The Geroch group in Einstein spaces

Marios Petropoulos
CPHT - Ecole Polytechnique - CNRS

IHES - Bures-sur-Yvette

March 2014

Highlights

Motivations

From four to three dimensions and back to four

The sigma-model

Conservation laws, integrability and solution generation

Outlook

Framework

Solution-generating algebraic methods for Einstein's equations

- Always: give a deeper perspective on
- the structure of the space of solutions
- integrability properties
- Often:
- assume extra symmetry
- based on a mini-superspace analysis of the eoms
- Sometimes: provide new solutions

Here

Explore Geroch's approach for $R_{a b}=\Lambda g_{a b}$

- Originally: $R_{a b}=0$ [Ehlers '59; Geroch '71] $^{\text {' }}$
- $(\mathcal{M}, \mathrm{g}, \xi) \rightarrow(\mathcal{S}, \mathrm{h}) \rightarrow\left(\mathcal{S}, \mathrm{h}^{\prime}\right) \rightarrow\left(\mathcal{M}, \mathrm{g}^{\prime}, \xi^{\prime}\right)$
- $\mathrm{h} \rightarrow \mathrm{h}$ ': algebraic action of $\operatorname{SL}(2, \mathbb{R})$
- no integrability discussion
- Before: Ernst method with 2 Killings [Ernst '68]
- After: general integrability properties with 2 Killings \rightarrow 2-dim sigma-models (Lax pairs, inverse scattering, ...)
- powerful and complementary wrt algebraic (Geroch) [Belinskii, Zakharov '78; Maison '79; Bernard, Regnault '01]
- no mention of Λ : hard problem [Astorino '12]

Unified treatment for $\Lambda=0$ or $\neq 0$ thanks to the conformal mode κ

- Mapping to a 3-dim sigma-model: $(\kappa, \omega, \lambda)$-target space conformal to $\mathbb{R} \times \mathrm{H}_{2}$
- Geroch's $S L(2, \mathbb{R}) \equiv$ isometry - partly broken by the potential
- reduced algebraic solution-generating action
- no effect on integrability
- Mini-superspace analysis: h on $\mathcal{S} \propto \mathbb{R} \times \mathcal{S}_{2}$
- particle motion on $\mathbb{R} \times \mathrm{H}_{2}$ at zero energy
- integrability using Hamilton-Jacobi
- Λ : constant of motion as m and n

Highlights

Motivations

From four to three dimensions and back to four

The sigma-model

Conservation laws, integrability and solution generation

Outlook

4-dim \mathcal{M}

With $g=g_{a b} d x^{a} d x^{b}(-+++)$ and a time-like Killing field ξ

- norm: $\lambda=\|\xi\|^{2}<0$
- twist 1-form: $\Omega=-2 i_{\xi} \star \mathrm{d} \xi$

Assuming Ric $=\Lambda \mathrm{g}$

$$
\begin{gathered}
d \star d \xi=2 \Lambda \star \xi \\
\Downarrow \\
d \Omega=0
\end{gathered}
$$

Locally scalar twist $\Omega=\mathrm{d} \omega$

3-dim \mathcal{S}

\mathcal{S} : coset space obtained by modding out the group generated by ξ

- Natural pos. def. metric/projector: $h_{a b}=g_{a b}-\frac{\xi_{a} \xi_{b}}{\lambda}$
- Natural fully antisymmetric tensor: $\eta_{a b c}=\frac{-1}{\sqrt{-\lambda}} \eta_{a b c d} \xi^{d}$
- One-to-one correspondence between tensors on \mathcal{S} and tensors T on \mathcal{M} s.t. $\mathrm{i}_{\xi} T=0$ and $\mathcal{L}_{\xi} T=0$:

$$
T_{a_{1} \ldots a_{p}}^{\mathcal{S}}{ }^{b_{1} \ldots b_{q}}=h_{a_{1}}^{m_{1}} \ldots h_{a_{p}}^{m_{p}} h_{n_{1}}^{b_{1}} \ldots h_{n_{q}}^{b_{q}} T^{\mathcal{M}}{ }_{m_{1} \ldots m_{p}}{ }^{n_{1} \ldots n_{q}}
$$

