcal{N}(r_0)$$

Holographic phase space

M. F. Paulos

Holographic c-functions

Holograph phase space

More on holographic phase space $\kappa = -1$

 $\mathcal{N}(r)$ monotonously increases from the boundary to the horizon where

$$S_{\rm BH} = 4\pi V_{d-2} \left(\frac{L}{l_P}\right)^{d-2} \mathcal{N}(r_0)$$

N function nicely interpolates between the A anomaly in the UV and the black hole entropy in the IR.

Holographic phase space

M. F. Paulos

Holographic c-functions

Holograph phase space

More on holographic phase space

$\kappa = 0$

 $\mathcal{N}(r)$ monotonously increases from the boundary to the horizon where it diverges. Regulating by setting $\kappa = \left(\frac{l_P}{L}\right)^2 \Rightarrow g(r_0) = \frac{l_P^2}{r_0^2}$, then

$$S_{\rm BH} = 4\pi V_{d-2} \mathcal{N}(r_0)$$

Dramatic increase from $\mathcal{O}(1)$ to order $\mathcal{O}(L/l_P)^{d-2}$ in the number of effective field theory degrees of freedom as one approaches the black hole horizon.

Holographic phase space

M. F. Paulos

Holographic c-functions

Holograph phase space

More on holographic phase space

$\kappa = 1$

 \mathcal{N} diverges at g = 0, which is outside black hole horizon. Expressions become imaginary or negative there, depending on d. We now have

$$S_{\mathsf{BH}} = 4\pi V_{d-2} \left(\frac{L}{l_P}\right)^{d-2} |\mathcal{N}(r_0)|.$$

- *N* is perfectly finite at the horizon.
- Why is there a divergence ?!

Outline

Holographic phase space

M. F. Paulos

Holographic c-functions

Holographic phase space

More on holographi phase space

Holographic c-functions

2 Holographic phase space

Entropy and $\ensuremath{\mathcal{N}}$

Holographic phase space

M. F. Paulos

Holographi c-functions

Holographic phase space

More on holographic phase space

- N is connected to entropy and Euler anomaly both given by a Wald formula.
- Consider a radial foliation defined by

$$n_r = \sqrt{g_{rr}}, \qquad m_t = \sqrt{-g_{tt}},$$

$$h_{ab} = g_{ab} - n_a n_b + m_a m_b,$$

Computing the Wald formula on a radial surface leads to

$$S = -2\pi V_{d-2}\sqrt{h}\frac{\partial \mathcal{L}}{\partial R_{abcd}}\epsilon_{ab}\epsilon_{cd} = 4\pi V_{d-2} \left(\frac{L}{l_P}\right)^{d-2} \sum_{k=1}^{K} \frac{(d-2)k}{d-2k}c_k(-g)^{k-1}$$

Entropy and ${\cal N}$

Holographic phase space

M. F. Paulos

Holographic c-functions

Holographic phase space

More on holographic phase space We can therefore write:

$$\mathcal{N} = \frac{S}{4\pi\Omega_{\rm eff}},$$

If N is a number of degrees of freedom and S is an entropy, then Ω_{eff} is an effective phase space, whose expression is:

$$\Omega_{\rm eff} = \left(\frac{L}{l_P}\right)^{d-2} \left(\frac{r}{L^2} g(r)\right)^{d-2} V_{d-2}.$$

An analogy would be with black holes where

$$S = c_S \times N^2 \times V_{d-2} \times T^{d-2}$$

■ Clearly in this case *S* is the product of a phase space volume by a number of degrees of freedom, *c*_{*S*}.

M. F. Paulos

Holographic c-functions

Holographic phase space

More on holographic phase space

- In our formula, S is not an entropy but rather an information content: it counts the possible states of some closed region of spacetime to which we have no access.
- $\blacksquare\ \Omega_{\rm eff}$ is an effective single particle phase space volume. In RG flow backgrounds it takes the form

$$\Omega_{\rm eff} = \left(\frac{L}{l_P}\right)^{d-2} \times V_{d-2} \times \left(e^A A'\right)^{d-2}$$

We can identity as the momentum space cut-off:

$$\Lambda_{\rm eff} = e^A A'.$$

This agrees with a proposal of Polchinski and Heemskerk.

