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IHÉS, Bures-sur-Yvette, 30 October 2014

Eric Poisson Tidal deformation and dynamics of black holes



Introduction Newtonian tides Relativistic tides Conclusion

Context

The tidal dynamics of compact bodies in general relativity is now the
subject of vigourous development.

The tidal deformation of neutron stars could have measurable effects
on gravitational waves produced during inspirals, well before merger
occurs. [Flanagan, Hinderer (2008); Postnikov, Prakash, Lattimer (2010); Pannarale et al (2011), Lackey el al (2012),

Damour, Nagar, Villain (2012); Read et al (2013); Vines, Flanagan (2013)]

Tidal interactions are important in extreme mass-ratio inspirals:
tidal torquing of the large black hole leads to a significant gain of
orbital angular momentum. [Hughes (2001); Martel (2004); Yunes et al (2010, 2011)]

Relativistic theory of Love numbers. [Damour, Nagar (2009); Binnington, Poisson (2009);

Damour, Lecian (2009); Landry, Poisson (2014)]

I-Love-Q relations. [Yagi, Yunes (2013); Doneva, Yazadjiev, Stergioulas, Kokkotas (2013); Maselli et al

(2013); Haskell et al (2014)]

Tidal invariants for point-particle actions [Bini, Damour, Faye (2012); Dolan, Nolan, Ottewill

(2014); Bini, Damour (2014)]
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Goal

The main, long-term goal of this work is to develop a relativistic theory
of tidal deformations and interactions that is as complete and elegant as
the Newtonian theory.

In this talk I shall focus on black holes.
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Outline

Tides on Newtonian bodies, in four easy steps

Tides on black holes, in the same four easy steps

Conclusion
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Newtonian tides: Setting and assumptions

We consider a self-gravitating body (“the body”) in a generic tidal
environment created by remote external matter.

The body has a mass M and radius R. It is spherical in isolation.

The body may be rotating, but we ignore the rotational deformation.

The tidal forces are weak and the deformation is small.

The external time scales are long compared with the time scales
associated with internal processes in the body; the tides are slow.

We work in the noninertial frame of the moving body, with its origin at
the centre-of-mass.

We focus our attention on a domain N that does not extend far beyond
the body.
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The domain N

The local domain N excludes all external matter.

N
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1. Characterize the tidal environment

The Newtonian potential in N is decomposed as

U = Ubody + Uext

∇2Ubody = −4πρ, ∇2Uext = 0

Because the external matter is remote, the external potential can be
Taylor-expanded about the body’s centre-of-mass,

Uext(t,x) = Uext(t,0) + ga(t)xa − 1

2
Eab(t)xaxb + · · ·

ga(t) = ∂aUext(t,0) = body’s CM acceleration

Eab(t) = −∂abUext(t,0) = tidal tensor

The tidal tensor is not determined by the field equations restricted to
N ; it provides a characterization of a generic tidal environment.
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2. Describe the body’s deformation

The deformation of the body is measured by its quadrupole-moment
tensor,

Ubody =
M

r
+

3

2
Qab

xaxb

r5
+ · · ·

To relate Qab to Eab requires formulating a model for the body and
solving the structure equations (eg, equations of hydrostatic equilibrium)
for the perturbed configuration.

Generically,

Qab(t) = −2

3
k2R

5Eab(t− τ)

k2 = gravitational Love number

τ = viscous delay

The Love number k2 and viscous delay τ depend on the details of
internal structure, composition, dissipation mechanism, etc.
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3. Deduce dynamical consequences

The tidal interaction leads to an exchange of angular momentum
between the body and the external matter.

For a tidal environment in a state of rigid rotation of angular frequency
Ωtide around the body’s rotation axis,

E11 = E0 + E2 cos(2Ωtidet), E12 = E2 sin(2Ωtidet), E13 = 0

E22 = E0 − E2 cos(2Ωtidet), E23 = 0, E33 = −2E0

Tidal torquing

dS

dt
=

8

3
(k2τ)R5(E2)2(Ωtide − Ωbody)

Ωbody = body’s intrinsic angular velocity

The body spins down when Ωtide < Ωbody; it spins up when
Ωtide > Ωbody.
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4. Specify the tidal environment

In order to apply the general theory, Eab must be specified.