- Induced connection on \mathcal{S} - coinciding with Levi-Civita

$$
\mathcal{D}_{c} T_{a_{1} \ldots a_{p}}{ }^{b_{1} \ldots b_{q}}=h_{c}^{\ell} h_{a_{1}}^{m_{1}} \ldots h_{a_{p}}^{m_{p}} h_{n_{1}}^{b_{1}} \ldots h_{n_{q}}^{b_{q}} \nabla_{\ell} T_{m_{1} \ldots m_{p}}{ }^{n_{1} \ldots n_{q}}
$$

with curvature

$$
\mathcal{R}_{a b c d}=h_{[a}^{p} h_{b]}^{q} h_{[c}^{r} h_{d]}^{s}\left(R_{p q r s}+\frac{2}{\lambda}\left(\nabla_{p} \xi_{q} \nabla_{r} \xi_{s}+\nabla_{p} \xi_{r} \nabla_{q} \xi_{s}\right)\right)
$$

Dynamics for g on \mathcal{M} translates into dynamics for (h, ω, λ) on \mathcal{S}

- Dynamics for g on $\mathcal{M}: R_{a b}=\Lambda g_{a b}$
- Dynamics for $(\mathrm{h}, \omega, \lambda)$ on \mathcal{S} :

$$
\begin{aligned}
\mathcal{R}_{a b} & =\frac{1}{2 \lambda^{2}}\left(\mathcal{D}_{a} \omega \mathcal{D}_{b} \omega-h_{a b} \mathcal{D}^{c} \omega \mathcal{D}_{c} \omega\right)+\frac{1}{2 \lambda} \mathcal{D}_{a} \mathcal{D}_{b} \lambda \\
& -\frac{1}{4 \lambda^{2}} \mathcal{D}_{a} \lambda \mathcal{D}_{b} \lambda+\Lambda h_{a b} \\
\mathcal{D}^{2} \lambda & =\frac{1}{2 \lambda}\left(\mathcal{D}^{c} \lambda \mathcal{D}_{c} \lambda-2 \mathcal{D}^{c} \omega \mathcal{D}_{c} \omega\right)-2 \Lambda \lambda \\
\mathcal{D}^{2} \omega & =\frac{3}{2 \lambda} \mathcal{D}^{c} \lambda \mathcal{D}_{c} \omega
\end{aligned}
$$

Any new solution $\left(h^{\prime}, \omega^{\prime}, \lambda^{\prime}\right)$ on \mathcal{S} translates into a new solution g^{\prime} on \mathcal{M} with Killing ξ^{\prime} - a new Einstein space with symmetry

- Define a 2-form on $\mathcal{S}: \mathrm{F}^{\prime}=\frac{1}{\left(-\lambda^{\prime}\right)^{3 / 2}} \star_{\mathrm{h}^{\prime}}^{3} \mathrm{~d} \omega^{\prime}$
- Check it is closed
- Locally: $\mathrm{F}^{\prime}=\mathrm{d} \eta^{\prime}$
- Promote η^{\prime} on \mathcal{M} by adding a longit. comp. s.t. i $_{\tilde{q}} \eta^{\prime}=1$
- New Killing on $\mathcal{M}: \xi^{\prime}=\eta^{\prime} \lambda^{\prime}$
- New Einstein metric on $\mathcal{M}: g_{a b}^{\prime}=h_{a b}^{\prime}+\frac{\frac{k}{a}_{\xi^{\prime} \xi^{\prime}}^{\lambda^{\prime}}}{}$

Highlights

Motivations
 From four to three dimensions and back to four

The sigma-model

Conservation laws, integrability and solution generation

Outlook

Introduce a reference metric \hat{h} :

$$
h_{a b}=\frac{\kappa}{\lambda} \hat{h}_{a b}
$$

(in Geroch $\tilde{h}_{a b}=\lambda h_{a b}=\kappa \hat{h}_{a b}$)
Eqs. for $\hat{h}, \kappa, \tau=\omega+i \lambda$ follow from

$$
\begin{gathered}
S=\int_{\mathcal{S}} \mathrm{d}^{3} x \sqrt{\hat{h}} \mathcal{L} \\
\mathcal{L}=-\sqrt{-\kappa}\left(\frac{\hat{\mathcal{D}}^{a} \kappa \hat{\mathcal{D}}_{a} \kappa}{2 \kappa^{2}}+2 \frac{\hat{\mathcal{D}}^{a} \tau \hat{\mathcal{D}}_{a} \bar{\tau}}{(\tau-\bar{\tau})^{2}}+\hat{\mathcal{R}}-4 i \Lambda \frac{\kappa}{\tau-\bar{\tau}}\right)
\end{gathered}
$$

- $\hat{h}_{a b}$: gravity in 3 dim with dilaton-Einstein-Hilbert action
- \mathcal{K}, τ : matter with sigma-model kinetic term plus potential