Holographic phase space

M. F. Paulos

Holographic c-functions

Holographic phase space

More on holographi phase space For the general case, if we compute $K_{ab} = \nabla_a n_b$ we get

$$K_{ij} = -\frac{h_{ij}}{L}\sqrt{\frac{L^2}{r^2}\kappa + g(r)}.$$

Then it follows that

$$\Omega_{\rm eff} = \left(\frac{L}{l_P}\right)^{d-2} \oint d^{d-2}x \sqrt{h} \sqrt{\det\left(K_i^k K_k^j - \kappa \,\delta_i^j \frac{L^2}{r^2}\right)}$$

- Notice that the above has the structure $\simeq \Lambda^2 m^2$, precisely as expected if we are to interpret Ω_{eff} as counting states.
- Suggests momentum cut-off is connected to canonical radial momentum of metric:

$$\Lambda^{d-2} = \sqrt{h} \det\left(K_i^j\right).$$

One can also rewrite Ω_{eff} in terms of curvature using

$$K_i^k K_k^j - \kappa \,\delta_i^j \frac{L^2}{r^2} = R_{ik}^{\ jk},$$

M. F. Paulos

Holographic c-functions

Holographic phase space

More on holograph phase space \blacksquare The flow equation for ${\cal N}$ can now be rewritten as:

$$\frac{\mathrm{d}S}{\Omega_{\mathrm{eff}}} = \left(\frac{L}{\sqrt{g}}\right)^d \mathrm{d}\Psi + \mathcal{N} \,\mathrm{d}\log(\Omega_{\mathrm{eff}})$$

- This is reminiscent of an equation found by Verlinde relating the depletion of entropy per bit to the variation of the Newtonian potential.
- If we make a virtual variation of the mass keeping the phase space fixed, one can show that the above becomes (not-trivial!)

$$\frac{\mathrm{d}S}{\Omega_{\mathrm{eff}}} = \left(\frac{L}{\sqrt{g}}\right)^d \mathrm{d}\Psi.$$

This puts Verlinde's relation on a firm footing. However, our interpretation is different: what he calls a number of bits, we claim to be a phase space volume.

$\ensuremath{\mathcal{N}}$ in three dimensions

Holographic phase space

M. F. Paulos

Holographic c-functions

Holographic phase space

More on holographic phase space For new massive gravity we have the action

$$S = \frac{1}{l_P} \int d^3x \sqrt{-g} \left(R + 2 + 4\lambda \left(R_{ab}^2 - \frac{4}{3} R^2 \right) \right)$$

Such theories support a holographic *c*-function. Also, exact black hole solutions can be found with metric

$$ds^{2} = -\frac{r^{2}g(r)}{L^{2}f_{\infty}} dt^{2} + \frac{L^{2}dr^{2}}{r^{2}g(r)} + \frac{r^{2}}{L^{2}}dx^{2},$$

 $\blacksquare \ \mathcal{N}\text{-function}$ defined as

$$\mathcal{N} = \frac{S}{4\pi\Omega_{\rm eff}} = \frac{1+2\lambda f_\infty}{\sqrt{g}} = c \times \frac{l_P}{L} \sqrt{\frac{f_\infty}{g}}. \label{eq:N}$$

- Flow of *N* is trivial (unlike Lovelock theories): *N* provides connection between UV (central charge) and IR (black hole entropy).
- Analogous results hold for other 3d gravity theories

Paulos '10.