This requires leaving the domain N and identifying the source of the
tidal environment.

When the body is a member of a two-body system with a companion of
mass M ′ at position r(t),

Uext(t,x) =
M ′

|x− r(t)|

and Eab = −∂abUext(t,0) is easily computed.

For a system in circular motion with orbital radius r,

E0 = −M
′

2r3
, E2 = −3M ′

2r3
, Ωtide =

√
M +M ′

r3
= Ωorbital

This can then be substituted into the general formulae.

Eric Poisson Tidal deformation and dynamics of black holes



Introduction Newtonian tides Relativistic tides Conclusion

Relativistic tides: Setting and assumptions

The same as in the Newtonian theory.

N
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1. Characterize the tidal environment

The metric of a slowly rotating, nearly spherical body is perturbed by a
remote distribution of matter, external to the domain N ,

gαβ = gunpertαβ + pbodyαβ + pextαβ

δGαβ
[
pbody

]
= 8πδTαβ

δGαβ
[
pext

]
= 0

The asymptotic behaviour of pextαβ is specified by two gauge invariant
tidal tensors, Eab(t) and Bab(t).

These can be related to the (electric and magnetic) components of the
Weyl tensor evaluated at the edge of N .

The tidal tensors are not determined by the field equations restricted to
N .
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2. Determine the body’s deformation

The perturbation pbodyαβ must be continuous across the surface of a
material body; this condition determines the relativistic Love numbers
kel2 and kmag

2 , which are gauge invariant.

In the case of a black hole, regularity at the event horizon requires
pbodyαβ = 0, so that kel2 = kmag

2 = 0; the gravitational Love numbers of a
black hole are zero.

Metric of a tidally deformed, slowly rotating black hole

g00 = −1 +
2M

r

−
(

1− 2M
r

)2
Eabxaxb −

(
M2

r2 − 4M
3

r3 + 2M
4

r4

)
χ∂φ Eabxaxb

+
(

2M − 34
5
M2

r + 32
5
M3

r2

)
χpBpaxa −

(
2M

2

r3 −
8
3
M3

r4

)
χ〈aBbc〉xaxbxc

where χa = Sa/M
2 � 1 is the black hole’s dimensionless spin.
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3. Deduce dynamical consequences

The tidal torquing of a black hole can be calculated on the basis of
well-known horizon flux formulae. [Teukolsky, Press (1974); Poisson (2004)]

For a tidal environment in a state of rigid rotation of angular frequency
Ωtide around the black hole’s rotation axis,

E11 = E0 + E2 cos(2Ωtidev), E12 = E2 sin(2Ωtidev), E13 = 0

E22 = E0 − E2 cos(2Ωtidev), E23 = 0, E33 = −2E0

B11 = 0, B12 = 0, B13 = B1 cos(Ωtidev),

B22 = 0, B23 = B1 sin(Ωtidev), B33 = 0.
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3. Deduce dynamical consequences: continued

Tidal torquing of a black hole

dS

dv
=

128

45
M6

[
E22 +

1

4
B21 +

9

2

(
16E22 + B21

)
χMΩtide

](
Ωtide − ΩH

)

Comparison with the Newtonian expression

dS

dt
=

8

3
(k2τ)R5(E2)2(Ωtide − Ωbody)

reveals that

(k2τ)R5 =
16

15
M6

for a black hole.

With R ∼M , this implies that (k2τ) ∼M .
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4. Specify the tidal environment

The determination of Eab(t) and Bab(t) requires leaving the domain N
and incorporating the external matter that sources the tidal field.

This must be done in general relativity, taking into account the
nonlinearity of the field equations.

To make progress it is useful to assume that the mutual gravity between
the black hole and the external matter is weak, so that the metric can be
expressed as a post-Newtonian expansion.

Gravity is still strong near the black hole, but at a safe distance the
metric becomes post-Newtonian.
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4. Specify the tidal environment: BH metric

There is an overlap between N and the the post-Newtonian zone.

PN zone

In this overlap, in local harmonic coordinates, the black-hole metric is

g00 = −1 +
2M

r
− 2M2

r2
−
(

1− 2M

r

)
Eabxaxb + 2MχpBpaxa + (2pn)
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4. Specify the tidal environment: Matching

This metric can be matched to the post-Newtonian metric that describes
the entire system, black hole and external matter.