Symmetries

Kinetic term for the matter fields κ, ω, λ : target space

$$
d s_{\text {target }}^{2}=\sqrt{-\kappa}\left(-\frac{d \kappa^{2}}{\kappa^{2}}+\frac{d \omega^{2}+d \lambda^{2}}{\lambda^{2}}\right)
$$

- Conformal to $\mathbb{R} \times \mathrm{H}_{2}$
- Conformal isometry group: \mathbb{R} generated by $\zeta=\frac{1}{2} \kappa \partial_{\kappa}$
- Isometry group: $S L(2, \mathbb{R})$ generated by

$$
\begin{gathered}
\xi_{+}=\partial_{\omega} \quad \xi_{-}=\left(\lambda^{2}-\omega^{2}\right) \partial_{\omega}-2 \omega \lambda \partial_{\lambda} \quad \xi_{2}=\omega \partial_{\omega}+\lambda \partial_{\lambda} \\
{\left[\xi_{+}, \xi_{-}\right]=-2 \xi_{2} \quad\left[\xi_{+}, \xi_{2}\right]=\xi_{+} \quad\left[\xi_{2}, \xi_{-}\right]=\xi_{-}}
\end{gathered}
$$

Potential for the matter fields κ, ω, λ :

$$
\mathcal{V}=\sqrt{-\kappa}\left(\hat{\mathcal{R}}-2 \Lambda \frac{\kappa}{\lambda}\right)
$$

Λ breaks ξ_{-}and ξ_{2}

Next

- Integrability properties and solution generation
- Assume a further Killing for g: 2-dim Ernst-like sigma model (Lax pairs, inverse scattering, ...)
- Freeze ĥ: 1-dim sigma model - particle motion (Hamilton-Jacobi)
- Role of the dilaton-like field κ

Mini-superspace analysis

Freeze \hat{h} to $\mathbb{R} \times \mathcal{S}_{2}$ - motivation: Taub-NUT, Schwarzschild

$$
d \hat{s}^{2}=d \sigma^{2}+d \Omega^{2}
$$

- $\mathrm{d} \Omega^{2}$: 2-dim, σ-independent $\rightarrow \hat{\mathcal{R}}_{a b} \mathrm{~d} x^{a} \mathrm{~d} x^{b}=\frac{\hat{\mathcal{R}}}{2} \mathrm{~d} \Omega^{2}$
- Matter: $\kappa(\sigma), \omega(\sigma)$ and $\lambda(\sigma)$

Impose in equations and check consistency

- In $\hat{h}_{a b}$ equations
- Trace part: \mathcal{K}-equation (as in the generic case)
- Transverse part: consistency condition

$$
\hat{\mathcal{R}}=\frac{2}{(\tau-\bar{\tau})^{2}} \dot{\tau} \dot{\bar{\tau}}+4 i \Lambda \frac{\kappa}{\tau-\bar{\tau}}+\frac{1}{2 \kappa^{\kappa}} \dot{\kappa}^{2}
$$

- extended symmetry: $\hat{\mathcal{R}}=2 \ell, \ell=1,0,-1$
- constraint (first-order equation)
- Dynamics: particle motion on $d s_{\text {target }}^{2}$ with V subject to $H=0$

$$
L=\frac{\sqrt{-\kappa}}{2}\left[-\left(\frac{\dot{\kappa}}{\kappa}\right)^{2}-4 \frac{\dot{\tau} \dot{\bar{\tau}}}{(\tau-\bar{\tau})^{2}}-4\left(\ell-2 i \Lambda \frac{\kappa}{\tau-\bar{\tau}}\right)\right]
$$

In summary

4-dim Einstein space with symmetry (\mathcal{M}, g, ξ)

$$
\begin{gathered}
\downarrow \xi \\
\text { 3-dim sigma-model }(\mathcal{S}, \hat{h}, \kappa, \tau) \\
\downarrow \text { extra } \hat{h} \text { isometries }\left\{\begin{array}{l}
\mathbb{R} \times S^{2} \\
\mathbb{R}^{3} \\
\mathbb{R} \times H_{2}
\end{array}\right.
\end{gathered}
$$

1-dim "time"- σ particle dynamics

Case under investigation: 1 extra Killing field for $h \Rightarrow 3$-dim sigma-model $\rightarrow 2$-dim sigma-model (Ernst-like with dilaton)

Highlights

Motivations

From four to three dimensions and back to four

The sigma-model

Conservation laws, integrability and solution generation

At $\Lambda=0$: Geroch

The full Lagrangian is $\operatorname{SL}(2, \mathbb{R})$-invariant

- Algebraic scan of the space of solutions

$$
\tau \rightarrow \tau^{\prime}=\frac{a \tau+b}{c \tau+d} \quad \kappa \text { frozen }
$$