Outline

Holographic phase space

M. F. Paulos

Holographic c-functions

Holograph phase space

More on holographic phase space

Holographic c-functions

Holographic phase space

M. F. Paulos

Holographic c-functions

Holographi phase space

More on holographic phase space

- Susskind: number of degrees of freedom holographically associated to a region is area of region divided by Planck length.
- Our interpretation: the above gives not degrees of freedom, but phase space volume.
- Definition:

$$\Omega = \oint_{\partial M} \frac{dA}{l_P^{d-2}},$$

This is *not* equal to Ω_{eff} we defined previously! Try to connect later on.

M. F. Paulos

Holographic c-functions

Holographi phase space

More on holographic phase space

- Susskind: number of degrees of freedom holographically associated to a region is area of region divided by Planck length.
- Our interpretation: the above gives not degrees of freedom, but phase space volume.
- Definition:

$$\Omega = \oint_{\partial M} \frac{dA}{l_P^{d-2}},$$

- This is *not* equal to Ω_{eff} we defined previously! Try to connect later on.
- In Poincaré patch of AdS:

$$\Omega = \left(\frac{L}{l_P}\right)^{d-2} V_{d-2} \left(\frac{r}{L^2}\right)^{d-2}$$

 Equals product of gauge configurations, coordinate volume and momentum space volume.

Degrees of freedom

Holographic phase space

M. F. Paulos

Holographic c-functions

Holograph phase space

More on holographic phase space Can define a number of degrees of freedom:

$$N_{
m dof} \equiv rac{S}{4\pi\Omega} = 2rac{\partial \mathcal{L}}{\partial R_{rt}^{\ rt}},$$

- This matches a proposal for the surface density of degrees of freedom of Padmanabhan.
- In black hole backgrounds get

$$N_{\rm dof} = \sum_k \frac{(d-2)k}{d-2k} c_k g^k.$$

 \blacksquare This is not equal to $\mathcal{N},$ and hence does not satisfy a nice flow equation.

Degrees of freedom

Holographic phase space

M. F. Paulos

Holographic c-functions

Holograph phase space

More on holographic phase space Can define a number of degrees of freedom:

$$N_{
m dof} \equiv rac{S}{4\pi\Omega} = 2rac{\partial \mathcal{L}}{\partial R_{rt}^{\ rt}},$$

- This matches a proposal for the surface density of degrees of freedom of Padmanabhan.
- In black hole backgrounds get

$$N_{\rm dof} = \sum_k \frac{(d-2)k}{d-2k} c_k g^k.$$

- This is not equal to \mathcal{N} , and hence does not satisfy a nice flow equation.
- In the following, it is useful to work with the proper radial distance:

$$\beta = \int dr \sqrt{g_{rr}}$$

For large $r, \beta \simeq \log r$. If r is energy scale, β counts number of coarse grainings along RG flow - it is natural quantity parametrizing flow even in other geometries.

M. F. Paulos

Holographic c-functions

Holographi phase space

More on holographic phase space ■ *AdS*-Schwarzschild black hole solution:

$$ds^{2} = \frac{L^{2} dr^{2}}{r^{2}g(r)} + \frac{r^{2}}{L^{2}} \left(-g(r)dt^{2} + d\mathbf{x}^{2}\right)$$

with $g(r) = 1 - (r_0/r)^4$.

In terms of the proper distance β :

$$r = r_0 \sqrt{\cosh(2\beta/L)}.$$

■ The phase space volume corresponding to a given direction, say *x*:

$$\Omega_x = \frac{L}{l_P} \times R \times \pi T \times \sqrt{\cosh(2\beta)}$$

- Matches the partition function of an anyon harmonic oscillator BoschiFilho:1994an.
- Suggestive of an equivalence between a classical microcanonical partition function or phase space volume at a given cut-off, and a canonical partition function at an inverse temperature β related to this cut-off.