The matching requires a transformation from the global inertial frame of
the post-Newtonian metric to the local frame of the moving black hole.

The matching determines the black hole’s motion in the global frame,
some a priori unknown functions that characterize the black hole in the
post-Newtonian metric, and the tidal tensors.

The black hole’s equations of motion can be expressed as

aa = geodesic forces−MχpBpa + (2pn)

The second term, which arises from the dipole term in the black-hole
metric, is the Mathisson-Papapetrou spin force. It gives rise to a piece
of the spin-orbit acceleration, and all of the spin-spin acceleration.
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4. Specify the tidal environment: Tidal moments

For a two-body system, for spins aligned or antialigned with the orbital
angular momentum, and for circular motion, the tidal moments are
determined to be

E0 = −M
′

2r3

[
1 +

1

2
qv2 − 6q′χ′v3 +O(v4)

]
E2 = −3M ′

2r3

[
1 +

1

2
(3q + 4q′)v2 − 2q′χ′v3 +O(v4)

]
B1 = −3M ′

r3
v
[
1− q′χ′v +O(v2)

]
Ωtide =

√
M +M ′

r3

[
1− 1

2
(3 + qq′)v2 − 1

2
χ̄v3 +O(v4)

]
6= Ωorbital

with r = orbital radius, (M,χ) = mass and spin of the black hole,
(M ′, χ′) = mass and spin of the companion, v2 = (M +M ′)/r,
q = M/(M +M ′), q′ = M ′/(M +M ′), and χ̄ = q(2q + q′)χ+ 3qq′χ′.
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Comparison with numerical relativity

The Caltech-Cornell-CITA collaboration has recently made a preliminary
measurement of the tidal torquing of a black hole during a simulated
inspiral. This can be compared with the 1.5pn tidal torquing formula.
[Chatziioannou, Poisson, Yunes, Scheel (2014)]

16 > r/(M +M ′) > 2
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Conclusion

The Newtonian theory of tidal deformations and dynamics is undergoing
a generalization to relativistic gravity.

A meaningful description of the tidal deformation of a relativistic body
has been achieved; Love numbers have been ported to general relativity.

The tidal dynamics of black holes is well developed; it displays a
remarkable similarity with the Newtonian theory of viscous bodies.

The tidal tensors of a slowly rotating black hole immersed in a
post-Newtonian tidal environment have been determined to 1.5pn order.

The 1.5pn tidal torquing formula was compared with preliminary
numerical results from the Caltech-Cornell-CITA collaboration.
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Gravity

G
ravity

Poisson and W
ill

Exploring approximate solutions to general relativity and their consequences, this textbook offers 

a unique presentation of Einstein’s theory by developing powerful methods that can be applied 

to astrophysical systems. 

Beginning with a uniquely thorough treatment of Newtonian gravity, the book develops 

post-Newtonian and post-Minkowskian approximation methods to obtain weak-field solutions 

to the Einstein field equations. It explores the motion of self-gravitating bodies, the physics of 

gravitational waves, and the impact of radiative losses on gravitating systems. The book concludes 

with a brief overview of alternative theories of gravity.

Ideal for graduate courses on general relativity and relativistic astrophysics, the book 

examines real-life applications, such as planetary motion around the Sun, the timing of binary 

pulsars, and gravitational waves emitted by binary black holes. Text boxes explore related topics 

and provide historical context, and over 100 exercises present interesting and challenging tests of 

the material covered in the main text.

Eric Poisson is Professor of Physics at University of Guelph. He is a Fellow of the American Physical 

Society and serves on the Editorial Boards of Physical Review Letters and Classical and Quantum 

Gravity.

Clifford M. Will is Distinguished Professor of Physics at the University of Florida and J. S. 

McDonnell Professor Emeritus at Washington University in St. Louis. He is a member of the US 

National Academy of Sciences, and Editor-in-Chief of Classical and Quantum Gravity. He is well 

known for his ability to bring science to broad audiences. 

Endorsements to follow

Cover illustration: © RGB Ventures LLC dba SuperStock/Alamy.

Gravity
Newtonian, Post-Newtonian, Relativistic

Eric Poisson and Clifford M. Will
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