- Integrable with space of solutions: m, n

$$
\left\{\begin{array}{l}
S O(2) \subset S L(2, \mathbb{R}): \text { rotation in }(m, n) \\
N \subset S L(2, \mathbb{R}): \text { homothetic transformation in }(m, n)
\end{array}\right.
$$

At $\Lambda \neq 0$: generalization

Summary

- Only ξ_{+}leaves L invariant
- Integrability unaltered ($S L(2, \mathbb{R})$ not crucial)
- ξ_{+}and ξ_{2} generate constants of motion
- Constants of motion: Λ, m, n
- Under $N \subset S L(2, \mathbb{R}):(\Lambda, m, n) \rightarrow\left(a^{2} \Lambda, m / a, n / a\right)$
- $\kappa(\sigma)$ depends on Λ, m, n : freezing $\kappa \rightarrow$ missing solutions

In some detail

Change time $d \hat{r}=\frac{(-\kappa)^{3 / 2}}{-\lambda} d \sigma$ and go to the Hamiltonian

$$
\hat{H}=\frac{\lambda}{2} p_{\kappa}^{2}-\frac{\lambda^{3}}{2 \kappa^{2}}\left(p_{\omega}^{2}+p_{\lambda}^{2}\right)+2 \ell \frac{\lambda}{\kappa}-2 \Lambda
$$

contraint to $\hat{H}=0$

- Λ no longer any role in the symmetry: reduced to $\xi_{+} \forall \Lambda$
- $S L(2, \mathbb{R})$ algebra on the phase space:

$$
\begin{gathered}
\hat{F}_{+}=p_{\omega} \quad \hat{F}_{2}=\omega p_{\omega}+\lambda p_{\lambda}+2 \Lambda \hat{r} \\
\hat{F}_{-}=-2 \omega \lambda p_{\lambda}-\left(\omega^{2}-\lambda^{2}\right) p_{\omega}-4 \Lambda \omega \hat{r}
\end{gathered}
$$

- Action on \hat{H} :

$$
\begin{gathered}
\left\{\hat{H}, \hat{F}_{+}\right\}=0 \quad\left\{\hat{H}, \hat{F}_{2}\right\}=-\hat{H}-2 \Lambda \\
\left\{\hat{H}, \hat{F}_{-}\right\}=2 \omega \hat{H}+4 \Lambda\left(\omega+\frac{\hat{r} \lambda^{3} p_{\omega}}{\kappa^{2}}\right)
\end{gathered}
$$

- Conserved quantities:

$$
\begin{aligned}
& \frac{d \hat{F}_{+}}{\mathrm{dr}}=0 \quad \frac{\mathrm{~d} \hat{F}_{2}}{\mathrm{~d} \hat{r}}=-\hat{H} \\
& \frac{\mathrm{f} \hat{F}_{-}}{\mathrm{d} \hat{r}}=2 \omega \hat{H}+4 \Lambda \frac{\hat{r} \lambda^{3} p_{\omega}}{\kappa^{2}}
\end{aligned}
$$

Under the constraint $\hat{H}=0: \hat{F}_{+}$and \hat{F}_{2} conserved

Hamilton-Jacobi integration

Hamilton-Jacobi:

$$
\hat{H}\left(\frac{\partial S}{\partial q^{i}}, q^{i}\right)+\frac{\partial S}{\partial \hat{r}}=0
$$

not fully separable but integrable - irrespective of Λ

- With $q^{i}=(\kappa, \omega, \lambda)$
- find principal solution $S\left(q^{i}, \hat{r} ; \alpha_{i}\right)$
- use $\beta^{i}=\frac{\partial S}{\partial \alpha_{i}}$ to get $q^{i}=q^{i}\left(\hat{r} ; \alpha_{j}, \beta^{k}\right)$
- use $p_{i}=\frac{\partial S}{\partial q^{i}}$ to get $p_{i}=p_{i}\left(\hat{r} ; \alpha_{j}, \beta^{k}\right)$
- Partial separation: 2 commuting first integrals \hat{F}_{+}and \hat{H} with values $2 v$ and \hat{E}

$$
S=W+2 v \omega-\hat{E} \hat{r}
$$

with $W\left(\kappa, \lambda ; \alpha_{i}\right)$ solving a pde wrt κ, λ and

$$
\alpha_{1}=\hat{E}+2 \Lambda \quad \alpha_{2}=v \quad \alpha_{3}=\alpha
$$

\hat{E} set to zero at the end
Relevant constants

$$
\left(\alpha_{1}, \alpha_{2}, \beta^{3}\right) \Leftrightarrow(\Lambda, n, m)
$$

the others can be reabsorbed in various redefinitions $-\Lambda$: effective constant of motion relaxing the Hamiltonian constraint