M. F. Paulo

Holographic c-functions

Holograph phase space

More on holographic phase space Pushing the thermodynamic analogy further, compute mean energy and energy squared:

$$\begin{split} \langle E \rangle &= -\frac{d\log\Omega}{d\beta} = -\sqrt{g_{rr}} \, \frac{d\log(\sqrt{h})}{dr} = h^{ab} K_{ab} \\ \langle E^2 \rangle &= \frac{1}{\Omega} \frac{d^2\Omega}{d\beta^2} = -R_{abcd} n^a n^c h^{bd}. \end{split}$$

- "Thermodynamic" quantities turn out to have a simple relation to natural geometric quantities in this formalism.
- We can write $\langle E \rangle$ as the sum of three separate contributions

$$\langle E \rangle = -\sum_{i=1}^{d-2} \frac{d \log \Omega_i}{d\beta} \equiv -\sum_{i=1}^{d-2} \mathcal{E}_i$$

 \blacksquare \mathcal{E}_i are the average energies along each direction

More on \mathcal{E}_i

Holographic phase space

- M. F. Paulos
- Holographic c-functions

Holograph phase space

- \mathcal{E}_i tells us how much the logarithm of the phase space volume is changes when the RG parameter β changes.
- In empty AdS, β and \mathcal{E}_i are proportional: RG flow is parameterized by *scale*
- In general, *E_i* is non-trivially related to *β*: natural RG parameter is *not* scale.
- For black holes

$$\mathcal{E}_i = \frac{\sqrt{g}}{L}.$$

- Close to horizon β parameter is going to zero, but the phase space volume Ω is becoming a constant.
- Quantum correlations also vanish for scales larger than 1/T. This suggests that β might generically be related to correlations and not scale.

M. F. Paulo

Holographic c-functions

Holograph phase space

More on holographic phase space Two different notions of holographic phase space:

$$rac{\Omega_{\mathrm{eff}}}{\Omega} = \left(rac{\Lambda_{\mathrm{eff}}}{\Lambda}
ight)^{d-2}$$

For planar black holes we can write

$$\Lambda_{\rm eff} = \Lambda \times \sqrt{g} = \Lambda(L\mathcal{E}).$$

and therefore

$$\mathcal{N} = \frac{N_{\text{dof}}}{(L\mathcal{E})^{d-2}},$$

Holographic phase space is naturally defined by Ω; number of degrees of freedom in terms of N. More work is necessary to establish precise connection!

M. F. Paulo

Holographic c-functions

Holographi phase space

More on holographic phase space Puzzle in this work: the divergence of \mathcal{N} .

$$\Omega_{\rm eff} \quad = \quad \left(\frac{L}{l_P}\right)^{d-2} \oint d^{d-2}x \sqrt{h} \sqrt{\det\left(K_i^k K_k^j - \kappa \, \delta_i^j \frac{L^2}{r^2}\right)}$$

- Divergence occurs when Ω_{eff} vanishes. This occurs when we reach the gap scale.
- At same point spatial curvature becomes positive. Geometry looks more like flat space black hole then.
- Divergence might signal transition in the nature of holographic degrees of freedom - entanglement entropy calculations suggest flat space dual is non-local theory.
- N² increase in degrees of freedom could signal appearance of such a non-local theory.

M. F. Paulos

Holographic c-functions

Holographi phase space

- We have found a function *N* which captures holographic degrees of freedom.
- Monotonicity controlled by local gravitational field.
- Provides holographic c-function in RG flow backgrounds.
- Interpolates between central charge and entropy in black hole backgrounds.

M. F. Paulos

Holographic c-functions

Holographic phase space

- \blacksquare Through $\mathcal N,$ arrived at a notion of effective holographic phase space.
- Momentum cut-off agrees with previous proposal in the literature.
- Connection of this proposal with a more standard one (area in Planck units) is not completely established.
- Interpretation as phase space leads to a thermodynamic analogy for geometric quantities in AdS solutions

M. F. Paulos

Holographic c-functions

Holograph phase space

- Is S related to entanglement entropy in momentum space?
- Can the interpretation of β as a temperature be made precise, and is this connected to entanglement?
- Does a local version of the flow equation exist? What plays the role of radial coordinate in general?
- Study of RG flows in non-trivial states pretty much undeveloped.
- Connection with entanglement renormalization methods? Vidal '05