General solution κ, ω, λ with the reference \hat{h}

4-dim metric g: general (A)dS Schwarzschild Taub-NUT

$$
-\frac{\Delta \lambda}{\left(m^{2}+\ell^{2} n^{2}\right) \kappa}\left(d T+4 n \sqrt{m^{2}+\ell^{2} n^{2}} f_{\ell}\left(\frac{\chi}{2}\right) d \psi\right)^{2}+\overbrace{\frac{\kappa}{\lambda} \underbrace{(\underbrace{\frac{d r^{2}}{\Delta}}_{d \sigma^{2}}+d \Omega^{2})}_{\hat{h}}}
$$

\hat{r} traded for r and $f_{\ell}(\chi)=\sin ^{2} \chi, \chi^{2}, \sinh ^{2} \chi$ for $\ell=1,0,-1$

- $\Delta=\ell\left(r^{2}-n^{2}\right)-2 m r-\Lambda / 3\left(r^{4}+6 r^{2} n^{2}-3 n^{4}\right)$
- $\kappa=-\Delta / m^{2}+\ell^{2} n^{2}$
- $\omega=-2 n / 3\left(m^{2}+\ell^{2} n^{2}\right)\left(\Lambda r+\frac{3 \ell r-3 m-4 \Lambda n^{2} r}{r^{2}+n^{2}}\right)$
- $\lambda=-\Delta /\left(m^{2}+\ell^{2} n^{2}\right)\left(r^{2}+n^{2}\right)$

Back to Geroch: role of κ

Reference metrics:

$$
h=\frac{\kappa \hat{h}}{\lambda}=\frac{\tilde{h}}{\lambda}
$$

- In Geroch $(\Lambda=0)$: define $\cosh \sigma=r-m / \sqrt{m^{2}+n^{2}}$
- $-\kappa=\sinh ^{2} \sigma$
- $-\tilde{\mathrm{h}}=-\kappa \hat{\mathrm{h}}=\sinh ^{2} \sigma\left(\mathrm{~d} \sigma^{2}+\mathrm{d} \Omega^{2}\right)$
independent of (m, n) : the space of solutions is scanned while keeping $\tilde{\mathrm{h}}, \hat{\mathrm{h}}, \kappa$ frozen
- Here $(\Lambda \neq 0)$:
- $\kappa(\sigma)$ and $\kappa \hat{\mathrm{h}}(\sigma)$ depend explicitly on (m, n)
- freezing $\tilde{h}=\kappa \hat{h}$ à la Geroch forbids scanning the space of solutions

Crucial role of the dilaton-like field κ for Einstein spaces

Algebraic solution generation

\hat{F}_{+}and \hat{F}_{2} generate $N \subset S L(2, \mathbb{R}): \tau \rightarrow \tau^{\prime}=a(a \tau+b)$

- Affects ω by a shift: irrelevant
- Affects λ via

$$
(\Lambda, m, n) \rightarrow\left(a^{2} \Lambda, m / a, n / a\right)
$$

(homothetic transformation)
\hat{F}_{-}is no longer an invariance generator - no algebraic relationship amongst solutions $(\kappa, \omega, \lambda)$ and $\left(\kappa^{\prime}, \omega^{\prime}, \lambda^{\prime}\right)$ obtained by rotating (m, n) to $\left(m^{\prime}, n^{\prime}\right)$

Highlights

Motivations
 From four to three dimensions and back to four
 The sigma-model
 Conservation laws, integrability and solution generation

Outlook

Geroch non-compact $S L(2, \mathbb{R})$ group: tool for handling the dynamics of Einstein spaces with symmetry in a 3-dim sigma-model approach

- In general only a subgroup provides an algebraic mapping in the space of solutions: no role for $S O(2) \subset S L(2, \mathbb{R})$
- Mini-superspace integrability analysis: symmetry reduction does not affect integrability
- role of the conformal mode κ for scanning the mass-nut space
- Λ : constant of motion (relaxing the Hamiltonian constraint)
- (Λ, m, n) transform homothetically under $N \subset S L(2, \mathbb{R})$
- Beyond mini-superspace: standard Lax-pair and inverse-scattering methods under investigation

